antioxidant peptides and collagen from two marine

 231
7. REFERENCES
[1]
Jha, R. K., and Zi-rong, X., 2004, “Biomedical Compounds from
Marine organisms”, Mar. Drugs, 2, pp. 123 – 146.
[2]
Zobell, C.E., (1946) “In: Marine microbiology: A Monograph on
Hydrobacteriology”, Chronica Botanica Co., Waltham, MA, USA.
[3]
Fenical, W., and Jensen, P. R., 2006, “Developing a new resource for
drug discovery: Marine actinomycete bacteria”, Nat. Chem. Biol., 2,
pp. 666 – 673.
[4]
Sogin, M. L., Morrison, H. G., Huber, J.A., Welch, D.M., Huse, S.M.,
Neal, P.R., Arrieta, J.M., and Herndl, G.J., 2006, “Microbial diversity
in the deep sea and the underexplored 'rare biosphere'”, Proc. Natl.
Acad. Sci. USA, 103, pp. 12115 – 12120.
[5]
Proksch, P., Edrada, R., and Ebel, R., 2002, “Drugs from the sea –
current status and microbiological implications”, Appl. Microbiol.
Biotechnol., 59, pp. 125 – 134.
[6]
Kijjoa, A., and Sawangwong, P., 2004, “Drugs and Cosmetics from the
Sea”, Mar. Drugs, 2, pp. 73 – 82.
[7]
Costanza, R., 1999, “The ecological, economic, and social importance
of the oceans”, Ecol. Econom., 31, pp. 199 – 213.
[8]
Miller, W. E. G., Briimmer, F., Batel, R., Miiller, I. M., and Schroder,
H. C., 2003, “Molecular biodiversity (case study) Profera (sponges)”,
Natur. Wissenschaften., 90, pp. 103 – 120.
[9]
Thakur, N. L., Thakur, A. N., and Muller, W. E. G., 2005, “Marine
natural products in drug discovery”, Nat. Prod. Rad. 4 (6), pp. 471 –
477.
232
[10]
Pisut, D. P., and Pawlik, J. R., 2002, “Anti predatory chemical defenses
of ascidians: secondary metabolite or inorganic acids?” J. Exp. Mar.
Bio. Ecol., 270, pp. 203 – 214.
[11]
Thakur, N. L., Hentschel, U., Krasko, A., Pabel, C. T., Anil, A. C., and
Müller, W. E. G., 2003, “Antibacterial activity of sponge Suberites
domuncula and its primorphs: potential basis for epibacterial chemical
defense”, Aquat. Microb. Ecol., 31, pp. 73 – 83.
[12]
Mayer, A. M. S., and Lehmann, V. K. B., 2002, “Marine
pharmacology”, The pharmacol., 42, pp. 62 – 69.
[13]
Venkataraman, K., and Wafar, M.V.M., 2005, “Coastal and marine
biodiversity of India,” Indian J. Mar. Sci., 34, pp. 57 – 75.
[14]
Fishery Survey of India (FSI), 2009, “Marine fish production 20072008”http://www.icsf.net/icsf2009/jspfiles/indianFisheries/overview.jsp
.
Economic survey of India, 2010, “India fish production 2009-2010”
http://exim.indiamart.com/economic-survey09-10/pdfs/chapter08.pdf
[15]
[16]
Macdougall, J. D., 1996, “In: A short history of Planet Earth”, John
Wiley Eds., New York, pp. 5.
[17]
Nadkarni, K. M., and Nadkarni, A. K., 1976, “Indian Materia Medica”,
Popular Prakashan Pvt. Ltd, Bombay, Vol. II, pp. 135-231.
[18]
Prabhakar Chatterjee, (1955), “In: Ayurvedic Treatment of Cancer”,
Lalchand and Sons, Calcutta, pp. 36-146.
[19]
Pandit Shiv Sharma, (1987), “In: Ayurvedic Medicine Past and
Present”, Krishnadas Academy, Varanasi, pp. 195 – 197.
[20]
The Ayurvedic Formulatory of India Part-I, 2003, Govt. of India –
Ministry of Health and Welfare, Dept of Indian Systems of Medicine
and Homeopathy.
233
[21]
Bodding, P. O., (1986), “Studies in Santal Medicine and Connected
Folklore, Parts I, II and III”, Asiatic Society, pp. 170 – 214.
[22]
Ramamurthi Iyer, T. G., (1933), “In: The handbook of Indian medicine
or the gems of Siddha system”, Sri Vani Vilas Press, Erode, pp. 340346.
[23]
Visweswara Sastry, M., and Pandit Mulugu Ramalingayya, (1959).
“Vaidya Yoga Ratnavali”, Madras State, Indian Medical Practitioner
Co-operative Pharmacy and Stores, Vol. I, pp. 282-439.
[24]
Unani Pharmacopoeia in English, (1974), The Madras Provincial Indian
Medical Practitioners Co-operative Pharmacy and Stores Ltd., Madras,
pp. 21 – 145.
[25]
Sodasangarhdayam, P. V. S., (1993) “In: Essentials of Ayurveda”,
Motilal Banarsidass Publishers Pvt. Ltd., New Delhi, pp. 78-90.
[26]
Agarwal, R. S., (1987) “In: Secrets of Indian Medicine”, Sri Aurobindo
Ashram Publication Department.
[27]
Chopra, I. C., Handa, K. L., and Kapur, L. D., (1994) “In: Indigenous
of India”, Academic Publishers, Calcutta.
[28]
Vohoro, S. B., and S. Y. Khan, (1979) “In: Animal origin drugs used in
Unani Medicine”, Vikas Publishing House Pvt. Ltd., New Delhi.
[29]
Dash, B., and Kashyap, L., (1980) “In: Materia Medica of Ayurveda”,
Lotus Press, pp. 225-292.
[30]
Fathi, A. R., Allen, T. M., 1988, “Biologically active metabolites from
Agelas mauriti
ana”, Can. J. Chem., 66, pp. 45 – 50.
[31]
Kikuchi, H., Tsukitani, Y., Shimizu, I., Kobayashi, M., and Kitagawa,
I., 1981, “Foliaspongin, an Anti-inflammatory Bishomosesterterpene
234
from the Marine Sponge Phyllospongia foliascens (PALLAS)”, Chem.
Pharm. Bull. (Japan), 29, pp. 1492 - 1494.
[32]
Kikuchi, H., Tsukitani, Y., Toshitaka, M., Takashi, F., Nakanishi, H.,
Kobayashi, M., and Kitagawa, I., 1982, “Marine Natural Products. X.
Pharmacologically Active Glycolipids from the Okinawan Marine
Sponge Phyllospongia foliascens (PALLAS)”, Chem. Pharm. Bull.,
(Japan). 30, pp. 3544-3547.
[33]
Bandurraga, M. M., and Fenical, W., 1985, “Isolation of the muricins:
Evidence of a chemical adaptation against fouling in the marine
octocoral Muricea fruticosa (gorgonacea)”, Tetrahedron, 41(6), pp.
1057 – 1065.
[34]
Fusetani, N., Matsunaga, S., and Konosu, S., 1981, “Bioactive marine
metabolites I. Isolation of guaiazulene from the gorgonian Euplexaura
erecta”, Cell Mol. Life Sci., 37 (7), pp. 680 - 681.
[35]
Groweiss, A., Fenical, W., Cun-Heng, H., Clardy, J., Zhongde, W.,
Zhongnian, Y., and Kanghov, L., 1985, “Subergorgic acid, a novel
tricyclopentanoid cardiotoxin from the pacific gorgonian coral
Subergorgia suberosa”, Tetrahedron Lett., 26 (20), pp. 2379 – 2382.
[36]
Chatterji, A., Zakir A., Ansari Baban, S., Ingole, M. A., Bichurina
,Marina Sovetova and Boikov, Y. A., 2002, “Indian marine bivalves:
Potential source of antiviral drugs”, Curr. Sci., 82, pp. 10.
[37]
Nazeer, R. A., Sampath Kumar, N. S., Shabeena, Y. N., Radhika R.,
Rahul Kishore K, and Sivani R Bhatt., 2009. “Lipid Profiles of
Threadfin bream (Nemipterus japonicus) organs”, Ind. J. Marine Sci.,
38 (4), pp. 461 – 463.
[38]
Shabeena, Y. N., and Nazeer, R. A., 2010, “Antioxidant activity of
hydrolysates and peptide fractions of Nemipterus japonicus and
235
Exocoetus volitans muscle”, J. Aquat. Food. Prod. Technol., 19, pp. 180
– 192.
[39]
Shabeena, Y. N., and Nazeer, R. A., 2011a, “Evaluation of bioactive
properties of peptide isolated from Exocoetus volitans”, Int. J. Food
Sci. Technol., 46, pp. 37 – 43.
[40]
Shabeena, Y. N., and Nazeer, R. A., 2011b, “Antioxidant and
functional properties of protein hydrolysates from pink perch
(Nemipterus japonicus) muscle”, J. Food Sci. Technol., DOI
10.1007/s13197-011-0416-y.
[41]
Shabeena, Y. N., and Nazeer, R. A., 2011c, “Identification of active
peptides from backbones of Nemipterus japonicus and Exocoetus
volitans by electrospray ionisation–mass spectrometry”, Int. J. Food
Sci. Technol., 46, pp. 1993-1996.
[42]
Shabeena, Y. N., and Nazeer, R. A., 2011d, “Optimization of enzymatic
hydrolysis conditions for the production of antioxidant peptides from
muscles of Nemipterus japonicus and Exocoetus volitans using
response surface methodology”, Amino Acids., DOI 10.1007/s00726011-1084-y.
[43]
Nazeer, R. A., Deeptha, R., Jaiganesh, R., Sampath Kumar, N. S., and
Shabeena, Y. N., 2011a “Radical scavenging activity of Seela
(Sphyraena barracuda) and Ribbon fish (Lepturacanthus savala)
backbone protein hydrolysates”, Int. J. Pept. Res. Ther., 17 (3), pp. 209
– 216.
[44]
Jai Ganesh, R., Nazeer, R. A., and Sampath Kumar, N. S., 2011,
“Purification and Identification of antioxidant peptides from Black
pomfret, Parastromateus niger (Bloch, 1795) viscera protein
hydrolysate”, Food Sci. Biotechnol., 20 (4), 1087 – 1094.
236
[45]
Nazeer, R. A., and Srividhya, T. S., 2011b, "Antioxidant peptides from
the protein hydrolysates of Conus betulinus", Int. J. Pept. Res. Ther.,
17, pp. 231–237.
[46]
Nazeer, R. A., Divya Prabha, K. R., Sampath Kumar, N. S., and Jai
Ganesh, R., 2011c, “Isolation of Antioxidant Peptides from Clam
(Meretrix casta)”, J. Food Sci. Technol., DOI 10.1007/s13197-0110395-z.
[47]
Nazeer, R. A., Kavitha, R., Jai Ganesh, R., Shabeena, Y.N., Sampath
Kumar, N. S., and Ranjith, R., 2011d, “Detection of Collagen through
FTIR and HPLC from the body and foot of Donax cuneatus”, J. Food
Sci. Technol., DOI: 10.1007/s13197-011-0539-1.
[48]
Sarmadi, B. H., and Ismail, A., 2010, “Antioxidative peptides from
food proteins: a review”, Peptide, 31 (10), pp. 1949 – 1956.
[49]
Kim, S. K., Choi, Y. R., Park, P. J., Choi, J. H., and Moon, S. H., 2000,
“Screening of biofunctional peptides from cod processing wastes”, J.
Korean Soc. Agric. Chem. Biotechnol., 43, pp. 225–227.
[50]
Je, J. Y., Park, P. J., Jung, W. K., and Kim, S. K., 2005, “Isolation of
angiotensin I converting enzyme (ACE) inhibitor from fermented
oyster sauce, Crassostrea gigas”, Food Chem., 90, pp. 809 – 814.
[51]
Fujita, H., and Yoshikawa, M., 1999, “LKPNM: A prodrug - type ACE
inhibitory peptide derived from fish protein”, Int. J. Immunopharmaco.,
44, pp. 123 – 127.
[52]
Rajapakse, N., Mendis, E., Byun, H. G., and Kim, S. K., 2005,
“Purification and in vitro antioxidative effects of giant squid muscle
peptides on free radical-mediated oxidative systems”, J. Nutr.
Biochem., 16, pp. 562 – 569.
[53]
Kim, S. K., Jeon, Y. J., Byun, H. G., and Park, P. J., 1999, “Calcium
absorption acceleration effect on phosphorylated and non-
237
phosphorylated peptides from hoki (Johnius belengeri) frame”, J.
Korean Fish Soc., 32, pp. 713 – 717.
[54]
Jung, W. K., Park, P. J., Byun, H. G., Moon, S. H., and Kim, S. K.,
2005,
“Preparation
of
hoki
(Johnius
belengerii)
bone
oligophosphopeptide with a high affinity to calcium by carnivorous
intestine crude proteinase”, Food Chem., 91, pp. 33 – 340.
[55]
Fouchereau-Peron, M., Duvail, L., Michel, C., Gildberg, A., Batista, I.,
and Gal, Y. I., 1999, “Isolation of an acid fraction from a fish protein
hydrolysate with a calcitonin gene related peptide like biological
activity”, Biotechnol. Appl. Biochem., 29, pp. 87 – 92.
[56]
Gildberg, A., Bogwald, J., Johansen, A., and Stenberg, E., 1996,
“Isolation of acid peptide fractions from a fish protein hydrolysate with
strong stimulatory effect on atlantic salmon (Salmo salar) head kidney
leucocytes”, Comp. Biochem. Physiol., 11, pp. 97 – 101.
[57]
Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., and
Montero, M. P., 2011, “Functional and bioactive properties of collagen
and gelatin from alternative sources: A review”, Food Hydrocolloid, 25
(8), pp. 1813 – 1827.
[58]
He, K., Liu, K, Daviglus, M.L., Elisabeth, M.D., Nancy, S.J., Rui, J.,
Pamela, O., Lyn, M.S., David, S., Colin Wu, Graham B., Michael, T.,
and Gregory, L.B., 2008, “Intakes of long-chain n-3 polyunsaturated
fatty acids and fish in relation to measurements of subclinical
atherosclerosis”, Am. J. Clin. Nutr., 88, pp. 1111 – 1118.
[59]
Schacky, C. V., 2000, “ω- 3 fatty acids and the prevention of coronary
atherosclerosis”, Am. J. Clin. Nutr., 71, pp. 224 – 227.
[60]
Kris-Etherton, P. M., Harris, W. S., and Appel, L. J., 2003, “Omega-3
fatty acids and cardiovascular disease: New recommendations from the
238
American Heart Association”, Arterioscler. Thromb. Vasc. Biol., 23,
pp. 151 – 152.
[61]
Sheehan, J. P., Wei, I. W., Ulchaker, M., and Tserng, K. Y., 1997,
“Effect of high fiber intake in fish oil-treated patients with non-insulindependent diabetes mellitus”, Am. J. Clin. Nutr., 66, pp. 1183 – 1187.
[62]
Berry, E. M., 1997, “Dietary fatty acids in the management of diabetes
mellitus”, Am. J. Clin. Nutr., 66, pp. 991 – 997.
[63]
Belluzzi, A., Brignola, C., Campieri, M., Pera, A., Boschi, S., and
Miglioli, M., 1996, “Effect of an enteric-coated fish-oil preparation on
relapses in Crohn’s disease”, Eng. J. Med., 334, pp. 1557 – 1560.
[64]
Donadio, J. V., Jr., Bergstrahl, E. J., and Offord, K. P., 1994, “A
controlled trial of fish oil in IgA nephropathy”, Eng. J. Med., 331, pp.
1194 – 1199.
[65]
Rice, R., 1996, “Fish and healthy pregnancy: more than just a red
herring”, Prof. Care Mother Child, 6, pp. 171 – 173.
[66]
Severus, W. E., Ahrens, B., and Stoll, A., 1999, “Omega-3 fatty acids –
the missing link?”, Arch. Gen. Psychiat., 56, pp. 380 – 381.
[67]
Nagai, T., Izumi, M., and Ishii, M., 2004, “Fish scale collagen.
Preparation and partial characterization”, Int. J. Food Sci. Technol., 39,
pp. 239 – 244.
[68]
Nagai, T., and Suzuki, N., 2000, “Isolation of collagen from fish waste
material-skin, bone and fins”, Food Chem., 68, pp. 277 – 281.
[69]
Larsen, T., Thilsted, S. H., Konsbak, K., and Hansen, M., 2000, “Whole
small fish as a rich calcium source”, Brit. J. Nutr., 83, pp. 191 – 196.
239
[70]
Jensen, S. S., Aaboe, M., Pinhold, E. M., Hjrting-Hansen, Z., Melsen,
F., and Ruyter, I. E., 1996, “Tissue reaction and material characteristics
of four bone substitutes”, Int. J. Oral Maxillofac. Implants, 11, pp. 55 –
66.
[71]
Kim, S. K., Choi, J. S., Lee, C. K., Byun, H. G., Jeon, Y. J., and Lee, E.
H. J., 1997, “Synthesis and biocompatibility of the hydroxyapatite
ceramic composites from tuna bone (II)—The sintering properties of
hydroxyapatite treated with wet milling process”, J. Korean Ind. Eng.
Chem., 8, pp. 1000 – 1005.
[72]
Ozawa, M., and Suguru, S., 2002, “Microstructural development of
natural hydroxyapatite originated from fish-bone waste through heat
treatment”, J. Am. Ceramis. Soc., 85, pp. 1315 – 1317.
[73]
Choi, J. S., Lee, C. K., Jeon, Y. J., Byun, H. G., and Kim, S. K., 1999,
“Properties of the ceramic composites and glass ceramics prepared by
using the natural hydroxyapatite derived from tuna bone”, J. Korean
Ind. Eng. Chem., 10, pp. 394 – 399.
[74]
Kim, S. K., Choi, J. S., Lee, C. K., Byun, H. G., Jeon, Y. J., and Lee, E.
H., 1998, “Synthesis and biocompatibility of the hydroxyapatite
ceramic composites from tuna bone (III)—SEM photographs of
bonding properties hydroxyapatite ceramic composites in the simulated
body fluid”, J. Korean Ind. Eng. Chem., 9, pp. 322 – 329.
[75]
Kim, S. K., and Park, P. J., 2000, “Evaluation of mucous membrane
irritation by hydroxyapatite sinter produced from tuna bone in Syrian
hamsters”, Korean J. Life Sci., 10, pp. 605 – 609.
[76]
Kim, S. K., Kim, Y. T., Byun, H. G., Nam, K. S., Joo, D. S., and
Shahidi, F., 2001, “Isolation and characterization of antioxidative
peptides from gelatin hydrolysate of alaska pollack skin”, J. Agric.
Food Chem., 49, pp. 1984 – 1989.
240
[77]
Haard, N. F., 1998, “Specialty enzymes from marine organisms”, Food
Technol., 52, pp. 64 – 67.
[78]
Bougatef, A., Souissi, N., Fakhfakh, N., Ellouz-Triki, Y., and Nasri,
M., “Purification and characterization of trypsin from the viscera of
sardine (Sardina pilchardus)”, Food Chem., 102, pp. 343 – 350.
[79]
Byun, H. G., Park, P. J., Sung, N. J., and Kim, S. K., 2003,
“Purification and characterization of a serine proteinase from the tuna
pyloric caeca”, J. Food Biochem., 26, pp. 479 – 494.
[80]
Kim, S. K., Park, P. J., Kim, J. B., and Shahidi, F., 2002, “Purification
and characterization of a collagenolytic protease from the filefish,
Novoden modestrus”, J. Biochem. Mol. Biol., 35, pp. 165 – 171.
[81]
Park, P. J., Lee, S. H., Byun, H. G., Kim, S. H., and Kim, S. K., 2002,
“Purification and characterization of a collagenase from the mackerel,
Scomber japonicus”, J. Biochem. Mol. Biol., 35, pp. 576 – 582.
[82]
Haard, N. F., and Simpson, B. K., 1994, “In: Protease from aquatic
organisms and their uses in the seafood industry”, A. M. Martin (Ed.),
Fisheries processing biotechnological applications, London: Chapman
& Hall, pp. 132–154.
[83]
Kim, S. K., Choi, J. S., Lee, C. K., Byun, H. G., Jeon, Y. J., and Lee, E.
H. J., 1997, “Synthesis and biocompatibility of the hydroxyapatite
ceramic composites from tuna bone (II) – The sintering properties of
hydroxyapatite treated with wet milling process”, J. Korean Ind. Eng.
Chem., 8, pp. 1000 – 1005.
[84]
Kim, S. K., Park, P. J., Byun, H. G., Je, J. Y., and Moon, S. H., 2003,
“Recovery of fish bone from hoki (Johnius belengeri) frame using a
proteolytic enzyme isolated from mackerel intestine”, J. Food
Biochem., 27, pp. 255 – 266.
241
[85]
Je, J, Lee, K., Hyun Lee, M., and Ahn, C., 2009, “Antioxidant and
antihypertensive protein hydrolysates produced from tuna liver by
enzymatic hydrolysis”, Food Res. Int., 42, pp. 1266 – 1272.
[86]
Nalinanon, S., Benjakul, S., and Kishimura, H., 2010, “Collagens from
the skin of arabesque greenling (Pleurogrammus azonus) solubilized
with the aid of acetic acid and pepsin from albacore tuna (Thunnus
alalunga) stomach”, J. Sci. Food Agric., 90(9), pp. 1492 – 1500.
[87]
Chedoloh, R., Karrila, T. T., and Pakdeechanuan, P., 2011, “Fatty acid
composition of important aquatic animals in Southern Thailand”, Int.
Food Res. J., 18, pp. 758 – 765.
[88]
Paxton, J.R., Hoese, D. F., Allen, G. R., and Hanley, J. E., 1989, “In:
Pisces. Petromyzontidae to Carangidae”, Zoological Catalogue of
Australia, Australian Government Publishing Service, Canberra, Vol. 7,
pp. 665.
[89]
Longhurst, A.R. and Pauly D., 1987, “In: Ecology of tropical oceans”,
Academic press, San Diego.
[90]
Sasaki, K., 1996, “The bivalve fauna of Onagawa Bay, northeastern
Japan”, Tohoku J. Agric. Res., 47 (12), pp. 47 – 57.
[91]
Brash, J. M., and Fennessy. S. T., 2005, “A Preliminary Investigation
of Age and Growth of Otolithes ruber from KwaZulu-Natal, South
Africa”, Western Indian Ocean J. Mar. Sci., 4 (1), pp. 21 – 28.
[92]
Riede, K., 2004, “In: Global register of migratory species - from global
to regional scales”, Final Report of the R&D - Project 808 05 081,
Federal Agency for Nature Conservation, Bonn, Germany, pp. 329.
[93]
Horrocks L A, and Yeo Y K., 1999, “Health benefits of
docosahexaenoic acid (DHA)”, Pharmacol. Res., 40, pp. 3211 – 3225.
242
[94]
Skonberg, D. I., and Perkins, B. L., 2002, “Nutrient composition of
green crab (Carcinus maenus) leg meat and claw meat”, Food Chem.,
77 (4), pp. 401 – 404.
[95]
Ward, O. P., and Singh, A., 2005, “Omega-3/6 fatty acids: alternative
sources of production”, Process Biochem., 40 (12), pp. 3627 – 3652.
[96]
FAO, 2002, “In: Chemical composition. Quality and quality changes in
fresh fish”, Available from http://www.fao.org/docrep/v7180e/
V7180E0 5.html.
[97]
Love, R. M., 1988, “In: The food fishes: their intrinsic variation and
practical implications”, Van Nostrand Reinhold, New York, USA.
[98]
Balogun, A. M., and Talabi, S. O., 1985, “Proximate analysis of the
flesh and anatomical weight composition of skipjack tuna (Katsuwonus
pelamis)”, Food Chem., 17(2), pp. 117 – 123.
[99]
Nettleton, J. H., Allen, W. H., Klatt, L. V., Ratnayake, W. M. N., and
Ackman, R. G., 1990, “Nutrients and chemical residues in one to two
pound Mississippi farm-raised channel catfish (Ictalurus punctatus)”, J.
Food Sci., 55, pp. 954 – 958.
[100] Silva, J. J., and Chamul, R S., 2000, “In: Composition of marine and
freshwater finfish and shellfish species and their products”, Martin, R.
E., Carter, P., Flick, E. J.; Davis, L. M. (Eds.), Marine and freshwater
products handbook, USA: Technomic Publishing Company, Inc., pp.
31–46.
[101] FAO, 2004, “In: The composition of fish”, Available from
http://www.fao.org/wairdocs/tan/x591 6e/x 5916e01.html.
[102] Connell, J. R., Hardy, R., 1982, “In: Control of fish quality”, London:
Fishing News Books, Ltd.
243
[103] AOAC, 1991, “In: Official methods of analysis”, 16th ed., Washington
DC: Association of Official analytical chemists.
[104] Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951,
“Protein measurement with folin phenol reagent”, J. Biol. Chem., 193,
pp. 267 – 275.
[105] Bligh, E. G., and Dyer, W. J., 1959, “A rapid method of total lipid
extraction and purification”, Can. J. Biochem. Physiol., 37, pp. 911 –
917.
[106] Ali, M., Iqbal, F., Salam, A., Iram, S. and Athar, M., 2006,
“Comparative study of body composition of four fish species in relation
to pond depth”, Int. J. Environ. Sci. Technol., 2(4), pp. 359 – 364.
[107] Cui, Y., and Wootton, R. J., 1988, Effects of ration, temperature and
body size on the body composition, energy content and condition of
minnow (Phoxinus phoxinus), J. Fish Biol., 32, pp. 749 – 764.
[108] Dempson, J. B., Schwar, Z. C. J., Shears, M. and Furey, G., 2004,
“Comparative proximate body composition of Atlantic salmon with
emphasis on parr from fluvial and lacustrine habitats”, J. Fish Biol., 64,
pp. 1257 – 1271.
[109] Weatherley, A. H., and Gill, H. S., 1987, “In: The biology of fish
growth”, Academic Press, London, UK.
[110] Berg O. K., Thronaes E. and Bremset G., 2000, “Seasonal changes in
body composition in young riverine atlantic salmon and brown trout”,
J. Fish Biol., 52, pp. 1272 – 1288.
[111] Dawson, A. S., and Grimm, A. S., 1980, “Quantitative seasonal
changes in the protein, lipid and energy contents of carcass, ovaries and
liver of adult female (Pleuronectes platena L.), J. Fish Biol., 16, pp.
493.
244
[112] Jonsson, N. and Jonsson, B., 1998, “Body composition and energy
allocation in life history stages of brown trout”, J. Fish Biol., 53, pp.
1313-1317.
[113] Salam, A., and Davies,
P. M. C., 1994. “Body composition of
Northern Pike (Esox lucius L.) in relation to body size and condition
factor”, J. Fish Res., 19, pp. 193 – 204.
[114] Shearer, K. D., 1984, “Changes in the elemental composition of
hatchery reared rainbow trout (Salmo gairdneri) associated with growth
and reproduction”, Can. J. Fish. Aqua. Sci., 41, pp. 1592 – 1600.
[115] Grayton, B. D., and Beamish F. W. H., 1997, “Effects of feeding
frequency on food intake growth and body composition of rainbow
trout (Salmo gairdneri)”, Aquaculture, 11, pp. 159 – 172.
[116] Jobling M., 1980, “Effect of starvation on proximate chemical
composition and energy utilization in plaice (Plueronectes platesse L)”,
J. Fish Biol., 17, pp. 325 – 334.
[117] Chandrasekhar, K., and Deosthale, Y. G., 1993, “Proximate
composition, amino acid, mineral and trace element content of the
edible muscle of 20 Indian fish species”, J. Food Comp. Anal., 6, pp.
195 – 200.
[118] Wu, H., and Shiau. C., 2002, “Proximate Composition, Free Amino
Acids and Peptides Contents in Commercial Chicken and Other Meat
Essences”, J. Food Drug Anal., 10 (3), pp. 170 – 177.
[119] Tang, H. G., Chen, L. H., Xiao, C. G., and Wu, T. X., 2009, “Fatty acid
profiles of muscle from large yellow croaker (Pseudosciaena crocea R)
of different age”, J. Zhejiang Univ. Sci. B, 10(2), pp. 154 – 158.
245
[120] Schaufler, L. E., Vollenweider, J. J., and Moles, A., . 2008, “Changes in
the lipid class and proximate compositions of coho salmon
(Oncorhynchus kisutch) smolts infected with the nematode parasite
Philonema agubernaculum”, Comp. Biochem. Physiol. B, 149, pp. 148
– 152.
[121] Okland, H. M., Stoknes, I. S., Remme, J. F., Kjerstad, M., and Synnes,
M., 2005, “Proximate composition, fatty acid and lipid class
composition of the muscle from deep-sea teleosts and elasmobranchs”,
Comp. Biochem. Physiol., 140, pp. 437 – 443.
[122] Chakraborty, S., Ghosh, S., and Bhattacharyya, D. K., 2005, “Lipid
profiles of pomfret fish (Pampus argenteus) organs”, J. Oleo Sci., 54
(2), pp. 85 – 88.
[123] Mukhopadhyay, T., Nandi, S., and Ghosh, S., 2004, “Lipid profiles and
fatty acid composition in eggs of Indian Featherback fish pholui
(Notopterus notopterus Pallas) in comparison with body-tissue lipid”,
J. Oleo Sci., 53, pp. 323 – 328.
[124] Chakraborty, S, Ghosh, S., and Bhattacharyya, D. K., 2004, “Lipid
profiles of Bhola Bhetki (Nibea soldado) organs”, J. Oleo Sci., 53 (8),
pp. 367 – 370.
[125] Bennion, M., 1997, “In: Introductory foods”, 7th ed., New York, USA:
Macmillan.
[126] Feeley, R. M., and Criner, D. E. C., and Watt, B. K., 1972, “Cholesterol
content of foods”, J. Am. Diet. Assoc., 61, pp. 134 – 148.
[127] Gurr, M. I., 1992, “In: Role of fats in food and nutrition”, 2nd ed.,
London, UK: Elsevier Applied Science.
[128] Piggot, G. M., and Tucker, B. W., 1990, “In: Effects of technology on
nutrition”, Marcel Dekker, New York, USA.
246
[129] Maritim, A. C., Sanders, R. A., and Watkins, J. B., 2003, “Diabetes,
oxidative stress, and antioxidants: a review”, J. Biochem. Mol.
Toxicol., 17, pp. 24–38.
[130] Halliwell, B., Gutteridge, J. M., and Cross, C. E., 1992, “Free radicals,
antioxidants, and human disease: where are we now?”, J. Lab. Clin.
Med., 119, pp. 598 – 620.
[131] Halliwell, B., and Gutteridge, J. M. C., (2007), “In: Free radicals in
biology and medicine”, 4th ed., Oxford University Press, Oxford, UK.
[132] Droge, W., 2002, “Free radicals in the physiological control of cell
function”, Physiol. Rev., 82, pp. 47 – 95.
[133] Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and Fenn, W. O.,
1954, “Oxygen poisoning and X-irradiation: a mechanism in common”,
Science, 119, pp. 623 – 626.
[134] Singal, P. K., Li, T., Kumar, D., Danelisen, I., and Iliskovic, N., 2000,
“Adriamycin-induced heart failure:mechanism and modulation”, Mol.
Cell Biochem. 207, pp. 77 – 86.
[135] Halliwell, B., and Cross, C. E., 1994, “Oxygen-derived species: their
relation to human disease and environmental stress”, Environ. Health
Perspect., 102, pp. 5 – 12.
[136] Huang, Y. L., Sheu, J. Y., and Lin, T. H., 1999, “Association between
oxidative stress and changes of trace elements in patients with breast
cancer”, Clin. Biochem. 32, pp. 131 – 136.
[137] Halliwell, B., 2006, “Reactive species and antioxidants. Redox biology
is a fundamental theme of aerobic life,” Plant Phys., 141, pp. 312-322.
247
[138] Frei, B., England, L., and Ames, B, N., 1989, “Ascorbate is an
outstanding antioxidant in human blood plasma”, Proc. Natl. Acad. Sci.
U. S. A., 86, pp. 6377 – 6381.
[139] Halliwell, B., 2007, “Oxidative stress and cancer: have we moved
forward?”, Biochem. J., 401, pp. 1 – 11.
[140] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M.,
2006, “Free radicals, metals and antioxidants in oxidative stressinduced cancer”, Chem. Biol. Interact. 160, pp. 1 – 40.
[141] Church, D. F., and Pryor, W. A., 1985, “Free-radical chemistry of
cigarette smoke and its toxicological implications”, Environ. Health.
Perspect., 64, pp. 111 – 126.
[142] Riley, P. A., 1994, “Free radicals in biology: oxidative stress and the
effects of ionizing radiation”, Int. J. Radiat. Biol., 65, pp. 27 – 33.
[143] Powell, C. L., Swenberg, J. A., and Rusyn, I., 2005, “Expression of
base excision DNA repair genes as a biomarker of oxidative DNA
damage”, Cancer Lett., 229, pp. 1 – 11.
[144] Sheu, S., Nauduri, D., and Anders, M. W., 2006, “Targeting
antioxidants to mitochondria: A new therapeutic direction”, Biochim.
Biophy. Acta, 1762, pp. 256 – 265.
[145] Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. and
Van Breusegem, F., 2000, “Dual action of the active oxygen species
during plant stress responses”, Cell. Mol. Life. Sci., 57, pp. 779 – 795.
[146] Halliwell, B. and Gutteridge, M. C., 1984, “Oxygen toxicity, oxygen
radicals, transition metals and disease”, Biochem. J., 219, pp. 1 – 14.
[147] Cadenas, E., 1989, “Biochemistry of oxygen toxicity”, Annu. Rev.
Biochem., 58, pp. 79 – 110.
248
[148] Dada, L. A., Chandel, N. S., Ridge, K. M., Pedemonte, C., Bertorello,
A. M., and Sznajder, J. I., 2003, “Hypoxia-induced endocytosis of Na,
K-ATPase in alveolar epithelial cells is mediated by mitochondrial
reactive oxygen species and PKC”, J. Clin. Invest., 111(7), pp. 1057 –
1064.
[149] Meyer, A. S., Jepsen, S. M., and Sùrensen, N. S., 1998, “Enzymatic
release of antioxidants for human low-density lipoprotein from grape
pomace”, J. Agric. Food Chem., 46, pp. 2439 – 2446.
[150] Nakagami, T., Nanaumi-Tamura, N., Toyomura, K., Nakamura, T., and
Shigehisa, T., 1995, “Dietary flavonoids as potential natural biological
response modifiers affecting the autoimmune system”, J. Food Sci., 60,
pp. 653 – 656.
[151] Hollman, P. C. H., Hertog, M. G. L., and Katan, M. B., 1996, “Analysis
and health effects of flavonoids”, Food Chem., 57, pp. 43 – 46.
[152] Tappel, A., 1997, “Vitamin E as a biological lipid antioxidant”,
Inform., 8, pp. 392 – 396.
[153] Byun, H. G., Lee, J. K., Park, H. G., Jeon, J.K., and Kim, S. K., 2009,
“Antioxidant peptides isolated from the marine rotifer, Brachionus
rotundiformis”, Process Biochem., 44, pp. 842 – 846.
[154] Forman, H. J., Torres, M., and Fukuto, J., 2002, “Redox signaling”,
Mol. Cell Biochem., 234, pp. 49 – 62.
[155] Johansen, J. S., Harris, A. K., Rychly, D. J., and Ergul, A., 2005,
“Oxidative stress and the use of antioxidants in diabetes: linking basic
science to clinical practice”, Cardiovasc. Diabetol., 4, pp. 5-11.
[156] Kaneto, H., Kajimoto, Y., Miyagawa, J. I., Matsuoka, T. A., Fujitani,
Y., Umayahara, Y., Hanafusa, T., Matsuzawa, Y., Yamasaki, Y., and
249
Hori, M., 1999, “Beneficial effects of antioxidants in diabetes”,
Diabetes, 48, pp. 2398 – 406.
[157] Rice-Evans, C. A., and Diplock, A. T., 1992, “Current status of
antioxidant therapy”, Free Rad. Biol. Med., 15, pp. 77 – 79.
[158] Nakagawa, K., Ninomiya, M., Okubo, T., Aoi, N., Juneja, L. R., Kim,
M., Yamanaka, K., and Miyazawa, T., 1999, “Tea catechin
supplementation increases antioxidant capacity and prevents
phospholipid hydroperoxidation in plasma of humans”, J. Agric. Food
Chem., 47, pp. 3967 – 3973.
[159] Moon, J. H., and Terao, J., 1998, “Antioxidant activity of caffeic acid
and dihydrocaffeic acid in lard and human low-density lypoprotein”, J.
Agric. Food Chem., 46, pp. 5062 – 5065.
[160] Abuja, P.M., Murkovic, M., and Pfannhauser, W., 1998, “Antioxidant
and prooxidant activities of elderberry (Sambucus nigra) extract in lowdensity lipoprotein oxidation”, J. Agric. Food Chem., 46, pp. 4091 –
4096.
[161] Wang, M., Shao, Y., Li, J., Zhu, N., Rangarajan, M., LaVoie, E. J., and
Ho, C. T., 1999, “Antioxidative phenolic glycosides from sage (Salvia
offcinalis), J. Nat. Prod., 62, pp. 454 – 456.
[162] Saleh, M. M., Hashem, F. A. E. M., and Glombitza, K. W., 1998,
“Study of Citrus taitensis and radical scavenger activity of the
flavonoids isolated”, Food Chem., 63, pp. 397 – 400.
[163] Dawes, H. W., and Keene, J. B., 1999, “Phenolic composition of kiwi
fruit juice”, J. Agric. Food Chem., 47, pp. 2398 – 2403.
[164] Donovan, J. L., Meyer, A. S., and Waterhouse, A. L., 1998, “Phenolic
composition and antioxidant activity of prunes and prune juice (Prunus
domestica)”, J. Agric. Food Chem., 46, pp. 1247 – 1252.
250
[165] Romani, A., Mulinacci, N., Pinelli, P., Vincieri, F. F., and Cimato, A.,
1999, “Polyphenolic content in five Tuscany cultivars of Olea
europaea L.”, J. Agric. Food Chem., 47, pp. 964 – 967.
[166] Furuta, S., Nishiba, Y., and Suda, I., 1997, “Fluorometric assay for
screening antioxidative activity of vegetables”, J. Food Sci., 62, pp. 526
– 528.
[167] Sanbongi, C., Osakabe, N., Natsume, M., Takizawa, T., Gomi, S., and
Osawa, T., 1998, “Antioxidative polyphenols isolated from Theobroma
cacao”, J. Agric. Food Chem., 46, pp. 454 – 457.
[168] Al-Saikhan, M. S., Howard, L. R., and Miller, J. C., 1995, “Antioxidant
activity and total phenolics in different genotypes of potato (Solanum
tuberrosum)”, J. Food Sci., 60, pp. 341 – 343.
[169] Abushita, A. A., Hebshi, E. A., Daood, H. G., and Biacs, P. A., 1997,
“Determination of antioxidant vitamins in tomatoes”, Food Chem., 60,
pp. 207 – 212.
[170] Gil, M. I., Ferreres, F., and Tomas Barberan, F. A., 1999, “Effect of
postharvest storage and processing on the antioxidant constituents
(Flavonoids and vitamin C) of fresh cut spinach”, J. Agric. Food
Chem., 47, pp. 2213 – 2217.
[171] Markus, F., Daood, H. G., Kapitany, J., and Biacs, P. A., 1999,
“Change in the carotenoid and antioxidant content of spice red pepper
(Paprika) as a function of ripening and some technological factors”, J.
Agric. Food Chem., 47, pp. 100 – 107.
[172] Aruoma, O. I., Spencer, J. P. E., Warren, D., Jenner, P., Butler, J., and
Halliwell, B., 1997, “Characterization of food antioxidants, illustrated
using commercial garlic and ginger preparations”, Food Chem., 60, pp.
149 – 156.
251
[173] Lin, J.K., Lin, C.-H., Liang, Y.C., Lin-Shiau, S.Y., and Juan, I. M.,
1998, “Survey of catechins, gallic acid, and methylxantines in green,
oolong, puerh and black teas”, J. Agric. Food Chem., 46, pp. 3635 –
3642.
[174] Ferreira, D., Kamara, B. I., Brandt, E. V., and Joubert, E., 1998,
“Phenolic compounds from Cyclopia intermedia (Honeybush tea)”, J.
Agric. Food Chem., 46, pp. 3406 – 3410.
[175] Amarovicz, R., and Shahidi, F., 1997, “Antioxidant activity of peptide
fractions of capelin protein hydrolysates”, Food Chem., 58, pp. 355 –
359.
[176] Hattori, M., Yamaji-Tsukamoto, K. A., Kumagai, H., Feng, Y., and
Takahashi, K., 1998, “Antioxidative activity of soluble elastin
peptides”, J. Agric. Food Chem., 46, pp. 2167 – 2170.
[177] Okada, Y., and Okada, M., 1998, “Scavenging effect of water soluble
proteins in broad beans on free radicals and active oxygen species”, J.
Agric. Food Chem., 46, pp. 401 – 406.
[178] Muller, R. E., Stapelfeldt, H., and Skibsted, L. H., 1998, “Thiol
reactivity in pressure unfolded β-lactoglobulin antioxidative properties
and thermal refolding”, J. Agric. Food Chem., 46, pp. 425 – 430.
[179] Ito, N., Fukushima, S., and Tsuda, H., 1985, “Carcinogenicity and
modification of the carcinogenic response by BHA, BHT and other
antioxidants”, CRC Crit. Rev. Toxicol., 15, pp. 109 – 150.
[180] Marcuse, R., 1960, “Antioxidative effect of amino-acids”, Nature, 186,
pp. 886 – 887.
[181] Chen, H. M., Muramoto, K., Yamauchi, F., and Nokihara, K., 1996,
“Antioxidant activity of design peptides based on the antioxidative
252
peptide isolated from digests of a soybean protein”, J. Agric. Food
Chem., 44, pp. 2619 – 2623.
[182] Hattori, Y., Nishigori, C., Tanaka, T., Uchida, K., Nikaido, O., Osawa,
T., Hiai, H., Imamura, S., and Toyokuni, S., 1996, “8-Hydroxy-2'deoxyguanosine is increased in epidermal cells of hairless mice after
chronic ultraviolet B exposure”, J. Invest. Dermatol., 107, pp. 733 –
737.
[183] Xie, Z., Huang, J., Xu, X., and Jin, Z., 2008, “Antioxidant activity of
peptides isolated from alfalfa leaf protein hydrolysate”, Food Chem.,
111, pp. 370 – 376.
[184] Hwang, J. Y., Shyu, Y. S., Wang, Y. T., and Hsu, C. K., 2010,
“Antioxidative properties of protein hydrolysate from defatted peanut
kernels treated with esperase”, Food Sci. Technol., 43, pp. 285 – 290.
[185] Revilla, E,, Maria, C. S., Miramontes, E., Bautista, J., Garcia-Martinez,
A., Cremades, O., Cret, R., and Parrado, J., 2009, “Nutraceutical
composition, antioxidant activity and hypocholesterolemic effect of a
water-soluble enzymatic extract from rice bran”, Food Res. Int., 42, pp.
387 – 393.
[186] Megias, C., Pedroche, J., Yust, M. M., Giron-Calle, J., Alaiz, M.,
Millan, F., and Vioque, J., 2008, “Production of copper-chelating
peptides after hydrolysis of sunflower proteins with pepsin and
pancreatin”, Food Sci. Technol., 41, pp. 1973 – 1977.
[187] Li, X. X., Han, L. J., and Chen, L. J., 2008 “In vitro antioxidant activity
of protein hydrolysates prepared from corn gluten meal”, J. Sci. Food
Agric., 88, pp. 1660 – 1666.
[188] Qian, Z. J., Jung, W. K., and Kim, S. K., 2008, “Free radical
scavenging activity of a novel anti-oxidative peptide purified from
253
hydrolysate of bullfrog skin, Rana catesbeiana Shaw”, Bioresour.
Technol., 99, pp. 1690 – 1698.
[189] Nagai, T., Suzuki, N., Tanoue, Y., Kai, N., and Nagashima, T., 2007,
“Antioxidant and antihypertensive activities of autolysate and
enzymatic hydrolysates from yam (Dioscorea opposite Thunb.)
ichyoimo tubers”, J. Food Agric. Environ., 5, pp. 64 – 68.
[190] Sakanaka, S., and Tachibana, Y., 2006, “Active oxygen scavenging
activity of egg-yolk protein hydrolysates and their effects on lipid
oxidation in beef and tuna homogenates”, Food Chem., 95, pp. 243 –
249.
[191] Liu, J. R., Chen, M. J., and Lin, C. W., 2005, “Antimutagenic and
antioxidant properties of milk kefir and soymilk-kefir”, J. Agric. Food
Chem., 53, pp. 2467 – 2474.
[192] Wachtel–Galor, S., Szeto, Y. T., Tomlinson, B., Benzie, I. F., 2004,
“Ganoderma lucidum (‘Lingzhi’); acute and short-term biomarker
response to supplementation”, Int. J. Food Sci. Nutr., 55, pp. 75 – 83.
[193] Wu, C.H., Chen, H. M., and Shiau, C. Y., 2003, “Free amino acids and
peptides as related to antioxidant properties in protein hydrolysates of
mackerel (Scomber austriasicus)”, Food Res. Int., 36, pp. 949 – 957.
[194] Ningappa, M., and Srinivas, L., 2008, “Purification and characterization
of ~ 35 kDa antioxidant protein from curry leaves (Murraya koenigii
L.)”, Toxicol. in vitro., 22, pp. 699 – 709.
[195] Vercruysse, L., Smagghe, G., Beckers, T., and Van Camp, J., 2009,
“Antioxidative and ACE inhibitory activities in enzymatic hydrolysates
of the cotton leafworm, Spodoptera littoralis”, Food Chem., 114, pp. 38
– 43.
254
[196] Suetsuna, K., Ukeda, H., and Ochi, H., 2008, “Isolation and
characterization of free radical scavenging activities peptides derived
from casein”, J. Nutr. Biochem., 11, pp. 128 – 131.
[197] Sheih, I. C., Wu, T. K., and Fang, T. J., 2009, “Antioxidant properties
of a new antioxidative peptide from algae protein waste hydrolysate in
different oxidation systems”, Bioresour. Technol., 100, pp. 3419 –
3425.
[198] Tang, C. H., Peng, J., Zhen, D. W, and Chen, Z., 2009,
“Physicochemical and antioxidant properties of buckwheat (Fagopyrum
esculentum Moench) protein hydrolysates”, Food Chem., 115, pp. 672
– 678.
[199] Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., and
Nokihara, K., 1998, “Antioxidative properties of histidine-containing
peptides designed from peptide fragments found in the digests of a
soybean protein”, J. Agric. Food Chem., 46, pp. 49 – 53.
[200] Wang, W. Y., De and Mejia, E. G., 2005, “A new frontier in soy
bioactive peptides that may prevent age-related chronic diseases”,
Comp. Rev. Food Sci. Food Saf., 4, pp. 63 – 78.
[201] Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., and Kim, S. K., 2005,
“Purification of a radical scavenging peptide from fermented mussel
sauce and its antioxidant properties”, Food Res. Int., 38, pp. 175 – 182.
[202] Chan, K. M., and Decker, E. A., 1994, “Endogenous skeletal muscle
antioxidants”, Crit. Rev. Food Sci. Nutr., 34, pp. 403 – 426.
[203] Pena-Ramos, E. A., and Xiong, Y. L., 2002, “Antioxidant activity of
soy protein hydrolyzates in a liposomial system”, J. Food Sci., 67, pp.
2952 – 2956.
255
[204] Gibbs, B. F., Zougman, A., Masse, R., and Mulligan, C., “Production
and characterization of bioactive peptides from soy hydrolysate and
soy-fermented food”, Food Res. Int., 37, pp. 123 – 131.
[205] Saito, K., Jin, D. H., Ogawa, T., Muramoto, K., Hatakeyama, E.,
Yasuhara, T, and Nokihara, K., 2003, “Antioxidative properties of
tripeptide libraries prepared by the combinatorial chemistry”, J. Agric.
Food Chem., 51, pp. 3668 – 3674.
[206] Chen, G. T., Zhao, L., Zhao, L. Y., Cong, T., and Bao, S. F., 2007, “In
vitro study on antioxidant activities of peanut protein hydrolysate”, J.
Sci. Food Agric., 87, pp. 357 – 362.
[207] Gardner, M. L. G., 1988, “Gastrointestinal absorption of intact
proteins”, Ann. Rev. Nutr., 8, pp. 329 – 350.
[208] Gardner, M. L. G., 1998, “In: Transmucosal passage on intact peptides
in mammalian metabolism”, Grimble, G. K., Backwell, F. R. G., Eds.,
Tissue utilization and clinical targeting, London: Portland Press Ltd.,
London.
[209] Sarmadia, B. H., and Ismail, A., 2010, “Antioxidative peptides from
food proteins: A review”, Peptides, 31, pp. 1949 – 1956.
[210] Deak, S. T., Csaky, T. Z., 1984, “Factors regulating the exchange of
nutrients and drugs between lymph and blood in the small intestine”,
Microcirc. Endothelium Lymphatics., 1, pp. 569 – 588.
[211] Wasan, K. M., 2002, “The role of lymphatic transport in enhancing oral
protein and peptide drug delivery”, Drug Dev. Ind. Pharm., 28, pp.
1047 – 1058.
[212] Shimizu, M., Tsunogai, M., and Arai, S., 1997, “Transepithelial
transport of oligopeptides in the human intestinal cell, Caco-2”,
Peptide, 18, pp. 681 – 687.
256
[213] Grimble, G. K., 1994, “The significance of peptides in clinical
nutrition”, Ann. Rev. Nutr., 14, pp. 419 – 447.
[214] Roberts, P. R., Burney, J. D., Black, K. W., and Zaloga, G. P., 1999,
“Effect of chain length on absorption of biologically active peptides
from the gastrointestinal tract”, Digestion, 60, pp. 332 – 337.
[215] FitzGerald, R. J., and Meisel, H., 2000, “Milk protein-derived peptide
inhibitors of angiotensin-I-converting enzyme”, Br. J. Nutr., 84, pp. 33
– 37.
[216] Matsui, T., Tamaya, K., Seki, E., Osajima, K., Matsumoto, K., and
Kawasaki, T., 2002, “Val–Tyr as a natural antihypertensive dipeptide
can be absorbed into the human circulatory blood system”, Clin. Exp.
Pharmacol. Physiol., 29, pp. 204 – 208.
[217] Erdmann, K., Cheung, B. W. Y., and Schroder, H., 2008, “The possible
roles of food-derived bioactive peptides in reducing the risk of
cardiovascular disease”, J. Nutr. Biol., 19, pp. 643 – 654.
[218] Li, G. H., Le, G. W., Shi, Y. H., and Shrestha, S., 2004, “Angiotensin Iconverting enzyme inhibitory peptides derived from food proteins and
their physiological and pharmacological effects”, Nutr. Res., 24, pp.
469 – 486.
[219] Shahidi, F., and Zhong, Y., 2008, “Bioactive Peptides”, J. AOAC Int.,
91(4), pp. 914 – 931.
[220] Jun, S. Y., Park, P. J., Jung, W. K., and Kim, S. K., 2004, “Purification
and characterization of an antioxidative peptide from enzymatic
hydrolysate of yellowfin sole (Limanda aspera) frame protein”, Eur.
Food Res. Technol., 219, pp. 20 – 26.
257
[221] Gutteridge, J. M. C., and Halliwell, B., 2010, “Antioxidants: Molecules,
medicines, and myths”, Biochem. Biophy. Res. Commun., 393, pp. 561
– 564.
[222] Qin, L., Zhu, B. W., Zhou, D. Y., Wu, H. T., Tan, H., Yang, J. F., Li,
D. M., Dong, X. P., and Murata, Y., 2011, “Preparation and antioxidant
activity of enzymatic hydrolysates from purple sea urchin
(Strongylocentrotus nudus) gonad”, LWT - Food Sci. Technol., 44, pp.
1113 – 1118.
[223] Bartosz, G., 2009, “Reactive oxygen species: Destroyers or
messengers?”, Biochem. Pharmacol., 77, pp. 1303 – 1315.
[224] Scott, G., 1993, “In: Autoxidation and antioxidants: historical
perspectives”, Atmospheric oxidation and antioxidants, Elsevier
Science Publishers, Amsterdam, 1, pp. 1 – 44.
[225] Harman, D., and Eddy, D. E., 1979, “Free radical theory of aging:
beneficial effect of adding antioxidants to the maternal mouse diet on
life span of offspring: possible explanation of the sex difference in
longevity”, Age, 2, pp. 109 – 122.
[226] Comfort, A., 1979, “In: The biology of senescence”, 3rd ed., Elsevier
Science Ltd., New York.
[227] Gruber, J., Schaffer, S., and Halliwell, B., “The mitochondrial free
radical theory of ageing – where do we stand?”, Front. Biosci., 13, pp.
6554 – 6579.
[228] Zhong, S., Ma, C., Lin, Y. C., and Luo, Y., 2011, “Antioxidant
properties of peptide fractions from silver carp (Hypophthalmichthys
molitrix) processing by-product protein hydrolysates evaluated by
electron spin resonance spectrometry”, Food Chem., 126, pp. 1636 –
1642.
258
[229] Ansaldo, M., Luquet, C. M., Evelson, P. A., Polo, J. M., and Llesuy, S.,
2000, “Antioxidant levels from different antarctic fish caught around
south georgia island and shag rocks”, Polar Biol., 23, pp. 160 – 165.
[230] Guerard, F., Guimas, L., and Binet, A., “Production of tuna waste
hydrolysates by a commercial neutral protease preparation”, J. Mol.
Catal. B, 19, pp. 489 – 498.
[231] Mendis, E., Rajapakse, N., Byun, H. G., and Kim, S. K., 2005,
“Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides
for their in vitro antioxidant effects”, Life Sci., 77, pp. 2166 – 2178.
[232] Ranathung, S., Rajapakse, N., and Kim, S. K., 2006, “Purification and
characterization of antioxidative peptide derived from muscle of conger
eel (Conger myriaster)”, Eur. Food Res. Technol., 222, pp. 310 – 315.
[233] Klompong, V., Benjakul, S., Kantachote, D., and Shahidi, F., 2007,
“Antioxidative activity and functional properties of protein hydrolysate
of yellow stripe trevally (Selaroides leptolepis) as influenced by the
degree of hydrolysis and enzyme type”, Food Chem., 102, pp. 1317 –
1327.
[234] Samaranayaka, A. G. P., Zhong, S., Ma, C., Lin, Y. C., and Luo, Y.,
2008, “Autolysis-assisted production of fish protein hydrolysates with
antioxidant properties from Pacific hake (Merluccius productus)”, Food
Chem., 107, pp. 768–776.
[235] Qian, Z. J., Jung, W. K., Byun, H. G., and Kim, S. K., 2008,
“Protective effect of an antioxidative peptide purified from
gastrointestinal digests of oyster, Crassostrea gigas against free radical
induced DNA damage”, Bioresource Technol., 99, pp. 3365 – 3371.
[236] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., and
Nasri, M., 2009, “Antioxidant and free radical-scavenging activities of
smooth hound (Mustelus mustelus) muscle protein hydrolysates
259
obtained by gastrointestinal proteases”, Food Chem., 114, pp. 1198 –
1205.
[237] Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A.,
Guillochon, D., and Nasri, M., 2010, “Purification and identification of
novel antioxidant peptides from enzymatic hydrolysates of sardinelle
(Sardinella aurita) by-products proteins”, Food Chem., 118, pp. 559 –
565.
[238] Bin Wang, Zhong-Rui Li, Chang-Feng Chi, Qi-Hong Zhang, and HongYu Luo, 2012, “Preparation and evaluation of antioxidant peptides from
ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle”,.
Peptide, 36(2), pp. 240–250.
[239] Imelda, W.Y. Cheung, Lennie, K.Y. Cheung, Nina, Y. Tan, Eunice,
C.Y., and Li-Chan, 2012, “The role of molecular size in antioxidant
activity of peptide fractions from pacific hake (Merluccius productus)
hydrolysates”, Food Chem.,134(3), Pp. 1297–1306
[240] Berge, G. M., and Storebakken, T., 1996, “Fish protein hydrolyzate in
starter diets for Atlantic salmon (Salmo salar) fry”, Aquaculture, 145,
pp. 205 – 212.
[241] Lahl, W. J., and Braun, S. D., 1994, “Enzymatic production of protein
hydrolysates for food use”, Food Technol., 48(10), pp. 68 – 71.
[242] Gildberg, A., Batista, I, and Strøm, E., 1989, “Preparation and
characterization of peptones obtained by a two-step enzymatic
hydrolysis of whole fish”, Biotechnol. Appl. Biochem., 11, pp. 413 –
423.
[243] Cancre, I., Ravallec, R., Van Wormhoudt, A., E, S., Gildberg, A. and
Le Gal, Y., 1999, "Secretagogues and growth factors in fish and
crustacean protein hydrolysates", Marine Biotechnol., 1(5), pp. 489 –
494.
260
[244] Matsui, H., Oyama, T.M., Okano, Y., Hashimoto, E., Kawanai, T., and
Oyama, Y., 2010, “Low micromolar zinc exerts cytotoxic action under
H2O2 - induced oxidative stress: Excessive increase in intracellular Zn2+
concentration”, Toxicol., 276 (1), pp. 27 – 32.
[245] Picot, L., Bordenave, S., Didelot, S., Fruitier-arnaudin, I., Sannier, F.,
Thorkelsson, G., Bergé, J.P., Guérard, F., Chabeaud, A., and Piot, J.M.,
2006, “Antiproliferative activity of fish protein hydrolysates on human
breast cancer cell lines”, Process Biochem., 41, pp. 1217 – 1222.
[246] Sathivel, S., Bechtel, P.J., Babbitt, J., Smiley, S., Crapo, C., Reppond,
K.D. and Prinyawiwatkul, W., 2003, “Biochemical and functional
properties of herring (Clupea harengus) byproduct hydrolysates”, J.
Food Sci., 68, pp. 2196 – 2200.
[247] Chang, C. Y., Wu, K. C., and Chiang, S. H., 2007, “Antioxidant
properties and protein compositions of porcine hemoglobin
hydrolysates”, Food Chem., 100, pp. 1537 – 1543.
[248] Kong, B. H., and Xiong, Y. L., 2006, “Antioxidant activity of zein
hydrolysates in a liposome system and the possible mode of action”, J.
Agric. Food Chem., 54, pp. 6059 – 6068.
[249] Baca, D.R., Peña-Vera, M.T., and Dìaz-Castañeda, M., 1991,
“Production of fish protein hydrolysates with bacterial proteases: yield
and nutritional value”, J. Food Sci., 56, pp. 309 – 314.
[250] Vieira, G. H. F., Martin, A. M., Saker-Sampaiao, S., Sobreira-Rocha,
C. A., and Goncalves, R.C.F., 1995, “Production of protein hydrolysate
from Lobster (Panulirus spp.)”, Dev. Food Sci., 37, pp. 1405 – 1415.
[251] Je, J. Y., Qian, Z. J., Byun, H. G., and Kim, S. K., 2007, “Purification
and characterization of an antioxidant peptide obtained from tuna
261
backbone protein by enzymatic hydrolysis”, Process Biochem., 42 (5),
pp. 840 – 846.
[252] You, L., Zhao, M., Regenstein, J. M., and Ren, J., 2010, “Purification
and identification of antioxidative peptides from loach (Misgurnus
anguillicaudatus) protein hydrolysate by consecutive chromatography
and electrospray ionization-mass spectrometry”. Food Res. Int., 43 (4),
pp. 1167 – 1173.
[253] Kechaou, E. S., Dumay, J., Donnay-Moreno, C., Jaouen, P., Gouygou,
J. P., Bergé, J. P., and Amar, R. B., 2009, “Enzymatic hydrolysis of
cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera
using commercial proteases: Effects on lipid distribution and amino
acid composition”, J. Biosci. Bioeng., 107 (2), pp. 158 – 164.
[254] Damodaran, S., 1996, “In: Amino acids, peptides, and proteins”,
Fennema, T., Ed., Food Chem., Marcel Dekker, New York, pp. 417 –
424.
[255] Liu, Q., Kong, B., Xiong, Y. L., and Xia, X., 2010, “Antioxidant
activity and functional properties of porcine plasma protein hydrolysate
as influenced by the degree of hydrolysis”, Food Chem., 118, pp. 403 –
410.
[256] Shahidi, F., Han, X. Q., and Synowiecki, J., 1995, “Production and
characteristics of protein hydrolysates from capelin (Mallotus
villosus)”, Food Chem., 53, pp. 285 – 293.
[257] Gbogouri, G. A., Linder, M., Fanni, J., and Parmentier, M., 2004,
“Influence of hydrolysis degree on the functional properties of salmon
byproduct hydrolysates”, J. Food Sci., 69, pp. 615 – 622.
[258] Quaglia, G. B., and Orban, E., 1987, “Enzymic solubilisation of
proteins of sardine (Sardina pilchardus) by commercial proteases”, J.
Sci. Food Agric., 38, pp. 263 – 269.
262
[259] Gauthiera, S. F., Paquina, P., Pouliota, Y., and Turgeon, S., 1993,
“Surface activity and related functional properties of peptides obtained
from whey proteins”, J. Dairy Sci., 76(1), pp. 321 – 328.
[260] Kristinsson, H. G., and Rasco, B. A., 2000, “Fish protein hydrolysates:
Production, biochemical, and functional properties”, Crit. Rev. Food
Sci. Nutr., 40, pp. 43 – 81.
[261] Rahali, V., Chobert, J. M., Haertle, T., and Gueguen, J., 2000,
“Emulsification of chemical and enzymatic hydrolysates of blactoglobulin: characterization of the peptides adsorbed at the
interface”, Nahrung, 44, pp. 89 – 95.
[262] Kuehler, C. A., and Stine, C. M., 1974, “Effect of enzymatic hydrolysis
on some functional properties of whey protein”, J. Food Sci., 39 (2), pp.
379 – 382.
[263] Diniz, F. M., and Martin, A. M., 1997, “Optimization of nitrogen
recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias)
protein: Composition of the hydrolysates”, Int. J. Food Sci. Technol.,
48, pp. 191 – 200.
[264] Shahidi, F., Alasalvar, C., and Liyana-Pathirana, C. M., 2007,
“Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.)
and hazelnut byproducts”, J. Agric. Food Chem., 21 (55), pp. 1212 –
1220.
[265] Pandey, M., Sonker, K., Kanoujia, J., Koshy, M. K., and Saraf, S. A.,
2009, “Sida Veronicaefolia as a source of natural antioxidant”, Int. J.
Pharmaceutical Sci. Drug Res., 1 (3), pp. 180 – 182.
[266] Lee, S. E., Hwang, H. J., and Ha. J. S., 2003, “Screening of medicinal
plant extracts for antioxidant activity”, Life Sci., 73, pp. 167 – 179.
263
[267] Ionita, P., 2005, “Is DPPH stable free radical a good scavenger for
oxygen active species?”, Chem. Pap., 59(1), pp. 11 – 16.
[268] Sharma, O.P., and Bhat, T.K. 2009, “DPPH antioxidant assay
revisited”, Food. Chem., 113, pp. 1202 – 1205.
[269] Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., and Nunes, M. L.,
2010, “Characterization of protein hydrolysates and lipids obtained
from black scabbardfish (Aphanopus carbo) by-products and
antioxidative activity of the hydrolysates produced”, Process Biochem.,
45, pp. 18 – 24.
[270] Thiansilakul, Y., Benjakul, S., and Shahidi, F., 2007a, “Antioxidative
activity of protein hydrolysate from round scad muscle using alcalase
and flavourzyme”, J. Food Biochem., 31, pp 266 – 287.
[271] Thiansilakul, Y., Benjakul, S., and Shahidi, F., 2007b, “Compositions,
functional properties and antioxidative activity of protein hydrolysates
prepared from round scad (Decapterus maruadsi)”, Food Chem., 103,
pp. 1385 – 1394.
[272] Peng, X., Xiong, Y. L., and Kong, B., 2009, “Antioxidant activity of
peptide fractions from whey protein hydrolysates as measured by
electron spin resonance”, Food Chem., 113, pp. 196 – 201.
[273] Huang, F. P., Xi, G., Keep, R. F., Hua, Y., Nemoianu, A., and Hoff, J.
T., 2002, “Brain edema after experimental intracerebral hemorrhage:
role of hemoglobin degradation products”, J. Neurosurg., 96, pp. 287 –
293.
[274] Stooky, L., 1970, “Ferrozine - A new spectrophotometric reagent for
iron”, Anal. Chem., 42, pp. 779 – 784.
[275] Wang, D., Wang, L. J., Zhu, F. X., Zhu, J. Y., Chen, X. D., Zou, L.,
Saito, M., Li, L. T., 2008, “In vitro and in vivo studies on the
264
antioxidant activities of the aqueous extracts of Douchi (a traditional
Chinese salt-fermented soybean food)”, Food Chem., 107, pp. 1421 –
1428.
[276] You, L. J., Zhao, M., Regenstein, J. M., and Ren, J., 2011, “In vitro
antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus
anguillicaudatus) peptides prepared by papain digestion”, Food Chem.,
124, pp. 188 – 194.
[277] Oyaizu, M., 1986, “Studies on products of browning reactions:
antioxidative activities of products of browning reaction prepared from
glucosamine”, Jpn. J. Nutr., 44, pp. 307–315.
[278] Meir, S., Kanner, J., Akiri, B., and Hada, S. P., 1995, “Determination
and involvement of aqueous reducing compounds in oxidative defense
system of various senescing leaves”, J. Agric Food Chem., 43, pp. 1813
– 1819.
[279] Yen, M. T., Yang, J. H., and Mau. J. L., 2008, “Antioxidant properties
of chitosan from crab shells”, Carbohydr. Polym., 74 (4), pp. 840 – 844.
[280] You, L., Zhao, M., Cui, C., Zhao, H., and Yang, B., 2009, “Effect of
degree of hydrolysis on the antioxidant activity of loach (Misgurnus
anguillicaudatus) protein hydrolysates”, Innov. Food Sci. Emerg.
Tech., 10, pp. 235 – 240.
[281] Weckhuysen, B. M., Heidler, R., and Schoonheydt, R. A., 2004,
“Electron spin resonance spectroscopy”, Mol. Sieves, 4, pp. 295 – 335.
[282] Milardovic, S., Ivekovic, D. and Grabaric, B. S., 2006, “A novel
amperometric method for antioxidant activity determination using
DPPH free radical”, Bioelectrochem., 68, pp. 175 – 180.
265
[283] Davies, M. J., and Slater, T. F., 1988, “The use of electron-spinresonance techniques to detect free-radical formation and tissue
damage”, PNS., 47, pp. 397 – 405.
[284] Brand-Williams, W., Cuvelier, M.E. and Berset, C., 1995, “Use of a
free radical method to evaluate antioxidant activity”, LWT/Food Sci.
Technol., 28, pp. 25-30.
[285] Krings, U., Andersen, M. L., and Berger, R. G., 2008, “In vivo ESR
spin trapping detection of carbon-centered a-farnesene radicals”, J.
Agric. Food Chem., 56, pp. 4333 – 4339.
[286] Rohn, S., and Kroh, L. W., 2005, “Electron spin resonance – A
spectroscopic method for determining the antioxidative activity”, Mol.
Nutr. Food Res., 49 (10), pp. 898 – 907.
[287] Park, P. J., Je, J. Y., and Kim, S. Y., 2004, “Free radical scavenging
activities of differently deacetylated chitosans using an ESR
spectrometer”, Carbohydr. Polym., 55 (1), pp. 17 – 22.
[288] Pihlanto–Leppala, A., 2006, “Antioxidative peptides derived from milk
proteins”, Int. Dairy J., 16, pp. 1306 – 1314.
[289] Lertittikul, W., Benjakul, S., and Tanaka, M., 2007, “Characteristics
and antioxidative activity of Maillard reaction products from a porcine
plasma protein–glucose model system as influenced by pH”, Food
Chem., 100, pp. 669 – 677.
[290] Vercruysse L, Van Camp J, Smagghie G (2005) “ACE inhibitory
peptides derived from enzymatic hydrolysates of animal muscle
protein: a review”, J. Agric. Food Chem., 53, pp. 8106–8115.
[291] Ranathunga, S., Rajapakse, N., and Kim, S. K., 2006, “Purification and
characterization of antioxidative peptide derived from muscle of conger
eel (Conger myriaster)”, Eur. Food Res. Technol., 222, pp. 310 – 315.
266
[292] Skoog, W., and Beck, W., 1956, “Studies of the fibrogen, dextran and
phytohemagglutinin methods of isolating leukocytes”, Blood, 11, pp.
436-439.
[293] Li, B., Chen, F., Wang, X., Ji, B., and Wu, Y., 2007, “Isolation and
identification of antioxidative peptides from porcine collagen
hydrolysate by consecutive chromatography and electrospray
ionization–mass spectrometry”, Food Chem., 102, pp. 1135 – 1143.
[294] Pihlanto-Leppala, A., 2001, “Bioactive peptides derived from bovine
whey proteins: opioid and ACE-inhibitory peptides”, Trends Food Sci.
Tech., 11, pp. 347 – 356.
[295] Miguel, M., Recio, I., Gómez-Ruiz, J. A., Ramos, M., and LópezFandiño, R., 2004, “Angiotensin I- converting enzyme inhibitory
activity of peptides derived from egg white proteins by enzymatic
hydrolysis”, J. Food Protect., 67, pp. 1914 – 1920.
[296] Guoa, H., Kouzumab, Y., and Yonekura, M., 2009, “Structures and
properties of antioxidative peptides derived from royal jelly protein”,
Food Chem., 113 (1), pp. 238 – 245.
[297] Lin, C. C., and Liang, J. H., 2002, “Effect of antioxidants on the
oxidative stability of chicken breast meat in a dispersion system”, J.
Food Sci., 67, pp. 530 – 533.
[298] Decker, E. A., Warner, K., Richards, M. P., and Shahidi, F., 2005,
“Measuring antioxidant effectiveness in food”, J. Agric. Food Chem.,
53, pp. 4303 – 4310.
[299] Kim, S. Y., Je, J. Y., and Kim, S. K., 2007, “Purification and
characterization of antioxidant peptide from hoki (Johnius belengerii)
frame protein by gastrointestinal digestion”, J. Nutr. Biochem., 18, pp.
31 – 38.
267
[300] Suja, K.P., Jayalekshmy, A., and Arumughan, C., 2004, “Free radical
scavenging behavior of antioxidant compounds of sesame (Sesamum
indicum L.) in DPPH system”, J. Agric. Food Chem., 52, pp. 912 –
915.
[301] Leanderson, P., Faresjo, A. O., and Tagesson, C., 1997, “Green tea
polyphenols inhibits oxidant-induced DNA strand breakage in cultured
lung cells”, Free Radic. Biol. Med., 23, pp. 235 – 242.
[302] Debashis, D. D., Bhattacharjee, B.M., and Bannerjee, R.K., 1997,
“Hydroxyl radicals in the major causative factor in stress-induced
gastric ulceration”, Free Radic. Biol. Med., 23, pp. 8 – 18.
[303] Vajragupta, O., Boonchoong, P., and Wongkrajang, Y., 2000,
“Comparative quantitative structure-activity study of radical
scavengers”, Bioorg. Med. Chem., 8, pp. 2617 – 2628.
[304] Yang, C. S., Landau, J. M., Huang, M. T., and Newmark, H. L., 2001,
“Inhibition of carcinogenesis by dietary polyphenolic compounds”,
Ann. Rev. Nutr., 21, pp. 381 – 406.
[305] Elias, R. J., Kellerby, S. S., Decker, E. A., 2008, “Antioxidant activity
of proteins and peptides”, Crit. Rev. Food Sci. Nutr., 48, pp. 430–441.
[306] Aruoma, O. I., 2003, “Methodological consideration for characterizing
potential antioxidant actions of bioactive components in plant foods”,
Mutat. Res., 523, pp. 9 – 20.
[307] Ngo, D. H., Qian, Z. J., Ryu, B., Park, J. W., and Kim, S. K., 2010, “In
vitro antioxidant activity of a peptide isolated from Nile tilapia
(Oreochromis niloticus) scale gelatin in free radical-mediated oxidative
systems”, J. Funct. Food, 2, pp. 107 – 117.
268
[308] Wei, C., Wei-Jun, C., Zhi-Rong, S., and Ya-Ping, Y., 2008, “Protective
effects of ethanolic extracts of buckwheat groats on DNA damage
caused by hydroxyl radicals”, Food Res. Int., 41, pp. 924 – 929.
[309] Je, J. Y., Qian, Z. J., Lee, S. H., Byun, H. G., and Kim, S. K., 2008,
“Purification and antioxidant properties of Bigeye Tuna (Thunnus
obesus) dark muscle peptide on free radical-mediated oxidative
systems”, J. Med. Food, 11(4), pp. 629 – 637.
[310] Halliwell, B., and Gutteridge, J. M. C., (1989), “In: Free Radicals in
Biology and Medicine”, 2nd ed., Clarendon Press: Oxford, UK.
[311] Somani, S. M., (1996), “In: Exercise, drugs and tissue specific
antioxidant system”, S. M. Somani (Ed.), Pharmacology in Exercise
and Sports, CRC Press, Boca Raton, Florida, USA, pp. 57 – 95.
[312] Adachi, M., and Ishii, H., 2002, “Role of mitochondria in alcoholic
liver injury”, Free Radic. Bio. Med., 32, pp. 487–491.
[313] Knight, J. A., 1998, “Free radicals: Their history and current status in
aging and disease”, Ann. Clin. Lab. Sci., 28, pp. 331 – 346.
[314] Lander, H.M., 1997, “An essential role for free radicals and derived
species in signal transduction”, FASEB Journal, 11, pp. 118 – 124.
[315] Limuro, Y., Bradford, B. U., Yamashina, S., Rusyn, I., Nakagami, M.,
Enomoto, N., Kono, H., Frey, W., Forman, D., Brenner, D., and
Thurman, R. G., 2000, “The glutathione precursor L–2–
oxothiazolidine–4–carboxylic acid protects against liver injury due to
chronic enteral ethanol exposure in the rat”, Hepatology, 31, pp. 391 –
398.
[316] Nanji, A. A., Yang, E. K., Fogt, F., Sadrzadeh, S. M., and Dannenberg,
A. J., 1996, “Medium chain triglycerides and vitamin E reduce severity
269
of established experimental alcoholic liver disease”, J. Pharmacol. Exp.
Therap., 277, pp. 1694 – 1700.
[317] Kono, H., Arteel, G. E., Rusyn, I., Sies, H., and Thurman, R. G., 2001,
“Ebselen prevents early alcohol–induced liver injury in rats”, Free
Radic. Bio. Med., 30, pp. 403 – 411.
[318] Wheeler, M. D., Kono, H., Yin, M., Rusyn, I., Froh, M., Connor, H. D.,
Mason, R. P., Samulski, R. J., and Thurman, R. G., 2001a, “Delivery of
the Cu/Zn–superoxide dismutase gene with adenovirus reduces early
alcohol–induced liver injury in rats”, Gastroenterol., 120, pp. 1241 –
1250.
[319] Wheeler, M. D., Kono, H., Yin, M., Rusyn, I., Froh, M., Connor, H. D.,
Mason, R. P., Samulski, R. J., and Thurman, R. G., 2001b, “Over
expression of manganese superoxide dismutase prevents alcohol–
induced liver injury in the rat”, J. Biol. Chem., 276, pp. 36664–36672.
[320] Krishnaraju, A. V., Rao, C. V., Rao, T. V. N., Reddy, K. N., and
Trimurtulu, G., 2009, “In vitro and in vivo antioxidant activity of
Aphanamixis polystachya bark”, Am. J. Infect. Dis., 5 (2), 60 – 67.
[321] Gupta, M., Mazumder, U. K., Thamilselvan, V., Manikandan, L.,
Senthil Kumar, G. P., Suresh, R., and Kakotti, B. K., 2007, “Potential
hepatoprotective effect and antioxidant role of methanol extract of
Oldenlandia umbellata in carbon tetrachloride induced hepatotoxicity
in wistar rats”, Irn. J. Pharmacol. Therap., 6, pp. 5 – 9.
[322] Hall, G. M., and Ahmad, N. H., 1992, “In: Functional properties of fish
protein hydrolysates”, Ch. 11, Fish Processing Technology, Hall, G.
M., (Ed.), Blackie Academic and Professional, N. Y., U.S.A., pp. 249 –
265.
[323] Clemente, A., 2000, “Enzymatic protein hydrolysates in human
nutrition”, Trend Food Sci. Technol., 11, pp. 254 – 262.
270
[324] Vidotti, R. M., Macedo-Viegas, E. M., and Carneiro, D. J., 2003,
“Amino acid composition of processed fish silage using different raw
materials”, Anim. Feed Sci. Tech., 105, pp. 1999 – 2004.
[325] Stoilov, I. L., Georgiev, T. D., Taskov, M. V., and Koleva, I. D., 1995,
“Oral preparation for patients with chronic renal insufficiency and other
protein metabolic diseases”, WO patent 95/2952, Nov. 2.
[326] Duarte de Holanda, H., and Netto, F. M., 2006, “Recovery of
components from shrimp (Xiphopenaeus kroyeri) processing waste by
enzymatic hydrolysis”, J. Food Sci., 71(5), pp. 298 – 303.
[327] Korhonen, H., and Pihlanto, A., 2006, “Bioactive peptides: production
and functionality”, Int. Dairy. J., 16, pp. 945 – 960.
[328] Deeptha, R., and Nazeer, R. A., 2010, “Antioxidant properties of
protein hydrolysates obtained from marine fishes Lepturacanthus
savala and Sphyraena barracuda”, Int. J. Biotechnol. Biochem., 6(3),
pp. 435 – 444.
[329] Biziulevicius, G. A., Kislukhina, O. V., Kazlaukaitè, J., and Zukaitè,
V., 2006, “Food-protein enzymatic hydrolysates possess both
antimicrobial and immunostimulatory activities: a ´cause and effect´
theory of bifunctionality”, FEMS Immunol. Med. Microbiol., 46, pp.
131 – 138.
[330] Córdova-Murueta, J. H., Navarrete-del-Toro, M. A., and GarcíaCarreño, F. L., 2007, “Concentrates of fish protein from by catch
species produced by various drying processes”, Food Chem., 100, pp.
705 –711.
[331] Thorkelsson, G., Sigurgisladottir, S., Geirsdottir, S., Johannsson, R.,
Guérard, F., Chabeaud, A., Bourseau, P., Vandanjon, L., Jaouen, P.,
Fouchereau-Peron, M., Legal, Y., Ravallec-Plé, R., Picot, L., Bergé, J.-
271
P., Delannoy, C., Jakobsen, G., Johansson, I., and Batista, I., 2008. “In:
Mild processing techniques and developpment of functional marine
protein and peptide ingredients”, Ed. Borresen, T., Improving seafood
products for the consumers, Woodhead (GB), pp. 612-617.
[332] Lalasidis, G., and Sjoberg, L. B., 1978, “Two new methods fractions of
hydrolysates with exceptionally high content of essential amino acids”,
J. Agric. Food Chem., 26 (3), pp. 742 – 748.
[333] Lin, S., Chiang, W., Cordle, C. T., and Thomas, R. L., 1997,
“Functional and immunological properties of casein hydrolysate
produced from a two-stage membrane system”, J. Food Sci., 62, pp.
480 – 483.
[334] Raksakulthai, R., and Haard, N. F., 2003, “Exopeptidases and their
application to reduce bitterness in food: a review”, Crit. Rev. Food Sci.
Nutr., 43, pp. 401 – 445.
[335] Kapsokefalou, M., and Miller, D. D., 1991, “Effects of meat and
selected food components on the valence of nonheme iron during in
vitro digestion”, J. Food Sci., 56 (2), pp. 352 – 355.
[336] Robinson, H. W., and Hodgen, C. G., 1940, “The biuret reaction in the
determination of serum protein I. A study of the condition necessary for
the production of the stable color which bears a quantitative
relationship to the protein concentration”, J Biol. Chem., 135, pp. 707–
725.
[337] Pearce, K. N., and Kinsella, J. E., 1978, “Emulsifying properties of
proteins: evaluation of a turbidimetric technique”, J. Agric. Food
Chem., 26, pp. 716 – 723.
[338] Sathe, S. K., and Salunkhe, D. K., 1981, “Functional properties of the
great northern bean (Phaseolus vulgaris L.) proteins: emulsion,
foaming, viscosity and gelation properties”, J. Food Sci., 46, pp. 71–74.
272
[339] Giménez, B., Alemán, A., Montero, P., and Gómez-Guillén, M. C.,
2009, “Antioxidant and functional properties of gelatin hydrolysates
obtained from skin of sole and squid”, Food Chem., 114, pp. 976 – 983.
[340] Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., and Yang, H., 2008,
“Antioxidant and biochemical properties of protein hydrolysates
prepared from silver carp (Hypophthalmichthys molitrix)”, Food
Chem., 107, pp. 1485 – 1493.
[341] McNairney, J., 1984, “Modification of a novel protein product”, J.
Chem. Technol. Biotechnol. B, 34, pp. 206 – 214.
[342] Mahmoud, M. I., 1994, “Physicochemical and functional properties of
protein hydrolysates in nutritional products”, Food Technol., 58, pp. 89
– 95.
[343] Chobert, J. M., Bertrand-Harb, C., and Nicolus, M. G., 1988,
“Solubility and emulsifying properties of caseins and whey proteins
modified enzymatically by trypsin”, J. Agric. Food Chem., 36, pp. 883
– 892.
[344] Shabeena, Y. N., and Nazeer, R. A., 2011e, “Antioxidant and functional
properties of protein hydrolysates from pink perch (Nemipterus
japonicus) muscle”, J. Food Sci. Technol., Doi. 10.1007/s13197-0110416-y.
[345] Sorgentini, D. A., and Wagner, J. R., 2002, “Comparative study of
foaming properties of whey and isolate soy bean proteins”, Food Res.
Int., 35, pp. 721 – 729.
[346] Kim, S. Y., Peter S. W. Park and Khee C. Rhee, 1990, “Functional
properties of proteolytic enzyme modified soy protein isolate”, J. Agric.
Food Chem., 38, pp. 651 – 656.
273
[347] Mutilangi, W. A. M., Panyam, D., and Kilara, A., 1996, “Functional
properties of hydrolysates from proteolysis of heat-denatured whey
protein isolate”, J. Food Sci., 61, pp. 270 – 274, 303.
[348] Dickinson, E., and Lorient, D., 1994, “In: Emulsions, Dickinson, E.,
and Lorient, D., (Eds.), Food macromolecules and colloids, The Royal
Society of Chemistry, Cambridge, UK, pp. 201 – 274.
[349] Kato, A., Komatsu, K., Fujimoto, K., and Kobayashi, K., 1985,
“Relationship between surface functional properties and flexibility of
proteins detected by protease susceptibility”, J. Agric. Food Chem., 33,
pp. 931 – 934.
[350] Quaglia, G. B., and Orban, E., 1990, “Influence of enzymatic
hydrolysis on structure and emulsifying properties of sardine (Sardina
pilchards) protein hydrolysates”, J. Food. Sci., 55, pp. 1571 – 1573.
[351] Lee, S. W., Shimizu, M., Kaminogawa, S., and Yamaguchi, K., 1987,
“Emulsifying properties of a mixture of peptides derived from the
enzymatic hydrolysates of casein”, Agric. Bio1. Chem., 51, pp. 161 –
165.
[352] Surowka, K., and Fik, M., 1992, “Studies on the recovery of
proteinaceous substances from chicken heads. I. An application of
neutrase to the production of protein hydrolysate”, Int. J. Food Sci.
Technol., 27, pp. 9 – 20.
[353] Schwenke, K. D., 2001, “Reflections about the functional potential of
legume proteins: A review”, Nahrung, 45, pp. 377 – 381.
[354] Halling, P. J., 1981, “Protein stabilized foams and emulsions”, Crit.
Rev. Food Sci. Nutr, 12, pp. 155 – 203.
[355] Aluko, R. E., and Yada, R. Y., 1995, “Structure, function relationships
of cowpea (Vigna unguiculata) globulin isolate: Influence of pH and
274
NaCl on physicochemical and functional properties”, Food Chem., 53,
pp. 259 – 265.
[356] Souissi, N., Bougatef, A., Triki-Ellouz, Y., and Nasri, M., 2007,
“Biochemical and functional properties of Sardinella (Sardinella
aurita) by–product hydrolysates”, Food Technol. Biotechnol., 45 (2),
pp. 187 – 194.
[357] Urso, M. L., and Clarkson, P. M., 2003, “Oxidative stress, exercise and
antioxidant supplementation”, Toxicol., 189, pp. 41 – 54.
[358] Eberhardt, M. V., Lee, C. Y., and Liu, R. H., 2000, “Antioxidant
activity of fresh apples”, Nature, 405 (6789), pp. 903 – 904.
[359] Ansari, N. M., Houlihan, L., Hussain, B., and Pieroni, A., 2005,
“Antioxidant activity of five vegetables traditionally consumed by
south-asia migrants in Bradford, Yorkshire, UK”, Phytotherapy Res.,
19, pp. 907 – 911.
[360] Yang, Z., Xu, Y., Jie, G., He, P., and Tu, Y., 2007, “Study on the
antioxidant activity of tea flowers (Camellia sinensis)”, Asia Pac. J.
Clin. Nutr., 16(1), pp. 148 – 152.
[361] Muselík, J., García-Alonso, M., Martín-López, M. P., Žemlička, M.,
and Rivas-Gonzalo, J. C., 2007, “Measurement of Antioxidant Activity
of
Wine
Catechins,
Procyanidins,
Anthocyanins
and
Pyranoanthocyanins”, Int. J. Mol. Sci., 8, pp. 797 – 809.
[362] Hartmann, R., and Meisel, H., 2007, “Food-derived peptides with
biological activity: From research to food applications”, Curr. Opin.
Biotechnol., 18 (2), pp. 163 – 169.
[363] Markesbery, W. R., and Carney, J. M., 1999, “Oxidative alterations in
Alzheimer’s disease”, Brain Pathol., 9, pp. 133 – 146.
275
[364] Pocernich, C. B., Sultana, R., Mohmmad-Abdul, H., Nath, A., and
Butterfield, D. A., 2005, “HIV-dementia, Tat-induced oxidative stress,
and antioxidant therapeutic considerations”, Brain Res. Brain Res.
Rev., 50, pp. 14 – 26.
[365] Diaz, M. N., Frei, B., Vita, J. A., and Keaney, J. F., 1997,
“Antioxidants and atherosclerotic heart disease”, Engl. J. Med., 337(6),
pp. 408 – 416.
[366] Cao, G., Verdon, C. P., Wu, A. H. B., Wang, H., and Prior, R. L., 1995,
“Automated assay of oxygen radical absorbance capacity with the
Cobas Fara II”, Clin. Chem., 41, pp. 1738 – 1744.
[367] Ghiselli, A., Serafini, M., Maiani, G., Azzini, E., and Ferro-Luzzi, A.,
1995, “A fluorescence-based method for measuring total plasma
antioxidant capability”, Free Radic. Biol. Med., 18, pp. 29 – 36.
[368] Lonnrot, K., Metsa-Ketela, T., Molnar, G., Ahonen, J.P., Latvala, M.,
Peltola, J., Pietila, T., and Alho, H., 1996, “The effect of ascorbate and
ubiquinone supplementation on plasma and CSF total antioxidant
capacity”, Free Radic. Biol. Med., 21, pp. 211 – 217.
[369] Wang, H., Cao, G., and Prior, R. L., “Total antioxidant capacity of
fruits”, J. Agric. Food Chem., 44, pp. 701 – 705.
[370] Yen, G. C., and Chen, H. Y., 1995, “Antioxidant activity of various tea
extracts in relation to their antimutagenicity”, J. Agric. Food Chem., 43,
pp. 27 – 32.
[371] Decker, E. A., and Welch, B., 1990, “Role of ferritin as a lipid
oxidation catalyst in muscle food”, J. Agric. Food Chem., 38, pp. 674 –
677.
[372] Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., and Hara, Y.,
1996, “Scavenging effects of tea catechins and their derivatives on 1, 1,
276
-diphenyl-2-picrylhydrazyl radical”, Free Radic Biol. Med., 21, pp. 895
– 902.
[373] Rosen, G. M., and Rauckman, E. J., 1984, “Spin trapping of superoxide
and hydroxyl radicals”, Methods Enzymol., 105, pp. 198 – 209.
[374] Byun, H. G., and Kim, S. K., 2001, “Purification and characterization
of angiotensin I converting enzyme (ACE) inhibitory peptides from
Alaska pollack (Theragra chalcogramma) skin”, Process Biochem., 36,
pp. 1155 – 1162.
[375] Tsuruki, T., Kishi, K., Takahashi, M., Tanaka, M., Matsukawa, T., and
Yoshikawa, M., 2003, “An immunostimulating peptide derived from
soybean b-conglycinin, is an fMLP agonist”, FEBS Lett., 540, pp. 206
– 210.
[376] Yildirim, A., Mavi, A., Oktay, M., Kara, A. A., Algur, O. F., and
Bilaloglu, V., 2000, “Comparison of antioxidant and antimicrobial
activities of tilia (Tilia argentea Desf Ex DC), sage (Salvia triloba L.)
and black tea (Camellia sinensis) extracts”, J. Agric. Food Chem., 48,
pp. 5030 – 5034.
[377] Pena Ramos E. A., and Xiong, Y. L., 2003, “Whey and soy protein
hydrolysates inhibit lipid oxidation in cooked pork patties”, Meat Sci.,
64, pp. 259 – 263.
[378] Zhu, K., Zhou, H., and Qian, H., 2006, “Antioxidant and free radicalscavenging activities of wheat germ protein hydrolysates (WGPH)
prepared with alcalase”, Process Biochem., 41, pp. 1296 – 1302.
[379] Gordon, M., 2001, “In: Antioxidants and food stability”, Pokorny, J.,
Yanishlieva, N., Gordon, M., (Eds), Antioxidant in Food, CRC Press,
New York, USA, pp. 7 – 21.
277
[380] Sherwin, E. R., (1990), “In: Antioxidant”, Branen, A. L., Davidson, P.
M., Salminen, S., ed., Food additives: Marcel Dekker; New York, USA,
pp. 139 – 193.
[381] Stadtman, E. R. and Berlett, B. S., 1991, “Fenton chemistry: amino acid
oxidation”, J. Biol. Chem., 266, pp. 17201 – 17211.
[382] Berlett, B. S., Chock, P. B., Yim, M. B., and Stadtman, E. R., 1990,
“Manganese(II) catalyzes the bicarbonate-dependent oxidation of
amino acids by hydrogen peroxide and the amino acid-facilitated
dismutation of hydrogen peroxide”, Proc. Natl. Acad. Sci. USA, 87, pp.
389 – 393.
[383] Stadtman, E. R., Berlett, B. S. and Chock, P. B., 1990, “Manganesedependent disproportionation of hydrogen peroxide in bicarbonate
buffer”, Proc. Natl. Acad. Sci. USA 87, pp. 384 – 388.
[384] Yim, M. B., Berlett, B. S., Chock, P. B., and Stadtman, E. R., 1990,
“Manganese(II)-bicarbonate-mediated catalytic activity for hydrogen
peroxide dismutation and amino acid oxidation: detection of free
radical intermediates”, Proc. Natl. Acad. Sci. USA 87, pp. 394 – 398.
[385] Varani, J., Ginsburg, I., Gibbs, D. F., Mukhopadhyay, P. S., Sulavaik,
C., Johnson, K. J., Weinberg, J. M., Ryan, U. S. and Ward, P. A., 1991,
“Hydrogen peroxide-induced cell and tissue injury: protective effects of
Mn2+.”, Immunol., 15, pp. 291 – 301.
[386] Bernardini, R. D., Rai, D. K., Bolton, D., Kerry, J., O’Neill, E., Mullen,
A. M., Harnedy, P., and Hayes, M., 2011, “Isolation, purification and
characterization of antioxidant peptidic fractions from a bovine liver
sarcoplasmic protein thermolysin hydrolyzate”, Peptide, 32, pp. 388 –
400.
[387] Zhang-yan Ren, Guang-rong Huang, Jia-xin Jiang, and Wen-wei Chen,
2011, "Preparation and characteristic of iron-binding peptides from
278
shrimp processing discards hydrolysates", Adv. J. Food Sci. Technol.,
3(5), pp. 348-354.
[388] Tang, C.H., Wang, X.S., and Yang, X.Q., 2009, “Enzymatic hydrolysis
of hemp (Cannabis sativa L) protein isolate by various proteases and
antioxidant properties of the resulting hydrolysates”, Food Chem., 114,
pp. 1484–1490.
[389] Nalinanon, S., Benjakul, S., Kishimura, H., and Shahidi, F., 2011,
"Functionalities and antioxidant properties of protein hydrolysate from
the muscle of ornate threadfin bream treated with pepsin from skipjack
tuna", Food Chem., 124, pp. 1354-1362.
[390] Nooman A. Khalaf, Ashok K. Shakya, Atif Al-othman, Zaha El-agbar,
Husni Farah, 2008, "Antioxidant activity of some common plants",
Turk. J. Biol., 32, pp. 51-55.
[391] Najafian, L., and Babji, A.S., 2012, "A review of fish-derived
antioxidant and antimicrobial peptides: Their production, assessment,
and applications", Peptide, 33(1), Pp. 178-185.
[392] Dai-Hung Ngo, Thanh-Sang Vo, Dai-Nghiep Ngo, Isuru Wijesekara,
and Se-Kwon Kim, 2012, "Biological activities and potential health
benefits of bioactive peptides derived from marine organisms", Int. J.
Biol. Macromol., 51(4), Pp. 378-383.
[393] Anusha, G.P. Samaranayaka, and Eunice, C.Y. Li-Chan, 2011, "Foodderived peptidic antioxidants: A review of their production, assessment,
and potential applications", J. Funct. Food, 3(4), Pp. 229-254.
[394] Cacciuttolo, M. A., Trinh, L., Lumpkin, J. A., Rao, G., “Hyperoxia
induces DNA damage in mammalian cells”, Free Radical Biol. Med.,
1993, 14, pp. 267 – 276.
279
[395] Andersson, L., Blomberg, L., Flegel, M., Lepsa, L., Nilsson, B., and
Verlander, M., 2000, “Biopolymers”, Peptide Sci., 55, pp. 227 – 250.
[396] Houben-Weyl, 2002, “In: Methods of Organic Chemistry: Synthesis of
Peptides and Peptidomimetics”, Goodman, M., Felix, A., Moroder, L.,
Toniolo, C., Eds., Thieme: Stuttgart, Vol. E, pp. 22-26.
[397] Mant, C. T., and Hodges, R. S., 1991, “In: High-Performance Liquid
Chromatography of Peptides and Proteins”, CRC Press: Boca Raton,
Florida, USA.
[398] Kamysz, W., Okrój, M., Łempicka, E., Ossowski, T., and Łukasiak, J.,
2004, “Fast and efficient purification of synthetic peptides by solidphase extraction”, Acta Chromatographica, 14, pp. 180 – 186.
[399] Kovaleva, V., Kiyamova, R., Cramer, R., Krynytskyy, H., Gout, I.,
Filonenko, V., and Gout, R., 2009, “Purification and molecular cloning
of antimicrobial peptides from Scots pine seedlings”, Peptide, 30 (12),
pp. 2136 – 2143.
[400] Bodanszky, M., 1993, “In: Principles of Peptide Synthesis”, SpringerVerlag, Berlin.
[401] Kimmerlin, T., and Seebach, D., 2005, “100 years of peptide synthesis:
ligation methods for peptide and protein synthesis with applications to
beta-peptide assemblies”, J. Pept. Res., 65, pp. 229 – 260.
[402] Haqqani, A. S., Kelly, J. F., and Stanimirovic, D. B., 2008,
"Quantitative protein profiling by mass spectrometry using label-free
proteomics", Methods Mol. Biol., 439, pp. 241 – 256.
[403] Hillenkamp, F., and Karas, M., 1990, “Mass spectrometry of peptides
and proteins by matrix-assisted ultraviolet laser desorption/ionization”,
Methods Enzymol. 193, pp.280 – 295.
280
[404] Karas, M., and Hillenkamp, F., 1988, “Laser desorption ionization of
proteins with molecular masses exceeding 10,000 daltons”, Anal.
Chem., 60, pp. 2299 – 2301.
[405] Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C.
M., 1989, “Electrospray ionization for mass spectrometry of large
biomolecules”, Science, 246, pp. 64 – 71.
[406] Chang, J. P., Richardson, J. M., and Riggin, R. M., 1994,
“Characterization of Tryptic Peptides of a Potent Growth Hormone
Releasing Hormone Analog by Reversed Phase High Performance
Liquid Chromatography–Ion spray Mass Spectrometry”, J. Liq.
Chrom., 17(13), pp. 2881 – 2894.
[407] McCormack, A. L., Schieltz, D. M., Goode, B., Yang, S., Barnes,
G.,Drubin, D. and Yates, J. R., III, 1997, “Direct analysis and
identification of proteins in mixtures by LC/MS/MS and database
searching at the low-femtomole level”, Anal. Chem., 69, pp. 767 –
776.
[408] Zhao, R. J., Shi, M., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., and Xue,
S. J., 2008, “Purification and identification of antioxidant peptides from
grass carp muscle hydrolysates by consecutive chromatography and
eletrospray ionization-mass spectrometry,” Food Chem., 108, pp. 727 –
736.
[409] Dale, C. J., and Young, T. W., 1992, “Applications of fast protein
liquid chromatography (FPLC) to the analysis of the nitrogenous
constituents of beer”, J. Insl. Brew., 98, pp. 117 – 121.
[410] Je, J. Y., Park, P. J., and Kim, S. K., 2005, “Antioxidant activity of a
peptide isolated from Alaska pollack (Theragra chalcogramma) frame
protein hydrolysate”, Food Res. Int., 38, pp. 45 – 50.
281
[411] Kim, S. Y., Je, J. Y., and Kim, S. K., 2007, “Purification and
characterization of antioxidant peptide from hoki (Johnius belengerii)
frame protein by gastrointestinal digestion”, J. Nutri. Biochem, 18, pp.
31 – 38.
[412] Hernandez Ledesma, B., Davalos, A., Bartolome, B. and Amigo, L.,
2005, “Preparation of antioxidant enzymatic hydrolysates from γlactalbumin and α-lactoglobulin, identification of active peptides by
HPLC–MS/MS”, J. Agri. Food Chem., 53, pp. 588 – 593.
[413] Jung, W. K., Rajapakse, N., and Kim, S. K., 2005, “Antioxidative
activity of low molecular peptide derived from the sauce of fermented
blue mussel, Mytilus edulis”, Eur. Food Res. Technol., 220, pp. 535 –
539.
[414] Frlich, I., and Riederer, P., 1995, “Free radical mechanisms in dementia
of Alzheimer type and the potential for antioxidative treatment”, Drug
Res., 45, pp. 443 – 449.
[415] Dean, R. T., Fu, S., Stocker, R., and Davies, M. J., 1997, “Biochemistry
and pathology of radical-mediated protein oxidation”, Biochem. J., 324,
pp. 1 – 18.
[416] Hicks, M., Delbridge, L., Yue, D. K., and Reeve, T. S., 1988,
“Catalysis of lipid peroxidation by glucose and glycosylated collagen”,
Biochem. Biophys. Res.Commun., 151, pp. 649 – 655.
[417] Wolff, S. P., and Dean, R. T., 1987, “Glucose autoxidation and protein
modification. The potential role of ‘autoxidative glycosylation’ in
diabetes”, Biochem. J., 245, pp. 243 – 250.
[418] Jeong, E. Y., Sung, B. K., Song, H. Y., Yang, J. Y., Kim, D. K., and
Lee, H. S., 2010, “Antioxidative and Antimicrobial Activities of Active
Materials Derived from Triticum aestivum Sprouts”, J. Korean Soc.
Appl. Biol. Chem., 53(4), PP. 519 – 524.
282
[419] Dizdaroglu, M., 1991, “Chemical determination of free radical induced
damage to DNA”, Free Radic. Biol. Med., 10, pp. 225 – 242.
[420] Shureiqi, I., Reddy, P., and Brenner, D. E., “Chemoprevention: general
perspective”, Oncol. Hematol., 33, pp. 157 – 167.
[421] Lloyd, D. R., and Philips, D., 1999, “Oxidative DNA damage mediated
by copper (II), iron(II) and nickel (II) Fenton reactions: evidence for
site-specific mechanisms in the formation of double-strand breaks, 8hydroxyldeoxyguanosine and putative intrastrand cross breaks”,
Mutation Res., 424, pp. 23 – 36.
[422] Kumar, S. S., Chaubey, R. C., Devasagayam, T. P. A., Priyadarsini, K.
I., and Chauhan, P. S., 1999, “Inhibition of radiation-induced DNA
damage in plasmid pBR322 by chlorophyllin and possible
mechanism(s) of action”, Mutation Res., 425, pp. 71 – 79.
[423] Maillard, M. N., Soum, M. H., Meydani, S. N., and Berset, C., 1996,
“Antioxidant activity of barley and malt: Relationship with phenolic
content”, Food Sci. Technol., 29, pp. 238 – 244.
[424] Hettiarachchy, N. S., Glenn, K. C., Gnanasambandam, R., and Johnson,
M. G., 1996, “Natural antioxidant extract from fenugreek (Trigonella
foenumgraecum) for ground beef patties”, J. Food Sci., 61, pp. 516 –
519.
[425] Osawa, T., and Namiki, M., 1985, “Natural antioxidants isolated from
eucalyptus leaf waxes”, J. Agric. Food Chem., 33, pp. 777–780.
[426] Mitsuta, H., Yasumoto, K., and Iwami, K., 1996, “Antioxidative action
of indole compounds during the autoxidation of linoleic acid”, Eiyo to
Shokuryo, 29, pp. 238 – 244.
[427] Yeung, S. Y., Lan, W. H., Huang, C. S., Lin, C. P., Chan, C. P., and
Chang, M. C., 2002, “Scavenging property of three cresol isomers
283
against H2O2, hypochlorite, superoxide and hydroxyl radicals”, Food
Chem. Toxicol., 40, pp. 1403 – 1413.
[428] Mossmann, T., 1983, “Rapid colorimetric assay for cellular growth and
survival: application to proliferation and cytotoxicity assays”, J.
Immunol. Meth., 65, pp. 55 – 63.
[429] Ames, B. N., Shigenaga, M. K., and Hagen, T. M., 1993, “Oxidants,
antioxidants, and the degenerative diseases of aging”, Proc. Natl. Acad.
Sci. USA, 90, pp. 7915 – 7922.
[430] Cheng, Z., Ren, J., Li, Y., Chang, W., and Chen, Z., 2003,
“Establishment of a quantitative structure activity relationship model
for evaluating and predicting the protective potentials of phenolic
antioxidants on lipid peroxidation”, J. Pharm. Sci., 92, 475 – 484.
[431] Martinez, G.R., Loureiro, A.P., Marques, S.A., Miyamoto, S.,
Yamaguchi, L.F., and Onuki, J., 2003, “Oxidative and alkylating
damage in DNA”, Mutat. Res., 544, pp. 115 – 127.
[432] Sakanaka, S., Tachibana, Y., and Okada, Y., 2005, “Preparation and
antioxidant properties of extracts of Japanese persimmon leaf tea
(kakinoha-cha)”, Food Chem., 89, pp. 569 – 575.
[433] McCord, J. M., 1993, “Human disease, free radicals, and the
oxidant/antioxidant balance”, Clin. Biochem., 26, pp. 351 – 357.
[434] Bondy, S. C., and Orozco, J., 1994, “Effects of ethanol treatment upon
sources of reactive oxygen species in brain and liver”, Alcohol Alcohol,
29, pp. 375 – 383.
[435] DeLeve, L. D., and Kaplowitz, N., 1991, “Glutathione metabolism and
its role in hepatotoxicity”, Pharmacol. Ther., 52, pp. 287 – 305.
284
[436] Rubin, E., 1993, “The chemical pathogenesis of alcohol-induced tissue
injury”, Alcohol Health Res. World, 17, pp. 272 – 278.
[437] Jenkins, R. R., and Goldfarb, A., 1993, “Introduction: oxidant stress,
aging and exercise”, Med. Sci, Sports Exerc., 25, pp. 210 – 212.
[438] Guemouri, L., Lecomte, E., Herbeth, B., Pirollet, P., Paille, F., Siest,
G., and Artur, Y., 1993, “Blood activities of antioxidant enzymes in
alcoholics before and after withdrawal”, J. Stud. Alcohol. 54, pp. 626 –
629.
[439] Mehta, M. C., Jain, A. C. and Billie, M., 1998, “Combined effects of
alcohol and nicotine on cardiovascular performance in a canine model”,
J. Cardiovasc. Pharmacol., 31, pp. 930 – 936.
[440] Wetscher, G. J., Bagchi, M., Bagchi, G., Perdikis, G., Hinder, P. R.,
Glaser, K., and Hinder, R. A., 1995, “Free radical production in
nicotine treated pancreatic tissue”, Free Radic. Biol. Med., 18, pp. 877
– 882.
[441] Del Boccio, G., Lapenna, D., Porreca, E., Pennelli, A., Savini, F.,
Feliciani, P., Ricci, G., and Cuccurullo, F., 1990, “Aortic antioxidant
defence mechanisms: time-related changes in cholesterol-fed rabbits”,
Atherosclerosis, 81, pp. 127 – 135.
[442] Maser, E., 1997, “Stress, hormonal changes, alcohol, food constituents
and drugs: factors that advance the incidence of tobacco smoke –
related cancer?”, Trends Pharmacol. Sci., 18, pp. 270 – 275.
[443] McGinnis, J. M., and Foege, W. H., 1993, “Actual causes of death in
the United States”, JAMA, 270, pp. 2207 – 2212.
[444] Scott, R. B., Reddy, K. S., Husain, K., and Somani, S. M., 1999, “Time
course response to ethanol of hepatic antioxidant system and
285
cytochrome P-450 II E1 in rat”, Environ. Nutr. Interac., 3, pp. 217 –
231.
[445] Gonthier, B., Jeunet, A., and Barret, L., 1991, “Electron spin resonance
study of free radicals produced from ethanol and acetaldehyde after
exposure to Fenton system or to brain and liver microsomes”, Alcohol,
8, pp. 369 – 375.
[446] Mira, L., Maia, L., Barreira, L., and Manso, C. F., 1995, “Evidence for
free radical generation due to NADH oxidation by aldehyde oxidase
during ethanol metabolism”, Arch. Biochem. Biophys., 318, pp. 53 –
58.
[447] Anandatheerthavarada, H. K., Shankar, S. K., Bhamre, S., Boyd, M. R.,
Song, B. J., and Ravindranath, V., 1993, “Induction of brain
cytochrome P-450IIE1 by chronic ethanol treatment”, Brain Res., 601,
pp. 279 – 285.
[448] Reinke, L. A., Moore, D. R., Hague, C. M., and McCay, P. B., 1994,
“Metabolism of ethanol to 1-hydroxyethyl radicals in rat liver
microsomes: comparative studies with three spin trapping agents”, Free
Radic. Res., 21, pp. 213 – 222.
[449] Nanji, A. A., and Hiller–Sturmhöfel, S, 1997, “Apoptosis and
necrosis”, Alcohol Health Res. World, 21, pp. 325 – 330.
[450] Sultatos, L.G., 1988, “Effects of acute ethanol administration on the
hepatic xanthine dehydrogenase/xanthine oxidase system in the rat”, J.
Pharmacol. Exp. Ther., 246, pp. 946 – 949.
[451] Kiessling, K. H., and Tobe, U., 1964, “Degeneration of liver
mitochondria in rats after prolonged alcohol consumption”, Exp. Cell
Res., 33, pp. 350 – 364.
286
[452] Rubin, E., Beattie, D. S., Toth, A., and Lieber, C. S., 1972, “Structural
and functional effects of ethanol on hepatic mitochondria”, Federation
Proceedings, 31, pp. 131 – 140.
[453] Bailey, S. M., 2003, “A review of the role of reactive oxygen and
nitrogen species in alcohol-induced mitochondrial dysfunction”, Free
Radic. Res., 37 (6), pp. 585 – 596.
[454] Garcia-Ruiz, C., Collel, A., Morales, A., Kaplowitz, N., and FernandezCheca, J. C., 1995, “Role of oxidative stress generated from the
mitochondrial electron transport chain and mitochondrial glutathione
status in loss of mitochondrial function and activation of transcription
factor nuclear factor-kb: studies with isolated mitochondria and rat
hepatocytes”, Mol. Pharmacol., 48, pp. 825 – 834.
[455] Turrens, J. F., and Boveris, A., 1980, “Generation of superoxide anion
by the NADH dehydrogenase of bovine heart mitochondria”, Biochem.
J., 191, pp. 421 – 427.
[456] Turrens, J. F., Alexander, A., and Lehninger, A. L., 1985,
“Ubisemiquinone is the electron donor of superoxide formation by
complex III of heart mitochondria”, Arch. Biochem. Biophy., 237, pp.
408 – 414.
[457] Bradford, M. M., 1976, “A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the principle of
protein-dye binding”, Anal. Biochem., 72, pp. 248 – 254.
[458] Aebi H., 1984, “ Catalase”, Methods Enzymol.,105, pp. 121 – 126.
[459] McCord, J. and Fridovich, I., 1969, “Superoxide dismutase, an enzymic
function for erythrocuprin”, J. Biol. Chem., 244, pp. 6049 – 6055.
[460] Habig, W. H., Pabst, M. J., and Jakoby, W. B., 1974, “Glutathione Stransferases. The first enzymatic step in mercapturic acid formation”, J.
Biol. Chem., 249, pp. 7130 – 7139.
287
[461] Galigher, A. E., and Kozloff, E. N.,1971, “Essentials of Practical
Micro-technique”, 2nd ed. Lea and Febiger, Philadelphia, 1971. pp. 77.
[462] Naseri, M., Rezaei, M., Moieni, S., Hosseni, H., and Eskandari, S.,
2010, “Effect of different precooking methods on chemical composition
and lipid damage of silver carp (Hypophthalmichthys molitrix) muscle”,
Int. J. Food Sci. Technol., 45, pp. 1973 – 1979.
[463] Shen, Q., Shang, N., and Li, P., 2011, “In Vitro and In Vivo Antioxidant
Activity of Bifidobacterium animalis 01 Isolated from Centenarians”,
Curr. Microbiol., 62(4), pp 1097-1103
[464] Fox, M.A., 2008, “Novel roles for collagen in writing the vertebrate
nervous system”, Curr. Opin. Cell. Biol., 20(5), pp. 508-513.
[465] Heino, J., Huhtala, H., Käpylä, J., and Johnson, M. S., 2009, “Evolution
of collagen-based adhesion systems”, Int. J. Biochem. Cell Biol., 41
(2), pp. 341 – 348.
[466] Muyonga, J. H., Cole, C., and Duodu, K., 2004, “Characterization of
acid soluble collagen from skins of young and adult Nile perch (Lates
niloticus)”, Food Chem., 85, pp. 81-89.
[467] Ogawa, M., Moody, M. W., Portier, R. J., Bell, J., Schexnayder, M. A.,
and Losso, J. N., 2004, “Biochemical properties of bone and scale
collagens isolated from the subtropical fish black drum (Pogonia
cromis) and sheepshead seabream (Archosargus probatocephalus)”,
Food Chem., 88, pp. 495–501.
[468] Piez, K. A., 1985, “In: Collagen”, Kroschwitz, J. I., (Ed.), Encyclopedia
of Polymer Science and Engineering, Wiley, New York, pp. 699 – 727.
[469] Barnes, M. J., 1982, “In: The collagen–platelet interaction”, Weiss, J.
B., Jayson, M. I. V., Eds., Collagen in Health and Disease, Churchill
Livingstone, Edinburgh, pp. 179 – 197.
288
[470] Nimni, M. E., and Harkness, R. D., 1988, “In: Molecular structures and
functions of collagen”, Nimni, M. E., Ed., Collagen, Biochemistry,
CRC Press, Boca Raton, Florida, USA, 1, pp. 1 – 79.
[471] Wyckoff, R., Corey, R., and Biscoe, J., 1935, “X-ray reflections of long
spacing from tendon”, Science, 82, pp. 175 – 176.
[472] Clark, G., Parker, E., Schaad, J., and Warren, W. J., 1935, “New
measurements of previously unknown large interplanar spacings in
natural materials”, J. Am. Chem. Soc., 57, pp. 1509 – 1509.
[473] Traub, W., Yonath, A., and Segal, D. M., 1969, “On the molecular
structure of collagen”, Nature, 221, pp. 914 – 917.
[474] Bella, J., Eaton, M., Brodsky, B., Berman, H. M., 1994, "Crystal and
molecular structure of a collagen-like peptide at 1.9 A resolution",
Science, 266(5182), pp. 75–81.
[475] Hulmes, D. J., and Miller, A., 1979, “Quasi-hexagonal molecular
packing in collagen fibrils”, Nature, 282, pp. 878 – 880.
[476] Fraser, R. D., MacRae, T. P., and Suzuki, E., 1979, “Chain
conformation in the collagen molecule”, J. Mol. Biol., 129(3), pp. 463 –
481.
[477] Orgel, J.P.R.O., Irving, T.C., Miller, A., and Wess, T.J., 2006,
“Microfibrillar structure of type I collagen in situ”, PNAS, 103(24), pp.
9001 – 9005.
[478] Collagen structure: http://greatcourse.cnu.edu.cn/xbfzswx/ wlkc/kcxx/4
English (7565312Bytes). htm
[479] Harkness, R.D., 1966, “Collagen”, Sci. Prog. Oxf., 54, pp. 257-274.
289
[480] Wang, L., An, X.X., Yang, F.M., Xin, Z.H., Zhao, L.Y., and Hu, Q.H.,
2008, “Isolation and characterisation of collagens from the skin, scale
and bone of deep-sea redfish (Sebastes mentella)”, Food Chem., 108,
pp. 616-623.
[482] Perumal, S., Antipova, O., and Orgel, J.P., 2008, “Collagen fibril
architecture, domain organization, and triple-helical conformation
govern its proteolysis. Collagen fibril architecture, domain
organization, and triple-helical conformation govern its proteolysis”,
Proc. Natl. Acad. Sci. USA., 105(8), pp. 2824-2829.
[483] Sweeney, S.M., Orgel, J.P., Fertala, A., Mcauliffe, J.D., Turner, K.R.,
and Lullo, G.A., 2008, “Candidate cell and matrix interaction domains
on the collagen fibril, the predominant protein of vertebrates”, J. Biol.
Chem., 283(30), pp. 21187-21197.
[484] Birk, D. E. and Bruckner, P., 2005, “Collagen suprastructures”, Top.
Curr. Chem., 247, pp. 185–205.
[485] Gelse, K., Poschl, E., and Aigner, T., 2003, “Collagens-structure,
function and biosynthesis”, Adv. Drug Deliv. Rev., 55, pp. 1531-1546.
[486] Harold, T.H. and Wilson, M.D., 1960, “Colloid degeneration of the
skin”, Arch. Dermatol., 82(3), pp. 428-428.
[487] Mendler, M., Eich-Bender, S.G., Vaughan, L., Winterhalter, K.H., and
Bruckner, P., 1989, “Cartilage contains mixed fibrils of collagen types
II, IX, and XI”, J. Cell Biol., 108, pp. 191-197.
[488] Ennker, I. C., Schoon Doris, Schoon Heinz Adolf, Rimpler Manfred,
and Hetzer Roland, 1994, "Formaldehyde-free collagen glue in
experimental lung gluing", Ann. Thorac. Surg., 57(6), pp. 1622–1627.
290
[489] Raspanti, M., Ottani, V., and Ruggeri, A., 1990, "Subfibrillar
architecture and functional properties of collagen: a comparative study
in rat tendons", J. Anat., 172, pp. 157–164.
[490] Markus J. Buehler, 2008, “Nanomechanics of collagen fibrils under
varying cross-link densities: Atomistic and continuum studies”, J.
Mech. Beha. Biomed. Mater., 1, pp. 59–67.
[491] Xu, Y., Gurusiddappa, S., Rich, R.L., Owens, R.T., Keene, D.R.,
Mayne, R., Hook, A., and Hook, M., 2000, “Multiple binding sites in
collagen type I for the integrins α1β1 and α2β1”, J. Biol. Chem., 275,
pp. 38981–38989.
[492] Swatschek, D., Schatton, W., Kellermann, J., Muller, W.E.G., and
Kreuter, J., 2002, “Marine sponge collagen: isolation, characterization
and effects on the skin parameters surface-pH, moisture and sebum”,
Eur. J. Pharm. Biopharm. 53(1), pp. 107-113.
[493] Friess, W., 1998, “Collagen-biomaterial for drug delivery”, Eur. J.
Pharm. Biopharm., 45, pp. 113–136.
[494] Pati, F., Dhara, S., and Adhikari, B., 2010, “Fish collagen: A potential
material for biomedical application”, Tech. Sym., 23, pp. 34-38.
[495] Wang, L., An, X., Xin, Z., Zhao, L., and Hu, Q., 2007, “Isolation and
characterization of collagen from the skin of deep-sea redfish (Sebastes
mentella)”, J. Food Sci., 72, pp. 450–455.
[496] Lin Wang, Yufeng Zou, Song Jiang, Junmin Xu, Shenhua Jiang, and
Qiuhui Hu, 2011, “Chromatographic separation and physicochemical
properties of collagen species in the skin of deep-searedfish (Sebastes
mentella)”, Food Hydrocolloid, 25(5), pp. 1134–1138.
[497] Fitzgerald, R.H., Rogers, L.C., and Armstrong, D.G., 2009, “The
wound healing spectrum: a timeline for the utilization of advanced
technology”, J. Diabetic Foot Complicat., 1(3), pp. 63-75.
291
[498] Enoch, S., and Leaper, D., 2008, “Basic science of wound healing”,
Surgery, 26, pp. 31–37.
[499] Aravindan Rangaraj, Keith Harding, and David Leaper, 2011, “Role of
collagen in wound management”, Wounds UK, 7(2), pp.54-63.
[500] Schultz, G.S., and Wysocki, A., 2009, “Interactions between
extracellular matrix and growth factors in healing”, Wound Rep.
Regen. 17, pp.153–162.
[501] Guo, S., and Dipietro, L.A., 2010, “Factors affecting wound healing”, J.
Dent. Res. 89(3), pp. 219–229.
[502] Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E., and
Montero, M.P., 2011, “Functional and bioactive properties of collagen
and gelatin from alternative sources: A review”, Food Hydrocolloid,
25(8), pp. 1813-1827.
[503] Singer, A.J., and Clark, R.A.F. 1999, “Cutaneous Wound Healing”,
Eng. J. Med., 341, pp. 738-746.
[504] Leibovich, S.J. and Ross, R., 1975, “The role of the macrophage in
wound repair”, Am. J. Pathol., 78, pp. 71-91.
[505] Lee, H., Sodel, H.L., Hwang, Q., Brown, T.J., Ringuette, M.., and
Sodek, J., 2007, “Phagocytosis of collagen by fibroblasts and invasive
cancer cells in mediated by MT1-MMP”, Biochem. Soc. Trans., 35, pp.
704-706.
[506] Eric Boilard, Peter A. Nigrovic1, Katherine Larabee, Gerald F. M.
Watts, Jonathan S. Coblyn, Michael E. Weinblatt, Elena M. Massarotti,
Eileen Remold-O’Donnell, Richard W. Farndale, Jerry Ware, and
David M. Lee, 2010, “Platelets amplify inflammation in arthritis via
collagen-dependent microparticle production”, Science, 327(5965), pp.
580-583.
[507] Puklin-Faucher, E., and Sheetz, M.P., 2009, “The mechanical integrin
cycle”, J. Cell Sci., 122, pp. 179-186.
292
[508] Dobaczewski, M., Gonzalez-Quesada, C., and Frangogiannis, N.G.,
2010, “The extracellular matrix as a modulator of the inflammatory and
reparative response following myocardial infarction”, J. Mol. Cell
Cardiol., 48(3), pp. 504–511.
[509] Stadelmann, W.K., Digenis, A.G., and Tobin, G.R., 1998,
“Impediments to wound healing” Am. J. Surg., 176(2), pp. 39-47.
[510] Xiao, Y., Ju, H. X., and Chen, H Y., 2000, “Direct electrochemistry of
horseradish peroxidase immobilized on a colloid/cysteaminemodified
gold electrode”, Anal Biochem., 278, pp. 22-28.
[511] Basu, S., Binder, R.J., Ramalingam, T., and Srivastava, P.K., 2001,
“CD91 is a common receptor for heat shock proteins gp96, hsp90,
hsp70, and calreticulin”, Immunity, 14, pp. 303–313.
[512] Kamihagi, K., Katayama, M., Oucho, R., amd Kato, I., 1994,
“Osteonectin/ SPARC regulates cellular secretion rate of fibronectin
and laminin extracellular matrix proteins”, Biochem. Biophys. Res
Commun., 200, pp. 423-424.
[513] Prockop, D.J., and Kivirikko, K.I., 1995, “Collagens: molecular
biology, diseases, and potentials for therapy”, Annu. Rev. Biochem.,
64, pp. 403-409.
[514] Myllyharju, J., and Kivirikko, K.I., 2004, “Collagens, modifying
enzymes and their mutations in humans, flies and worms”, Trends
Genet., 20 pp. 33-36.
[515] Ivan Mikisk, Pavla Sedlakova , Katerina Mikulıkov, and Adam
Eckhardt, 2006, “Capillary electromigration methods for the study of
collagen”, J. Chromatogr. B, 841, pp. 3–13.
[516] Stainsby, G., 1987, “Gelatin gels”, In Pearson, A.M., Dutson, T.R., and
Bailey, A. J., Eds., Advances in meat research, collagen as a food, 4,
pp. 209-222. New York: Van Nostrand Reinhold Company Inc.
293
[517] Djabourov, M., Bonnet, N., Kaplan, H., Favard, N., Favard, P., and
Lechaire, J. P., 1993, “3D analysis of gelatin gel networks from
transmission electron microscopy imaging”, J. De Physique II, 3, pp.
611-624.
[518] Gómez-Guillén, M.C., Turnay, J., Fernández-Díaz, M. D., Ulmo, N.,
Lizarbe, M. A., and Montero, P., 2002, “Structural and physical
properties of gelatin extracted from different marine species: a
comparative study”, Food Hydrocolloid, 16(1), pp. 25-34.
[519] Johnston-Banks, F.A., 1990, “Gelatin”, In P. Harris (Ed.), Food gels,
pp. 233–289. London: Elsevier Applied Science.
[520] Zhang, J., Duan, R., Tian, Y., and Konno, K., 2009a, “Characterization
of acid-soluble collagen from skin of silver carp (Hypophthalmichthys
molitrix)”, Food Chem., 116, pp. 318–322.
[521] Zhang, M., Liu, W., and Li, G., 2009b, “Isolation and characterization
of collagens from the skin of largefin longbarbel catfish (Mystus
macropterus)”, Food Chem., 115(3), pp. 826-831.
[522] Shigeru Kimura, Yoichi Uematsu and Yoshirou Miyauchi, 1986,
“Shark (Prionace gla uca) elastoidin: characterization of its collagen as
[α l(E)]3 Homotrimers”, Comp. Biochem. Physiol., 84B(3), pp. 305308.
[523] Jongjareonrak, A., Benjakul, S., Visessanguan, W., Nagai, M., and
Tanaka, M., 2005, “Isolation and characterisation of acid and pepsinsolubilised collagens from the skin of brownstripe red snapper
(Lutjanus vitta)”, Food Chem., 93, pp. 475–484.
[524] Sitthipong Nalinanon, Soottawat Benjakul, Wonnop Visessanguan, and
Hideki Kishimura, 2007, “Use of pepsin for collagen extraction from
the skin of bigeye snapper (Priacanthus tayenus)”, Food Chem., 104,
pp. 593–601.
294
[525] Foegeding, E.A., Lanier, T. C., and Hultin, H. O., 1996, “Collagen”, In
O. R. Fennema Ed., Food chem., pp. 902–906. New York.
[526] Nagai, T., Araki, Y., and Suzuki, N., 2002, “Collagen of the skin of
ocellate puffer fish (Takifugu rubripes)”, Food Chem., 78, pp. 173–177.
[527] Ciarlo, A. S., Paredi, M. E., and Fraga, A. N., 1997, “Isolation of
soluble collagen from hake skin (Merluccius hubbsi)”, J. Aquat. Food
Prod. Technol., 6, pp. 65–77.
[528] Bama, P., Vijayalakshimi, M., Jayasimman, R., Kalaichelvan, P.T.,
Deccaraman, M. and Sankaranarayanan, S., 2010, “Extraction of
collagen from cat fish (tachysurus maculatus) by pepsin digestion and
preparation and characterization of collagen chitosan sheet”, Int. J.
Pharm. Pharm. Sci., 2(4), pp. 133-137.
[529] Liu, H. Y., Li, D., and Guo, S. D., 2007, “Studies on collagen from the
skin of channel catfish (Ictalurus punctaus)”, Food Chem., 101, pp.
621–625.
[530] Zhang, Z. K., Li, G. Y., and Shi, B., 2006, “Physicochemical properties
of collagen, gelatin and collagen hydrolysate derived from bovine
limed split wastes”, J. Soc. Leath. Tech. Chem., 90, pp. 23–28.
[531] Ogawa, M., Moody, M. W., Portier, R. J., Bell, J., Schexnayder, M. A.,
and Losso, J. N., 2003, “Biochemical properties of black drum and
sheepshead seabream skin collagen” Agric. Food Chem., 51, pp. 8088–
8092.
[532] Laemmli, U. K., 1970, “Cleavage of structural proteins during
assembly of head of bacteriophage T4”, Nature, 277, pp. 680–685.
[533] Nagai, T., and Suzuki, N., 2000, “Isolation of collagen from fish waste
material-skin, bone and fins”, Food Chem., 68, pp. 277–281.
[534] Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N., and Suzuki, N,
2001, “Isolation and characterization of collagen from the outer skin
295
waste material of cuttlefish (Sepia lycidas)”, Food Chem., 72, pp. 425–
429.
[535] Senaratne, L.S., Pyo-Jam Park, and Se-Kwon Kim, 2006, “Isolation and
characterization of collagen from brown backed toadfish (Lagocephalus
gloveri) skin”, Bioresource Technol., 97, pp. 191–197.
[536] Baaijens, F., Bouten, C., and Driessen, N., 2010, “Modeling collagen
remodeling”, J. Biomech. 43(1), pp.166-175.
[537] Nagai, T., Suzuki, N., and Nagashima, T., 2008, “Collagen from
common minke whale (Balaenoptera acutorostrata) unesu”, Food
Chem., 111, pp. 296–301.
[538] Yan, M., Li, B., Zhao, X., Ren, G., Zhuang, Y., Hou, H., Zhang, X.,
Chen, L., and Fan, Y., 2008, “Characterization of acid-soluble collagen
from the skin of walleye pollock (Theragra chalcogramma)”, Food
Chem., 107, pp. 1581–1586.
[539] Abe, Y., and Krimm, S., 1972, “Normal vibrations of crystalline
polyglycine I”, Biopolymer, 11(9), pp. 1817–1839.
[540] Li, H., Liu, B.L., Gao, L.Z., and Chen, H.L., 2004, “Studies on bullfrog
skin collagen”, Food Chem., 84, pp. 65–69.
[541] Payne, K. J., and Veis, A., 1988, “Fourier transform IR spectroscopy of
collagen and gelatin solutions: Deconvolution of the amide I band for
conformational studies”, Biopolymer, 27(11), pp. 1749–1760.
[542] Duan, R., Zhang, J., Du, X., Yao, X. and Konno, K., 2009, “Properties
of collagen from skin, scale and bone of carp (Cyprinus carpio)”, Food
Chem., 112, pp. 702–706.
[543] Kulmyrzaev, A.A., Karoui, R., De Baerdemaeker, J., and Dufour, E.,
2007, “Infrared and fluorescence spectroscopic techniques for the
determination of nutritional constituents in foods”, Int. J. Food Prop.,
10(2), pp. 299 – 320.
296
[544] Yan Zhang, Wentao Liu, Guoying Li, Bi Shi, Yuqing Miao, and
Xiaohua Wu, 2007, “Isolation and partial characterization of pepsinsoluble collagen from the skin of grass carp (Ctenopharyngodon
idella)”, Food Chem., 103, pp. 906–912.
[545] Bailey, A. J., and Light, N. D., 1989, “Connective tissue in meat and
meat products” New York: Elsevier Applied Science.
[546] Hassan, F., and Sherief, P. M., 1994, “Role and application of fish
collagen”, Seafood Export J, 25, pp. 19–24.
[547] Huc, A., 1985, “Collagen biomaterial characteristics and applications”,
J. Am. Leather Chem. Assoc., 80, pp. 195-212.
[548] Matsumoto, K., Nakamura, T., Shimizu, Y., Ueda, H., Sekine, T.,
Yamamoto, Y., Yiyotami, Y., and Takomoto, Y., 1999, “A novel
surgical material made from collagen with high mechanical strength: A
collagen sandwich membrane”, OSAIO J., 45, pp. 288-292.
[549] Cascone, M.G., Sim, B., and Downes, S., 1995, “Blends of synthetic
and natural polymers as drug delivery systems for growth hormone”,
Biomater., 16, pp. 569-574.
[550] Ellis, D.O. and AcGavin, S., 1970, “The structure of collagen-on X-ray
study”, J. Ultrastruct. Res., 32, pp. 191-211.
[551] Marovdas, N.G., 1973, “Chemical and mechanical requirements for
fibroblast adhesion”, Nature, 244, pp. 353-358.
[552] Reddy, P.P., Barrieras, D.J., Wilson, G., Bagli, D.J., McLorie, G.A.,
and Khoury, A.E., 2000, “Regeneration of functional bladder
substitutes using large segment acellular matrix allografts in a porcine
model”, Int. J. Urol., 164(3), pp. 936-941.
297
[553] Engelhardt, E.M., Stegberg, E., Brown, R.A., Hubbell, J.A., Wurm,
F.M., and Adam, M., 2010, “Compressed collagen gel: a novel scaffold
for human bladder cells”, J. Tissue Eng. Regen. Med., 4(2), pp. 123130.
[554] Hattori, K., Joraku, A., Miyagawa, T., Kawai, K., Oyasu, R., and
Akaza, H., 2006, “Bladder reconstruction using a collagen patch
prefabricated within the omentum”, Int. J. Urol., 13(5), pp. 529-37.
[555] Giraud-Guille, M.M., Besseau, L., Chopin, C., Durand, P., and
Herbage, D., 2000, “Structural aspects of fish skin collagen which
forms ordered arrays via liquid crystalline states”, Biomater., 21, pp.
899–906.
[556] Eun Songa, So Yeon Kimb, Taehoon Chunc, Hyun-Jung Byunc, and
Young Moo Lee, 2006, “Collagen scaffolds derived from a marine
source and their biocompatibility”, Biomater., 27, pp. 2951–2961.
[557] Joseph George, Jun Onodera and Teruo Miyata, 2008, “Biodegradable
honeycomb collagen scaffold for dermal tissue engineering”, J.
Biomed. Mater. Res., 87A, pp. 1103–1111.
[558] Patricia Castillo-Briceño, Dominique Bihan, Michael Nilges, Samir
Hamaia, José Meseguer, Alfonsa García-Ayala, Richard W. Farndale,
and Victoriano Mulero, 2011, “A role for specific collagen motifs
during wound healing and inflammatory response of fibroblasts in the
teleost fish gilthead seabream”, Mol. Immunol., 48(6), pp. 826-834.
[559] Wen-yuan Ding, Yun Ti, Jia Wang, Zhi-hao Wang, Guo-lu Xie, Yuanyuan Shang, Meng-xiong Tang, Yun Zhang, Wei Zhang, and Ming
Zhong, 2012, “Prostaglandin F2α facilitates collagen synthesis in
cardiac fibroblasts via an F-prostanoid receptor/protein kinase C/Rho
kinase pathway independent of transforming growth factor β1”, Int. J.
Biochem. Cell Biol., 44(6), pp. 1031-1039.
298
[560] Gomathi, K., Gopinath, D., Rafiuddin Ahmed, M., and Jayakumar, R.,
2003, “Quercetin incorporated collagen matrices for dermal wound
healing processes in rat”, Biomater., 24, pp. 2767–2772.
[561] Gopinath, B., Ma, G., Lahooti, H., and Wall, J.R., 2007, “A Case of
Hashimoto’s Thyroiditis Presenting with Chronic Upper eye Lid
Retraction and Positive Calsequestrin and Collagen XIII Antibodies”,
Int. J. Endocrinol. Metab., 2, pp. 34-37.
[562] Lee, C.H., Singla, A., and Lee, Y., 2001, “Biomedical applications of
collagen”, Int. J. Pharm., 221, pp. 1–22.
[563] Lazarus, G.S., Cooper, D.M., Knighton, D.R., Margolis, D.J., Pecoraro,
R. E., Rodeheaver, G., and Robson, M.C., 1994, “Definitions and
guidelines for assessment of wounds and evaluation of healing”, Arch.
Dermatol., 130, pp. 489-494.
[564] Yanhong Li, Tao Zhang, Wanmeng Mu, and Jian Liu, 2008,
“Antioxidant and free radical- scavenging activities of chickpea protein
hydrolysate (CPH)”, Food Chem., 106, pp. 444-450.
[565] Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T., and
Tanaka, M., 2005, “Characterization of acid-soluble collagen from skin
and bone of bigeye snapper (Priacanthus tayenus)”, Food Chem., 89,
pp. 363–372.
[566] Piez, K. A., 1965, “Characterization of a collagen from codfish skin
containing three chromatographically different α chains” Biochem.,
4(12), pp. 2590–2596.
[567] Liu, Y. K., and Liu, D. C., 2006, “Comparison of physical-chemical
properties of type I collagen from different species”, Food Chem., 99,
pp. 244–251.
299
[568] Doyle, B. B., Bendit, E. G., and Blout, E. R., 1975, “Infrared
spectroscopy of collagen and collagen-like polypeptides”, Biopolymer,
14(5), pp. 937–957.
[569] Surewicz, W. K., and Mantsch, H. H., 1988, “New insight into protein
secondary structure from resolution-enhanced infrared spectra”
Biochim. Biophys. Acta., 952(2), pp. 115–130.
[570] Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D. and Mann, S., 2003,
“Physical properties of type (I) collagen extracted from fish scales of
Pagrus major and Oreochromis niloticas”, Int. J. Biol. Macromol., 32,
pp. 199–204.
[571] Ramachandran, G.N., 1988, “Stereochemistry of collagen”, Int. J.
Peptide Protein Res., 31, pp. 1–16.
[572] Schultz, G.S., Sibbald, R.G., Falanga, V., Ayello, E.A., Dowsett, C.,
and Harding, K., 2003, “Wound bed preparation: a systematic approach
to wound management”, Wound Repair Regen., 11, pp. 1 – 28.
[573] Peter, M., Binulal, N.S., Nair, S.V., Selvamurugan, N., Tamura, H., and
Jayakumar, R., 2010, “Novel biodegradable chitosan-gelatin/nano
bioactive glass ceramic composite scaffolds for alveolar bone tissue
engineering”, Chem. Eng. J., 158, pp. 353 - 361
[574] Marton, J.J.P., and Malone, M.H., 1972, “Evaluation of vulnerary
activity by an open wound procedure in rats”, Arch. Int. Pharmacodyn.,
196, pp. 117-121.
[575] Neuman, R.E. and Logan, M.A., 1950, “The determination of
hydroxyproline”, J. Biol. Chem., 184, pp. 299-306.
[576] Brenner, A.J. and Harris, E.D., 1995, “A quantitative test for copper
using bicinchoninic acid”, Anal. Biochem., 226, pp. 80-84.
300
[577] Morra, M., 2006, “Biochemical modification of titanium surfaces:
peptides and ECM proteins”, Eur. Cell Mater., 12, pp. 1-15.
[578] Linez-Bataillon, P., Monchau, F., Bigerelle, M., and Hildebrand, H.F.,
2002, “In vitro MC3T3 osteoblast adhesion with respect to surface
roughness of Ti6Al4V substrates”, Biomol. Eng., 19, pp. 133-137.
[579] Ma L, Gao C, Mao Z, Zhou J, and Shen J., 2004, “Enhanced biological
stability of collagen porous scaffolds by using amino acids novel crosslinking bridges”, Biomater., 25, pp. 2997–3004.
[580] Khor, E., 1997, “Methods for the treatment of collagenous tissues for
bioprostheses”, Biomater., 18, pp. 95–105.
[581] Yannas, I.V., Lee, E., Orgill, D.P., Skrabut, E.M. and Murphy, G.F.,
1989, “Synthesis and characterization of a model extracellular matrix
that induces partial regeneration of mammalian skin”, Proc. Natl. Acad.
Sci. USA., 86, pp. 933–937.
[582] Jansson, K., Haegerstrand, A., and Kratz, G., 2001, “A biodegradable
bovine collagen membrane as a dermal template for human in vivo
wound healing”, Scand. J. Plast. Reconstr. Hand Surg., 35, pp. 369–
375.
[583] Meade, K.R., and Silver, F.H., 1990, “Immunogenicity of collagenous
implants”, Biomater., 11, pp. 176–180.
[584] Sidhu, G.S., Mani, H., Gaddipatti, J.P., Singh, A.K., Seth, P.,
Banaudha, K.K., Patnaik, G.K., and Maheshwari, R.K., 1999,
“Curcumin enhances wound healing in streptozotocin induced diabetic
rats and genetically diabetic mice”, Wound Repair Regen., 7(5), pp.
362–374.
[585] McCauley, R.L., Li, Y.Y., Poole, B., Evans, M.J., Robson, M.C.,
Heggers, J.P., and Herndon, D.N., 1992, “Differential inhibition of
301
human basal keratinocyte growth to silver sulfadiazine and mafenide
acetate”, J. Surg. Res., 52(3), pp. 276–285.
[586] Mudera, V., Morgan, M., Cheema, U., Nazhat, S., Brown, R., 2007,
“Ultra-rapid engineered collagen constructs tested in an in vivo nursery
site”, J. Tissue. Eng. Regen. Med., 1(3) pp. 192-198.
[587] Eva-Maria Engelhardt, Lionel A. Micol, Stephanie Houis, Florian M.
Wurm, Jöns Hilborn, Jeffrey A. Hubbell, and Peter Frey, 2011, “A
collagen-poly(lactic acid-co-3-caprolactone) hybrid scaffold for bladder
tissue regeneration”, Biomater., 32, pp. 3969-3976
[588] Long Shi, Yuan Chang, Yongmei Yang, Ying Zhang, Fu-Shin X. Yu,
and Xinyi Wu, 2011, “Activation of JNK signaling mediates connective
tissue growth factor expression and scar formation in corneal wound
healing”, PLoS ONE, 7(2), pp. 32128-32131.
[589] Kishore Babu M, Chandana P, Murthy TEGK. 2011 , “Design,
characterization and comparision of Glycyrrhiza glabra root extract
impregnated collagen and cross linked collagen dermal scaffolds for
wound healing”, J. Global Pharma Technol., 3(9), pp. 1-10
[590] Kishore Babu, M., Siva Prasad, O., and Murthy. T. E. G. K., 2011,
“Comparison of the dermal wound healing of Centella asiatica extract
impregnated collagen and crosslinked collagen scaffolds”, J. Chem.
Pharm. Res., 3(3), pp. 353-362.
[591] Demidova-Rice, T.N., Geevarghese, A., and Herman, I.M., 2011,
“Bioactive peptides derived from vascular endothelial cell extracellular
matrices promote microvascular morphogenesis and wound healing in
vitro”, Wound Repair Regen., 19(1), pp. 59–70.
[592] Rane, M.M., and Mengi, S.A., 2003, “Comparative effect of oral
administration and topical application of alcoholic extract of
302
Terminalia arjuna bark on incision and excision wounds in rats”,
Fitoterapia., 74(6), pp. 553-558.