Trabajo Práctico: Ecuaciones exponenciales y logarítmicas Resolverlassiguientesecuacionesexponencialesylogarítmicas. 1) 3x+1 = 81 S= {3} 11) log3 (x + 4) = 3 S= {23} 2) 3.4 x = 6 S= {1/2} 12) log2 (x + 5) = -1 S= {-9/2} 3) 25x-2 = 5x+3 S= {7} 13) 20.log (x2 - 15)=0 S= {-4,+4} 4) 7 x+1 – 343 = 0 S= {2} 14) log2 (x + 1/x) + log2 x = 4 S= { 15 } 5) (1/5) 8x-2 = 625 S= {- 1/4} 15) log4 (x + 7) – log4 (x - 5) = 2 S= {29/5} 6) 5 x+2 + 3.5 x+1 – 8 = 0 S= {-1} 16) log9 [9.(x + 1)] + log9 (x + 1) – 3 = 0 S= {8} 7) 3.2 x + 2 x+3 = 22 S= {1} 17) log2 x + 2.log2 x = log2 8 S= {2} 8) 4 x - 4 x-1 = 24 S= {5/2} 18) log12 2x – log12 (x - 2) = 1 S= {12/5} 9) 2 x.2 2x+1 = 16 2x S= {1/5} 19) log5 625 = x + log5 125 S= {1} 10) 5:5 -x-5 = 125 2x S= {6/5} 20) (x – 1). log2 ¼ = log2 8 S= {-1/2} Paraseguirtrabajando... 1. log x (3 x 10) 2 5. log 7 x 6 2 log 49 x 8 2 2. log 9 ( x 1) log 9 9( x 1) 2 0 1 4. log x 6 2 log( x 1) 3 log x log 2.( x 1) 2 6. log 2 x 3 2 log 1 x 3 6 log 8 x 3 3 7. log 4 5 ( x 2) log 5 ( x 2) log 5 ( x 2) 2 8. log 4 x 3. log 4 x 2 0 1 1 9. log 24 x 1 log 1 x 1 4 2 2 1 11. 8 2 x : 2 9 x 64 1 11 13. 3 x 2 .3 x 1 6 2 x 1 3 36 36 15. x 6 1 61 2 10. 2log 1 ( x 1) log 2 3 17. 3 2 x 4.3 x 1 33 0 18. 49 x 3. log( x 3) log(2 x 1) log 2.( x 2 4) 2 2 12. 3 x 1 3 x 1 30 14. 2 - x +1 2 x 2 18 16. 4 x 7.2 x 8 0 4 x 1 .7 21 7 19. 2 2x +1 3.2 x 1 2 3 Soluciones 1. S = { 5 } 2. S = { 2 } 3. S = { 5/7 } 4. S = { 1 } 5. S = { 1 } 6. S = { -5/2 } 7. S = { 23 } 8. S = { 1/4, 1/16 } 9. S = { 3, -1/2 } 10. S = { 1, -3/4 } 11. 12. 13. 14. 15. 16. 17. 18. 19. S={2} S={2} S={2} S = { -3 } S = { -1/3 } S={3} S = { 1,2 } S={1} S={2} 2 8 2 log 22 ( x 1)
© Copyright 2024