criterio generalizado de socavación: caso de aplicación río mezcalapa

XXIII C ON G R E S O N A C I O N A L
AMH
DE
H I D R Á U LI C A
PUERTO VALLARTA, JALISCO, MÉXICO, OCTUBRE 2014
AMH
CRITERIO GENERALIZADO DE SOCAVACIÓN:
CASO DE APLICACIÓN RÍO MEZCALAPA
Huerta Amaya Tilo Jesus1, Guillen Cruz Octavio1, Montejo Morales Fernando1,
Barajas Fernández Juan2 y Rivera Trejo Fabián2
1
Grupo de Ingeniería y Construcción Zeta. Andrés García No. 315, Col. 1 de mayo, Villahermosa, Tabasco,
México. C.P. 86190
2
Universidad Juárez Autónoma de Tabasco. Carretera Cunduacán-Jalpa de Méndez km. 1, Col. La Esmeralda,
Cunduacán, Tabasco, México. C.P. 86690
[email protected], [email protected], [email protected]
Introducción
Metodología
El estudio de la erosión general en cauces naturales es un tema
de gran de importancia en la ingeniería fluvial, (Farías, 2002),
especialmente útil para la toma de decisiones en el diseño de
obras hidráulicas. En este estudio se presenta a partir de la
formulación generalizada la estimación de la socavación
general, utilizando una serie de combinaciones de fórmulas de
fricción y velocidad de equilibro (Farías, Pilan, Pece y Olmos,
2002).
El procesamiento y análisis de la información se realizó partir
de datos obtenidos en campo, además de estudios
complementarios que permitieron conocer las variables
necesarias para la estimación de la erosión.
El caso de aplicación se realizo, en un tramo de río de ocho
kilómetros de longitud y ochocientos metros de ancho,
pertenecientes a la Ranchería Paredón-Macayo, municipio de
Huimanguillo, Estado de Tabasco, (ilustración 1).
La zona se ubica en la subcuenca del río Mezcalapa
(RH30Dc), comprendida dentro de la cuenca del río GrijalvaVillahermosa (RH-30D) que posee una superficie equivalente
al 41.45% del total de Tabasco. Los coeficientes de
escurrimiento que prevalecen en la región van del 20 a 30 %.
Esta cuenca es la más importante del estado en función del
desarrollo urbano-industrial y petrolero; los usos principales a
que se destina el agua superficial es la navegación,
abastecimiento a los principales centro de poblaciones y el
industrial (SIGE-Tabasco, INEGI).
Zona de estudio
Batimetría
Se realizó un levantamiento planimetrico en la zona de estudio
(ocho kilómetros de longitud). Se utilizo un equipo de estación
total modelo Cx-105 visión laser de rebote, ligando el trazo a
tres pares de mojoneras (KM-0+000, KM-3+806.659 y KM8+024.00), geo referenciadas con equipo G.P.S. R-4 de doble
banda, la cual fue ligada a la red geodésica Vil-1. Para el
levantamiento de las profundidades se utilizó un equipo
ecosonda RCX42, se colocó una línea base en la margen
derecha del rio Mezcalapa y se configuro el cauce a detalle en
una longitud de 200 metros (zona del cruzamiento del ducto),
el resto del cauce se levantó con secciones a cada 100 metros
de distancia, teniendo como resultado una configuración de
ocho kilómetros. Con la información obtenida de los trabajos
de campo, se realizaron los trabajos de gabinetes utilizando
para la captura de la información el software CivilCAD
Ver.2008 y Auto Cad Ver. 2012, obteniendo como resultados
los planos de planta, perfil y secciones transversales del cauce
las cuales fueron necesarias para conocer la configuración
para cargar el modelo en el software HEC-RAS 4.1.0.
Mecánica de suelos
Ilustración 1. Zona de proyecto Ranchería Paredón-Macayo.
Para la implementación del método, se realizaron varios
estudios complementarios tales como: mecánicas de suelos,
levantamiento batimétrico y topográfico. Se llevaron a cabo
análisis estadístico utilizando el software AX (Jiménez,
1997), modelación hidráulica con el software HEC-RAS
4.1.0.(U.S.A.C.E., 2010) y por último el análisis de la erosión
utilizando el método generalizado (Farías, 2002).
Para conocer las características que conforman el fondo del
cauce, se contó con el apoyo de un laboratorio de mecánica de
suelos. Se realizaron cinco sondeos mixtos a 60 m. de
profundidad (SM-1, SM-2, SM-3, SM-4 y SM-5), distribuidos
en los 800 m. del ancho del cauce (ilustración 2). El estudio se
realizó por medio de la exploración directa con obtención de
muestras alteradas e inalteradas utilizando el método de
penetración estándar y tubo de pared delgada Shelby (Trujillo,
2012). Se utilizó una perforadora rotaria con cabeza de gato
integrada y bomba de lodos marca Long Year mod. 34, broca
tricónica de acero de 2 15/16” (7,50 cm) de diámetro, tubo
penetrómetro, barras de muestreo, barra BW de acero de un
diámetro exterior de 0,054 m, masa en kg/m 6,23, dispositivo
guía y tubo Shelby de 4” de diámetro (fotografía 1). Las
muestras obtenidas se llevaron al laboratorio de mecánica de
suelos y se determinaron las propiedades índices y mecánicas
de los materiales que conforman el subsuelo. Se realizaron las
XXIII C ON G R E S O N A C I O N A L
AMH
DE
H I D R Á U LI C A
AMH
PUERTO VALLARTA, JALISCO, MÉXICO, OCTUBRE 2014
pruebas de laboratorio tales como: Clasificación S.U.C.S.,
Humedad Natural, Límites de Atterberg, Análisis
Granulométrico, Densidad de Sólidos, Peso Volumétrico
Natural, Compresión Triaxial Rápida y Consolidación
Unidimensional (Badillo, 2005).
valores para el cálculo de rugosidad de acuerdo a la ecuación
de Cowan (1) y apoyándose en los valores de la tabla1.
(1)
Donde n y m representa valores de rugosidad para
diferentes condiciones del canal.
Tabla 1. Valores para coeficientes de rugosidad “n”.
Tierra
Material
involucrado
Fotografía 1. Sondeo en rio Mezcalapa
Grava fina
PROP. CARLOS MARIO DE LA FUENTE LAZO
PASTO CAMALOTE
ENTRADA STA. 0+000.00
SM-2
SM-3
SM-4
SM-1
PERA
PROP. LILIA PRADOS DOMINGUEZ
PASTO ESTRELLA
SM-5
SALIDA STA.1+736.00
PILOTES EN EL RIO
S 86°51'15" E
PERA
PILOTES EN EL RIO
PROP. MAGNOLIA
HERNANDEZ VALIER
S
CARRETERA PAVIMENTADA
9m
E
.18
5"
158
57'4
38°
PROP. ENRIQ
UE PRADO
S
Suave
0.000
Ilustración 2. Ubicación de sondeos en el rio Mezcalapa.
0.005
n1
0.020
Gradual
0.000
Efecto
Menor
relativo de la
obstrucciones Apreciable
Severo
Modelación Hidráulica
Para la determinación de las características hidráulicas se
utilizó el programa de computo HEC-RAS 4.1.0. (U.S.A.C.E.,
2010);, (Díaz, 2012);, (Bupo, 2011);, (Santos, 2008). Se
realizó la simulación para flujo permanente, en la calibración
del modelo se utilizó el criterio de Cowan para determinar la
"n" de Manning, (Chow, 1994). Se realizaron recorridos vías
terrestre y fluvial en la zona de estudio y se determinaron los
Vegetación
Alta
Muy alta
Menor
Grado de
efecto por
meandros
Apreciable
Severo
0.010-0.015
0.010-0.015
n3
0.020-0.030
0.040-0.060
0.005-0.010
Media
Se analizaron los gastos asociados a diferentes periodos de
retorno 2, 5, 10, 50, 100, 500, y 1000 años (Ponce, 2012),
tomándose en cuenta la información de las estaciones
hidrométricas González y Samaria, ubicadas en los ríos
Carrizal y Samaria pertenecientes al estado de Tabasco, (datos
registrados y solicitado por la Comisión Nacional del Agua).
A partir de los gastos máximos anuales instantáneos, se
realizaron los ajustes de los datos hacia las funciones de
distribución de probabilidad (Normal, Lognormal, Gumbel,
Exponencial, Gamma y Doble Gumbel), así como los
métodos para estimar los parámetros estadísticos de la muestra
(momentos y máxima verisimilitud). Estas funciones de
distribución de probabilidad fueron analizadas utilizando el
software AX 1.05 (Jiménez, 1997).
0.05
0.000
Baja
Hidrología
0.010
Severo
Insignificante
ESC. 1:3,000
0.024
0.028
Variaciones Ocasionalmente
de la sección alternamente
n2
transversal
Frecuentemente
alternamente
P L A N T A
ACOT.: M.
0.025
n0
Grava gruesa
Grado de
Menor
irregularidad
Moderado
PROP. LILIA PRADOS
DOMINGUEZ NARANJA
0.020
Corte de roca
0.010-0.025
n4
0.025-0.050
0.005-0.010
1.000
m 5 1.150
1.300
Como condiciones de frontera aguas arriba y aguas abajo del
modelo, se utilizó una pendiente hidráulica S=0.00041. Está
pendiente corresponde a la del perfil hidráulico y se obtuvo en
campo por el área de topografía localizando los niveles del
espejo del agua (aguas arriba y aguas abajo) del tramo
analizado (Santos, 2008).
Análisis de socavación
Se utilizó el método generalizado para suelos arenosos (Farías,
Pilan, Pece y Olmos, 2002). Se elaboró una plantilla de
cálculo utilizando el programa Microsoft Excel con las
combinaciones de velocidad crítica (Tabla 2) y resistencia al
flujo (Tabla 3) expresadas en un formato de combinación de
potencia de acuerdo a las siguientes ecuaciones.
XXIII C ON G R E S O N A C I O N A L
AMH
DE
H I D R Á U LI C A
AMH
PUERTO VALLARTA, JALISCO, MÉXICO, OCTUBRE 2014
Tabla 2. Constantes para la velocidad critica.
(2)
Donde los valores de b0, b1 y b2 son obtenidos de la tabla 2, d
es el tamaño mediano de la partícula de sedimento en mm, h
profundidad del flujo en m.
(3)
Donde los valores de a0, a1, a2 y a3 son obtenidos de la tabla
3, h profundidad del flujo en m, d es el tamaño mediano de la
partícula de sedimento en mm y S pendiente longitudinal del
cauce en m/m.
Shamov
6.000
0.333
0.167
DoT-FHWA-HEC18
6.190
0.333
0.167
Maza A. – Echavarría A
3.620
0.200
0.275
Levi (aprox. pot)
8.290
0.357
0.156
Van Rijn (aprox. pot)
0.340
0.004
0.100
Lischtvan - Lebediev
4.700
0.280
0.410
Shields - Manning
6.093
0.283
0.167
(4)
Tabla 3. Constantes para la resistencia al flujo.
es el coeficiente dependiente de las características
hidráulicas, Q es el gasto en m3/s, T es el ancho del cauce a
nivel de la superficie libre en m, hm es la profundidad del
flujo en m, a2 es un valor de la constante para la resistencia
al flujo.
(5)
Manning-Strickler
21.100
-0.167
0.667
0.500
Pavlovsky-Lacey
17.810
-0.133
0.736
0.515
Sugio
7.900
0.000
0.540
0.270
Chitale
Donde hsi es la profundidad del flujo luego de producida la
erosión y está dada en m, hi es la profundidad del flujo en m,
k0 y k1 son altura de los elementos de rugosidad (método de
Mirtskhoulava) y se calculan con las formulas (6 y 7).
(6)
Donde k0 es la altura de los elementos de rugosidad, m0 y m1
son coeficientes en el método de Mirtskhoulava, d es el
tamaño mediano de la partícula de sedimento en mm.
7.340
0.000
0.646
0.293
Maza-Cruickshank
495.850
0.340
0.637
0.456
Brownlie
13.290
-0.029
0.529
0.389
Peterson-Peterson
7.546
0.017
0.437
0.276
Karim-Kennedy
18.190
-0.103
0.603
0.497
Camacho-Yen
97.930
0.216
0.636
0.401
Farias-Pilan
4.780
0.026
0.499
0.213
Resultados
Datos topográficos y batimétricos
(7)
Donde k1 es la altura de los elementos de rugosidad, a2 son
valores de las constantes para la resistencia al flujo y son
obtenidos de la tabla 2, b2 son constante para la velocidad
crítica y son obtenidos de la tabla 1.
(8)
Donde m0 son coeficientes en el método de Mirtskhoulava,
es el coeficiente dependiente de las características
hidráulicas, b0 y b2 son constantes para la velocidad crítica y
son obtenidos de la tabla 1.
En la ilustración 3, se muestra la planta topográfica producto
del levantamiento de campo realizado en Marzo de 2014. Se
aprecia la sección transversal levantadas a cada 100 m. las
cuales definieron el cauce principal. Para la zona particular
del estudio, se levantaron 200 m. de secciones las cuales
fueron distribuidas a cada 20 m y se localizan en la planta del
KM-3+786.77 al KM-3+586.77. La ilustración 4, muestra la
sección transversal de estudio, esta se encuentra localiza en la
planta en el KM-3+686.77.
KM
-0
+0
0
.00
00
(9)
Donde m0 son coeficientes en el método de Mirtskhoulava,
b1 y b2 son constantes para la velocidad crítica y son
obtenidos de la tabla 1.
KM
-8
+0
.00
24
Ilustración 3. Zona de proyecto Ranchería Paredón-Macayo.
XXIII C ON G R E S O N A C I O N A L
AMH
DE
H I D R Á U LI C A
PUERTO VALLARTA, JALISCO, MÉXICO, OCTUBRE 2014
AMH
27
CL
26
T.N.=22.28
25
24
23
22
21
20
19
18
17
16
15
-40
-20
0
20
40
60
80
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540
560 580 600 620 640 660 680 700 720 740 760 780
800 820 840 860 880 900 920
ESCALA HORIZONTAL 1 : 1500
ESCALA VERTICAL 1 : 150
Ilustración 4. Sección batimétrica del Río Mezcalapa (estación
3+666.77).
Ilustración 6. Curva granulométrica sondeo mixto 2 (SM-2)
Estudio hidrológico
Estudios de geotecnia
Como resultado de los sondeos, SM-2, SM-3, SM-4, SM-5. Se
observó que en los primeros estratos hay presencia de arena
mal graduada con gravas color gris (ilustración 5). Es
importante recalcar la compacidad baja que presentan los
sondeos de la margen derecha e izquierda ya que se muestra la
facilidad con que se pueden mover las partículas.
Del análisis de las funciones de probabilidad de las estaciones
hidrométrica González y Samaria (localizadas aguas abajo de
la zona de estudio), se obtuvieron los gastos de diseño para
periodos de retorno que van desde 2 a 10,000 años, tal como
se muestran los resultados de las ilustraciones 7 y 8. Para
obtener los gastos finales de la tabla 5, se tomo como criterio
el concepto de continuidad. Para ello se sumaron los
resultados obtenidos de las dos estaciones hidrométricas
alcanzándose el gasto total que está pasa en la zona de estudio.
Ilustración 5. Sondeo mixto, perfil estratigráfico.
De las curvas granulométricas de los sondeos, SM-2, SM-3,
SM-4 y SM-5 (ilustración 6), se obtuvo el diámetro
característico medio D50 = 0.00054 m, mismo que se utilizó
para completar la formula de socavación del método general.
Para la obtención de este valor, se realizó el criterio de obtener
el diámetro medio de cada una de las curva granulométrica
mencionadas. Posteriormente se obtuvo un promedio de los
datos obtenido tal como se muestra en la tabla 4.
Ilustración 7. Resultado estación González.
Tabla 4. Diámetros característicos de las granulometrías.
SONDEOS
D50 (mm)
SM-2
0.12
SM-3
0.50
SM-4
1.30
SM-5
0.25
TOTAL
PROMEDIO
0.54
Ilustración 8. Resultado estación Samaria.
XXIII C ON G R E S O N A C I O N A L
AMH
DE
H I D R Á U LI C A
AMH
PUERTO VALLARTA, JALISCO, MÉXICO, OCTUBRE 2014
Tabla 5. Distribución de gastos asociados a diferentes periodos de
retorno.
MODELO MEZCALAPA
Legend
WS Tr = 100 años
Ground
Bank Sta
TR
Q
6700
2
2592.47
5
3409.10
3867.50
20
4263.13
50
4727.55
100
5048.35
200
5350.19
Levee
5200
4900
4700
4600
4400
4200
4100
3666.77
3200
3000
2400
10
7500
5800
5600
[M3/S]
]
7300
7200
6400
6100
[
7000
3500
2800
2700
2100
1900
1600
1300
1000
800
600
0
300
200
Ilustración 11. Modelo en X, Y, Z.
500
5726.60
1000
5998.51
Socavación general.
2000
6259.44
5000
6574.37
10000
6819.48
La ilustración 12 y 13, representa la erosión general de la
sección transversal del kilómetro 3+666.77. Se observa que
los mejores resultados de erosión, se obtuvieron cuando se
presentan las combinaciones mostradas en la tabla 6. Las
restantes, tienden sistemáticamente a sobre estimar la
socavación ya que se a precia un patrón de incremento con
respecto a la profundidad mayor de la sección analizada. Para
elegir la mejor combinación de la ilustración 12, se
adimensionaron los resultados obtenidos de la socavación. De
la tabla 6, se utilizó la combinación 1 como el resultado más
adverso; las demás combinaciones se encuentran en el rango
de lo permisible. Este mismo criterio se utilizó para calcular
las demás secciones transversales que conforman el cauce.
Estudio hidráulico
Partiendo del gasto Q= 5,048.35 m³/seg, asociado a un periodo
de retorno de 100 años (Tabla 5), se realizó el cálculo
hidráulico con el software HEC-RAS 4.1.0., obteniendo como
resultado la simulación del Río Mezcalapa. De los resultados
del modelo, se presenta el perfil longitudinal (ilustración 9),
sección transversal del KM-3+666.76 (ilustración 10) y el
modelo en tres dimensiones (ilustración 11).
Tabla 6. Resultado de mejores combinaciones.
Mezcalapa
RIO MEZCALAPA
30
Legend
Combinación
Formula Vc
Formula Ue
WS Tr = 100 años
26
Ground
24
22
LOB
20
ROB
18
16
14
0
1000
2000
3000
4000
5000
6000
7000
8000
Main Channel Dis tance (m)
1
Manning- Strickler
Lischtvan- Lebediev
2
Brownlie
Lischtvan- Lebediev
3
Karim & Kenedy
Lischtvan- Lebediev
4
Peterson & Peterson Lischtvan- Lebediev
5
Farias & Pilan
Lischtvan- Lebediev
Ilustración 9. Perfil longitudinal del cauce Mezcalapa.
Mezcalapa
River = RIO Reach = MEZCALAPA 3+666.77
.
26 0
4
5
24
Ele va tio n ( m )
E le v ati o n (m)
28
.033
.
0
4
5
Legend
WS Tr = 100 años
Ground
22
Bank Sta
20
18
Ilustración 12. Resultado de socavación método general
16
0
200
400
600
800
Station (m)
Ilustración 10. Sección KM-3+666.77.
1000
AMH
XXIII C ON G R E S O N A C I O N A L
DE
H I D R Á U LI C A
PUERTO VALLARTA, JALISCO, MÉXICO, OCTUBRE 2014
AMH
SANTOS, A. Modelación hidráulica de un sector de rio
caudaloso con derivaciones empleando HEC-RAS.
Universidad Nacional Colombia. Colombia, 2008.
TRUJILLO, J. Exploración y muestreo de suelos. Universidad
Autónoma de México. México, 2012.
U.S. Army Corps of Engineers, Hydrologic Engineering
Center. HEC-RAS River Analysis System User's manual Ver.
4.1.0.
VEN T. CHOW. Hidráulica de Canales Abiertos: McGrawHill, 1994.
Ilustración 13. Resultado de socavación método general.
Discusión
La evaluación del comportamiento de la metodología
generalizada usando una serie de combinaciones de fórmulas
de fricción y velocidad de equilibrio, considera datos globales
estimativos. Por lo que el análisis realizado a cada una de las
secciones que conforman el cauce, indica que para
profundidades mayores el incremento de la erosión tiende a
ser mayor en gran medida. La metodología presenta la
aplicación práctica de la formulación generalizada a ejemplo
de diseño, se mostraron las discrepancias que se pueden
obtener entre las profundidades de socavación calculadas y
medidas según se aplique uno u otro par de fórmulas para Vr y
Ue. En este sentido, para el caso de ríos arenosos con tirantes
del orden de 7 metros o más, las fórmulas que mejor
predijeron los mejores resultados fueron los establecidos por
Lischtvan & Levediev y, en menor grado, la de Maza y
Echaverria, en combinación con las ecuaciones de freccion de
Manning- Strickler, Brownlie, Karim & Kenedy, Peterson &
Peterson, Farias & Pilan. De los resultados obtenidos podemos
concluir que se considera oportuno investigar otros métodos
que predicen la erosión, esto con el afán de tener rangos de
comparación entre varias metodologías.
Referencias
BUPO, M. Modelación hidráulica de la amenaza por
creciente en el rio chico Nono. Facultad regional Córdova
Universidad Nacional Tecnológica. Argentina, 2011.
DIAZ, C. Modelado hidrológico –hidráulico de inundaciones
en estimación de daños directos tangibles. Facultad de
Ingeniería, Universidad Autónoma del Estado de México.
México, 2012.
FARIAS, PILAN, PECE, OLMOS. Erosión general en ríos
con lecho arenoso. Instituto de recursos hídricos. Argentina,
2012.
JIMENEZ, M. Programa AX. Ajuste de funciones de desastres
de probabilidad, versión 1.05.Centro Nacional de
Prevenciones de Desastres e Instituto de Ingeniería. México,
1997.
JUAREZ, BADILLO.
2005.
Mecánica de suelo, McGraw-Hill
PONCE, VICTOR. Hidrologia de avenidas del arroyo
Binacional Corronwood-Alaman. California y Baja California
Mexico, 2000.