231 7. REFERENCES [1] Jha, R. K., and Zi-rong, X., 2004, “Biomedical Compounds from Marine organisms”, Mar. Drugs, 2, pp. 123 – 146. [2] Zobell, C.E., (1946) “In: Marine microbiology: A Monograph on Hydrobacteriology”, Chronica Botanica Co., Waltham, MA, USA. [3] Fenical, W., and Jensen, P. R., 2006, “Developing a new resource for drug discovery: Marine actinomycete bacteria”, Nat. Chem. Biol., 2, pp. 666 – 673. [4] Sogin, M. L., Morrison, H. G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, G.J., 2006, “Microbial diversity in the deep sea and the underexplored 'rare biosphere'”, Proc. Natl. Acad. Sci. USA, 103, pp. 12115 – 12120. [5] Proksch, P., Edrada, R., and Ebel, R., 2002, “Drugs from the sea – current status and microbiological implications”, Appl. Microbiol. Biotechnol., 59, pp. 125 – 134. [6] Kijjoa, A., and Sawangwong, P., 2004, “Drugs and Cosmetics from the Sea”, Mar. Drugs, 2, pp. 73 – 82. [7] Costanza, R., 1999, “The ecological, economic, and social importance of the oceans”, Ecol. Econom., 31, pp. 199 – 213. [8] Miller, W. E. G., Briimmer, F., Batel, R., Miiller, I. M., and Schroder, H. C., 2003, “Molecular biodiversity (case study) Profera (sponges)”, Natur. Wissenschaften., 90, pp. 103 – 120. [9] Thakur, N. L., Thakur, A. N., and Muller, W. E. G., 2005, “Marine natural products in drug discovery”, Nat. Prod. Rad. 4 (6), pp. 471 – 477. 232 [10] Pisut, D. P., and Pawlik, J. R., 2002, “Anti predatory chemical defenses of ascidians: secondary metabolite or inorganic acids?” J. Exp. Mar. Bio. Ecol., 270, pp. 203 – 214. [11] Thakur, N. L., Hentschel, U., Krasko, A., Pabel, C. T., Anil, A. C., and Müller, W. E. G., 2003, “Antibacterial activity of sponge Suberites domuncula and its primorphs: potential basis for epibacterial chemical defense”, Aquat. Microb. Ecol., 31, pp. 73 – 83. [12] Mayer, A. M. S., and Lehmann, V. K. B., 2002, “Marine pharmacology”, The pharmacol., 42, pp. 62 – 69. [13] Venkataraman, K., and Wafar, M.V.M., 2005, “Coastal and marine biodiversity of India,” Indian J. Mar. Sci., 34, pp. 57 – 75. [14] Fishery Survey of India (FSI), 2009, “Marine fish production 20072008”http://www.icsf.net/icsf2009/jspfiles/indianFisheries/overview.jsp . Economic survey of India, 2010, “India fish production 2009-2010” http://exim.indiamart.com/economic-survey09-10/pdfs/chapter08.pdf [15] [16] Macdougall, J. D., 1996, “In: A short history of Planet Earth”, John Wiley Eds., New York, pp. 5. [17] Nadkarni, K. M., and Nadkarni, A. K., 1976, “Indian Materia Medica”, Popular Prakashan Pvt. Ltd, Bombay, Vol. II, pp. 135-231. [18] Prabhakar Chatterjee, (1955), “In: Ayurvedic Treatment of Cancer”, Lalchand and Sons, Calcutta, pp. 36-146. [19] Pandit Shiv Sharma, (1987), “In: Ayurvedic Medicine Past and Present”, Krishnadas Academy, Varanasi, pp. 195 – 197. [20] The Ayurvedic Formulatory of India Part-I, 2003, Govt. of India – Ministry of Health and Welfare, Dept of Indian Systems of Medicine and Homeopathy. 233 [21] Bodding, P. O., (1986), “Studies in Santal Medicine and Connected Folklore, Parts I, II and III”, Asiatic Society, pp. 170 – 214. [22] Ramamurthi Iyer, T. G., (1933), “In: The handbook of Indian medicine or the gems of Siddha system”, Sri Vani Vilas Press, Erode, pp. 340346. [23] Visweswara Sastry, M., and Pandit Mulugu Ramalingayya, (1959). “Vaidya Yoga Ratnavali”, Madras State, Indian Medical Practitioner Co-operative Pharmacy and Stores, Vol. I, pp. 282-439. [24] Unani Pharmacopoeia in English, (1974), The Madras Provincial Indian Medical Practitioners Co-operative Pharmacy and Stores Ltd., Madras, pp. 21 – 145. [25] Sodasangarhdayam, P. V. S., (1993) “In: Essentials of Ayurveda”, Motilal Banarsidass Publishers Pvt. Ltd., New Delhi, pp. 78-90. [26] Agarwal, R. S., (1987) “In: Secrets of Indian Medicine”, Sri Aurobindo Ashram Publication Department. [27] Chopra, I. C., Handa, K. L., and Kapur, L. D., (1994) “In: Indigenous of India”, Academic Publishers, Calcutta. [28] Vohoro, S. B., and S. Y. Khan, (1979) “In: Animal origin drugs used in Unani Medicine”, Vikas Publishing House Pvt. Ltd., New Delhi. [29] Dash, B., and Kashyap, L., (1980) “In: Materia Medica of Ayurveda”, Lotus Press, pp. 225-292. [30] Fathi, A. R., Allen, T. M., 1988, “Biologically active metabolites from Agelas mauriti ana”, Can. J. Chem., 66, pp. 45 – 50. [31] Kikuchi, H., Tsukitani, Y., Shimizu, I., Kobayashi, M., and Kitagawa, I., 1981, “Foliaspongin, an Anti-inflammatory Bishomosesterterpene 234 from the Marine Sponge Phyllospongia foliascens (PALLAS)”, Chem. Pharm. Bull. (Japan), 29, pp. 1492 - 1494. [32] Kikuchi, H., Tsukitani, Y., Toshitaka, M., Takashi, F., Nakanishi, H., Kobayashi, M., and Kitagawa, I., 1982, “Marine Natural Products. X. Pharmacologically Active Glycolipids from the Okinawan Marine Sponge Phyllospongia foliascens (PALLAS)”, Chem. Pharm. Bull., (Japan). 30, pp. 3544-3547. [33] Bandurraga, M. M., and Fenical, W., 1985, “Isolation of the muricins: Evidence of a chemical adaptation against fouling in the marine octocoral Muricea fruticosa (gorgonacea)”, Tetrahedron, 41(6), pp. 1057 – 1065. [34] Fusetani, N., Matsunaga, S., and Konosu, S., 1981, “Bioactive marine metabolites I. Isolation of guaiazulene from the gorgonian Euplexaura erecta”, Cell Mol. Life Sci., 37 (7), pp. 680 - 681. [35] Groweiss, A., Fenical, W., Cun-Heng, H., Clardy, J., Zhongde, W., Zhongnian, Y., and Kanghov, L., 1985, “Subergorgic acid, a novel tricyclopentanoid cardiotoxin from the pacific gorgonian coral Subergorgia suberosa”, Tetrahedron Lett., 26 (20), pp. 2379 – 2382. [36] Chatterji, A., Zakir A., Ansari Baban, S., Ingole, M. A., Bichurina ,Marina Sovetova and Boikov, Y. A., 2002, “Indian marine bivalves: Potential source of antiviral drugs”, Curr. Sci., 82, pp. 10. [37] Nazeer, R. A., Sampath Kumar, N. S., Shabeena, Y. N., Radhika R., Rahul Kishore K, and Sivani R Bhatt., 2009. “Lipid Profiles of Threadfin bream (Nemipterus japonicus) organs”, Ind. J. Marine Sci., 38 (4), pp. 461 – 463. [38] Shabeena, Y. N., and Nazeer, R. A., 2010, “Antioxidant activity of hydrolysates and peptide fractions of Nemipterus japonicus and 235 Exocoetus volitans muscle”, J. Aquat. Food. Prod. Technol., 19, pp. 180 – 192. [39] Shabeena, Y. N., and Nazeer, R. A., 2011a, “Evaluation of bioactive properties of peptide isolated from Exocoetus volitans”, Int. J. Food Sci. Technol., 46, pp. 37 – 43. [40] Shabeena, Y. N., and Nazeer, R. A., 2011b, “Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle”, J. Food Sci. Technol., DOI 10.1007/s13197-011-0416-y. [41] Shabeena, Y. N., and Nazeer, R. A., 2011c, “Identification of active peptides from backbones of Nemipterus japonicus and Exocoetus volitans by electrospray ionisation–mass spectrometry”, Int. J. Food Sci. Technol., 46, pp. 1993-1996. [42] Shabeena, Y. N., and Nazeer, R. A., 2011d, “Optimization of enzymatic hydrolysis conditions for the production of antioxidant peptides from muscles of Nemipterus japonicus and Exocoetus volitans using response surface methodology”, Amino Acids., DOI 10.1007/s00726011-1084-y. [43] Nazeer, R. A., Deeptha, R., Jaiganesh, R., Sampath Kumar, N. S., and Shabeena, Y. N., 2011a “Radical scavenging activity of Seela (Sphyraena barracuda) and Ribbon fish (Lepturacanthus savala) backbone protein hydrolysates”, Int. J. Pept. Res. Ther., 17 (3), pp. 209 – 216. [44] Jai Ganesh, R., Nazeer, R. A., and Sampath Kumar, N. S., 2011, “Purification and Identification of antioxidant peptides from Black pomfret, Parastromateus niger (Bloch, 1795) viscera protein hydrolysate”, Food Sci. Biotechnol., 20 (4), 1087 – 1094. 236 [45] Nazeer, R. A., and Srividhya, T. S., 2011b, "Antioxidant peptides from the protein hydrolysates of Conus betulinus", Int. J. Pept. Res. Ther., 17, pp. 231–237. [46] Nazeer, R. A., Divya Prabha, K. R., Sampath Kumar, N. S., and Jai Ganesh, R., 2011c, “Isolation of Antioxidant Peptides from Clam (Meretrix casta)”, J. Food Sci. Technol., DOI 10.1007/s13197-0110395-z. [47] Nazeer, R. A., Kavitha, R., Jai Ganesh, R., Shabeena, Y.N., Sampath Kumar, N. S., and Ranjith, R., 2011d, “Detection of Collagen through FTIR and HPLC from the body and foot of Donax cuneatus”, J. Food Sci. Technol., DOI: 10.1007/s13197-011-0539-1. [48] Sarmadi, B. H., and Ismail, A., 2010, “Antioxidative peptides from food proteins: a review”, Peptide, 31 (10), pp. 1949 – 1956. [49] Kim, S. K., Choi, Y. R., Park, P. J., Choi, J. H., and Moon, S. H., 2000, “Screening of biofunctional peptides from cod processing wastes”, J. Korean Soc. Agric. Chem. Biotechnol., 43, pp. 225–227. [50] Je, J. Y., Park, P. J., Jung, W. K., and Kim, S. K., 2005, “Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas”, Food Chem., 90, pp. 809 – 814. [51] Fujita, H., and Yoshikawa, M., 1999, “LKPNM: A prodrug - type ACE inhibitory peptide derived from fish protein”, Int. J. Immunopharmaco., 44, pp. 123 – 127. [52] Rajapakse, N., Mendis, E., Byun, H. G., and Kim, S. K., 2005, “Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems”, J. Nutr. Biochem., 16, pp. 562 – 569. [53] Kim, S. K., Jeon, Y. J., Byun, H. G., and Park, P. J., 1999, “Calcium absorption acceleration effect on phosphorylated and non- 237 phosphorylated peptides from hoki (Johnius belengeri) frame”, J. Korean Fish Soc., 32, pp. 713 – 717. [54] Jung, W. K., Park, P. J., Byun, H. G., Moon, S. H., and Kim, S. K., 2005, “Preparation of hoki (Johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase”, Food Chem., 91, pp. 33 – 340. [55] Fouchereau-Peron, M., Duvail, L., Michel, C., Gildberg, A., Batista, I., and Gal, Y. I., 1999, “Isolation of an acid fraction from a fish protein hydrolysate with a calcitonin gene related peptide like biological activity”, Biotechnol. Appl. Biochem., 29, pp. 87 – 92. [56] Gildberg, A., Bogwald, J., Johansen, A., and Stenberg, E., 1996, “Isolation of acid peptide fractions from a fish protein hydrolysate with strong stimulatory effect on atlantic salmon (Salmo salar) head kidney leucocytes”, Comp. Biochem. Physiol., 11, pp. 97 – 101. [57] Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., and Montero, M. P., 2011, “Functional and bioactive properties of collagen and gelatin from alternative sources: A review”, Food Hydrocolloid, 25 (8), pp. 1813 – 1827. [58] He, K., Liu, K, Daviglus, M.L., Elisabeth, M.D., Nancy, S.J., Rui, J., Pamela, O., Lyn, M.S., David, S., Colin Wu, Graham B., Michael, T., and Gregory, L.B., 2008, “Intakes of long-chain n-3 polyunsaturated fatty acids and fish in relation to measurements of subclinical atherosclerosis”, Am. J. Clin. Nutr., 88, pp. 1111 – 1118. [59] Schacky, C. V., 2000, “ω- 3 fatty acids and the prevention of coronary atherosclerosis”, Am. J. Clin. Nutr., 71, pp. 224 – 227. [60] Kris-Etherton, P. M., Harris, W. S., and Appel, L. J., 2003, “Omega-3 fatty acids and cardiovascular disease: New recommendations from the 238 American Heart Association”, Arterioscler. Thromb. Vasc. Biol., 23, pp. 151 – 152. [61] Sheehan, J. P., Wei, I. W., Ulchaker, M., and Tserng, K. Y., 1997, “Effect of high fiber intake in fish oil-treated patients with non-insulindependent diabetes mellitus”, Am. J. Clin. Nutr., 66, pp. 1183 – 1187. [62] Berry, E. M., 1997, “Dietary fatty acids in the management of diabetes mellitus”, Am. J. Clin. Nutr., 66, pp. 991 – 997. [63] Belluzzi, A., Brignola, C., Campieri, M., Pera, A., Boschi, S., and Miglioli, M., 1996, “Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease”, Eng. J. Med., 334, pp. 1557 – 1560. [64] Donadio, J. V., Jr., Bergstrahl, E. J., and Offord, K. P., 1994, “A controlled trial of fish oil in IgA nephropathy”, Eng. J. Med., 331, pp. 1194 – 1199. [65] Rice, R., 1996, “Fish and healthy pregnancy: more than just a red herring”, Prof. Care Mother Child, 6, pp. 171 – 173. [66] Severus, W. E., Ahrens, B., and Stoll, A., 1999, “Omega-3 fatty acids – the missing link?”, Arch. Gen. Psychiat., 56, pp. 380 – 381. [67] Nagai, T., Izumi, M., and Ishii, M., 2004, “Fish scale collagen. Preparation and partial characterization”, Int. J. Food Sci. Technol., 39, pp. 239 – 244. [68] Nagai, T., and Suzuki, N., 2000, “Isolation of collagen from fish waste material-skin, bone and fins”, Food Chem., 68, pp. 277 – 281. [69] Larsen, T., Thilsted, S. H., Konsbak, K., and Hansen, M., 2000, “Whole small fish as a rich calcium source”, Brit. J. Nutr., 83, pp. 191 – 196. 239 [70] Jensen, S. S., Aaboe, M., Pinhold, E. M., Hjrting-Hansen, Z., Melsen, F., and Ruyter, I. E., 1996, “Tissue reaction and material characteristics of four bone substitutes”, Int. J. Oral Maxillofac. Implants, 11, pp. 55 – 66. [71] Kim, S. K., Choi, J. S., Lee, C. K., Byun, H. G., Jeon, Y. J., and Lee, E. H. J., 1997, “Synthesis and biocompatibility of the hydroxyapatite ceramic composites from tuna bone (II)—The sintering properties of hydroxyapatite treated with wet milling process”, J. Korean Ind. Eng. Chem., 8, pp. 1000 – 1005. [72] Ozawa, M., and Suguru, S., 2002, “Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment”, J. Am. Ceramis. Soc., 85, pp. 1315 – 1317. [73] Choi, J. S., Lee, C. K., Jeon, Y. J., Byun, H. G., and Kim, S. K., 1999, “Properties of the ceramic composites and glass ceramics prepared by using the natural hydroxyapatite derived from tuna bone”, J. Korean Ind. Eng. Chem., 10, pp. 394 – 399. [74] Kim, S. K., Choi, J. S., Lee, C. K., Byun, H. G., Jeon, Y. J., and Lee, E. H., 1998, “Synthesis and biocompatibility of the hydroxyapatite ceramic composites from tuna bone (III)—SEM photographs of bonding properties hydroxyapatite ceramic composites in the simulated body fluid”, J. Korean Ind. Eng. Chem., 9, pp. 322 – 329. [75] Kim, S. K., and Park, P. J., 2000, “Evaluation of mucous membrane irritation by hydroxyapatite sinter produced from tuna bone in Syrian hamsters”, Korean J. Life Sci., 10, pp. 605 – 609. [76] Kim, S. K., Kim, Y. T., Byun, H. G., Nam, K. S., Joo, D. S., and Shahidi, F., 2001, “Isolation and characterization of antioxidative peptides from gelatin hydrolysate of alaska pollack skin”, J. Agric. Food Chem., 49, pp. 1984 – 1989. 240 [77] Haard, N. F., 1998, “Specialty enzymes from marine organisms”, Food Technol., 52, pp. 64 – 67. [78] Bougatef, A., Souissi, N., Fakhfakh, N., Ellouz-Triki, Y., and Nasri, M., “Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus)”, Food Chem., 102, pp. 343 – 350. [79] Byun, H. G., Park, P. J., Sung, N. J., and Kim, S. K., 2003, “Purification and characterization of a serine proteinase from the tuna pyloric caeca”, J. Food Biochem., 26, pp. 479 – 494. [80] Kim, S. K., Park, P. J., Kim, J. B., and Shahidi, F., 2002, “Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus”, J. Biochem. Mol. Biol., 35, pp. 165 – 171. [81] Park, P. J., Lee, S. H., Byun, H. G., Kim, S. H., and Kim, S. K., 2002, “Purification and characterization of a collagenase from the mackerel, Scomber japonicus”, J. Biochem. Mol. Biol., 35, pp. 576 – 582. [82] Haard, N. F., and Simpson, B. K., 1994, “In: Protease from aquatic organisms and their uses in the seafood industry”, A. M. Martin (Ed.), Fisheries processing biotechnological applications, London: Chapman & Hall, pp. 132–154. [83] Kim, S. K., Choi, J. S., Lee, C. K., Byun, H. G., Jeon, Y. J., and Lee, E. H. J., 1997, “Synthesis and biocompatibility of the hydroxyapatite ceramic composites from tuna bone (II) – The sintering properties of hydroxyapatite treated with wet milling process”, J. Korean Ind. Eng. Chem., 8, pp. 1000 – 1005. [84] Kim, S. K., Park, P. J., Byun, H. G., Je, J. Y., and Moon, S. H., 2003, “Recovery of fish bone from hoki (Johnius belengeri) frame using a proteolytic enzyme isolated from mackerel intestine”, J. Food Biochem., 27, pp. 255 – 266. 241 [85] Je, J, Lee, K., Hyun Lee, M., and Ahn, C., 2009, “Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis”, Food Res. Int., 42, pp. 1266 – 1272. [86] Nalinanon, S., Benjakul, S., and Kishimura, H., 2010, “Collagens from the skin of arabesque greenling (Pleurogrammus azonus) solubilized with the aid of acetic acid and pepsin from albacore tuna (Thunnus alalunga) stomach”, J. Sci. Food Agric., 90(9), pp. 1492 – 1500. [87] Chedoloh, R., Karrila, T. T., and Pakdeechanuan, P., 2011, “Fatty acid composition of important aquatic animals in Southern Thailand”, Int. Food Res. J., 18, pp. 758 – 765. [88] Paxton, J.R., Hoese, D. F., Allen, G. R., and Hanley, J. E., 1989, “In: Pisces. Petromyzontidae to Carangidae”, Zoological Catalogue of Australia, Australian Government Publishing Service, Canberra, Vol. 7, pp. 665. [89] Longhurst, A.R. and Pauly D., 1987, “In: Ecology of tropical oceans”, Academic press, San Diego. [90] Sasaki, K., 1996, “The bivalve fauna of Onagawa Bay, northeastern Japan”, Tohoku J. Agric. Res., 47 (12), pp. 47 – 57. [91] Brash, J. M., and Fennessy. S. T., 2005, “A Preliminary Investigation of Age and Growth of Otolithes ruber from KwaZulu-Natal, South Africa”, Western Indian Ocean J. Mar. Sci., 4 (1), pp. 21 – 28. [92] Riede, K., 2004, “In: Global register of migratory species - from global to regional scales”, Final Report of the R&D - Project 808 05 081, Federal Agency for Nature Conservation, Bonn, Germany, pp. 329. [93] Horrocks L A, and Yeo Y K., 1999, “Health benefits of docosahexaenoic acid (DHA)”, Pharmacol. Res., 40, pp. 3211 – 3225. 242 [94] Skonberg, D. I., and Perkins, B. L., 2002, “Nutrient composition of green crab (Carcinus maenus) leg meat and claw meat”, Food Chem., 77 (4), pp. 401 – 404. [95] Ward, O. P., and Singh, A., 2005, “Omega-3/6 fatty acids: alternative sources of production”, Process Biochem., 40 (12), pp. 3627 – 3652. [96] FAO, 2002, “In: Chemical composition. Quality and quality changes in fresh fish”, Available from http://www.fao.org/docrep/v7180e/ V7180E0 5.html. [97] Love, R. M., 1988, “In: The food fishes: their intrinsic variation and practical implications”, Van Nostrand Reinhold, New York, USA. [98] Balogun, A. M., and Talabi, S. O., 1985, “Proximate analysis of the flesh and anatomical weight composition of skipjack tuna (Katsuwonus pelamis)”, Food Chem., 17(2), pp. 117 – 123. [99] Nettleton, J. H., Allen, W. H., Klatt, L. V., Ratnayake, W. M. N., and Ackman, R. G., 1990, “Nutrients and chemical residues in one to two pound Mississippi farm-raised channel catfish (Ictalurus punctatus)”, J. Food Sci., 55, pp. 954 – 958. [100] Silva, J. J., and Chamul, R S., 2000, “In: Composition of marine and freshwater finfish and shellfish species and their products”, Martin, R. E., Carter, P., Flick, E. J.; Davis, L. M. (Eds.), Marine and freshwater products handbook, USA: Technomic Publishing Company, Inc., pp. 31–46. [101] FAO, 2004, “In: The composition of fish”, Available from http://www.fao.org/wairdocs/tan/x591 6e/x 5916e01.html. [102] Connell, J. R., Hardy, R., 1982, “In: Control of fish quality”, London: Fishing News Books, Ltd. 243 [103] AOAC, 1991, “In: Official methods of analysis”, 16th ed., Washington DC: Association of Official analytical chemists. [104] Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, “Protein measurement with folin phenol reagent”, J. Biol. Chem., 193, pp. 267 – 275. [105] Bligh, E. G., and Dyer, W. J., 1959, “A rapid method of total lipid extraction and purification”, Can. J. Biochem. Physiol., 37, pp. 911 – 917. [106] Ali, M., Iqbal, F., Salam, A., Iram, S. and Athar, M., 2006, “Comparative study of body composition of four fish species in relation to pond depth”, Int. J. Environ. Sci. Technol., 2(4), pp. 359 – 364. [107] Cui, Y., and Wootton, R. J., 1988, Effects of ration, temperature and body size on the body composition, energy content and condition of minnow (Phoxinus phoxinus), J. Fish Biol., 32, pp. 749 – 764. [108] Dempson, J. B., Schwar, Z. C. J., Shears, M. and Furey, G., 2004, “Comparative proximate body composition of Atlantic salmon with emphasis on parr from fluvial and lacustrine habitats”, J. Fish Biol., 64, pp. 1257 – 1271. [109] Weatherley, A. H., and Gill, H. S., 1987, “In: The biology of fish growth”, Academic Press, London, UK. [110] Berg O. K., Thronaes E. and Bremset G., 2000, “Seasonal changes in body composition in young riverine atlantic salmon and brown trout”, J. Fish Biol., 52, pp. 1272 – 1288. [111] Dawson, A. S., and Grimm, A. S., 1980, “Quantitative seasonal changes in the protein, lipid and energy contents of carcass, ovaries and liver of adult female (Pleuronectes platena L.), J. Fish Biol., 16, pp. 493. 244 [112] Jonsson, N. and Jonsson, B., 1998, “Body composition and energy allocation in life history stages of brown trout”, J. Fish Biol., 53, pp. 1313-1317. [113] Salam, A., and Davies, P. M. C., 1994. “Body composition of Northern Pike (Esox lucius L.) in relation to body size and condition factor”, J. Fish Res., 19, pp. 193 – 204. [114] Shearer, K. D., 1984, “Changes in the elemental composition of hatchery reared rainbow trout (Salmo gairdneri) associated with growth and reproduction”, Can. J. Fish. Aqua. Sci., 41, pp. 1592 – 1600. [115] Grayton, B. D., and Beamish F. W. H., 1997, “Effects of feeding frequency on food intake growth and body composition of rainbow trout (Salmo gairdneri)”, Aquaculture, 11, pp. 159 – 172. [116] Jobling M., 1980, “Effect of starvation on proximate chemical composition and energy utilization in plaice (Plueronectes platesse L)”, J. Fish Biol., 17, pp. 325 – 334. [117] Chandrasekhar, K., and Deosthale, Y. G., 1993, “Proximate composition, amino acid, mineral and trace element content of the edible muscle of 20 Indian fish species”, J. Food Comp. Anal., 6, pp. 195 – 200. [118] Wu, H., and Shiau. C., 2002, “Proximate Composition, Free Amino Acids and Peptides Contents in Commercial Chicken and Other Meat Essences”, J. Food Drug Anal., 10 (3), pp. 170 – 177. [119] Tang, H. G., Chen, L. H., Xiao, C. G., and Wu, T. X., 2009, “Fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R) of different age”, J. Zhejiang Univ. Sci. B, 10(2), pp. 154 – 158. 245 [120] Schaufler, L. E., Vollenweider, J. J., and Moles, A., . 2008, “Changes in the lipid class and proximate compositions of coho salmon (Oncorhynchus kisutch) smolts infected with the nematode parasite Philonema agubernaculum”, Comp. Biochem. Physiol. B, 149, pp. 148 – 152. [121] Okland, H. M., Stoknes, I. S., Remme, J. F., Kjerstad, M., and Synnes, M., 2005, “Proximate composition, fatty acid and lipid class composition of the muscle from deep-sea teleosts and elasmobranchs”, Comp. Biochem. Physiol., 140, pp. 437 – 443. [122] Chakraborty, S., Ghosh, S., and Bhattacharyya, D. K., 2005, “Lipid profiles of pomfret fish (Pampus argenteus) organs”, J. Oleo Sci., 54 (2), pp. 85 – 88. [123] Mukhopadhyay, T., Nandi, S., and Ghosh, S., 2004, “Lipid profiles and fatty acid composition in eggs of Indian Featherback fish pholui (Notopterus notopterus Pallas) in comparison with body-tissue lipid”, J. Oleo Sci., 53, pp. 323 – 328. [124] Chakraborty, S, Ghosh, S., and Bhattacharyya, D. K., 2004, “Lipid profiles of Bhola Bhetki (Nibea soldado) organs”, J. Oleo Sci., 53 (8), pp. 367 – 370. [125] Bennion, M., 1997, “In: Introductory foods”, 7th ed., New York, USA: Macmillan. [126] Feeley, R. M., and Criner, D. E. C., and Watt, B. K., 1972, “Cholesterol content of foods”, J. Am. Diet. Assoc., 61, pp. 134 – 148. [127] Gurr, M. I., 1992, “In: Role of fats in food and nutrition”, 2nd ed., London, UK: Elsevier Applied Science. [128] Piggot, G. M., and Tucker, B. W., 1990, “In: Effects of technology on nutrition”, Marcel Dekker, New York, USA. 246 [129] Maritim, A. C., Sanders, R. A., and Watkins, J. B., 2003, “Diabetes, oxidative stress, and antioxidants: a review”, J. Biochem. Mol. Toxicol., 17, pp. 24–38. [130] Halliwell, B., Gutteridge, J. M., and Cross, C. E., 1992, “Free radicals, antioxidants, and human disease: where are we now?”, J. Lab. Clin. Med., 119, pp. 598 – 620. [131] Halliwell, B., and Gutteridge, J. M. C., (2007), “In: Free radicals in biology and medicine”, 4th ed., Oxford University Press, Oxford, UK. [132] Droge, W., 2002, “Free radicals in the physiological control of cell function”, Physiol. Rev., 82, pp. 47 – 95. [133] Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and Fenn, W. O., 1954, “Oxygen poisoning and X-irradiation: a mechanism in common”, Science, 119, pp. 623 – 626. [134] Singal, P. K., Li, T., Kumar, D., Danelisen, I., and Iliskovic, N., 2000, “Adriamycin-induced heart failure:mechanism and modulation”, Mol. Cell Biochem. 207, pp. 77 – 86. [135] Halliwell, B., and Cross, C. E., 1994, “Oxygen-derived species: their relation to human disease and environmental stress”, Environ. Health Perspect., 102, pp. 5 – 12. [136] Huang, Y. L., Sheu, J. Y., and Lin, T. H., 1999, “Association between oxidative stress and changes of trace elements in patients with breast cancer”, Clin. Biochem. 32, pp. 131 – 136. [137] Halliwell, B., 2006, “Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life,” Plant Phys., 141, pp. 312-322. 247 [138] Frei, B., England, L., and Ames, B, N., 1989, “Ascorbate is an outstanding antioxidant in human blood plasma”, Proc. Natl. Acad. Sci. U. S. A., 86, pp. 6377 – 6381. [139] Halliwell, B., 2007, “Oxidative stress and cancer: have we moved forward?”, Biochem. J., 401, pp. 1 – 11. [140] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M., 2006, “Free radicals, metals and antioxidants in oxidative stressinduced cancer”, Chem. Biol. Interact. 160, pp. 1 – 40. [141] Church, D. F., and Pryor, W. A., 1985, “Free-radical chemistry of cigarette smoke and its toxicological implications”, Environ. Health. Perspect., 64, pp. 111 – 126. [142] Riley, P. A., 1994, “Free radicals in biology: oxidative stress and the effects of ionizing radiation”, Int. J. Radiat. Biol., 65, pp. 27 – 33. [143] Powell, C. L., Swenberg, J. A., and Rusyn, I., 2005, “Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage”, Cancer Lett., 229, pp. 1 – 11. [144] Sheu, S., Nauduri, D., and Anders, M. W., 2006, “Targeting antioxidants to mitochondria: A new therapeutic direction”, Biochim. Biophy. Acta, 1762, pp. 256 – 265. [145] Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. and Van Breusegem, F., 2000, “Dual action of the active oxygen species during plant stress responses”, Cell. Mol. Life. Sci., 57, pp. 779 – 795. [146] Halliwell, B. and Gutteridge, M. C., 1984, “Oxygen toxicity, oxygen radicals, transition metals and disease”, Biochem. J., 219, pp. 1 – 14. [147] Cadenas, E., 1989, “Biochemistry of oxygen toxicity”, Annu. Rev. Biochem., 58, pp. 79 – 110. 248 [148] Dada, L. A., Chandel, N. S., Ridge, K. M., Pedemonte, C., Bertorello, A. M., and Sznajder, J. I., 2003, “Hypoxia-induced endocytosis of Na, K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC”, J. Clin. Invest., 111(7), pp. 1057 – 1064. [149] Meyer, A. S., Jepsen, S. M., and Sùrensen, N. S., 1998, “Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace”, J. Agric. Food Chem., 46, pp. 2439 – 2446. [150] Nakagami, T., Nanaumi-Tamura, N., Toyomura, K., Nakamura, T., and Shigehisa, T., 1995, “Dietary flavonoids as potential natural biological response modifiers affecting the autoimmune system”, J. Food Sci., 60, pp. 653 – 656. [151] Hollman, P. C. H., Hertog, M. G. L., and Katan, M. B., 1996, “Analysis and health effects of flavonoids”, Food Chem., 57, pp. 43 – 46. [152] Tappel, A., 1997, “Vitamin E as a biological lipid antioxidant”, Inform., 8, pp. 392 – 396. [153] Byun, H. G., Lee, J. K., Park, H. G., Jeon, J.K., and Kim, S. K., 2009, “Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis”, Process Biochem., 44, pp. 842 – 846. [154] Forman, H. J., Torres, M., and Fukuto, J., 2002, “Redox signaling”, Mol. Cell Biochem., 234, pp. 49 – 62. [155] Johansen, J. S., Harris, A. K., Rychly, D. J., and Ergul, A., 2005, “Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice”, Cardiovasc. Diabetol., 4, pp. 5-11. [156] Kaneto, H., Kajimoto, Y., Miyagawa, J. I., Matsuoka, T. A., Fujitani, Y., Umayahara, Y., Hanafusa, T., Matsuzawa, Y., Yamasaki, Y., and 249 Hori, M., 1999, “Beneficial effects of antioxidants in diabetes”, Diabetes, 48, pp. 2398 – 406. [157] Rice-Evans, C. A., and Diplock, A. T., 1992, “Current status of antioxidant therapy”, Free Rad. Biol. Med., 15, pp. 77 – 79. [158] Nakagawa, K., Ninomiya, M., Okubo, T., Aoi, N., Juneja, L. R., Kim, M., Yamanaka, K., and Miyazawa, T., 1999, “Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans”, J. Agric. Food Chem., 47, pp. 3967 – 3973. [159] Moon, J. H., and Terao, J., 1998, “Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lypoprotein”, J. Agric. Food Chem., 46, pp. 5062 – 5065. [160] Abuja, P.M., Murkovic, M., and Pfannhauser, W., 1998, “Antioxidant and prooxidant activities of elderberry (Sambucus nigra) extract in lowdensity lipoprotein oxidation”, J. Agric. Food Chem., 46, pp. 4091 – 4096. [161] Wang, M., Shao, Y., Li, J., Zhu, N., Rangarajan, M., LaVoie, E. J., and Ho, C. T., 1999, “Antioxidative phenolic glycosides from sage (Salvia offcinalis), J. Nat. Prod., 62, pp. 454 – 456. [162] Saleh, M. M., Hashem, F. A. E. M., and Glombitza, K. W., 1998, “Study of Citrus taitensis and radical scavenger activity of the flavonoids isolated”, Food Chem., 63, pp. 397 – 400. [163] Dawes, H. W., and Keene, J. B., 1999, “Phenolic composition of kiwi fruit juice”, J. Agric. Food Chem., 47, pp. 2398 – 2403. [164] Donovan, J. L., Meyer, A. S., and Waterhouse, A. L., 1998, “Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica)”, J. Agric. Food Chem., 46, pp. 1247 – 1252. 250 [165] Romani, A., Mulinacci, N., Pinelli, P., Vincieri, F. F., and Cimato, A., 1999, “Polyphenolic content in five Tuscany cultivars of Olea europaea L.”, J. Agric. Food Chem., 47, pp. 964 – 967. [166] Furuta, S., Nishiba, Y., and Suda, I., 1997, “Fluorometric assay for screening antioxidative activity of vegetables”, J. Food Sci., 62, pp. 526 – 528. [167] Sanbongi, C., Osakabe, N., Natsume, M., Takizawa, T., Gomi, S., and Osawa, T., 1998, “Antioxidative polyphenols isolated from Theobroma cacao”, J. Agric. Food Chem., 46, pp. 454 – 457. [168] Al-Saikhan, M. S., Howard, L. R., and Miller, J. C., 1995, “Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberrosum)”, J. Food Sci., 60, pp. 341 – 343. [169] Abushita, A. A., Hebshi, E. A., Daood, H. G., and Biacs, P. A., 1997, “Determination of antioxidant vitamins in tomatoes”, Food Chem., 60, pp. 207 – 212. [170] Gil, M. I., Ferreres, F., and Tomas Barberan, F. A., 1999, “Effect of postharvest storage and processing on the antioxidant constituents (Flavonoids and vitamin C) of fresh cut spinach”, J. Agric. Food Chem., 47, pp. 2213 – 2217. [171] Markus, F., Daood, H. G., Kapitany, J., and Biacs, P. A., 1999, “Change in the carotenoid and antioxidant content of spice red pepper (Paprika) as a function of ripening and some technological factors”, J. Agric. Food Chem., 47, pp. 100 – 107. [172] Aruoma, O. I., Spencer, J. P. E., Warren, D., Jenner, P., Butler, J., and Halliwell, B., 1997, “Characterization of food antioxidants, illustrated using commercial garlic and ginger preparations”, Food Chem., 60, pp. 149 – 156. 251 [173] Lin, J.K., Lin, C.-H., Liang, Y.C., Lin-Shiau, S.Y., and Juan, I. M., 1998, “Survey of catechins, gallic acid, and methylxantines in green, oolong, puerh and black teas”, J. Agric. Food Chem., 46, pp. 3635 – 3642. [174] Ferreira, D., Kamara, B. I., Brandt, E. V., and Joubert, E., 1998, “Phenolic compounds from Cyclopia intermedia (Honeybush tea)”, J. Agric. Food Chem., 46, pp. 3406 – 3410. [175] Amarovicz, R., and Shahidi, F., 1997, “Antioxidant activity of peptide fractions of capelin protein hydrolysates”, Food Chem., 58, pp. 355 – 359. [176] Hattori, M., Yamaji-Tsukamoto, K. A., Kumagai, H., Feng, Y., and Takahashi, K., 1998, “Antioxidative activity of soluble elastin peptides”, J. Agric. Food Chem., 46, pp. 2167 – 2170. [177] Okada, Y., and Okada, M., 1998, “Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species”, J. Agric. Food Chem., 46, pp. 401 – 406. [178] Muller, R. E., Stapelfeldt, H., and Skibsted, L. H., 1998, “Thiol reactivity in pressure unfolded β-lactoglobulin antioxidative properties and thermal refolding”, J. Agric. Food Chem., 46, pp. 425 – 430. [179] Ito, N., Fukushima, S., and Tsuda, H., 1985, “Carcinogenicity and modification of the carcinogenic response by BHA, BHT and other antioxidants”, CRC Crit. Rev. Toxicol., 15, pp. 109 – 150. [180] Marcuse, R., 1960, “Antioxidative effect of amino-acids”, Nature, 186, pp. 886 – 887. [181] Chen, H. M., Muramoto, K., Yamauchi, F., and Nokihara, K., 1996, “Antioxidant activity of design peptides based on the antioxidative 252 peptide isolated from digests of a soybean protein”, J. Agric. Food Chem., 44, pp. 2619 – 2623. [182] Hattori, Y., Nishigori, C., Tanaka, T., Uchida, K., Nikaido, O., Osawa, T., Hiai, H., Imamura, S., and Toyokuni, S., 1996, “8-Hydroxy-2'deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure”, J. Invest. Dermatol., 107, pp. 733 – 737. [183] Xie, Z., Huang, J., Xu, X., and Jin, Z., 2008, “Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate”, Food Chem., 111, pp. 370 – 376. [184] Hwang, J. Y., Shyu, Y. S., Wang, Y. T., and Hsu, C. K., 2010, “Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase”, Food Sci. Technol., 43, pp. 285 – 290. [185] Revilla, E,, Maria, C. S., Miramontes, E., Bautista, J., Garcia-Martinez, A., Cremades, O., Cret, R., and Parrado, J., 2009, “Nutraceutical composition, antioxidant activity and hypocholesterolemic effect of a water-soluble enzymatic extract from rice bran”, Food Res. Int., 42, pp. 387 – 393. [186] Megias, C., Pedroche, J., Yust, M. M., Giron-Calle, J., Alaiz, M., Millan, F., and Vioque, J., 2008, “Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin”, Food Sci. Technol., 41, pp. 1973 – 1977. [187] Li, X. X., Han, L. J., and Chen, L. J., 2008 “In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal”, J. Sci. Food Agric., 88, pp. 1660 – 1666. [188] Qian, Z. J., Jung, W. K., and Kim, S. K., 2008, “Free radical scavenging activity of a novel anti-oxidative peptide purified from 253 hydrolysate of bullfrog skin, Rana catesbeiana Shaw”, Bioresour. Technol., 99, pp. 1690 – 1698. [189] Nagai, T., Suzuki, N., Tanoue, Y., Kai, N., and Nagashima, T., 2007, “Antioxidant and antihypertensive activities of autolysate and enzymatic hydrolysates from yam (Dioscorea opposite Thunb.) ichyoimo tubers”, J. Food Agric. Environ., 5, pp. 64 – 68. [190] Sakanaka, S., and Tachibana, Y., 2006, “Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates”, Food Chem., 95, pp. 243 – 249. [191] Liu, J. R., Chen, M. J., and Lin, C. W., 2005, “Antimutagenic and antioxidant properties of milk kefir and soymilk-kefir”, J. Agric. Food Chem., 53, pp. 2467 – 2474. [192] Wachtel–Galor, S., Szeto, Y. T., Tomlinson, B., Benzie, I. F., 2004, “Ganoderma lucidum (‘Lingzhi’); acute and short-term biomarker response to supplementation”, Int. J. Food Sci. Nutr., 55, pp. 75 – 83. [193] Wu, C.H., Chen, H. M., and Shiau, C. Y., 2003, “Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus)”, Food Res. Int., 36, pp. 949 – 957. [194] Ningappa, M., and Srinivas, L., 2008, “Purification and characterization of ~ 35 kDa antioxidant protein from curry leaves (Murraya koenigii L.)”, Toxicol. in vitro., 22, pp. 699 – 709. [195] Vercruysse, L., Smagghe, G., Beckers, T., and Van Camp, J., 2009, “Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodoptera littoralis”, Food Chem., 114, pp. 38 – 43. 254 [196] Suetsuna, K., Ukeda, H., and Ochi, H., 2008, “Isolation and characterization of free radical scavenging activities peptides derived from casein”, J. Nutr. Biochem., 11, pp. 128 – 131. [197] Sheih, I. C., Wu, T. K., and Fang, T. J., 2009, “Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems”, Bioresour. Technol., 100, pp. 3419 – 3425. [198] Tang, C. H., Peng, J., Zhen, D. W, and Chen, Z., 2009, “Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates”, Food Chem., 115, pp. 672 – 678. [199] Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., and Nokihara, K., 1998, “Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein”, J. Agric. Food Chem., 46, pp. 49 – 53. [200] Wang, W. Y., De and Mejia, E. G., 2005, “A new frontier in soy bioactive peptides that may prevent age-related chronic diseases”, Comp. Rev. Food Sci. Food Saf., 4, pp. 63 – 78. [201] Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., and Kim, S. K., 2005, “Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties”, Food Res. Int., 38, pp. 175 – 182. [202] Chan, K. M., and Decker, E. A., 1994, “Endogenous skeletal muscle antioxidants”, Crit. Rev. Food Sci. Nutr., 34, pp. 403 – 426. [203] Pena-Ramos, E. A., and Xiong, Y. L., 2002, “Antioxidant activity of soy protein hydrolyzates in a liposomial system”, J. Food Sci., 67, pp. 2952 – 2956. 255 [204] Gibbs, B. F., Zougman, A., Masse, R., and Mulligan, C., “Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food”, Food Res. Int., 37, pp. 123 – 131. [205] Saito, K., Jin, D. H., Ogawa, T., Muramoto, K., Hatakeyama, E., Yasuhara, T, and Nokihara, K., 2003, “Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry”, J. Agric. Food Chem., 51, pp. 3668 – 3674. [206] Chen, G. T., Zhao, L., Zhao, L. Y., Cong, T., and Bao, S. F., 2007, “In vitro study on antioxidant activities of peanut protein hydrolysate”, J. Sci. Food Agric., 87, pp. 357 – 362. [207] Gardner, M. L. G., 1988, “Gastrointestinal absorption of intact proteins”, Ann. Rev. Nutr., 8, pp. 329 – 350. [208] Gardner, M. L. G., 1998, “In: Transmucosal passage on intact peptides in mammalian metabolism”, Grimble, G. K., Backwell, F. R. G., Eds., Tissue utilization and clinical targeting, London: Portland Press Ltd., London. [209] Sarmadia, B. H., and Ismail, A., 2010, “Antioxidative peptides from food proteins: A review”, Peptides, 31, pp. 1949 – 1956. [210] Deak, S. T., Csaky, T. Z., 1984, “Factors regulating the exchange of nutrients and drugs between lymph and blood in the small intestine”, Microcirc. Endothelium Lymphatics., 1, pp. 569 – 588. [211] Wasan, K. M., 2002, “The role of lymphatic transport in enhancing oral protein and peptide drug delivery”, Drug Dev. Ind. Pharm., 28, pp. 1047 – 1058. [212] Shimizu, M., Tsunogai, M., and Arai, S., 1997, “Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2”, Peptide, 18, pp. 681 – 687. 256 [213] Grimble, G. K., 1994, “The significance of peptides in clinical nutrition”, Ann. Rev. Nutr., 14, pp. 419 – 447. [214] Roberts, P. R., Burney, J. D., Black, K. W., and Zaloga, G. P., 1999, “Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract”, Digestion, 60, pp. 332 – 337. [215] FitzGerald, R. J., and Meisel, H., 2000, “Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme”, Br. J. Nutr., 84, pp. 33 – 37. [216] Matsui, T., Tamaya, K., Seki, E., Osajima, K., Matsumoto, K., and Kawasaki, T., 2002, “Val–Tyr as a natural antihypertensive dipeptide can be absorbed into the human circulatory blood system”, Clin. Exp. Pharmacol. Physiol., 29, pp. 204 – 208. [217] Erdmann, K., Cheung, B. W. Y., and Schroder, H., 2008, “The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease”, J. Nutr. Biol., 19, pp. 643 – 654. [218] Li, G. H., Le, G. W., Shi, Y. H., and Shrestha, S., 2004, “Angiotensin Iconverting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects”, Nutr. Res., 24, pp. 469 – 486. [219] Shahidi, F., and Zhong, Y., 2008, “Bioactive Peptides”, J. AOAC Int., 91(4), pp. 914 – 931. [220] Jun, S. Y., Park, P. J., Jung, W. K., and Kim, S. K., 2004, “Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein”, Eur. Food Res. Technol., 219, pp. 20 – 26. 257 [221] Gutteridge, J. M. C., and Halliwell, B., 2010, “Antioxidants: Molecules, medicines, and myths”, Biochem. Biophy. Res. Commun., 393, pp. 561 – 564. [222] Qin, L., Zhu, B. W., Zhou, D. Y., Wu, H. T., Tan, H., Yang, J. F., Li, D. M., Dong, X. P., and Murata, Y., 2011, “Preparation and antioxidant activity of enzymatic hydrolysates from purple sea urchin (Strongylocentrotus nudus) gonad”, LWT - Food Sci. Technol., 44, pp. 1113 – 1118. [223] Bartosz, G., 2009, “Reactive oxygen species: Destroyers or messengers?”, Biochem. Pharmacol., 77, pp. 1303 – 1315. [224] Scott, G., 1993, “In: Autoxidation and antioxidants: historical perspectives”, Atmospheric oxidation and antioxidants, Elsevier Science Publishers, Amsterdam, 1, pp. 1 – 44. [225] Harman, D., and Eddy, D. E., 1979, “Free radical theory of aging: beneficial effect of adding antioxidants to the maternal mouse diet on life span of offspring: possible explanation of the sex difference in longevity”, Age, 2, pp. 109 – 122. [226] Comfort, A., 1979, “In: The biology of senescence”, 3rd ed., Elsevier Science Ltd., New York. [227] Gruber, J., Schaffer, S., and Halliwell, B., “The mitochondrial free radical theory of ageing – where do we stand?”, Front. Biosci., 13, pp. 6554 – 6579. [228] Zhong, S., Ma, C., Lin, Y. C., and Luo, Y., 2011, “Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry”, Food Chem., 126, pp. 1636 – 1642. 258 [229] Ansaldo, M., Luquet, C. M., Evelson, P. A., Polo, J. M., and Llesuy, S., 2000, “Antioxidant levels from different antarctic fish caught around south georgia island and shag rocks”, Polar Biol., 23, pp. 160 – 165. [230] Guerard, F., Guimas, L., and Binet, A., “Production of tuna waste hydrolysates by a commercial neutral protease preparation”, J. Mol. Catal. B, 19, pp. 489 – 498. [231] Mendis, E., Rajapakse, N., Byun, H. G., and Kim, S. K., 2005, “Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects”, Life Sci., 77, pp. 2166 – 2178. [232] Ranathung, S., Rajapakse, N., and Kim, S. K., 2006, “Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster)”, Eur. Food Res. Technol., 222, pp. 310 – 315. [233] Klompong, V., Benjakul, S., Kantachote, D., and Shahidi, F., 2007, “Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type”, Food Chem., 102, pp. 1317 – 1327. [234] Samaranayaka, A. G. P., Zhong, S., Ma, C., Lin, Y. C., and Luo, Y., 2008, “Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus)”, Food Chem., 107, pp. 768–776. [235] Qian, Z. J., Jung, W. K., Byun, H. G., and Kim, S. K., 2008, “Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage”, Bioresource Technol., 99, pp. 3365 – 3371. [236] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., and Nasri, M., 2009, “Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates 259 obtained by gastrointestinal proteases”, Food Chem., 114, pp. 1198 – 1205. [237] Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., and Nasri, M., 2010, “Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins”, Food Chem., 118, pp. 559 – 565. [238] Bin Wang, Zhong-Rui Li, Chang-Feng Chi, Qi-Hong Zhang, and HongYu Luo, 2012, “Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle”,. Peptide, 36(2), pp. 240–250. [239] Imelda, W.Y. Cheung, Lennie, K.Y. Cheung, Nina, Y. Tan, Eunice, C.Y., and Li-Chan, 2012, “The role of molecular size in antioxidant activity of peptide fractions from pacific hake (Merluccius productus) hydrolysates”, Food Chem.,134(3), Pp. 1297–1306 [240] Berge, G. M., and Storebakken, T., 1996, “Fish protein hydrolyzate in starter diets for Atlantic salmon (Salmo salar) fry”, Aquaculture, 145, pp. 205 – 212. [241] Lahl, W. J., and Braun, S. D., 1994, “Enzymatic production of protein hydrolysates for food use”, Food Technol., 48(10), pp. 68 – 71. [242] Gildberg, A., Batista, I, and Strøm, E., 1989, “Preparation and characterization of peptones obtained by a two-step enzymatic hydrolysis of whole fish”, Biotechnol. Appl. Biochem., 11, pp. 413 – 423. [243] Cancre, I., Ravallec, R., Van Wormhoudt, A., E, S., Gildberg, A. and Le Gal, Y., 1999, "Secretagogues and growth factors in fish and crustacean protein hydrolysates", Marine Biotechnol., 1(5), pp. 489 – 494. 260 [244] Matsui, H., Oyama, T.M., Okano, Y., Hashimoto, E., Kawanai, T., and Oyama, Y., 2010, “Low micromolar zinc exerts cytotoxic action under H2O2 - induced oxidative stress: Excessive increase in intracellular Zn2+ concentration”, Toxicol., 276 (1), pp. 27 – 32. [245] Picot, L., Bordenave, S., Didelot, S., Fruitier-arnaudin, I., Sannier, F., Thorkelsson, G., Bergé, J.P., Guérard, F., Chabeaud, A., and Piot, J.M., 2006, “Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines”, Process Biochem., 41, pp. 1217 – 1222. [246] Sathivel, S., Bechtel, P.J., Babbitt, J., Smiley, S., Crapo, C., Reppond, K.D. and Prinyawiwatkul, W., 2003, “Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates”, J. Food Sci., 68, pp. 2196 – 2200. [247] Chang, C. Y., Wu, K. C., and Chiang, S. H., 2007, “Antioxidant properties and protein compositions of porcine hemoglobin hydrolysates”, Food Chem., 100, pp. 1537 – 1543. [248] Kong, B. H., and Xiong, Y. L., 2006, “Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action”, J. Agric. Food Chem., 54, pp. 6059 – 6068. [249] Baca, D.R., Peña-Vera, M.T., and Dìaz-Castañeda, M., 1991, “Production of fish protein hydrolysates with bacterial proteases: yield and nutritional value”, J. Food Sci., 56, pp. 309 – 314. [250] Vieira, G. H. F., Martin, A. M., Saker-Sampaiao, S., Sobreira-Rocha, C. A., and Goncalves, R.C.F., 1995, “Production of protein hydrolysate from Lobster (Panulirus spp.)”, Dev. Food Sci., 37, pp. 1405 – 1415. [251] Je, J. Y., Qian, Z. J., Byun, H. G., and Kim, S. K., 2007, “Purification and characterization of an antioxidant peptide obtained from tuna 261 backbone protein by enzymatic hydrolysis”, Process Biochem., 42 (5), pp. 840 – 846. [252] You, L., Zhao, M., Regenstein, J. M., and Ren, J., 2010, “Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry”. Food Res. Int., 43 (4), pp. 1167 – 1173. [253] Kechaou, E. S., Dumay, J., Donnay-Moreno, C., Jaouen, P., Gouygou, J. P., Bergé, J. P., and Amar, R. B., 2009, “Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition”, J. Biosci. Bioeng., 107 (2), pp. 158 – 164. [254] Damodaran, S., 1996, “In: Amino acids, peptides, and proteins”, Fennema, T., Ed., Food Chem., Marcel Dekker, New York, pp. 417 – 424. [255] Liu, Q., Kong, B., Xiong, Y. L., and Xia, X., 2010, “Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis”, Food Chem., 118, pp. 403 – 410. [256] Shahidi, F., Han, X. Q., and Synowiecki, J., 1995, “Production and characteristics of protein hydrolysates from capelin (Mallotus villosus)”, Food Chem., 53, pp. 285 – 293. [257] Gbogouri, G. A., Linder, M., Fanni, J., and Parmentier, M., 2004, “Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates”, J. Food Sci., 69, pp. 615 – 622. [258] Quaglia, G. B., and Orban, E., 1987, “Enzymic solubilisation of proteins of sardine (Sardina pilchardus) by commercial proteases”, J. Sci. Food Agric., 38, pp. 263 – 269. 262 [259] Gauthiera, S. F., Paquina, P., Pouliota, Y., and Turgeon, S., 1993, “Surface activity and related functional properties of peptides obtained from whey proteins”, J. Dairy Sci., 76(1), pp. 321 – 328. [260] Kristinsson, H. G., and Rasco, B. A., 2000, “Fish protein hydrolysates: Production, biochemical, and functional properties”, Crit. Rev. Food Sci. Nutr., 40, pp. 43 – 81. [261] Rahali, V., Chobert, J. M., Haertle, T., and Gueguen, J., 2000, “Emulsification of chemical and enzymatic hydrolysates of blactoglobulin: characterization of the peptides adsorbed at the interface”, Nahrung, 44, pp. 89 – 95. [262] Kuehler, C. A., and Stine, C. M., 1974, “Effect of enzymatic hydrolysis on some functional properties of whey protein”, J. Food Sci., 39 (2), pp. 379 – 382. [263] Diniz, F. M., and Martin, A. M., 1997, “Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein: Composition of the hydrolysates”, Int. J. Food Sci. Technol., 48, pp. 191 – 200. [264] Shahidi, F., Alasalvar, C., and Liyana-Pathirana, C. M., 2007, “Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts”, J. Agric. Food Chem., 21 (55), pp. 1212 – 1220. [265] Pandey, M., Sonker, K., Kanoujia, J., Koshy, M. K., and Saraf, S. A., 2009, “Sida Veronicaefolia as a source of natural antioxidant”, Int. J. Pharmaceutical Sci. Drug Res., 1 (3), pp. 180 – 182. [266] Lee, S. E., Hwang, H. J., and Ha. J. S., 2003, “Screening of medicinal plant extracts for antioxidant activity”, Life Sci., 73, pp. 167 – 179. 263 [267] Ionita, P., 2005, “Is DPPH stable free radical a good scavenger for oxygen active species?”, Chem. Pap., 59(1), pp. 11 – 16. [268] Sharma, O.P., and Bhat, T.K. 2009, “DPPH antioxidant assay revisited”, Food. Chem., 113, pp. 1202 – 1205. [269] Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., and Nunes, M. L., 2010, “Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced”, Process Biochem., 45, pp. 18 – 24. [270] Thiansilakul, Y., Benjakul, S., and Shahidi, F., 2007a, “Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme”, J. Food Biochem., 31, pp 266 – 287. [271] Thiansilakul, Y., Benjakul, S., and Shahidi, F., 2007b, “Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi)”, Food Chem., 103, pp. 1385 – 1394. [272] Peng, X., Xiong, Y. L., and Kong, B., 2009, “Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance”, Food Chem., 113, pp. 196 – 201. [273] Huang, F. P., Xi, G., Keep, R. F., Hua, Y., Nemoianu, A., and Hoff, J. T., 2002, “Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products”, J. Neurosurg., 96, pp. 287 – 293. [274] Stooky, L., 1970, “Ferrozine - A new spectrophotometric reagent for iron”, Anal. Chem., 42, pp. 779 – 784. [275] Wang, D., Wang, L. J., Zhu, F. X., Zhu, J. Y., Chen, X. D., Zou, L., Saito, M., Li, L. T., 2008, “In vitro and in vivo studies on the 264 antioxidant activities of the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food)”, Food Chem., 107, pp. 1421 – 1428. [276] You, L. J., Zhao, M., Regenstein, J. M., and Ren, J., 2011, “In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion”, Food Chem., 124, pp. 188 – 194. [277] Oyaizu, M., 1986, “Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine”, Jpn. J. Nutr., 44, pp. 307–315. [278] Meir, S., Kanner, J., Akiri, B., and Hada, S. P., 1995, “Determination and involvement of aqueous reducing compounds in oxidative defense system of various senescing leaves”, J. Agric Food Chem., 43, pp. 1813 – 1819. [279] Yen, M. T., Yang, J. H., and Mau. J. L., 2008, “Antioxidant properties of chitosan from crab shells”, Carbohydr. Polym., 74 (4), pp. 840 – 844. [280] You, L., Zhao, M., Cui, C., Zhao, H., and Yang, B., 2009, “Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates”, Innov. Food Sci. Emerg. Tech., 10, pp. 235 – 240. [281] Weckhuysen, B. M., Heidler, R., and Schoonheydt, R. A., 2004, “Electron spin resonance spectroscopy”, Mol. Sieves, 4, pp. 295 – 335. [282] Milardovic, S., Ivekovic, D. and Grabaric, B. S., 2006, “A novel amperometric method for antioxidant activity determination using DPPH free radical”, Bioelectrochem., 68, pp. 175 – 180. 265 [283] Davies, M. J., and Slater, T. F., 1988, “The use of electron-spinresonance techniques to detect free-radical formation and tissue damage”, PNS., 47, pp. 397 – 405. [284] Brand-Williams, W., Cuvelier, M.E. and Berset, C., 1995, “Use of a free radical method to evaluate antioxidant activity”, LWT/Food Sci. Technol., 28, pp. 25-30. [285] Krings, U., Andersen, M. L., and Berger, R. G., 2008, “In vivo ESR spin trapping detection of carbon-centered a-farnesene radicals”, J. Agric. Food Chem., 56, pp. 4333 – 4339. [286] Rohn, S., and Kroh, L. W., 2005, “Electron spin resonance – A spectroscopic method for determining the antioxidative activity”, Mol. Nutr. Food Res., 49 (10), pp. 898 – 907. [287] Park, P. J., Je, J. Y., and Kim, S. Y., 2004, “Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer”, Carbohydr. Polym., 55 (1), pp. 17 – 22. [288] Pihlanto–Leppala, A., 2006, “Antioxidative peptides derived from milk proteins”, Int. Dairy J., 16, pp. 1306 – 1314. [289] Lertittikul, W., Benjakul, S., and Tanaka, M., 2007, “Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH”, Food Chem., 100, pp. 669 – 677. [290] Vercruysse L, Van Camp J, Smagghie G (2005) “ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: a review”, J. Agric. Food Chem., 53, pp. 8106–8115. [291] Ranathunga, S., Rajapakse, N., and Kim, S. K., 2006, “Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster)”, Eur. Food Res. Technol., 222, pp. 310 – 315. 266 [292] Skoog, W., and Beck, W., 1956, “Studies of the fibrogen, dextran and phytohemagglutinin methods of isolating leukocytes”, Blood, 11, pp. 436-439. [293] Li, B., Chen, F., Wang, X., Ji, B., and Wu, Y., 2007, “Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry”, Food Chem., 102, pp. 1135 – 1143. [294] Pihlanto-Leppala, A., 2001, “Bioactive peptides derived from bovine whey proteins: opioid and ACE-inhibitory peptides”, Trends Food Sci. Tech., 11, pp. 347 – 356. [295] Miguel, M., Recio, I., Gómez-Ruiz, J. A., Ramos, M., and LópezFandiño, R., 2004, “Angiotensin I- converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis”, J. Food Protect., 67, pp. 1914 – 1920. [296] Guoa, H., Kouzumab, Y., and Yonekura, M., 2009, “Structures and properties of antioxidative peptides derived from royal jelly protein”, Food Chem., 113 (1), pp. 238 – 245. [297] Lin, C. C., and Liang, J. H., 2002, “Effect of antioxidants on the oxidative stability of chicken breast meat in a dispersion system”, J. Food Sci., 67, pp. 530 – 533. [298] Decker, E. A., Warner, K., Richards, M. P., and Shahidi, F., 2005, “Measuring antioxidant effectiveness in food”, J. Agric. Food Chem., 53, pp. 4303 – 4310. [299] Kim, S. Y., Je, J. Y., and Kim, S. K., 2007, “Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion”, J. Nutr. Biochem., 18, pp. 31 – 38. 267 [300] Suja, K.P., Jayalekshmy, A., and Arumughan, C., 2004, “Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH system”, J. Agric. Food Chem., 52, pp. 912 – 915. [301] Leanderson, P., Faresjo, A. O., and Tagesson, C., 1997, “Green tea polyphenols inhibits oxidant-induced DNA strand breakage in cultured lung cells”, Free Radic. Biol. Med., 23, pp. 235 – 242. [302] Debashis, D. D., Bhattacharjee, B.M., and Bannerjee, R.K., 1997, “Hydroxyl radicals in the major causative factor in stress-induced gastric ulceration”, Free Radic. Biol. Med., 23, pp. 8 – 18. [303] Vajragupta, O., Boonchoong, P., and Wongkrajang, Y., 2000, “Comparative quantitative structure-activity study of radical scavengers”, Bioorg. Med. Chem., 8, pp. 2617 – 2628. [304] Yang, C. S., Landau, J. M., Huang, M. T., and Newmark, H. L., 2001, “Inhibition of carcinogenesis by dietary polyphenolic compounds”, Ann. Rev. Nutr., 21, pp. 381 – 406. [305] Elias, R. J., Kellerby, S. S., Decker, E. A., 2008, “Antioxidant activity of proteins and peptides”, Crit. Rev. Food Sci. Nutr., 48, pp. 430–441. [306] Aruoma, O. I., 2003, “Methodological consideration for characterizing potential antioxidant actions of bioactive components in plant foods”, Mutat. Res., 523, pp. 9 – 20. [307] Ngo, D. H., Qian, Z. J., Ryu, B., Park, J. W., and Kim, S. K., 2010, “In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems”, J. Funct. Food, 2, pp. 107 – 117. 268 [308] Wei, C., Wei-Jun, C., Zhi-Rong, S., and Ya-Ping, Y., 2008, “Protective effects of ethanolic extracts of buckwheat groats on DNA damage caused by hydroxyl radicals”, Food Res. Int., 41, pp. 924 – 929. [309] Je, J. Y., Qian, Z. J., Lee, S. H., Byun, H. G., and Kim, S. K., 2008, “Purification and antioxidant properties of Bigeye Tuna (Thunnus obesus) dark muscle peptide on free radical-mediated oxidative systems”, J. Med. Food, 11(4), pp. 629 – 637. [310] Halliwell, B., and Gutteridge, J. M. C., (1989), “In: Free Radicals in Biology and Medicine”, 2nd ed., Clarendon Press: Oxford, UK. [311] Somani, S. M., (1996), “In: Exercise, drugs and tissue specific antioxidant system”, S. M. Somani (Ed.), Pharmacology in Exercise and Sports, CRC Press, Boca Raton, Florida, USA, pp. 57 – 95. [312] Adachi, M., and Ishii, H., 2002, “Role of mitochondria in alcoholic liver injury”, Free Radic. Bio. Med., 32, pp. 487–491. [313] Knight, J. A., 1998, “Free radicals: Their history and current status in aging and disease”, Ann. Clin. Lab. Sci., 28, pp. 331 – 346. [314] Lander, H.M., 1997, “An essential role for free radicals and derived species in signal transduction”, FASEB Journal, 11, pp. 118 – 124. [315] Limuro, Y., Bradford, B. U., Yamashina, S., Rusyn, I., Nakagami, M., Enomoto, N., Kono, H., Frey, W., Forman, D., Brenner, D., and Thurman, R. G., 2000, “The glutathione precursor L–2– oxothiazolidine–4–carboxylic acid protects against liver injury due to chronic enteral ethanol exposure in the rat”, Hepatology, 31, pp. 391 – 398. [316] Nanji, A. A., Yang, E. K., Fogt, F., Sadrzadeh, S. M., and Dannenberg, A. J., 1996, “Medium chain triglycerides and vitamin E reduce severity 269 of established experimental alcoholic liver disease”, J. Pharmacol. Exp. Therap., 277, pp. 1694 – 1700. [317] Kono, H., Arteel, G. E., Rusyn, I., Sies, H., and Thurman, R. G., 2001, “Ebselen prevents early alcohol–induced liver injury in rats”, Free Radic. Bio. Med., 30, pp. 403 – 411. [318] Wheeler, M. D., Kono, H., Yin, M., Rusyn, I., Froh, M., Connor, H. D., Mason, R. P., Samulski, R. J., and Thurman, R. G., 2001a, “Delivery of the Cu/Zn–superoxide dismutase gene with adenovirus reduces early alcohol–induced liver injury in rats”, Gastroenterol., 120, pp. 1241 – 1250. [319] Wheeler, M. D., Kono, H., Yin, M., Rusyn, I., Froh, M., Connor, H. D., Mason, R. P., Samulski, R. J., and Thurman, R. G., 2001b, “Over expression of manganese superoxide dismutase prevents alcohol– induced liver injury in the rat”, J. Biol. Chem., 276, pp. 36664–36672. [320] Krishnaraju, A. V., Rao, C. V., Rao, T. V. N., Reddy, K. N., and Trimurtulu, G., 2009, “In vitro and in vivo antioxidant activity of Aphanamixis polystachya bark”, Am. J. Infect. Dis., 5 (2), 60 – 67. [321] Gupta, M., Mazumder, U. K., Thamilselvan, V., Manikandan, L., Senthil Kumar, G. P., Suresh, R., and Kakotti, B. K., 2007, “Potential hepatoprotective effect and antioxidant role of methanol extract of Oldenlandia umbellata in carbon tetrachloride induced hepatotoxicity in wistar rats”, Irn. J. Pharmacol. Therap., 6, pp. 5 – 9. [322] Hall, G. M., and Ahmad, N. H., 1992, “In: Functional properties of fish protein hydrolysates”, Ch. 11, Fish Processing Technology, Hall, G. M., (Ed.), Blackie Academic and Professional, N. Y., U.S.A., pp. 249 – 265. [323] Clemente, A., 2000, “Enzymatic protein hydrolysates in human nutrition”, Trend Food Sci. Technol., 11, pp. 254 – 262. 270 [324] Vidotti, R. M., Macedo-Viegas, E. M., and Carneiro, D. J., 2003, “Amino acid composition of processed fish silage using different raw materials”, Anim. Feed Sci. Tech., 105, pp. 1999 – 2004. [325] Stoilov, I. L., Georgiev, T. D., Taskov, M. V., and Koleva, I. D., 1995, “Oral preparation for patients with chronic renal insufficiency and other protein metabolic diseases”, WO patent 95/2952, Nov. 2. [326] Duarte de Holanda, H., and Netto, F. M., 2006, “Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis”, J. Food Sci., 71(5), pp. 298 – 303. [327] Korhonen, H., and Pihlanto, A., 2006, “Bioactive peptides: production and functionality”, Int. Dairy. J., 16, pp. 945 – 960. [328] Deeptha, R., and Nazeer, R. A., 2010, “Antioxidant properties of protein hydrolysates obtained from marine fishes Lepturacanthus savala and Sphyraena barracuda”, Int. J. Biotechnol. Biochem., 6(3), pp. 435 – 444. [329] Biziulevicius, G. A., Kislukhina, O. V., Kazlaukaitè, J., and Zukaitè, V., 2006, “Food-protein enzymatic hydrolysates possess both antimicrobial and immunostimulatory activities: a ´cause and effect´ theory of bifunctionality”, FEMS Immunol. Med. Microbiol., 46, pp. 131 – 138. [330] Córdova-Murueta, J. H., Navarrete-del-Toro, M. A., and GarcíaCarreño, F. L., 2007, “Concentrates of fish protein from by catch species produced by various drying processes”, Food Chem., 100, pp. 705 –711. [331] Thorkelsson, G., Sigurgisladottir, S., Geirsdottir, S., Johannsson, R., Guérard, F., Chabeaud, A., Bourseau, P., Vandanjon, L., Jaouen, P., Fouchereau-Peron, M., Legal, Y., Ravallec-Plé, R., Picot, L., Bergé, J.- 271 P., Delannoy, C., Jakobsen, G., Johansson, I., and Batista, I., 2008. “In: Mild processing techniques and developpment of functional marine protein and peptide ingredients”, Ed. Borresen, T., Improving seafood products for the consumers, Woodhead (GB), pp. 612-617. [332] Lalasidis, G., and Sjoberg, L. B., 1978, “Two new methods fractions of hydrolysates with exceptionally high content of essential amino acids”, J. Agric. Food Chem., 26 (3), pp. 742 – 748. [333] Lin, S., Chiang, W., Cordle, C. T., and Thomas, R. L., 1997, “Functional and immunological properties of casein hydrolysate produced from a two-stage membrane system”, J. Food Sci., 62, pp. 480 – 483. [334] Raksakulthai, R., and Haard, N. F., 2003, “Exopeptidases and their application to reduce bitterness in food: a review”, Crit. Rev. Food Sci. Nutr., 43, pp. 401 – 445. [335] Kapsokefalou, M., and Miller, D. D., 1991, “Effects of meat and selected food components on the valence of nonheme iron during in vitro digestion”, J. Food Sci., 56 (2), pp. 352 – 355. [336] Robinson, H. W., and Hodgen, C. G., 1940, “The biuret reaction in the determination of serum protein I. A study of the condition necessary for the production of the stable color which bears a quantitative relationship to the protein concentration”, J Biol. Chem., 135, pp. 707– 725. [337] Pearce, K. N., and Kinsella, J. E., 1978, “Emulsifying properties of proteins: evaluation of a turbidimetric technique”, J. Agric. Food Chem., 26, pp. 716 – 723. [338] Sathe, S. K., and Salunkhe, D. K., 1981, “Functional properties of the great northern bean (Phaseolus vulgaris L.) proteins: emulsion, foaming, viscosity and gelation properties”, J. Food Sci., 46, pp. 71–74. 272 [339] Giménez, B., Alemán, A., Montero, P., and Gómez-Guillén, M. C., 2009, “Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid”, Food Chem., 114, pp. 976 – 983. [340] Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., and Yang, H., 2008, “Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix)”, Food Chem., 107, pp. 1485 – 1493. [341] McNairney, J., 1984, “Modification of a novel protein product”, J. Chem. Technol. Biotechnol. B, 34, pp. 206 – 214. [342] Mahmoud, M. I., 1994, “Physicochemical and functional properties of protein hydrolysates in nutritional products”, Food Technol., 58, pp. 89 – 95. [343] Chobert, J. M., Bertrand-Harb, C., and Nicolus, M. G., 1988, “Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin”, J. Agric. Food Chem., 36, pp. 883 – 892. [344] Shabeena, Y. N., and Nazeer, R. A., 2011e, “Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle”, J. Food Sci. Technol., Doi. 10.1007/s13197-0110416-y. [345] Sorgentini, D. A., and Wagner, J. R., 2002, “Comparative study of foaming properties of whey and isolate soy bean proteins”, Food Res. Int., 35, pp. 721 – 729. [346] Kim, S. Y., Peter S. W. Park and Khee C. Rhee, 1990, “Functional properties of proteolytic enzyme modified soy protein isolate”, J. Agric. Food Chem., 38, pp. 651 – 656. 273 [347] Mutilangi, W. A. M., Panyam, D., and Kilara, A., 1996, “Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate”, J. Food Sci., 61, pp. 270 – 274, 303. [348] Dickinson, E., and Lorient, D., 1994, “In: Emulsions, Dickinson, E., and Lorient, D., (Eds.), Food macromolecules and colloids, The Royal Society of Chemistry, Cambridge, UK, pp. 201 – 274. [349] Kato, A., Komatsu, K., Fujimoto, K., and Kobayashi, K., 1985, “Relationship between surface functional properties and flexibility of proteins detected by protease susceptibility”, J. Agric. Food Chem., 33, pp. 931 – 934. [350] Quaglia, G. B., and Orban, E., 1990, “Influence of enzymatic hydrolysis on structure and emulsifying properties of sardine (Sardina pilchards) protein hydrolysates”, J. Food. Sci., 55, pp. 1571 – 1573. [351] Lee, S. W., Shimizu, M., Kaminogawa, S., and Yamaguchi, K., 1987, “Emulsifying properties of a mixture of peptides derived from the enzymatic hydrolysates of casein”, Agric. Bio1. Chem., 51, pp. 161 – 165. [352] Surowka, K., and Fik, M., 1992, “Studies on the recovery of proteinaceous substances from chicken heads. I. An application of neutrase to the production of protein hydrolysate”, Int. J. Food Sci. Technol., 27, pp. 9 – 20. [353] Schwenke, K. D., 2001, “Reflections about the functional potential of legume proteins: A review”, Nahrung, 45, pp. 377 – 381. [354] Halling, P. J., 1981, “Protein stabilized foams and emulsions”, Crit. Rev. Food Sci. Nutr, 12, pp. 155 – 203. [355] Aluko, R. E., and Yada, R. Y., 1995, “Structure, function relationships of cowpea (Vigna unguiculata) globulin isolate: Influence of pH and 274 NaCl on physicochemical and functional properties”, Food Chem., 53, pp. 259 – 265. [356] Souissi, N., Bougatef, A., Triki-Ellouz, Y., and Nasri, M., 2007, “Biochemical and functional properties of Sardinella (Sardinella aurita) by–product hydrolysates”, Food Technol. Biotechnol., 45 (2), pp. 187 – 194. [357] Urso, M. L., and Clarkson, P. M., 2003, “Oxidative stress, exercise and antioxidant supplementation”, Toxicol., 189, pp. 41 – 54. [358] Eberhardt, M. V., Lee, C. Y., and Liu, R. H., 2000, “Antioxidant activity of fresh apples”, Nature, 405 (6789), pp. 903 – 904. [359] Ansari, N. M., Houlihan, L., Hussain, B., and Pieroni, A., 2005, “Antioxidant activity of five vegetables traditionally consumed by south-asia migrants in Bradford, Yorkshire, UK”, Phytotherapy Res., 19, pp. 907 – 911. [360] Yang, Z., Xu, Y., Jie, G., He, P., and Tu, Y., 2007, “Study on the antioxidant activity of tea flowers (Camellia sinensis)”, Asia Pac. J. Clin. Nutr., 16(1), pp. 148 – 152. [361] Muselík, J., García-Alonso, M., Martín-López, M. P., Žemlička, M., and Rivas-Gonzalo, J. C., 2007, “Measurement of Antioxidant Activity of Wine Catechins, Procyanidins, Anthocyanins and Pyranoanthocyanins”, Int. J. Mol. Sci., 8, pp. 797 – 809. [362] Hartmann, R., and Meisel, H., 2007, “Food-derived peptides with biological activity: From research to food applications”, Curr. Opin. Biotechnol., 18 (2), pp. 163 – 169. [363] Markesbery, W. R., and Carney, J. M., 1999, “Oxidative alterations in Alzheimer’s disease”, Brain Pathol., 9, pp. 133 – 146. 275 [364] Pocernich, C. B., Sultana, R., Mohmmad-Abdul, H., Nath, A., and Butterfield, D. A., 2005, “HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations”, Brain Res. Brain Res. Rev., 50, pp. 14 – 26. [365] Diaz, M. N., Frei, B., Vita, J. A., and Keaney, J. F., 1997, “Antioxidants and atherosclerotic heart disease”, Engl. J. Med., 337(6), pp. 408 – 416. [366] Cao, G., Verdon, C. P., Wu, A. H. B., Wang, H., and Prior, R. L., 1995, “Automated assay of oxygen radical absorbance capacity with the Cobas Fara II”, Clin. Chem., 41, pp. 1738 – 1744. [367] Ghiselli, A., Serafini, M., Maiani, G., Azzini, E., and Ferro-Luzzi, A., 1995, “A fluorescence-based method for measuring total plasma antioxidant capability”, Free Radic. Biol. Med., 18, pp. 29 – 36. [368] Lonnrot, K., Metsa-Ketela, T., Molnar, G., Ahonen, J.P., Latvala, M., Peltola, J., Pietila, T., and Alho, H., 1996, “The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity”, Free Radic. Biol. Med., 21, pp. 211 – 217. [369] Wang, H., Cao, G., and Prior, R. L., “Total antioxidant capacity of fruits”, J. Agric. Food Chem., 44, pp. 701 – 705. [370] Yen, G. C., and Chen, H. Y., 1995, “Antioxidant activity of various tea extracts in relation to their antimutagenicity”, J. Agric. Food Chem., 43, pp. 27 – 32. [371] Decker, E. A., and Welch, B., 1990, “Role of ferritin as a lipid oxidation catalyst in muscle food”, J. Agric. Food Chem., 38, pp. 674 – 677. [372] Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., and Hara, Y., 1996, “Scavenging effects of tea catechins and their derivatives on 1, 1, 276 -diphenyl-2-picrylhydrazyl radical”, Free Radic Biol. Med., 21, pp. 895 – 902. [373] Rosen, G. M., and Rauckman, E. J., 1984, “Spin trapping of superoxide and hydroxyl radicals”, Methods Enzymol., 105, pp. 198 – 209. [374] Byun, H. G., and Kim, S. K., 2001, “Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin”, Process Biochem., 36, pp. 1155 – 1162. [375] Tsuruki, T., Kishi, K., Takahashi, M., Tanaka, M., Matsukawa, T., and Yoshikawa, M., 2003, “An immunostimulating peptide derived from soybean b-conglycinin, is an fMLP agonist”, FEBS Lett., 540, pp. 206 – 210. [376] Yildirim, A., Mavi, A., Oktay, M., Kara, A. A., Algur, O. F., and Bilaloglu, V., 2000, “Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea Desf Ex DC), sage (Salvia triloba L.) and black tea (Camellia sinensis) extracts”, J. Agric. Food Chem., 48, pp. 5030 – 5034. [377] Pena Ramos E. A., and Xiong, Y. L., 2003, “Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties”, Meat Sci., 64, pp. 259 – 263. [378] Zhu, K., Zhou, H., and Qian, H., 2006, “Antioxidant and free radicalscavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase”, Process Biochem., 41, pp. 1296 – 1302. [379] Gordon, M., 2001, “In: Antioxidants and food stability”, Pokorny, J., Yanishlieva, N., Gordon, M., (Eds), Antioxidant in Food, CRC Press, New York, USA, pp. 7 – 21. 277 [380] Sherwin, E. R., (1990), “In: Antioxidant”, Branen, A. L., Davidson, P. M., Salminen, S., ed., Food additives: Marcel Dekker; New York, USA, pp. 139 – 193. [381] Stadtman, E. R. and Berlett, B. S., 1991, “Fenton chemistry: amino acid oxidation”, J. Biol. Chem., 266, pp. 17201 – 17211. [382] Berlett, B. S., Chock, P. B., Yim, M. B., and Stadtman, E. R., 1990, “Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide”, Proc. Natl. Acad. Sci. USA, 87, pp. 389 – 393. [383] Stadtman, E. R., Berlett, B. S. and Chock, P. B., 1990, “Manganesedependent disproportionation of hydrogen peroxide in bicarbonate buffer”, Proc. Natl. Acad. Sci. USA 87, pp. 384 – 388. [384] Yim, M. B., Berlett, B. S., Chock, P. B., and Stadtman, E. R., 1990, “Manganese(II)-bicarbonate-mediated catalytic activity for hydrogen peroxide dismutation and amino acid oxidation: detection of free radical intermediates”, Proc. Natl. Acad. Sci. USA 87, pp. 394 – 398. [385] Varani, J., Ginsburg, I., Gibbs, D. F., Mukhopadhyay, P. S., Sulavaik, C., Johnson, K. J., Weinberg, J. M., Ryan, U. S. and Ward, P. A., 1991, “Hydrogen peroxide-induced cell and tissue injury: protective effects of Mn2+.”, Immunol., 15, pp. 291 – 301. [386] Bernardini, R. D., Rai, D. K., Bolton, D., Kerry, J., O’Neill, E., Mullen, A. M., Harnedy, P., and Hayes, M., 2011, “Isolation, purification and characterization of antioxidant peptidic fractions from a bovine liver sarcoplasmic protein thermolysin hydrolyzate”, Peptide, 32, pp. 388 – 400. [387] Zhang-yan Ren, Guang-rong Huang, Jia-xin Jiang, and Wen-wei Chen, 2011, "Preparation and characteristic of iron-binding peptides from 278 shrimp processing discards hydrolysates", Adv. J. Food Sci. Technol., 3(5), pp. 348-354. [388] Tang, C.H., Wang, X.S., and Yang, X.Q., 2009, “Enzymatic hydrolysis of hemp (Cannabis sativa L) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates”, Food Chem., 114, pp. 1484–1490. [389] Nalinanon, S., Benjakul, S., Kishimura, H., and Shahidi, F., 2011, "Functionalities and antioxidant properties of protein hydrolysate from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna", Food Chem., 124, pp. 1354-1362. [390] Nooman A. Khalaf, Ashok K. Shakya, Atif Al-othman, Zaha El-agbar, Husni Farah, 2008, "Antioxidant activity of some common plants", Turk. J. Biol., 32, pp. 51-55. [391] Najafian, L., and Babji, A.S., 2012, "A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications", Peptide, 33(1), Pp. 178-185. [392] Dai-Hung Ngo, Thanh-Sang Vo, Dai-Nghiep Ngo, Isuru Wijesekara, and Se-Kwon Kim, 2012, "Biological activities and potential health benefits of bioactive peptides derived from marine organisms", Int. J. Biol. Macromol., 51(4), Pp. 378-383. [393] Anusha, G.P. Samaranayaka, and Eunice, C.Y. Li-Chan, 2011, "Foodderived peptidic antioxidants: A review of their production, assessment, and potential applications", J. Funct. Food, 3(4), Pp. 229-254. [394] Cacciuttolo, M. A., Trinh, L., Lumpkin, J. A., Rao, G., “Hyperoxia induces DNA damage in mammalian cells”, Free Radical Biol. Med., 1993, 14, pp. 267 – 276. 279 [395] Andersson, L., Blomberg, L., Flegel, M., Lepsa, L., Nilsson, B., and Verlander, M., 2000, “Biopolymers”, Peptide Sci., 55, pp. 227 – 250. [396] Houben-Weyl, 2002, “In: Methods of Organic Chemistry: Synthesis of Peptides and Peptidomimetics”, Goodman, M., Felix, A., Moroder, L., Toniolo, C., Eds., Thieme: Stuttgart, Vol. E, pp. 22-26. [397] Mant, C. T., and Hodges, R. S., 1991, “In: High-Performance Liquid Chromatography of Peptides and Proteins”, CRC Press: Boca Raton, Florida, USA. [398] Kamysz, W., Okrój, M., Łempicka, E., Ossowski, T., and Łukasiak, J., 2004, “Fast and efficient purification of synthetic peptides by solidphase extraction”, Acta Chromatographica, 14, pp. 180 – 186. [399] Kovaleva, V., Kiyamova, R., Cramer, R., Krynytskyy, H., Gout, I., Filonenko, V., and Gout, R., 2009, “Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings”, Peptide, 30 (12), pp. 2136 – 2143. [400] Bodanszky, M., 1993, “In: Principles of Peptide Synthesis”, SpringerVerlag, Berlin. [401] Kimmerlin, T., and Seebach, D., 2005, “100 years of peptide synthesis: ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies”, J. Pept. Res., 65, pp. 229 – 260. [402] Haqqani, A. S., Kelly, J. F., and Stanimirovic, D. B., 2008, "Quantitative protein profiling by mass spectrometry using label-free proteomics", Methods Mol. Biol., 439, pp. 241 – 256. [403] Hillenkamp, F., and Karas, M., 1990, “Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization”, Methods Enzymol. 193, pp.280 – 295. 280 [404] Karas, M., and Hillenkamp, F., 1988, “Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons”, Anal. Chem., 60, pp. 2299 – 2301. [405] Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M., 1989, “Electrospray ionization for mass spectrometry of large biomolecules”, Science, 246, pp. 64 – 71. [406] Chang, J. P., Richardson, J. M., and Riggin, R. M., 1994, “Characterization of Tryptic Peptides of a Potent Growth Hormone Releasing Hormone Analog by Reversed Phase High Performance Liquid Chromatography–Ion spray Mass Spectrometry”, J. Liq. Chrom., 17(13), pp. 2881 – 2894. [407] McCormack, A. L., Schieltz, D. M., Goode, B., Yang, S., Barnes, G.,Drubin, D. and Yates, J. R., III, 1997, “Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level”, Anal. Chem., 69, pp. 767 – 776. [408] Zhao, R. J., Shi, M., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., and Xue, S. J., 2008, “Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and eletrospray ionization-mass spectrometry,” Food Chem., 108, pp. 727 – 736. [409] Dale, C. J., and Young, T. W., 1992, “Applications of fast protein liquid chromatography (FPLC) to the analysis of the nitrogenous constituents of beer”, J. Insl. Brew., 98, pp. 117 – 121. [410] Je, J. Y., Park, P. J., and Kim, S. K., 2005, “Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate”, Food Res. Int., 38, pp. 45 – 50. 281 [411] Kim, S. Y., Je, J. Y., and Kim, S. K., 2007, “Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion”, J. Nutri. Biochem, 18, pp. 31 – 38. [412] Hernandez Ledesma, B., Davalos, A., Bartolome, B. and Amigo, L., 2005, “Preparation of antioxidant enzymatic hydrolysates from γlactalbumin and α-lactoglobulin, identification of active peptides by HPLC–MS/MS”, J. Agri. Food Chem., 53, pp. 588 – 593. [413] Jung, W. K., Rajapakse, N., and Kim, S. K., 2005, “Antioxidative activity of low molecular peptide derived from the sauce of fermented blue mussel, Mytilus edulis”, Eur. Food Res. Technol., 220, pp. 535 – 539. [414] Frlich, I., and Riederer, P., 1995, “Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment”, Drug Res., 45, pp. 443 – 449. [415] Dean, R. T., Fu, S., Stocker, R., and Davies, M. J., 1997, “Biochemistry and pathology of radical-mediated protein oxidation”, Biochem. J., 324, pp. 1 – 18. [416] Hicks, M., Delbridge, L., Yue, D. K., and Reeve, T. S., 1988, “Catalysis of lipid peroxidation by glucose and glycosylated collagen”, Biochem. Biophys. Res.Commun., 151, pp. 649 – 655. [417] Wolff, S. P., and Dean, R. T., 1987, “Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes”, Biochem. J., 245, pp. 243 – 250. [418] Jeong, E. Y., Sung, B. K., Song, H. Y., Yang, J. Y., Kim, D. K., and Lee, H. S., 2010, “Antioxidative and Antimicrobial Activities of Active Materials Derived from Triticum aestivum Sprouts”, J. Korean Soc. Appl. Biol. Chem., 53(4), PP. 519 – 524. 282 [419] Dizdaroglu, M., 1991, “Chemical determination of free radical induced damage to DNA”, Free Radic. Biol. Med., 10, pp. 225 – 242. [420] Shureiqi, I., Reddy, P., and Brenner, D. E., “Chemoprevention: general perspective”, Oncol. Hematol., 33, pp. 157 – 167. [421] Lloyd, D. R., and Philips, D., 1999, “Oxidative DNA damage mediated by copper (II), iron(II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8hydroxyldeoxyguanosine and putative intrastrand cross breaks”, Mutation Res., 424, pp. 23 – 36. [422] Kumar, S. S., Chaubey, R. C., Devasagayam, T. P. A., Priyadarsini, K. I., and Chauhan, P. S., 1999, “Inhibition of radiation-induced DNA damage in plasmid pBR322 by chlorophyllin and possible mechanism(s) of action”, Mutation Res., 425, pp. 71 – 79. [423] Maillard, M. N., Soum, M. H., Meydani, S. N., and Berset, C., 1996, “Antioxidant activity of barley and malt: Relationship with phenolic content”, Food Sci. Technol., 29, pp. 238 – 244. [424] Hettiarachchy, N. S., Glenn, K. C., Gnanasambandam, R., and Johnson, M. G., 1996, “Natural antioxidant extract from fenugreek (Trigonella foenumgraecum) for ground beef patties”, J. Food Sci., 61, pp. 516 – 519. [425] Osawa, T., and Namiki, M., 1985, “Natural antioxidants isolated from eucalyptus leaf waxes”, J. Agric. Food Chem., 33, pp. 777–780. [426] Mitsuta, H., Yasumoto, K., and Iwami, K., 1996, “Antioxidative action of indole compounds during the autoxidation of linoleic acid”, Eiyo to Shokuryo, 29, pp. 238 – 244. [427] Yeung, S. Y., Lan, W. H., Huang, C. S., Lin, C. P., Chan, C. P., and Chang, M. C., 2002, “Scavenging property of three cresol isomers 283 against H2O2, hypochlorite, superoxide and hydroxyl radicals”, Food Chem. Toxicol., 40, pp. 1403 – 1413. [428] Mossmann, T., 1983, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays”, J. Immunol. Meth., 65, pp. 55 – 63. [429] Ames, B. N., Shigenaga, M. K., and Hagen, T. M., 1993, “Oxidants, antioxidants, and the degenerative diseases of aging”, Proc. Natl. Acad. Sci. USA, 90, pp. 7915 – 7922. [430] Cheng, Z., Ren, J., Li, Y., Chang, W., and Chen, Z., 2003, “Establishment of a quantitative structure activity relationship model for evaluating and predicting the protective potentials of phenolic antioxidants on lipid peroxidation”, J. Pharm. Sci., 92, 475 – 484. [431] Martinez, G.R., Loureiro, A.P., Marques, S.A., Miyamoto, S., Yamaguchi, L.F., and Onuki, J., 2003, “Oxidative and alkylating damage in DNA”, Mutat. Res., 544, pp. 115 – 127. [432] Sakanaka, S., Tachibana, Y., and Okada, Y., 2005, “Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha)”, Food Chem., 89, pp. 569 – 575. [433] McCord, J. M., 1993, “Human disease, free radicals, and the oxidant/antioxidant balance”, Clin. Biochem., 26, pp. 351 – 357. [434] Bondy, S. C., and Orozco, J., 1994, “Effects of ethanol treatment upon sources of reactive oxygen species in brain and liver”, Alcohol Alcohol, 29, pp. 375 – 383. [435] DeLeve, L. D., and Kaplowitz, N., 1991, “Glutathione metabolism and its role in hepatotoxicity”, Pharmacol. Ther., 52, pp. 287 – 305. 284 [436] Rubin, E., 1993, “The chemical pathogenesis of alcohol-induced tissue injury”, Alcohol Health Res. World, 17, pp. 272 – 278. [437] Jenkins, R. R., and Goldfarb, A., 1993, “Introduction: oxidant stress, aging and exercise”, Med. Sci, Sports Exerc., 25, pp. 210 – 212. [438] Guemouri, L., Lecomte, E., Herbeth, B., Pirollet, P., Paille, F., Siest, G., and Artur, Y., 1993, “Blood activities of antioxidant enzymes in alcoholics before and after withdrawal”, J. Stud. Alcohol. 54, pp. 626 – 629. [439] Mehta, M. C., Jain, A. C. and Billie, M., 1998, “Combined effects of alcohol and nicotine on cardiovascular performance in a canine model”, J. Cardiovasc. Pharmacol., 31, pp. 930 – 936. [440] Wetscher, G. J., Bagchi, M., Bagchi, G., Perdikis, G., Hinder, P. R., Glaser, K., and Hinder, R. A., 1995, “Free radical production in nicotine treated pancreatic tissue”, Free Radic. Biol. Med., 18, pp. 877 – 882. [441] Del Boccio, G., Lapenna, D., Porreca, E., Pennelli, A., Savini, F., Feliciani, P., Ricci, G., and Cuccurullo, F., 1990, “Aortic antioxidant defence mechanisms: time-related changes in cholesterol-fed rabbits”, Atherosclerosis, 81, pp. 127 – 135. [442] Maser, E., 1997, “Stress, hormonal changes, alcohol, food constituents and drugs: factors that advance the incidence of tobacco smoke – related cancer?”, Trends Pharmacol. Sci., 18, pp. 270 – 275. [443] McGinnis, J. M., and Foege, W. H., 1993, “Actual causes of death in the United States”, JAMA, 270, pp. 2207 – 2212. [444] Scott, R. B., Reddy, K. S., Husain, K., and Somani, S. M., 1999, “Time course response to ethanol of hepatic antioxidant system and 285 cytochrome P-450 II E1 in rat”, Environ. Nutr. Interac., 3, pp. 217 – 231. [445] Gonthier, B., Jeunet, A., and Barret, L., 1991, “Electron spin resonance study of free radicals produced from ethanol and acetaldehyde after exposure to Fenton system or to brain and liver microsomes”, Alcohol, 8, pp. 369 – 375. [446] Mira, L., Maia, L., Barreira, L., and Manso, C. F., 1995, “Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism”, Arch. Biochem. Biophys., 318, pp. 53 – 58. [447] Anandatheerthavarada, H. K., Shankar, S. K., Bhamre, S., Boyd, M. R., Song, B. J., and Ravindranath, V., 1993, “Induction of brain cytochrome P-450IIE1 by chronic ethanol treatment”, Brain Res., 601, pp. 279 – 285. [448] Reinke, L. A., Moore, D. R., Hague, C. M., and McCay, P. B., 1994, “Metabolism of ethanol to 1-hydroxyethyl radicals in rat liver microsomes: comparative studies with three spin trapping agents”, Free Radic. Res., 21, pp. 213 – 222. [449] Nanji, A. A., and Hiller–Sturmhöfel, S, 1997, “Apoptosis and necrosis”, Alcohol Health Res. World, 21, pp. 325 – 330. [450] Sultatos, L.G., 1988, “Effects of acute ethanol administration on the hepatic xanthine dehydrogenase/xanthine oxidase system in the rat”, J. Pharmacol. Exp. Ther., 246, pp. 946 – 949. [451] Kiessling, K. H., and Tobe, U., 1964, “Degeneration of liver mitochondria in rats after prolonged alcohol consumption”, Exp. Cell Res., 33, pp. 350 – 364. 286 [452] Rubin, E., Beattie, D. S., Toth, A., and Lieber, C. S., 1972, “Structural and functional effects of ethanol on hepatic mitochondria”, Federation Proceedings, 31, pp. 131 – 140. [453] Bailey, S. M., 2003, “A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction”, Free Radic. Res., 37 (6), pp. 585 – 596. [454] Garcia-Ruiz, C., Collel, A., Morales, A., Kaplowitz, N., and FernandezCheca, J. C., 1995, “Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kb: studies with isolated mitochondria and rat hepatocytes”, Mol. Pharmacol., 48, pp. 825 – 834. [455] Turrens, J. F., and Boveris, A., 1980, “Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria”, Biochem. J., 191, pp. 421 – 427. [456] Turrens, J. F., Alexander, A., and Lehninger, A. L., 1985, “Ubisemiquinone is the electron donor of superoxide formation by complex III of heart mitochondria”, Arch. Biochem. Biophy., 237, pp. 408 – 414. [457] Bradford, M. M., 1976, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Anal. Biochem., 72, pp. 248 – 254. [458] Aebi H., 1984, “ Catalase”, Methods Enzymol.,105, pp. 121 – 126. [459] McCord, J. and Fridovich, I., 1969, “Superoxide dismutase, an enzymic function for erythrocuprin”, J. Biol. Chem., 244, pp. 6049 – 6055. [460] Habig, W. H., Pabst, M. J., and Jakoby, W. B., 1974, “Glutathione Stransferases. The first enzymatic step in mercapturic acid formation”, J. Biol. Chem., 249, pp. 7130 – 7139. 287 [461] Galigher, A. E., and Kozloff, E. N.,1971, “Essentials of Practical Micro-technique”, 2nd ed. Lea and Febiger, Philadelphia, 1971. pp. 77. [462] Naseri, M., Rezaei, M., Moieni, S., Hosseni, H., and Eskandari, S., 2010, “Effect of different precooking methods on chemical composition and lipid damage of silver carp (Hypophthalmichthys molitrix) muscle”, Int. J. Food Sci. Technol., 45, pp. 1973 – 1979. [463] Shen, Q., Shang, N., and Li, P., 2011, “In Vitro and In Vivo Antioxidant Activity of Bifidobacterium animalis 01 Isolated from Centenarians”, Curr. Microbiol., 62(4), pp 1097-1103 [464] Fox, M.A., 2008, “Novel roles for collagen in writing the vertebrate nervous system”, Curr. Opin. Cell. Biol., 20(5), pp. 508-513. [465] Heino, J., Huhtala, H., Käpylä, J., and Johnson, M. S., 2009, “Evolution of collagen-based adhesion systems”, Int. J. Biochem. Cell Biol., 41 (2), pp. 341 – 348. [466] Muyonga, J. H., Cole, C., and Duodu, K., 2004, “Characterization of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus)”, Food Chem., 85, pp. 81-89. [467] Ogawa, M., Moody, M. W., Portier, R. J., Bell, J., Schexnayder, M. A., and Losso, J. N., 2004, “Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus)”, Food Chem., 88, pp. 495–501. [468] Piez, K. A., 1985, “In: Collagen”, Kroschwitz, J. I., (Ed.), Encyclopedia of Polymer Science and Engineering, Wiley, New York, pp. 699 – 727. [469] Barnes, M. J., 1982, “In: The collagen–platelet interaction”, Weiss, J. B., Jayson, M. I. V., Eds., Collagen in Health and Disease, Churchill Livingstone, Edinburgh, pp. 179 – 197. 288 [470] Nimni, M. E., and Harkness, R. D., 1988, “In: Molecular structures and functions of collagen”, Nimni, M. E., Ed., Collagen, Biochemistry, CRC Press, Boca Raton, Florida, USA, 1, pp. 1 – 79. [471] Wyckoff, R., Corey, R., and Biscoe, J., 1935, “X-ray reflections of long spacing from tendon”, Science, 82, pp. 175 – 176. [472] Clark, G., Parker, E., Schaad, J., and Warren, W. J., 1935, “New measurements of previously unknown large interplanar spacings in natural materials”, J. Am. Chem. Soc., 57, pp. 1509 – 1509. [473] Traub, W., Yonath, A., and Segal, D. M., 1969, “On the molecular structure of collagen”, Nature, 221, pp. 914 – 917. [474] Bella, J., Eaton, M., Brodsky, B., Berman, H. M., 1994, "Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution", Science, 266(5182), pp. 75–81. [475] Hulmes, D. J., and Miller, A., 1979, “Quasi-hexagonal molecular packing in collagen fibrils”, Nature, 282, pp. 878 – 880. [476] Fraser, R. D., MacRae, T. P., and Suzuki, E., 1979, “Chain conformation in the collagen molecule”, J. Mol. Biol., 129(3), pp. 463 – 481. [477] Orgel, J.P.R.O., Irving, T.C., Miller, A., and Wess, T.J., 2006, “Microfibrillar structure of type I collagen in situ”, PNAS, 103(24), pp. 9001 – 9005. [478] Collagen structure: http://greatcourse.cnu.edu.cn/xbfzswx/ wlkc/kcxx/4 English (7565312Bytes). htm [479] Harkness, R.D., 1966, “Collagen”, Sci. Prog. Oxf., 54, pp. 257-274. 289 [480] Wang, L., An, X.X., Yang, F.M., Xin, Z.H., Zhao, L.Y., and Hu, Q.H., 2008, “Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella)”, Food Chem., 108, pp. 616-623. [482] Perumal, S., Antipova, O., and Orgel, J.P., 2008, “Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis”, Proc. Natl. Acad. Sci. USA., 105(8), pp. 2824-2829. [483] Sweeney, S.M., Orgel, J.P., Fertala, A., Mcauliffe, J.D., Turner, K.R., and Lullo, G.A., 2008, “Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates”, J. Biol. Chem., 283(30), pp. 21187-21197. [484] Birk, D. E. and Bruckner, P., 2005, “Collagen suprastructures”, Top. Curr. Chem., 247, pp. 185–205. [485] Gelse, K., Poschl, E., and Aigner, T., 2003, “Collagens-structure, function and biosynthesis”, Adv. Drug Deliv. Rev., 55, pp. 1531-1546. [486] Harold, T.H. and Wilson, M.D., 1960, “Colloid degeneration of the skin”, Arch. Dermatol., 82(3), pp. 428-428. [487] Mendler, M., Eich-Bender, S.G., Vaughan, L., Winterhalter, K.H., and Bruckner, P., 1989, “Cartilage contains mixed fibrils of collagen types II, IX, and XI”, J. Cell Biol., 108, pp. 191-197. [488] Ennker, I. C., Schoon Doris, Schoon Heinz Adolf, Rimpler Manfred, and Hetzer Roland, 1994, "Formaldehyde-free collagen glue in experimental lung gluing", Ann. Thorac. Surg., 57(6), pp. 1622–1627. 290 [489] Raspanti, M., Ottani, V., and Ruggeri, A., 1990, "Subfibrillar architecture and functional properties of collagen: a comparative study in rat tendons", J. Anat., 172, pp. 157–164. [490] Markus J. Buehler, 2008, “Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies”, J. Mech. Beha. Biomed. Mater., 1, pp. 59–67. [491] Xu, Y., Gurusiddappa, S., Rich, R.L., Owens, R.T., Keene, D.R., Mayne, R., Hook, A., and Hook, M., 2000, “Multiple binding sites in collagen type I for the integrins α1β1 and α2β1”, J. Biol. Chem., 275, pp. 38981–38989. [492] Swatschek, D., Schatton, W., Kellermann, J., Muller, W.E.G., and Kreuter, J., 2002, “Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum”, Eur. J. Pharm. Biopharm. 53(1), pp. 107-113. [493] Friess, W., 1998, “Collagen-biomaterial for drug delivery”, Eur. J. Pharm. Biopharm., 45, pp. 113–136. [494] Pati, F., Dhara, S., and Adhikari, B., 2010, “Fish collagen: A potential material for biomedical application”, Tech. Sym., 23, pp. 34-38. [495] Wang, L., An, X., Xin, Z., Zhao, L., and Hu, Q., 2007, “Isolation and characterization of collagen from the skin of deep-sea redfish (Sebastes mentella)”, J. Food Sci., 72, pp. 450–455. [496] Lin Wang, Yufeng Zou, Song Jiang, Junmin Xu, Shenhua Jiang, and Qiuhui Hu, 2011, “Chromatographic separation and physicochemical properties of collagen species in the skin of deep-searedfish (Sebastes mentella)”, Food Hydrocolloid, 25(5), pp. 1134–1138. [497] Fitzgerald, R.H., Rogers, L.C., and Armstrong, D.G., 2009, “The wound healing spectrum: a timeline for the utilization of advanced technology”, J. Diabetic Foot Complicat., 1(3), pp. 63-75. 291 [498] Enoch, S., and Leaper, D., 2008, “Basic science of wound healing”, Surgery, 26, pp. 31–37. [499] Aravindan Rangaraj, Keith Harding, and David Leaper, 2011, “Role of collagen in wound management”, Wounds UK, 7(2), pp.54-63. [500] Schultz, G.S., and Wysocki, A., 2009, “Interactions between extracellular matrix and growth factors in healing”, Wound Rep. Regen. 17, pp.153–162. [501] Guo, S., and Dipietro, L.A., 2010, “Factors affecting wound healing”, J. Dent. Res. 89(3), pp. 219–229. [502] Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E., and Montero, M.P., 2011, “Functional and bioactive properties of collagen and gelatin from alternative sources: A review”, Food Hydrocolloid, 25(8), pp. 1813-1827. [503] Singer, A.J., and Clark, R.A.F. 1999, “Cutaneous Wound Healing”, Eng. J. Med., 341, pp. 738-746. [504] Leibovich, S.J. and Ross, R., 1975, “The role of the macrophage in wound repair”, Am. J. Pathol., 78, pp. 71-91. [505] Lee, H., Sodel, H.L., Hwang, Q., Brown, T.J., Ringuette, M.., and Sodek, J., 2007, “Phagocytosis of collagen by fibroblasts and invasive cancer cells in mediated by MT1-MMP”, Biochem. Soc. Trans., 35, pp. 704-706. [506] Eric Boilard, Peter A. Nigrovic1, Katherine Larabee, Gerald F. M. Watts, Jonathan S. Coblyn, Michael E. Weinblatt, Elena M. Massarotti, Eileen Remold-O’Donnell, Richard W. Farndale, Jerry Ware, and David M. Lee, 2010, “Platelets amplify inflammation in arthritis via collagen-dependent microparticle production”, Science, 327(5965), pp. 580-583. [507] Puklin-Faucher, E., and Sheetz, M.P., 2009, “The mechanical integrin cycle”, J. Cell Sci., 122, pp. 179-186. 292 [508] Dobaczewski, M., Gonzalez-Quesada, C., and Frangogiannis, N.G., 2010, “The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction”, J. Mol. Cell Cardiol., 48(3), pp. 504–511. [509] Stadelmann, W.K., Digenis, A.G., and Tobin, G.R., 1998, “Impediments to wound healing” Am. J. Surg., 176(2), pp. 39-47. [510] Xiao, Y., Ju, H. X., and Chen, H Y., 2000, “Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteaminemodified gold electrode”, Anal Biochem., 278, pp. 22-28. [511] Basu, S., Binder, R.J., Ramalingam, T., and Srivastava, P.K., 2001, “CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin”, Immunity, 14, pp. 303–313. [512] Kamihagi, K., Katayama, M., Oucho, R., amd Kato, I., 1994, “Osteonectin/ SPARC regulates cellular secretion rate of fibronectin and laminin extracellular matrix proteins”, Biochem. Biophys. Res Commun., 200, pp. 423-424. [513] Prockop, D.J., and Kivirikko, K.I., 1995, “Collagens: molecular biology, diseases, and potentials for therapy”, Annu. Rev. Biochem., 64, pp. 403-409. [514] Myllyharju, J., and Kivirikko, K.I., 2004, “Collagens, modifying enzymes and their mutations in humans, flies and worms”, Trends Genet., 20 pp. 33-36. [515] Ivan Mikisk, Pavla Sedlakova , Katerina Mikulıkov, and Adam Eckhardt, 2006, “Capillary electromigration methods for the study of collagen”, J. Chromatogr. B, 841, pp. 3–13. [516] Stainsby, G., 1987, “Gelatin gels”, In Pearson, A.M., Dutson, T.R., and Bailey, A. J., Eds., Advances in meat research, collagen as a food, 4, pp. 209-222. New York: Van Nostrand Reinhold Company Inc. 293 [517] Djabourov, M., Bonnet, N., Kaplan, H., Favard, N., Favard, P., and Lechaire, J. P., 1993, “3D analysis of gelatin gel networks from transmission electron microscopy imaging”, J. De Physique II, 3, pp. 611-624. [518] Gómez-Guillén, M.C., Turnay, J., Fernández-Díaz, M. D., Ulmo, N., Lizarbe, M. A., and Montero, P., 2002, “Structural and physical properties of gelatin extracted from different marine species: a comparative study”, Food Hydrocolloid, 16(1), pp. 25-34. [519] Johnston-Banks, F.A., 1990, “Gelatin”, In P. Harris (Ed.), Food gels, pp. 233–289. London: Elsevier Applied Science. [520] Zhang, J., Duan, R., Tian, Y., and Konno, K., 2009a, “Characterization of acid-soluble collagen from skin of silver carp (Hypophthalmichthys molitrix)”, Food Chem., 116, pp. 318–322. [521] Zhang, M., Liu, W., and Li, G., 2009b, “Isolation and characterization of collagens from the skin of largefin longbarbel catfish (Mystus macropterus)”, Food Chem., 115(3), pp. 826-831. [522] Shigeru Kimura, Yoichi Uematsu and Yoshirou Miyauchi, 1986, “Shark (Prionace gla uca) elastoidin: characterization of its collagen as [α l(E)]3 Homotrimers”, Comp. Biochem. Physiol., 84B(3), pp. 305308. [523] Jongjareonrak, A., Benjakul, S., Visessanguan, W., Nagai, M., and Tanaka, M., 2005, “Isolation and characterisation of acid and pepsinsolubilised collagens from the skin of brownstripe red snapper (Lutjanus vitta)”, Food Chem., 93, pp. 475–484. [524] Sitthipong Nalinanon, Soottawat Benjakul, Wonnop Visessanguan, and Hideki Kishimura, 2007, “Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus)”, Food Chem., 104, pp. 593–601. 294 [525] Foegeding, E.A., Lanier, T. C., and Hultin, H. O., 1996, “Collagen”, In O. R. Fennema Ed., Food chem., pp. 902–906. New York. [526] Nagai, T., Araki, Y., and Suzuki, N., 2002, “Collagen of the skin of ocellate puffer fish (Takifugu rubripes)”, Food Chem., 78, pp. 173–177. [527] Ciarlo, A. S., Paredi, M. E., and Fraga, A. N., 1997, “Isolation of soluble collagen from hake skin (Merluccius hubbsi)”, J. Aquat. Food Prod. Technol., 6, pp. 65–77. [528] Bama, P., Vijayalakshimi, M., Jayasimman, R., Kalaichelvan, P.T., Deccaraman, M. and Sankaranarayanan, S., 2010, “Extraction of collagen from cat fish (tachysurus maculatus) by pepsin digestion and preparation and characterization of collagen chitosan sheet”, Int. J. Pharm. Pharm. Sci., 2(4), pp. 133-137. [529] Liu, H. Y., Li, D., and Guo, S. D., 2007, “Studies on collagen from the skin of channel catfish (Ictalurus punctaus)”, Food Chem., 101, pp. 621–625. [530] Zhang, Z. K., Li, G. Y., and Shi, B., 2006, “Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes”, J. Soc. Leath. Tech. Chem., 90, pp. 23–28. [531] Ogawa, M., Moody, M. W., Portier, R. J., Bell, J., Schexnayder, M. A., and Losso, J. N., 2003, “Biochemical properties of black drum and sheepshead seabream skin collagen” Agric. Food Chem., 51, pp. 8088– 8092. [532] Laemmli, U. K., 1970, “Cleavage of structural proteins during assembly of head of bacteriophage T4”, Nature, 277, pp. 680–685. [533] Nagai, T., and Suzuki, N., 2000, “Isolation of collagen from fish waste material-skin, bone and fins”, Food Chem., 68, pp. 277–281. [534] Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N., and Suzuki, N, 2001, “Isolation and characterization of collagen from the outer skin 295 waste material of cuttlefish (Sepia lycidas)”, Food Chem., 72, pp. 425– 429. [535] Senaratne, L.S., Pyo-Jam Park, and Se-Kwon Kim, 2006, “Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin”, Bioresource Technol., 97, pp. 191–197. [536] Baaijens, F., Bouten, C., and Driessen, N., 2010, “Modeling collagen remodeling”, J. Biomech. 43(1), pp.166-175. [537] Nagai, T., Suzuki, N., and Nagashima, T., 2008, “Collagen from common minke whale (Balaenoptera acutorostrata) unesu”, Food Chem., 111, pp. 296–301. [538] Yan, M., Li, B., Zhao, X., Ren, G., Zhuang, Y., Hou, H., Zhang, X., Chen, L., and Fan, Y., 2008, “Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma)”, Food Chem., 107, pp. 1581–1586. [539] Abe, Y., and Krimm, S., 1972, “Normal vibrations of crystalline polyglycine I”, Biopolymer, 11(9), pp. 1817–1839. [540] Li, H., Liu, B.L., Gao, L.Z., and Chen, H.L., 2004, “Studies on bullfrog skin collagen”, Food Chem., 84, pp. 65–69. [541] Payne, K. J., and Veis, A., 1988, “Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies”, Biopolymer, 27(11), pp. 1749–1760. [542] Duan, R., Zhang, J., Du, X., Yao, X. and Konno, K., 2009, “Properties of collagen from skin, scale and bone of carp (Cyprinus carpio)”, Food Chem., 112, pp. 702–706. [543] Kulmyrzaev, A.A., Karoui, R., De Baerdemaeker, J., and Dufour, E., 2007, “Infrared and fluorescence spectroscopic techniques for the determination of nutritional constituents in foods”, Int. J. Food Prop., 10(2), pp. 299 – 320. 296 [544] Yan Zhang, Wentao Liu, Guoying Li, Bi Shi, Yuqing Miao, and Xiaohua Wu, 2007, “Isolation and partial characterization of pepsinsoluble collagen from the skin of grass carp (Ctenopharyngodon idella)”, Food Chem., 103, pp. 906–912. [545] Bailey, A. J., and Light, N. D., 1989, “Connective tissue in meat and meat products” New York: Elsevier Applied Science. [546] Hassan, F., and Sherief, P. M., 1994, “Role and application of fish collagen”, Seafood Export J, 25, pp. 19–24. [547] Huc, A., 1985, “Collagen biomaterial characteristics and applications”, J. Am. Leather Chem. Assoc., 80, pp. 195-212. [548] Matsumoto, K., Nakamura, T., Shimizu, Y., Ueda, H., Sekine, T., Yamamoto, Y., Yiyotami, Y., and Takomoto, Y., 1999, “A novel surgical material made from collagen with high mechanical strength: A collagen sandwich membrane”, OSAIO J., 45, pp. 288-292. [549] Cascone, M.G., Sim, B., and Downes, S., 1995, “Blends of synthetic and natural polymers as drug delivery systems for growth hormone”, Biomater., 16, pp. 569-574. [550] Ellis, D.O. and AcGavin, S., 1970, “The structure of collagen-on X-ray study”, J. Ultrastruct. Res., 32, pp. 191-211. [551] Marovdas, N.G., 1973, “Chemical and mechanical requirements for fibroblast adhesion”, Nature, 244, pp. 353-358. [552] Reddy, P.P., Barrieras, D.J., Wilson, G., Bagli, D.J., McLorie, G.A., and Khoury, A.E., 2000, “Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model”, Int. J. Urol., 164(3), pp. 936-941. 297 [553] Engelhardt, E.M., Stegberg, E., Brown, R.A., Hubbell, J.A., Wurm, F.M., and Adam, M., 2010, “Compressed collagen gel: a novel scaffold for human bladder cells”, J. Tissue Eng. Regen. Med., 4(2), pp. 123130. [554] Hattori, K., Joraku, A., Miyagawa, T., Kawai, K., Oyasu, R., and Akaza, H., 2006, “Bladder reconstruction using a collagen patch prefabricated within the omentum”, Int. J. Urol., 13(5), pp. 529-37. [555] Giraud-Guille, M.M., Besseau, L., Chopin, C., Durand, P., and Herbage, D., 2000, “Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states”, Biomater., 21, pp. 899–906. [556] Eun Songa, So Yeon Kimb, Taehoon Chunc, Hyun-Jung Byunc, and Young Moo Lee, 2006, “Collagen scaffolds derived from a marine source and their biocompatibility”, Biomater., 27, pp. 2951–2961. [557] Joseph George, Jun Onodera and Teruo Miyata, 2008, “Biodegradable honeycomb collagen scaffold for dermal tissue engineering”, J. Biomed. Mater. Res., 87A, pp. 1103–1111. [558] Patricia Castillo-Briceño, Dominique Bihan, Michael Nilges, Samir Hamaia, José Meseguer, Alfonsa García-Ayala, Richard W. Farndale, and Victoriano Mulero, 2011, “A role for specific collagen motifs during wound healing and inflammatory response of fibroblasts in the teleost fish gilthead seabream”, Mol. Immunol., 48(6), pp. 826-834. [559] Wen-yuan Ding, Yun Ti, Jia Wang, Zhi-hao Wang, Guo-lu Xie, Yuanyuan Shang, Meng-xiong Tang, Yun Zhang, Wei Zhang, and Ming Zhong, 2012, “Prostaglandin F2α facilitates collagen synthesis in cardiac fibroblasts via an F-prostanoid receptor/protein kinase C/Rho kinase pathway independent of transforming growth factor β1”, Int. J. Biochem. Cell Biol., 44(6), pp. 1031-1039. 298 [560] Gomathi, K., Gopinath, D., Rafiuddin Ahmed, M., and Jayakumar, R., 2003, “Quercetin incorporated collagen matrices for dermal wound healing processes in rat”, Biomater., 24, pp. 2767–2772. [561] Gopinath, B., Ma, G., Lahooti, H., and Wall, J.R., 2007, “A Case of Hashimoto’s Thyroiditis Presenting with Chronic Upper eye Lid Retraction and Positive Calsequestrin and Collagen XIII Antibodies”, Int. J. Endocrinol. Metab., 2, pp. 34-37. [562] Lee, C.H., Singla, A., and Lee, Y., 2001, “Biomedical applications of collagen”, Int. J. Pharm., 221, pp. 1–22. [563] Lazarus, G.S., Cooper, D.M., Knighton, D.R., Margolis, D.J., Pecoraro, R. E., Rodeheaver, G., and Robson, M.C., 1994, “Definitions and guidelines for assessment of wounds and evaluation of healing”, Arch. Dermatol., 130, pp. 489-494. [564] Yanhong Li, Tao Zhang, Wanmeng Mu, and Jian Liu, 2008, “Antioxidant and free radical- scavenging activities of chickpea protein hydrolysate (CPH)”, Food Chem., 106, pp. 444-450. [565] Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T., and Tanaka, M., 2005, “Characterization of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus)”, Food Chem., 89, pp. 363–372. [566] Piez, K. A., 1965, “Characterization of a collagen from codfish skin containing three chromatographically different α chains” Biochem., 4(12), pp. 2590–2596. [567] Liu, Y. K., and Liu, D. C., 2006, “Comparison of physical-chemical properties of type I collagen from different species”, Food Chem., 99, pp. 244–251. 299 [568] Doyle, B. B., Bendit, E. G., and Blout, E. R., 1975, “Infrared spectroscopy of collagen and collagen-like polypeptides”, Biopolymer, 14(5), pp. 937–957. [569] Surewicz, W. K., and Mantsch, H. H., 1988, “New insight into protein secondary structure from resolution-enhanced infrared spectra” Biochim. Biophys. Acta., 952(2), pp. 115–130. [570] Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D. and Mann, S., 2003, “Physical properties of type (I) collagen extracted from fish scales of Pagrus major and Oreochromis niloticas”, Int. J. Biol. Macromol., 32, pp. 199–204. [571] Ramachandran, G.N., 1988, “Stereochemistry of collagen”, Int. J. Peptide Protein Res., 31, pp. 1–16. [572] Schultz, G.S., Sibbald, R.G., Falanga, V., Ayello, E.A., Dowsett, C., and Harding, K., 2003, “Wound bed preparation: a systematic approach to wound management”, Wound Repair Regen., 11, pp. 1 – 28. [573] Peter, M., Binulal, N.S., Nair, S.V., Selvamurugan, N., Tamura, H., and Jayakumar, R., 2010, “Novel biodegradable chitosan-gelatin/nano bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering”, Chem. Eng. J., 158, pp. 353 - 361 [574] Marton, J.J.P., and Malone, M.H., 1972, “Evaluation of vulnerary activity by an open wound procedure in rats”, Arch. Int. Pharmacodyn., 196, pp. 117-121. [575] Neuman, R.E. and Logan, M.A., 1950, “The determination of hydroxyproline”, J. Biol. Chem., 184, pp. 299-306. [576] Brenner, A.J. and Harris, E.D., 1995, “A quantitative test for copper using bicinchoninic acid”, Anal. Biochem., 226, pp. 80-84. 300 [577] Morra, M., 2006, “Biochemical modification of titanium surfaces: peptides and ECM proteins”, Eur. Cell Mater., 12, pp. 1-15. [578] Linez-Bataillon, P., Monchau, F., Bigerelle, M., and Hildebrand, H.F., 2002, “In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates”, Biomol. Eng., 19, pp. 133-137. [579] Ma L, Gao C, Mao Z, Zhou J, and Shen J., 2004, “Enhanced biological stability of collagen porous scaffolds by using amino acids novel crosslinking bridges”, Biomater., 25, pp. 2997–3004. [580] Khor, E., 1997, “Methods for the treatment of collagenous tissues for bioprostheses”, Biomater., 18, pp. 95–105. [581] Yannas, I.V., Lee, E., Orgill, D.P., Skrabut, E.M. and Murphy, G.F., 1989, “Synthesis and characterization of a model extracellular matrix that induces partial regeneration of mammalian skin”, Proc. Natl. Acad. Sci. USA., 86, pp. 933–937. [582] Jansson, K., Haegerstrand, A., and Kratz, G., 2001, “A biodegradable bovine collagen membrane as a dermal template for human in vivo wound healing”, Scand. J. Plast. Reconstr. Hand Surg., 35, pp. 369– 375. [583] Meade, K.R., and Silver, F.H., 1990, “Immunogenicity of collagenous implants”, Biomater., 11, pp. 176–180. [584] Sidhu, G.S., Mani, H., Gaddipatti, J.P., Singh, A.K., Seth, P., Banaudha, K.K., Patnaik, G.K., and Maheshwari, R.K., 1999, “Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice”, Wound Repair Regen., 7(5), pp. 362–374. [585] McCauley, R.L., Li, Y.Y., Poole, B., Evans, M.J., Robson, M.C., Heggers, J.P., and Herndon, D.N., 1992, “Differential inhibition of 301 human basal keratinocyte growth to silver sulfadiazine and mafenide acetate”, J. Surg. Res., 52(3), pp. 276–285. [586] Mudera, V., Morgan, M., Cheema, U., Nazhat, S., Brown, R., 2007, “Ultra-rapid engineered collagen constructs tested in an in vivo nursery site”, J. Tissue. Eng. Regen. Med., 1(3) pp. 192-198. [587] Eva-Maria Engelhardt, Lionel A. Micol, Stephanie Houis, Florian M. Wurm, Jöns Hilborn, Jeffrey A. Hubbell, and Peter Frey, 2011, “A collagen-poly(lactic acid-co-3-caprolactone) hybrid scaffold for bladder tissue regeneration”, Biomater., 32, pp. 3969-3976 [588] Long Shi, Yuan Chang, Yongmei Yang, Ying Zhang, Fu-Shin X. Yu, and Xinyi Wu, 2011, “Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing”, PLoS ONE, 7(2), pp. 32128-32131. [589] Kishore Babu M, Chandana P, Murthy TEGK. 2011 , “Design, characterization and comparision of Glycyrrhiza glabra root extract impregnated collagen and cross linked collagen dermal scaffolds for wound healing”, J. Global Pharma Technol., 3(9), pp. 1-10 [590] Kishore Babu, M., Siva Prasad, O., and Murthy. T. E. G. K., 2011, “Comparison of the dermal wound healing of Centella asiatica extract impregnated collagen and crosslinked collagen scaffolds”, J. Chem. Pharm. Res., 3(3), pp. 353-362. [591] Demidova-Rice, T.N., Geevarghese, A., and Herman, I.M., 2011, “Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro”, Wound Repair Regen., 19(1), pp. 59–70. [592] Rane, M.M., and Mengi, S.A., 2003, “Comparative effect of oral administration and topical application of alcoholic extract of 302 Terminalia arjuna bark on incision and excision wounds in rats”, Fitoterapia., 74(6), pp. 553-558.
© Copyright 2024