Ecuaciones exponenciales y logarítmicas

Trabajo Práctico: Ecuaciones exponenciales y logarítmicas
Resolverlassiguientesecuacionesexponencialesylogarítmicas.
1) 3x+1 = 81
S= {3}
11) log3 (x + 4) = 3
S= {23}
2) 3.4 x = 6
S= {1/2}
12) log2 (x + 5) = -1
S= {-9/2}
3) 25x-2 = 5x+3
S= {7}
13) 20.log (x2 - 15)=0
S= {-4,+4}
4) 7 x+1 – 343 = 0
S= {2}
14) log2 (x + 1/x) + log2 x = 4
S= {  15 }
5) (1/5) 8x-2 = 625
S= {- 1/4}
15) log4 (x + 7) – log4 (x - 5) = 2
S= {29/5}
6) 5 x+2 + 3.5 x+1 – 8 = 0
S= {-1}
16) log9 [9.(x + 1)] + log9 (x + 1) – 3 = 0
S= {8}
7) 3.2 x + 2 x+3 = 22
S= {1}
17) log2 x + 2.log2 x = log2 8
S= {2}
8) 4 x - 4 x-1 = 24
S= {5/2}
18) log12 2x – log12 (x - 2) = 1
S= {12/5}
9) 2 x.2 2x+1 = 16 2x
S= {1/5}
19) log5 625 = x + log5 125
S= {1}
10) 5:5 -x-5 = 125 2x
S= {6/5}
20) (x – 1). log2 ¼ = log2 8
S= {-1/2}
Paraseguirtrabajando...
1. log x (3 x  10)  2
5. log 7  x  6  2 log 49  x  8  2
2. log 9 ( x  1)  log 9 9( x  1)  2  0
1
4. log x 6  2 log( x  1)  3 log x  log 2.( x  1)
2
6. log 2  x  3  2 log 1  x  3  6 log 8 x  3  3
7. log 4 5 ( x  2)  log 5 ( x  2)  log 5 ( x  2)  2
8. log 4 x  3. log 4 x  2  0
1
1
9. log 24  x  1  log 1  x  1 
4
2
2
1
11. 8 2 x : 2 9 x 
64
1
11
13. 3 x  2  .3 x 1 
6
2
x 1
3
36
36
15.  x 
6
1 61
2
10. 2log 1 ( x  1)  log
2
3
17. 3 2 x  4.3 x 1  33  0
18. 49 x 
3. log( x  3)  log(2 x  1)  log 2.( x 2  4)
2
2
12. 3 x 1  3 x 1  30
14. 2 - x +1  2  x  2  18
16. 4 x  7.2 x  8  0
4 x 1
.7  21
7
19. 2 2x +1  3.2 x 1  2 3
Soluciones
1. S = { 5 }
2. S = { 2 }
3. S = { 5/7 }
4. S = { 1 }
5. S = { 1 }
6. S = { -5/2 }
7. S = { 23 }
8. S = { 1/4, 1/16 }
9. S = { 3, -1/2 }
10. S = { 1, -3/4 }
11.
12.
13.
14.
15.
16.
17.
18.
19.
S={2}
S={2}
S={2}
S = { -3 }
S = { -1/3 }
S={3}
S = { 1,2 }
S={1}
S={2}
2
8  2 log 22 ( x  1)