PDVSA MANUAL DE DISEÑO DE PROCESO TRANSFERENCIA DE CALOR HORNOS PDVSA N° MDP–05–F–01 TITULO PRINCIPIOS BASICOS 0 REV. APROB. E1994 62 FECHA DESCRIPCION FECHA PAG. REV. APROB. APROB. APROB. FECHA ESPECIALISTAS MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 1 Indice norma Indice 1 OBJETIVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 ALCANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 REFERENCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 CONSIDERACIONES BASICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.4 4.5 4.6 Antecedentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definiciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tipos de hornos de proceso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selección y diseño de hornos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gráficas para cálculos de combustión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programas de computación para cálculos/simulación de hornos . . . . . . 4 5 12 15 23 25 5 APENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Tabla 1 Tabla 2 Tabla 3 Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 Figura 7 Figura 8 Figura 9 Figura 10A Figura 10B Figura 11A Figura 11B Figura Figura Figura Figura Figura 12 13 14 15 16 Lista de puntos cubiertos normalmente en las especificaciones de hornos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIsta de puntos cubiertos en las especificaciones de servicios de hornos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factores que afectan el diseño y seleccion de hornos . . . . . . . . . . . . . . . . Hornos – verticales cilíndricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horno vertical – cilíndrico con sección de convección horizontal . . . . . . . Hornos con tubos horizontales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variaciones en hornos tipo cabina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horno tipo caja con tubos verticales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horno tipo caja con tubos horizontales con ala sencilla . . . . . . . . . . . . . . . Guía para la selección de hornos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calor de combustión de aceites combustibles y fracciones de petróleo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calor de combustión para gases parafínicos y oleofínicos . . . . . . . . . . . . Entalpía de los componentes del gas de chimenea a bajas presiones (H2O, CO, CO2, SO2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Entalpía de los componentes del gas de chimenea a bajas presiones (H2O, CO, CO2, SO2) (Cont.) . . . . . . . . . . . . . . . . . . . . . Entalpía de los componentes del gas de chimenea a bajas presiones (aire, O2, NO2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Entalpía de los componentes del gas de chimenea a bajas presiones (aire, O2, nO2) (Cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . Calor disponible por combustión de aceite combustible (0°API) . . . . . . . . Calor disponible por combustión de aceite combustible (5°API) . . . . . . . . Calor disponible por combustión de aceite combustible (10°API) . . . . . . Calor disponible por combustión de aceite combustible (15°API) . . . . . . Calor disponible por combustión de aceite combustible (20°API) . . . . . . 28 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal Figura 17 Figura 18 Figura 19 Figura 20 Figura 21A Figura 21B Figura Figura Figura Figura 22A 22B 23 24 TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 2 Indice norma Calor disponible por la combustion de gas combustible de refinería . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calor disponible por la combustión de gas combustible de refinería . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calor disponible por la combustión de gas combustible de refineriía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calor disponible por la combustión de gas combustible de refinería . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contenido de dióxido de carbono en el gas de chimenea (unidades métricas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contenido de dióxido de carbono en el gas de chimenea (unidades metricas) (Cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg de gas de chimenea por kg de combustible . . . . . . . . . . . . . . . . . . . . . . lb de gas de chimenea por lb de combustible . . . . . . . . . . . . . . . . . . . . . . . Viscosidad absoluta del gas de chimenea a 1 atm . . . . . . . . . . . . . . . . . . . Conductividad térmica del gas de chimenea a 1 atm . . . . . . . . . . . . . . . . . 52 53 54 55 56 57 58 59 60 61 MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal 1 TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 3 Indice norma OBJETIVO Proporcionar los fundamentos teóricos que permitan una óptima comprensión de la terminología relacionada y de cálculos relacionados con el tema de Hornos de Proceso. El tema “Hornos”, dentro del área de “Transferencia de Calor”, en el Manual de Diseño de Procesos (MDP), está cubierto por los siguientes documentos: PDVSA–MDP– Descripción de Documento 05–F–01 Hornos: Principios Básicos (Este documento). 05–F–02 Hornos: Consideraciones de diseño. 05–F–03 Hornos: Quemadores. 05–F–04 Hornos: sistemas de tiro forzado. 05–F–05 Hornos: Precalentadores de aire. 05–F–06 Hornos: Generadores de gas inerte. 05–F–07 Hornos: Incineradores. Este documento, junto con los demás que cubren el tema de “Hornos”, dentro del Manual de Diseño de Procesos (MDP) de PDVSA, son una actualización de la Práctica de Diseño “HORNOS”, presentada en la versión de Junio de 1986 del MDP (Sección 8). 2 ALCANCE Cubre las definiciones básicas, descripción de los diferentes tipos de hornos empleados por la IPPCN, gráficas que facilitan cálculos relacionados con combustión en hornos de proceso, y una descripción general del programa de modelaje de hornos a ser empleado como apoyo a los cálculos relacionados con hornos. 3 REFERENCIAS Manual de Diseño de Proceso (versión 1986) S Vol VIII, Sección 14 “Flujo de fluidos” S Vol VIII y IX, Sección 15 “Seguridad en el diseño de plantas” Manual de Ingeniería de Diseño S PDVSA–MID–L–TP–2.7 “Hornos de proceso: Requisición, análisis de ofertas y detalles de compra” MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 4 Indice norma Otras Referencias S S S S 4 API Technical Data Book, cap.14 (1992) “Combustion”. API 665, Fired Heater Data Sheet ASME Code Section 1, Power Boilers Berman, H. L., “Chemical Engineering”, julio 19, 1978, pp 99–104 CONSIDERACIONES BASICAS 4.1 Antecedentes El calentamiento de un fluido de procesos en un horno está acompañado por la combinación de la radiación y convección. El patrón usual de flujo del fluido en el proceso es en contracorriente con el de los gases de combustión, es decir, el fluido en el proceso pasa primero a través de la sección de convección y luego a través de la sección de radiación del horno, mientras que los gases de combustión van en dirección opuesta. Este arreglo permite obtener una mayor eficiencia (la temperatura del gas en la chimenea es más baja) que la que se obtendría si el flujo fuera en paralelo. En la sección de radiación, el calor es transferido al fluido de proceso principalmente por radiación de la alta temperatura de los gases que resultan de la combustión del combustible en la cámara. Otra parte del calor es también transferida por convección. Los gases de combustión a medida que transfieren calor se enfrían, y por lo tanto, la transferencia de calor por radiación progresivamente requiere de más área en los tubos, lo cual llega a ser poco atractivo desde el punto de vista económico. Por esta razón, la transición a la sección de convección es hecha mientras el gas de combustión aún está relativamente caliente. En la sección de convección, el calor es transferido principalmente por convección, aunque una pequeña cantidad de calor se transfiere por radiación. Después que todo el calor, que económicamente puede ser recuperado, ha sido transferido al fluido de proceso, el gas de combustión deja el horno y pasa a través de una chimenea a la atmósfera. Los hornos está divididos en dos categorías principales: hornos de procesos y hornos de pirólisis. Horno de Procesos (Convencional). Estos hornos proveen calor, el cual es usado en los equipos aguas abajo del horno. Ejemplos típicos son hornos de columnas de destilación, precalentadores de reactores (hidrotratamiento y termoreactores) y rehervidores. Los sistemas de calentamiento indirecto, tales como sistemas de aceite caliente o sistemas “Dowtherm”, también usan hornos de procesos. MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 5 Indice norma Hornos de Pirólisis Este tipo de hornos proveen calor para que una reacción química se lleve a cabo dentro de los tubos del horno. Los de craqueo térmico con vapor y los reformadores con vapor son los dos principales ejemplos. Muchas de las consideraciones y problemas en el diseño y operación de estos hornos son similares a los de los hornos convencionales. Sin embargo, estos hornos de pirólisis operan normalmente a altas temperaturas y tienen muchas consideraciones especiales. Algunos hornos, tales como los utilizados en las plantas reductoras de viscosidad y de craqueo térmico, son considerados hornos de procesos, aun cuando existen reacciones químicas dentro de los tubos. Sus temperaturas son bajas, comparadas con las temperaturas de los hornos de pirólisis; y aparte de los cálculos de craqueo, el diseño de este tipo de hornos es muy similar al diseño de hornos de procesos. Tipos de Especificación Para especificar hornos se utilizan dos tipos de documentos: la especificación del diseño y la del calor requerido. En la especificación del diseño todas las variables principales que afectan su comportamiento han sido determinadas y especificadas por el diseñador. El vendedor del horno debe proveer los detalles del diseño mecánico. En la especificación del calor requerido del equipo, sólo son dados los requerimientos de servicio tales como carga calorífica y condiciones de entrada y salida. El fabricante entonces suministra tanto el diseño mecánico como el térmico. En las Tablas 1 y 2 se muestran los aspectos cubiertos en cada tipo de especificación. El API 665 (datos de diseño, Fired Heater Data Sheet) puede ser utilizado para presentar la información requerida para cualquier tipo de en su especificación. Sin embargo, el documento PDVSA–MID–L–TP–2.7, Tabla 1, presenta un formato de especificaciones para compra de hornos de proceso (5 páginas), la cual es la oficial para PDVSA y sus filiales. 4.2 Definiciones Arco del horno Es la porción más elevada (usualmente plana) del horno, soportada desde arriba. Cabezal Es la unión que conecta dos tubos en un serpentín. Estrictamente hablando, es el cabezal removible tipo tapón donde se fijan los tubos bien sea enroscados o soldados. Comunmente, el cabezal se refiere a tubos doblados en forma de U. MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 6 Indice norma Caja Los quemadores y los tubos están encerrados en una caja la cual consiste de una estructura, recubriendo refractario y soporte de tubo. Caja de cabezal Es el compartimiento ubicado al final de la sección de convección, donde están localizados los cabezales. En esta caja colectora no hay flujo de gases de combustión, debido a que se encuentra separada del horno por una plancha aislante. Las cajas colectoras pueden ser usadas algunas veces en la sección de radiación. Calor absorbido (Heat Duty) Es el calor total aprovechado por el flujo de proceso, expresado usualmente MW (BTU/h). El rendimiento térmico total de un horno es la suma de calor transferido a todas las corrientes del proceso, incluyendo servicios auxiliares tales como sobrecalentadores y secadores. Calor disponible Es el calor absorbido de los productos de combustión (gases de combustión) a medida que estos son enfriados desde la temperatura de la llama hasta una temperatura dada de los gases de combustión. Calor generado Se define como el calor total liberado en el horno y es igual al combustible total multiplicado por el poder calorífico inferior (PCI) del combustible. Este calor es expresado usualmente en MW (BTU/h). Cámara de combustión Es un término usado para describir la estructura que circunda los serpentines radiantes y dentro de la cual se localizan los quemadores. Cámara de convección Es la parte del horno que consiste de un banco de tubos, el cual recibe calor de los gases de escape calientes, principalmente por convección. Cámara de radiación Es la parte del horno en la cual el calor es transferido a los tubos de los hornos, primeramente por radiación de la llama y por alta temperatura de los gases de combustión. Celda Es una parte de la sección de radiación separada de otras celdas por tubos o por una pared con refractario. También son llamadas “zonas o secciones”. MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 7 Indice norma Coeficiente de película Es el coeficiente de transferencia de calor por convección de la película de líquido en la pared del tubo. Colector (Breeching) Es un colector de los gases de combustión en la salida de la cámara de convección. Estos gases pasan después a la chimenea. Combustible bruto (Total) Es el combustible total quemado en un horno, incluyendo todas las pérdidas (se expresa usualmente en kg/s) (lb/h)). Combustible neto Es el combustible que se requeriría en el horno sino hubieran pérdidas por radiación, expresado en kg/s (lb/h). Compuerta (Damper) Es un dispositivo que regula el flujo de gases a través de la chimenea o ducto y controla el tiro del horno. Una compuerta típica consiste de una placa plana conectada a un eje el cual puede ser rotado de manera similar a una válvula de mariposa. Conexión entre banco de convección y sección de radiación (Crossover) Es la tubería que transfiere el fluido de proceso desde la salida de la sección de convección a la entrada de la sección de radiación. Conversión Es la fracción de la alimentación transformada en un producto deseado, usualmente expresado como g/kg (% peso) aplicada principalmente en hornos de pirólisis. Cubierta Es un revestimiento de acero el cual encierra la caja del horno y la hace esencialmente hermética. Chimenea Es un conducto cilíndrico de acero, revestido con concreto o ladrillos el cual traslada el gas de escape a la atmósfera y provee el tiro necesario. Densidad térmica Es la cantidad de calor transferido a un tubo por unidad de área, y se basa en el área externa total. Las unidades típicas son kW/m2 (BTU/h–pie2). La densidad térmica también puede ser llamada flujo térmico. MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Indice volumen Página 8 Indice norma Efecto de chimenea Es la diferencia entre el peso de una columna de gases de alta temperatura dentro del horno y el peso de una columna equivalente de aire externo, expresada en kPa por metros de altura (pulgadas de agua por pie). Eficiencia del horno Es la relación entre el calor absorbido y el calor suplido al horno. Ensuciamiento o incrustaciones Es la formación de una película sólida de sucio ceniza u hollín sobre la superficie de transferencia de calor, que da como resultado un incremento en la resistencia al flujo de calor. Exceso de aire Es el porcentaje de exceso de aire en el horno en relación a la cantidad de aire requerida para combustión estequiométrica. Factor de servicio Es una medida de la continuidad de operación del horno, expresada generalmente como la relación de días totales en operación para un período de tiempo dado entre los días calendarios totales en el período. Gases de combustión (Flue gas) Es una mezcla de gases producto de la combustión del combustible. Guías desviadoras (Corbelling) Son planchas estrechas que se extienden desde las paredes laterales de la sección de convección para evitar que el gas de combustión fluya a un lado de la sección de convección, entre la pared y el tubo más cercano, desviándose del banco de tubos. Guía de tubos Dispositivo utilizado para restringir el movimiento de los tubos. Lámina de tubos Es una lámina larga que soporta los tubos y está ubicada en la cámara de convección. Los soportes finales son usualmente de acero al carbón o aleaciones bajas de acero y constituyen un lado del cabezal del horno. Los internos de estos soportes poseen aislamiento por estar expuestos a los gases de combustión. Los soportes intermedios, como están expuestos al gas de escape por ambos lados, son fabricados con una aleación más resistente. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 9 Indice norma Línea de transferencia Tubería usada para conectar la salida del horno y la columna de destilación (ya sea atmosférica ó de vacío), en una instalación petrolera. Mirillas de observación Puertas de observación ubicadas en diferentes puntos seleccionados del piso del horno y en las paredes del mismo, que permiten observar los tubos, soportes y quemadores del horno. Múltiple Es un tubo conectado a varios pasos paralelos y es usado para distribuir o recolectar los fluidos de estos pasos. Pared aislante Es el aislamiento refractario de la parte interna del horno. Paso Es el serpentín que transporta el fluido del proceso desde la entrada hasta la salida del horno. El fluido total del proceso puede ser transportado a través del horno por uno o más serpentines. Película (Superficie) Es una capa fina del fluido adyacente a la pared del tubo, la cual permanece en flujo laminar aun cuando el flujo del fluido es turbulento. El perfil de velocidad en la película es aproximadamente lineal, siendo la velocidad existente en la pared igual a cero. Poder calorífico inferior (PCI) Es el calor de combustión teórico del combustible, cuando no se toma en cuenta el calor de condensación del agua en los gases de combustión. También es llamado poder calorífico neto y es expresado en MJ/kg (BTU/lb). Poder calorífico superior (PCS) Es el calor teórico de la combustión del combustible, cuando el agua formada se considera en estado líquido (Se aprovecha el calor de condensación). También es llamado Poder calorífico total (PCT) y viene expresado usualmente en MJ/kg (BTU/lb). Poder calorífico total (PCT) Ver poder calorífico superior (PCS) Precalentadores de aire Es un intercambiador de calor en el cual se calienta el aire requerido para la combustión, por transferencia de calor desde los gases de escape que salen de la sección de convección. MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 10 Indice norma Quemador Es un dispositivo utilizado para mezclar el combustible y el aire para la combustión. Rango mínimo de operación (Turndown) Ocurre cuando las condiciones de operación del horno son más bajas que las condiciones de diseño: es decir, reducción en el rendimiento térmico, lo cual puede ser el resultado de una reducción en los requerimientos entálpicos, o una reducción de la carga del horno. Sección de protección La sección de protección son las dos primeras filas de tubos en la cámara de convección. Estos tubos están expuestos a radiación directa proveniente de la cámara de radiación y reciben más o menos la mitad del calor por radiación. Estos tubos están fabricados de un material mucho más resistente que los tubos restantes en la sección de convección. También se les llama tubos de choque. Serpentín Es una serie de tubos rectos conectados por retornos de 180°, formando un paso continuo a través del cual el fluido del proceso fluye y es calentado. Soplador de hollín El soplador de hollín está ubicado en la sección de convección y utiliza vapor de alta presión para soplar el hollín y la ceniza de los tubos. Soportes de tubos Es una parte metálica la cual soporta todo el peso de los tubos. Superficie extendida Es la superficie adicionada a los tubos lisos de la sección de convección para proveer mayor área de transferencia. Esta superficie extendida puede consistir de pequeños pernos soldados a los tubos o de aletas también soldadas. Temperatura de chimenea Es la temperatura de los gases de combustión saliendo de la cámara de convección. Temperatura de gases a la salida de la cámara de combustión o temperatura de la pared divisoria (Bridgewall temperature) Es la temperatura de los gases de escape saliendo de la sección de radiación. Este término proviene de los tradicionales hornos horizontales donde la cámara de combustión (zona radiante) y la de convección se separaba por una pared de ladrillos. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 11 Indice norma Temperatura de la masa de fluido (Bulk temperature) Es la temperatura promedio del fluido del proceso en cualquier sección transversal del tubo. Temperatura de película Es la máxima temperatura de la película, en la pared del tubo. Tiro Es la presión negativa (vacío) en un punto dado dentro del horno, expresado usualmente en kPa (pulgadas de agua). Tiro forzado El uso de un ventilador de tiro forzado se requiere para suplir el aire de combustión a los quemadores y para vencer la caída de presión a través de los quemadores. Esto es contrario al tiro natural, donde la columna de gases caliente en la chimenea y el horno proveen la succión para atraer el aire para combustión al horno. Tiro inducido Se usa un ventilador en el lado del flujo de gases de combustión del horno, para proveer el tiro adicional requerido, mayor que el suplido por la chimenea, para sacar el gas de escape a través de la sección de convección. Tiro natural Es el sistema mediante el cual el tiro requerido para llevar el aire de combustión dentro del horno y extraer los gases de combustión del mismo es suministrado solamente por la chimenea. Velocidad crítica (Velocidad sónica) Cuando la velocidad del fluido es igual a la velocidad del sonido a las condiciones de temperatura y presión del fluido. También se llama velocidad sónica. Tope de sección de radiación (Hip Section) Es la zona de transición en el tope de la sección de radiación en hornos de tipo convencionales. La pared de esta sección tiene por lo general un ángulo de 45°. Tubos calentados por ambos lados Tubos ubicados en la sección de radiación expuestos por ambos lados directamente a la radiación emanada de los quemadores. Tubos calentados por un lado Son los tubos en la sección de radiación ubicados cerca de la pared del horno y que tienen sólo un lado expuesto a la llama del quemador. La radiación del lado contrario de los tubos es por reflexión de la pared. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 12 Indice norma Velocidad másica Es el flujo de masa por unidad de área de flujo a través del serpentín. Las unidades típicas para la velocidad másica son Kg/s–m2 (lb/s–pie2). 4.3 Tipos de hornos de proceso Existen muchos tipos/arreglos de hornos, los cuales están disponibles y han sido usados por muchos años. Estos hornos consisten básicamente de cuatro componentes: caja, quemadores, serpentín y chimenea. Los hornos de proceso que se describen a continuación son los tipos más comunes utilizados en las refinerías de las empresas filiales de PDVSA. Hornos verticales–cilíndricos En las Figuras 1. y 2. se muestra la sección transversal típica de este tipo de hornos. Estos hornos probablemente son los más usados para rendimientos térmicos hasta 43.9 MW (150 MM BTU/h). En la sección de radiación, los tubos están colocados o colgados verticalmente en forma de círculo alrededor de los quemadores del piso. Esto hace que la llama sea paralela a los tubos en la sección de radiación. Este tipo de horno puede diseñarse con o sin la sección de convección. Estos hornos sin la sección de convección (Figura 1.A) son muy económicos en términos de inversión, pero debido a que la temperatura de los gases de escape a la salida del horno es my alta (800–1000°C) (1500–1800°F), este tipo de horno tiene una eficiencia muy baja. Este arreglo requiere de un mínimo de área de planta, y las cargas típicas están entre 0.15 y 2.9 MW (0.5 y 10 MM Btu/h). Estos hornos con una sección de convección horizontal ubicada encima de la sección de radiación (Figura 2.), proporcionan un diseño muy eficiente y económico que requiere un mínimo de área de planta. Los gases de combustión fluyen hacia arriba a través del banco de convección y posteriormente a la chimenea. La sección de protección consiste de dos filas de tubos ubicados en el fondo de la sección de convección. La sección de convección puede no justificarse en hornos muy pequeños, es decir, menores de 1.5 MW (5 MM BTU/h), o en hornos instalados en lugares donde el costo de combustible es extremadamente bajo. La mayoría de las instalaciones nuevas con hornos de tubos radiantes verticales son de este tipo. Las cargas típicas están entre 2.9 y 29.3 MW (10 y 100 MM Btu/h) Estos hornos con la sección de convección integrada verticalmente (Figura 1.B), se usaron mucho, pero actualmente rara vez se escogen para nuevas instalaciones. Los mismos tubos son usados para los servicios de radiación y convección. La porción de convección de los tubos usualmente tiene una superficie de forma extendida para incrementar el coeficiente de transferencia de calor por convección. En este tipo de horno sólo se debe quemar gas o combustibles destilados, debido a que la sección de convección es casi imposible de limpiar. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 13 Indice norma Horno tipo cabina con tubos en U (Anillados) (Arbor or Wicket) Este es un diseño especializado en el cual la superficie de calor radiante la proveen tubos en U, que se conectan a los múltiples de entrada y salida. Este tipo de horno esta especialmente adaptado para el calentamiento de flujos grandes de gas bajo condiciones de baja caída de presión. Este diseño se usa mucho en el calentador de carga al reformador catalítico, y en otros servicios de calentamiento. Los quemadores están, usualmente, en piso, produciendo llama vertical, o en la pared, con la llama horizontal entre los tubos en U. Las cargas típicas por arreglo de tubos en U (Arbor coil), están entre 14.7 y 29.3 MW (50 y 100 MM Btu/h). Los hornos tipo cabina con tubos orientados verticalmente ofrecen ahorros considerables en inversión (Figuras 4.C y 4.D). Este arreglo permite utilizar una velocidad másica relativamente baja en el proceso, debido a la gran cantidad de pasos paralelos y con una buena distribución del fluido. En algunos casos (Powerformer), la sección de radiación consiste en zonas separadas para los servicios de precalentamiento y recalentamiento. Estas zonas están separadas por una pared de ladrillos. Los gases de combustión de todas las zonas de radiación pasan a través de una sección común de convección, la cual efectúa usualmente un servicio de precalentamiento solamente. En este tipo de horno las variaciones en las condiciones operacionales de los servicios individuales deben ser consideradas cuidadosamente, debido a que las zonas de recalentamiento también están provistas de calor para precalentar la zona de convección. Este tipo de hornos han sido construidos en tamaños desde 20 hasta 120 MW (desde 70 hasta 400 MM BTU/h) de calor total absorbido. Hornos tipo cabina con tubos horizontales (Horizontal Tube Cabin Furnaces) En la Figura 3. se muestra un horno de este tipo. La sección de radiación incluye los tubos horizontales al lado de las paredes y en el techo inclinado del horno (“Hip section”). La sección de convección se extiende sobre todo lo largo de la sección de radiación. Los quemadores están normalmente ubicados en el piso del horno en una fila por debajo del centro de la cabina y queman verticalmente, pero no es extraño conseguir diseños con quemadores montados en las paredes extremas ó intermedias, por debajo del serpentín. Este tipo de hornos han sido construidos hasta de 150 MW (500 MM BTU/h) de calor absorbido. Sin embargo, en tamaños más pequeños como 35 MW (120 MM BTU/h), los hornos verticales–cilíndricos son mucho más económicos. Este diseño altamente eficiente y económico, representa, actualmente la mayoría de instalaciones nuevas de hornos con tubos horizontales. Se han realizado algunas modificaciones en este tipo de horno para algunas aplicaciones especiales: MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 14 Indice norma 1. En hornos grandes, el uso de una pared central para enfriamiento de aire (Figura 4.A), permite alrededor del doble del tamaño del horno para una longitud de tubo dada. Esta configuración es usada cuando los tubos en la zona de una celda de radiación sencilla son más largos de 24 m (80 pie), o cuando la celda de radiación es de más de 15 m (50 pie) de alto. Los quemadores están ubicados en el piso. Estos hornos se conocen como hornos horizontales de caja de tubos de dos celdas. Las cargas típicas están entre 29.3 y 87.9 MW (100 y 300 MM Btu/h). 2. Cuando se requiera dos zonas separadas de calentamiento en la sección de radiación, se puede tener una pared divisoria central (Figura 4.B). Dependiendo del tamaño del horno, el centro de la pared puede o no estar recubierta con tubos. Los diferentes servicios pueden ser compatibles, debido a que hasta cierto punto la quema en una sección afectará la transferencia de calor en la otra sección. La máxima capacidad para un servicio es 75% del diseño con el otro servicio a máxima capacidad, si ambos servicios usan la sección de convección (o 50% del diseño). Si un servicio es sacado fuera de operación, el horno debe pararse completamente o se debe circular otro fluido para evitar que se quemen los tubos del lado del servicio fuera de operación. Este arreglo permite control individual de llama por cada zona del horno, además de poder tener tanto quemadores ubicados en el piso (llama vertical), ó quemadores montados en la pared (llama horizontal), a ambos lados de la pared divisoria. Estos hornos de pared divisoria central, tienen cargas típicas entre 5.9 y 29.3 MW (20 y 100 MM Btu/h) Hornos tipo caja con tubos verticales (Vertical Tube Box Furnaces) Este diseño es propiedad de la Exxon y tiene ventajas sustanciales con respecto a los diseños de otros fabricantes. Por ser un diseño propietario, sólo se hará una descripción general, ya que no será cubierto en los MDP. La Figura 5. muestra el caso típico de este tipo de hornos. En la zona de radiación, los tubos están orientados verticalmente a lo largo de las cuatro paredes. Estos tubos, al igual que en hornos verticales–cilíndricos y hornos con cabina, son expuestos al fuego por un solo lado. Además, las filas de tubos verticales que atraviesan el horno son expuestos por ambos lados al fuego emitido por los quemadores ubicados en el piso. Estos tubos tienen un calor de entrada 50% mayor que los tubos ubicados en la pared, aunque la densidad de calor pico es la misma que en los tubos de la pared. La adición de este tipo de tubos (two–side fired tubes) reduce el serpentín de radiación lo cual resulta en una reducción significativa del volumen de la celda de radiación, comparado con los hornos con cabina de tubos horizontales. Cada paso de tubos tiene un número igual de tubos del centro y de pared, de tal forma que la distribución de calor entre los pasos sea uniforme. Este tipo de horno es MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 15 Indice norma adecuado cuando se requiere el uso de quemadores de tiro forzado de gran capacidad. Dos o tres quemadores proveen el calor requerido a cada celda que por lo general fijan las dimensiones de la cámara de combustión. Una sección horizontal de convección esta localizada encima de la sección de radiación. Ocasionalmente, se pueden hacer variaciones en los arreglos de este tipo de hornos. La variación más común consiste en instalar solamente los tubos centrales expuestos al fuego por ambos lados. Estos tubos son usualmente instalados en dos filas, paralelas a la sección de convección extendiéndose por todo lo largo del horno, este último arreglo es parecido al utilizado en los hornos de pirólisis. Para una cantidad de calor requerida, el uso de estos tubos (two–side fired tubes) requiere menor superficie (y una longitud de serpentín menor) que en hornos convencionales, debido a que los primeros (two–side fired tube) absorben más calor (50%) que los tubos de la pared (one–side fired wall tubes). Sin embargo, la ventaja de un serpentín más corto requerirá la utilización de una sección de radiación más larga. El uso de este tipo de tubos (two–side fired tubes) tiene ventajas en los siguientes casos: 1. Alto costo del material de los tubos; por ejemplo, tubos gruesos de acero inoxidable. 2. Cuando se requiere corto tiempo de residencia. 3. Cuando la caída de presión permisible en el serpentín es baja. 4. Cuando se requiera invertir para aumentar capacidad. (Los tubos de la pared pueden ser añadidos posteriormente). Hornos tipo caja con tubos horizontales (Horizontal Tube Box Furnaces) La Figura 6. muestra el arreglo típico de un horno de este tipo. Las secciones de radiación y convección están separadas por una pared llamada pared de ladrillo. Los hornos más largos tienen dos secciones de radiación, con una sección de convección común localizada entre ellas. Esto hace que la sección de convección sea imposible de limpiar por métodos normales de soplado. Los quemadores están ubicados al final de la pared y queman en dirección de la pared de ladrillo. Los tubos están orientados horizontalmente y están expuestos al fuego perpendicularmente. Estos hornos fueron muy populares en el pasado, pero actualmente son obsoletos debido principalmente a su alto costo. 4.4 Selección y diseño de hornos Tubos horizontales vs tubos verticales El diseño ideal de un horno debería proveer radiación uniforme a todos los tubos y a todos los lados de los tubos. Esto, obviamente, no se alcanza en los diseños MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 16 Indice norma reales. Desde este punto de vista, los hornos con tubos verticales están en desventaja, ya que, al ser altos y delgados, con llama vertical desde el piso del horno, hacen que la zona de radiación más intensa se concentre en la zona media baja de la cámara de combustión (firebox). Debido a que los extremos de los tubos están bastante más alejados de esta zona media baja que el medio de los tubos, se espera tener grandes fluctuaciones en la velocidad de transferencia de calor a lo largo de los tubos, particularmente con ajustes no tan ideales en quemadores. Además, el flujo vertical en tubos puede producir varias condiciones indeseables. A velocidades bajas y con baja vaporización, se generará una segregación del vapor del líquido. Esto resultará en una alta concentración de líquido en los tubos con flujo ascendente, y una alta concentración de vapor en tubos con flujo descendente; esto, a su vez, producirá tubos con paredes calientes en los tubos con flujo descendente, y una excesiva caída de presión. Cuando el horno se para, ya que los tubos no pueden drenar, se requieren períodos excesivamente largos de limpieza con vapor (“steam out”), para desalojar el horno. También puede quedar agua atrapada en el arranque, y ésta puede arrastrarse como tapones a medida que la temperatura y el flujo al horno aumentan, con la posibilidad que se generen explosiones de vapor de agua. Sin embargo, la sencillez de construcción (para los verticales cilíndricos), y la poca área de planta que ocupan los hace muy competitivos desde el punto de vista de inversión. Además, de acuerdo a los diseños especiales de hornos que una compañía esté usando, hace que estos comentarios no sean lo suficientemente definitivos: tal es el caso de EXXON, la cual, gracias a su diseño propietario de hornos tipo caja con tubos verticales, tiene preferencia por hornos verticales, a despecho de las desventajas presentadas anteriormente. De acuerdo a lo presentado anteriormente, la escogencia entre hornos horizontales ó verticales no es evidente. De preferencia, para cargas calóricas grandes, usar hornos tipo cabina con tubos horizontales; para cargas pequeñas, y si los patrones de flujo no se perturban demasiado, usar hornos verticales cilíndricos con sección de convección horizontal. Además, los hornos verticales cilíndricos son los más apropiados para servicios no críticos, como rehervidores donde la carga de calor puede mantenerse constante sin reducir la flexibilidad de la planta. Comportamiento de un horno El requerimiento fundamental para alcanzar un buen funcionamiento de un horno es el diseño confiable del horno. Los requerimientos del diseño deben ser adecuadamente interpretados. Esta base debe incluir todo lo referente al proceso y a los factores mecánicos que estén involucrados en el diseño. También, se deben considerar los requerimientos especiales que tengan que ver con una situación específica. El funcionamiento satisfactorio de un horno puede ser medido haciendo las siguientes combinaciones: MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 17 Indice norma Operabilidad – Es la medida más sencilla e importante del funcionamiento del horno y se refiere a la habilidad del horno a alcanzar los requerimientos del proceso con un factor de servicio aceptable. Mantenimiento – Se debe considerar el costo y las horas hombres requeridas para mantener el horno en buenas condiciones de operabilidad. En muchos casos, el mantenimiento está basado en la experiencia de las refinerías y la filosofía de inversión. Retorno de la inversión incremental Este factor afecta principalmente el área de tubos del horno, es decir, añade área de transferencia de calor para aumentar la eficiencia y ahorrar combustible. Este probablemente es el único tipo de inversión que puede ser evaluado separadamente. Factores que afectan la selección y diseño de hornos Los factores que pueden ser considerados en el diseño de un horno son discutidos a continuación y resumidos en la Tabla 3. Estas consideraciones afectarán el tipo y tamaño del horno, el número de tubos y pasos, los materiales usados y la eficiencia del horno. Calor absorbido y tipo de servicio – Las principales consideraciones en la selección de un tipo específico de horno son el calor absorbido y el tipo de fluido (flujo líquido o parcialmente evaporado en función del vapor). Debido a que la densidad del flujo de calor de radiación se define para cualquier servicio, el tamaño físico del horno es proporcional al calor absorbido. En la Figura 7. se muestra una guía para la selección de hornos. Tipo de combustible – El combustible que se va a quemar en un horno tiene un efecto importante en el diseño. Por tal razón, se debe decidir con anticipación el tipo o tipos de combustibles que se quemarán antes de comenzar con los cálculos detallados del diseño. Entre los factores afectados por el tipo de combustible se encuentran: 1. Eficiencia del horno – El valor del combustible afectará la inversión incremental del horno, la cual puede ser justificada para aumentar la eficiencia. 2. Costo del horno – En general, el costo de inversión de un horno diseñado para quemar combustible líquido pesado es 10–20% mayor que el costo de inversión si sólo se quema gas. Esto se debe principalmente a la inversión que representan los sopladores. 3. Superficie extendida en la sección de convección – Los tubos con aletas se ensucian fácilmente por lo que este tipo de tubos se deben usar cuando sólo se queme gas (o combustible líquidos muy livianos). Los tubos (studded) pueden ser usados si el combustible es más pesado que 900 kg/m3 (25°API) a 15°C (60°F). MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 18 Indice norma 4. Limpieza de la sección de convección – Si el combustible contiene más de 0.1 g/kg (0.01% en peso) de cenizas, se deben instalar sopladores de hollín para mantener limpios los tubos de convección. 5. Tipos de quemadores – La quema de gas se hace usualmente con quemadores de tiro natural. Este tipo de quemadores son fáciles de operar y mantener, además la combustión es buena y la atenuación del ruido es fácilmente controlada con silenciadores primarios y cámaras de distribución. Para reducir estos problemas, cuando se esté quemando aceite se deben usar quemadores de tiro forzado. Con este tipo de quemadores se logra una mejor combustión, el mantenimiento y la atención de la operación se reducen y el ruido es fácilmente atenuado. El sistema de tiro forzado es adaptable al control de computadoras. 6. Arreglo de la sección de radiación y convección – Para quemar combustibles líquidos se requieren mayores espacios libres entre los quemadores y los tubos, comparado con combustibles gaseosos, debido a que en la quema de combustibles líquidos la llama producida es mucho más larga. La velocidad másica de los gases de escape en la sección de convección debe ser diseñada más baja cuando se queman líquidos que cuando se quema gas, debido al mayor potencial de ensuciamiento del combustible líquido. 7. Exceso de aire de diseño – Para obtener combustión completa del combustible se requiere una cantidad de aire de combustión mayor que el requerido teóricamente para combustión completa. Esto es causado por variaciones en la distribución de aire y combustible a cada quemador, y la mezcla imperfecta del aire y combustible en el quemador y en la llama. Por tal razón, se debe suplir aire en exceso a fin de obtener una buena combustión. Sin embargo, no se debe suministrar más aire en exceso que el requerido, ya que esto implica pérdidas de combustible debido a que el aire adicional debe ser calentado y venteado por la chimenea con lo cual se malgasta combustible. Todos los diseños de hornos con tiro forzado o tiro natural y que quemen gas combustible deben basarse en 20% de exceso de aire. Por otro lado, los diseños de hornos con tiro natural y que queman combustible líquido o una combinación de gas/líquido, presentan grandes dificultades para un buen mezclado, por tal razón, para este tipo de diseño se debe tomar en cuenta un 30% de exceso de aire. 8. Materiales corrosivos – Si el combustible a ser quemado contiene altas concentraciones de materiales corrosivos, tales como vanadio, sodio o azufre; se requerirá de materiales especiales para el refractario y los soportes de los tubos. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 19 Indice norma La temperatura de diseño del metal de los tubos debe ser mantenida por debajo de 620°C (1150°F), si el combustible contiene más de 40 mg/kg (40 ppm) de vanadio y sodio. 9. Corrosión en sitios fríos – Con el fin de evitar la corrosión en sitios fríos, se debe tomar en consideración la temperatura del metal y las temperaturas de entrada de la carga cuando estas estén entre 120–150°C (250–300°F). Cuando se queman combustibles que contienen azufre, parte de este azufre se convierte en trióxido de azufre (SO3), el cual se combina con vapores de agua formando ácido sulfúrico, el cual permanece en forma gaseosa mientras su temperatura esté por encima de su punto de condensación y se condensa en áreas relativamente frías, (entre 120–150°C) (250–300°F) causando corrosión en el metal. Las superficies más propicias a ser afectadas son los lados aguas abajo de la sección de convección, debido a que como sólo ocurre una pequeña transferencia de calor, la temperatura del metal de los tubos es muy cercana a la temperatura del fluido del proceso. Temperatura de chimenea – El valor económico de la temperatura de la chimenea es una función del valor del combustible, de la temperatura de entrada del fluido del proceso, del costo de inversión incremental de la sección de convección y del coeficiente requerido para el retorno de la inversión incremental. A medida que la temperatura de la chimenea se reduce, el calor es desviado de la zona de radiación a la sección de convección. De esta manera, mientras que la inversión en la sección de convección y chimenea aumentan, hay una compensación bajando la inversión de la zona de radiación. Estos conceptos también pueden utilizarse en hornos donde el calor de radiación sea fijo (tales como craqueos con vapor y reformadores), si el incremento en el calor de convección reduce la inversión requerida para otro equipo. Es importante que, cuando se esté fijando este valor para nuevas instalaciones ó para instalaciones a ser remodeladas, se haga un trabajo conjunto con los grupos de Estimación de Costos, ya que pueden existir ahorros importantes en equipos tan costosos como lo son los hornos de proceso. Condiciones operacionales y características de fluido en servicios de puro líquido o con vaporización – Estos hornos son diseñados para minimizar la formación de coque. A temperaturas de película por encima de 350°C (660°F) aproximadamente (usualmente equivale a una temperatura volumétrica de fluido por encima de 315°C (600°F)), se da origen a craqueo del lado interno de la pared del tubo. Los hidrocarburos son craqueados y una película de coque se forma gradualmente. Esta película produce una alta caída de presión a través del serpentín y altas temperaturas del metal del tubo. Estos dos factores deben tomarse en MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 20 Indice norma cuenta en el diseño. Tarde o temprano, todos los hornos en estos servicios deben decoquificarse. A fin de minimizar la diferencia entre la temperatura volumétrica del fluido y la temperatura de la película es necesario un coeficiente de película alto, el cual es obtenido manteniendo condiciones de flujo turbulento dentro del tubo. Mientras más grande sea la velocidad másica, mayor será el coeficiente de transferencia de calor. Sin embargo, si la velocidad másica es muy alta causará una caída de presión elevada en el serpentín, lo que implica alto costo por bombeo, aumento en la presión de diseño del equipo aguas arriba y posible erosión en los retornos de los tubos. Para servicios convencionales de hidrocarburos (líquidos o vaporizados), la velocidad másica de diseño es mantenida en el rango de 1200 a 1700 kg/s–m2 (250 a 350 lb/s–pie2). Este rango ha demostrado en la práctica ser satisfactorio para hornos que tengan flujos verticales u horizontales. En el documento PDVSA–MDP–05–F–02, se dan algunas recomendaciones específicas sobre velocidad másica. En condiciones por debajo del rango de operación, la velocidad másica debe mantenerse por encima de 730 kg/s–m2 (150 lb/s–pie2). Esto puede resultar en una alta velocidad másica a las condiciones de diseño (asociado con bajos costos) en hornos diseñados para un alto rango de operabilidad o donde se hace una inversión para aumentar sustancialmente la carga del horno. Recircular a través del horno puede considerarse para mantener la velocidad másica en condiciones del rango de operación (turndown) y evitar alta caída de presión en condiciones de diseño. En general, un diseño con un rango de operación menor de 60% de la carga de diseño produce un sobre costo. En algunas situaciones, tales como a la salida de un horno de vacío, no es posible mantener esta velocidad másica alta. Debido a la baja presión y al alto volumen específico del gas, si la velocidad másica es alta se puede alcanzar la velocidad crítica (o sónica) a la salida del horno. Esto puede causar erosión en los tubos del horno o en la línea de transferencia y oxidación del fluido (lo cual puede perturbar el fraccionamiento en la torre). Para evitar estos problemas, los hornos de vacío y las líneas de transferencia son diseñadas para velocidades por debajo de 80% de la velocidad crítica (Ver documento PDVSA–MDP–05–F–04). Este método requiere reducir el valor del diseño de la velocidad másica en la salida de los tubos a un valor entre 580–730 kg/s–m2 (120–150 lb/s–pie2), pero no puede ser menor que 440 kg/s–m2 (90 lb/s–pie2) bajo condiciones de “turndown”. Para evitar la velocidad crítica, es preferible bajar la velocidad másica a la salida de los tubos en hornos de vacío que aumentar la presión a la salida del serpentín. Esto último también evita el MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 21 Indice norma problema, pero al suprimir la vaporización hace que la temperatura requerida a la salida del serpentín aumente excesivamente. Aun con esta reducción en velocidad másica, la coquificación no es un problema a la salida de los tubos, debido a la alta velocidad lineal y al poco tiempo de residencia. En el diseño de la línea de transferencia, se debe asegurar que la caída de presión no sea mayor que la requerida actualmente, ya que una caída de presión excesiva en la línea de transferencia puede causar baja velocidad lineal y alto tiempo de residencia, lo que se traduce en la formación rápida de coque. Además de los criterios de velocidad másica, los hornos de vacío de las plantas de lubricantes también deben cumplir con los criterios de tiempo de residencia/temperatura para evitar degradación de los productos lubricantes. Un coeficiente de película alto no necesariamente garantiza un diseño satisfactorio. Si el calor transferido a cualquier punto es demasiado grande, la vaporización en la superficie será tan rápida que se producirá una capa de vapor por todo el área. La superficie será cubierta de burbujas de vapor, las cuales no pueden ser removidas por el líquido. Por tal razón, el coeficiente de película efectivo disminuye lo que resulta en temperaturas excesivas en los tubos y en la película y la rápida formación de coque. Para servicios típicos de vaporización de hidrocarburos la tasa máxima permisible de transferencia de calor es 110 kW/m2 (35000 BTU/h–pie2) antes de que se produzca sobrecalentamiento (asumiendo una velocidad másica adecuada). La transferencia de calor no es uniforme a través de la zona de radiación. La densidad calórica promedio está entre 40–50% del máximo para tubos expuestos al fuego por un sólo lado; esta mala distribución está determinada por la geometría del horno. Por lo tanto, el diseño y operación del horno debe basarse en densidades calóricas suficientemente pequeñas a fin de obtener la densidad máxima permisible. En el documento PDVSA–MDP–05–F–02, se detallan las recomendaciones sobre la densidad calórica promedio. Seguidamente, al igual que otros criterios recomendados en el diseño de hornos, se asegura que la densidad calórica máxima será la más adecuada. A fin de evitar formación de coque o problemas de ensuciamiento, se debe evitar la condición de ir al punto seco del serpentín. El material que no se vaporice puede adherirse en el punto seco del tubo y causar grandes obstrucciones. Este material extraño o polímero pudo formarse durante el almacenaje. Este tipo de hornos deben diseñarse de tal forma que el punto seco queda fuera de la zona de calentamiento. El límite de la máxima evaporación en el serpentín debe ser 80%. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 22 Indice norma Por otro lado, cuando un destilado es alimentado directamente al horno (sin almacenaje intermedio), el riesgo que se corre de ir al punto seco es mínimo, debido a que el destilado ha sido vaporizado completamente. El criterio normal para el diseño de servicios de vaporización puede que no sea aplicable a fluidos con un solo componente en tubos horizontales. El flujo estratificado, derivado de temperaturas excesivas en el metal del tubo, ha sido encontrado en hornos que operan cerca de la interfase entre flujo tapón y burbuja o espumoso (Ver PDVSA–MDP–(Pendiente) (Consultar MDP versión 1986, Subsección 14C)). Hornos en servicios para puro vapor – Los hornos con flujo de puro vapor no son susceptibles a los problemas severos de coquificación, debido a la naturaleza ligera del fluido del proceso. Con la velocidad máxima a condiciones de diseño se puede obtener un coeficiente fílmico adecuado cuando las velocidades másicas están entre 75 y 490 kg/s–m2 (entre 15 y 100 lb/s–pie2). A velocidades más altas, como las usadas en servicios de vaporización, se puede dar origen a caídas de presión altas en flujo puro–vapor. Estos ∆P altos no son económicos en circuitos con compresores. Hornos de servicio múltiple – En muchos casos, se pueden incluir dos o más servicios en un mismo horno, con ahorros sustanciales en la inversión. Esto aplica para hornos con cabina y del tipo cilíndrico–vertical. Con el propósito de proporcionar flexibilidad y control de la operación de cada servicio, los mismos deben estar separados por una pared interna refractaria. Si un servicio opera a 100% de su capacidad, el otro u otros servicios pueden reducirse a 75% de la capacidad de diseño; asumiendo que todos los servicios están integrados adecuadamente en la sección de convección. Todos los servicios pueden reducirse al 50% del diseño en la sección de radiación. Los hornos con cajas verticales también pueden ser usados para dos servicios. En este caso no se requiere la pared con refractario interno entre los dos servicios. Hornos de alta presión – Para el diseño de hornos de alta presión, 7000 kPa (1000 psig) manométricos y mayores, se requieren tomar consideraciones mucho más conservadoras que para el diseño de hornos de baja presión, debido a los daños potenciales ocasionados por fallas en los tubos. Por tal razón, se deben tomar en cuenta los siguientes requerimientos mínimos a fin de reducir la probabilidad de falla de un tubo y minimizar los daños posteriores: 1. Minimizar el riesgo de llamas tocando los tubos y alta temperatura del metal del tubo con buenas dimensiones de la cámara de combustión. También puede considerar la quema por ambos lados del tubo y no quemar aceite combustible. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 23 Indice norma 2. Usar la Sección 1 del Código ASME para determinar el espesor mínimo de los tubos de la pared. A fin de asegurar que este espesor es adecuado con respecto a tensiones térmicas, relajación, fatiga, etc.; se deben revisar los cálculos.. 3. Usar diámetros de tubo pequeños, 100 mm (4 pulg) D.I. máx. para limitar la velocidad de descarga en caso de fallas de tubos. 4. Incorporar un sistema de alivio en la cámara de combustión, para mantener la presión dentro de la capacidad estructural del horno en caso de cualquier falla. 5. Suministrar válvulas que se operen con control remoto a la entrada y salida para aislar el horno del proceso en caso de fallas de tubos. Ubicar las válvulas de tal forma que queden protegidas del horno y permitan el acceso en caso de falla. Las válvulas de retención no son recomendadas para propósitos de aislamiento del horno. 4.5 Gráficas para cálculos de combustión Combustibles líquidos La Figura 8. presenta los calores de combustión de los combustibles líquidos y de las fracciones de petróleo en función de la gravedad API. Se muestran tanto los valores caloríficos superiores, (PCS) (HHV) e inferiores (PCI) (LHV). Estos valores han sido corregidos en base al efecto promedio de impurezas (diferentes al agua) que se encuentran usualmente en los combustibles líquidos. Estas impurezas promedio son bastante representativas, aunque pudiese haber desviaciones apreciables para un combustible en particular. En general, los valores caloríficos de los combustibles líquidos promedio se encuentran dentro del 1% de diferencia con los valores obtenidos con las curvas. En el caso que se desee hacer cálculos en forma automatizada, en el Manual de datos técnicos del API, capítulo 14, se presenta el procedimiento 14A1.3, el cual incluye, además, ecuaciones para corregir por impurezas. Las Figuras 12., 13., 14., 15. y 16. proporcionan el calor disponible para la combustión a 15°C (60°F) de los combustibles líquidos con gravedades de 0, 5, 10, 15 y 20 °API), respectivamente. Debido a que estos gráficos difieren ligeramente unos de otros, no es necesario interpolar. El calor disponible a una temperatura y un porcentaje de exceso de aire dados puede leerse en la figura para los combustibles líquidos cuya densidad sea semejante a la del combustible líquido en cuestión. Si se sabe que las impurezas difieren apreciablemente de las consideradas para los combustibles promedio en la Figura 8., se puede corregir el calor disponible en proporción directa a la porción de hidrocarburo del combustible, considerando el azufre como material inerte. MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 24 Indice norma Combustibles gaseosos La Figura 9. proporciona los calores de combustión para gases parafínicos y olefínicos, en función del peso molecular. Los calores de combustión de los componentes puros que usualmente se encuentran en los gases combustibles se muestran en la tabla siguiente: ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Componente PCS (HHV) Hidrógeno Monóxido de carbono Sulfuro de hidrógeno Metano Etano Etileno Propano Propileno Butano Butileno NOTA: 142.0 10.0 17.4 55.6 51.9 50.2 50.2 48.8 49.5 48.4 PCI (LHV) 120.0 10.0 16.0 50.0 47.4 47.2 46.3 45.8 45.8 45.4 Para obtener los valores en BTU/lb, multiplicar por 429.953 De la figura 17. a la 20. se presenta el calor disponible para la combustión a 15°C (60°F) de combustibles gaseosos con varios valores caloríficos. Estas curvas representan combustibles típicos de refinería como lo son las mezclas de H2, hidrocarburos e inertes. Dichas curvas no representan mezclas que constituyen esencialmente hidrocarburos puros (p. ej. gas natural). Propiedades del gas de chimenea Las Figuras 10.A., 10.B., 11.A. y 11.B., presentan las entalpías de los componentes del gas de chimenea. Las Figuras 21.A. y 21.B. suministra el contenido de dióxido de carbono en el gas de chimenea para la combustión de varios combustibles como función del porcentaje de exceso de aire. En el caso que se desee hacer cálculos en forma automatizada, en el Manual de datos técnicos del API, capítulo 14, se presenta la ecuación 14–0.4, la cual permite obtener dicho contenido como un porcentaje molar, pero requiere conocer el contenido de inertes, relación C/H y contenido de azufre. Las Figuras 22.A. y 22.B. proporcionan la masa de gas de chimenea por unidad de masa de combustible en función del porcentaje en exceso de aire. En el caso que se desee hacer cálculos en forma automatizada, en el Manual de datos técnicos del API, capítulo 14, se presenta la ecuación 14–0.3, la cual permite obtener dicho valor como masa de gas de chimenea por unidad de masa de combustible, pero requiere conocer el contenido de inertes, relación C/H y contenido de azufre. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 25 Indice norma El efecto del porcentaje en exceso de aire sobre las propiedades físicas del gas de chimenea no está claro. Por lo tanto, ha sido despreciado en las Figuras 23.y 24., las cuales suministran las viscosidades y conductividades térmicas, respectivamente, del gas de chimenea en función sólo de la temperatura. 4.6 Programas de computación para cálculos/simulación de hornos Existen, en el mercado, compañías dedicadas a la investigación y desarrollo en el área de hornos y calderas de fuego directo y el uso de la tecnología de computación aplicada al desarrollo de “Software“ para la evaluación de este tipo de equipos. Entre estas compañías se encuentran PFR y HTRI (Heat Transfer Research Institute), con la serie de programas de HTRI. 4.6.1 Heat Transfer Research Institute (HTRI): Los programas de HTRI son el “estándar de facto” para diseño de intercambiadores de calor. PDVSA adquirió toda la serie de programas de HTRI, para tenerlos disponibles a nivel corporativo. Aún cuando la experticia principal de HTRI está en intercambiadores de calor, ha hecho una reciente incursión en el cálculo de hornos con el programa “FH–0”, el cual simula el comportamiento de un horno existente, además de hacer cálculos de combustión con cualquier tipo de combustible. Este programa es útil para resolver problemas operativos, evaluar diseños competitivos de vendedores, evaluar cambios para remodelar hornos viejos, etc. 4.6.2 PFR: Esta compañía se presenta con el programa “FRNC–5”, el cual simula y predice la eficiencia de la mayoría de los hornos y calderas de fuego directo que se encuentran en instalaciones de refinación de petróleo, plantas petroquímicas y en esquemas de cogeneración. La mayoría de las partes de un horno pueden simularse, incluyendo secciones de convección en hogares (fireboxes) múltiples, ductos, chimeneas, muchas configuraciones de serpentines, tipos variados de tubos y aletas, líneas de transferencia, múltiples (manifolds) y aditamentos de tuberías. El enfoque riguroso de simulación empleado por este programa sigue a las corrientes del proceso y de los gases de combustión a medida que pasan por cada serpentín y sección del horno, permitiendo determinar en forma precisa lo siguiente: 1. Eficiencia global del horno y del hogar ó cámara de combustión (firebox) 2. Temperaturas del gas de combustión saliendo de la cámara de combustión, y entrando a la chimenea MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 26 Indice norma 3. Densidades de flujos pico, promedio convectivo y radiante local, de calor. 4. Determinación de regímenes de ebullición y de flujo bifásico. 5. Transferencia de calor y caída de presión en flujo bifásico 6. Transferencia de calor y tiro del lado de las llamas 7. Presencia de flujo estrangulado (“choked”), tubos secos o corrosión potencial por extremos fríos. Este programa está disponible a través de TEIG (Dpto de Ingeniería General), en INTEVEP, S.A. 5 APENDICES Tabla 1 Tabla 2 Tabla 3 Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 Figura 7 Figura 8 Figura 9 Figura 10A Figura 10B Figura 11A Figura 11B Figura 12 Figura 13 Figura 14 Lista de puntos cubiertos normalmente en las especificaciones de hornos LIsta de puntos cubiertos en las especificaciones de servicios de hornos Factores que afectan el diseño y seleccion de hornos Hornos – verticales cilíndricos Horno vertical – cilíndrico con sección de convección horizontal Hornos con tubos horizontales Variaciones en hornos tipo cabina Horno tipo caja con tubos verticales Horno tipo caja con tubos horizontales con ala sencilla Guía para la selección de hornos Calor de combustión de aceites combustibles y fracciones de petróleo Calor de combustión para gases parafínicos y oleofínicos Entalpía de los componentes del gas de chimenea a bajas presiones (H2O, CO, CO2, SO2) Entalpía de los componentes del gas de chimenea a bajas presiones (H2O, CO, CO2, SO2) (Cont.) Entalpía de los componentes del gas de chimenea a bajas presiones (aire, O2, nO2) Entalpía de los componentes del gas de chimenea a bajas presiones (aire, O2, nO2) (Cont.) Calor disponible por combustión de aceite combustible (0°API) Calor disponible por combustión de aceite combustible (5°API) Calor disponible por combustión de aceite combustible (10°API) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal Indice manual Figura 15 Figura 16 Figura 17 Figura 18 Figura 19 Figura 20 Figura 21A Figura 21B Figura Figura Figura Figura TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS 22A 22B 23 24 Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 27 Indice norma Calor disponible por combustión de aceite combustible (15°API) Calor disponible por combustión de aceite combustible (20°API) Calor disponible por la combustion de gas combustible de refinería Calor disponible por la combustión de gas combustible de refinería Calor disponible por la combustión de gas combustible de refineriía Calor disponible por la combustión de gas combustible de refinería Contenido de dióxido de carbono en el gas de chimenea (unidades métricas) Contenido de dióxido de carbono en el gas de chimenea (unidades metricas) (cont.) kg de gas de chimenea por kg de combustible lb de gas de chimenea por lb de combustible Viscosidad absoluta del gas de chimenea a 1 atm Conductividad térmica del gas de chimenea a 1 atm MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 28 Indice volumen Indice norma TABLA 1. LISTA DE PUNTOS CUBIERTOS NORMALMENTE EN LAS ESPECIFICACIONES DE HORNOS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ a. Fluido del proceso Condiciones Operacionales f. Condiciones para cada sección de tubos: (radiación, convección, vapor sobrecalentado) 1. Carga 1. Densidad 2. Porcentaje de vaporización a la entrada y calórica promedio (superficies extendidas basadas en área externa total) salida 2. Temperaturas de entrada y salida de la sección 3. Calor absorbido (Heat Duty) 3. Presiones de entrada y salida de la sección b. Vapor sobrecalentado (si existe) 4. Temperatura de gases de combustión, a la salida de cada sección (temp. de la chimenea). Estas 1. Carga temperaturas también son usadas para diseñar 2. Calor absorbido los tubos soportes de la sección de convección c. Calor absorbido total y calor suministrado (PCI) g. Temperatura de diseño del refractario caliente d. Porcentaje exceso de aire en chimenea consumido por quemador e. Eficiencia (basada en poder calorífico inferior) a. Número y D.E.: radiación, tubos de choque, convección (tubos lisos y de superficie extendida) y vapor Tubos g. Espacio centro–a–centro (1) h. Espacio centro–a–pared (1) b. Número de pasos: radiación, protección, convección y i. Espacio centro–a–centro de quemadores (1) j. Materiales vapor c. Número de tubos por fila: protección, convección y vapor (1) k. Detalles de tubos enroscados (longitud, diámetro, números por fila, espacio por fila, material) d. Espesor promedio (o mínimo) de la pared l. e. Longitud expuesta f. Area expuesta, incluyendo superficie extendida Detalle de tubos con aletas (altura, espesor, separación, material) m. Prueba hidrostática del serpentín (4) Cabezales a. Tipo c. Ubicación: Dentro y fuera de la cámara de combustión (radiación dentro y convección fuera de la cámara) b. Materiales: normalmente igual que los tubos (los cabezales de convección pueden ser de material de baja aleación cuando los tubos son de grado alto, siempre y cuando esté basado en temperaturas altas del metal causadas por superficies extendidas). a. Sección de radiación Dimensiones (1) d. Espacio de sopladores de hollín en la sección de convección b. Sección de convección (incluyendo desviadores) c. Elevación aprox. del piso del horno (la quema de fondo requiere 2.0 m (6 pie–6 pulg) de espacio libre piso del horno a aprox. 3.6 m (12 pie–0 pulg) por encima de los quemadores de tiro forzado) e. Ubicación de puntos de observación MANUAL DE DISEÑO DE PROCESO TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS PDVSA .Menú Principal Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 29 Indice norma ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ TABLA 1 (Cont.) Chimenea (1) d. Area de la sección transversal y arreglos del ducto a la a. Ubicación chimenea b. Diámetro interno de la salida e. Tiro requerido por encima de la sección de convección, si el c. Altura por encima de la sección de convección vendedor diseña cualquier parte del ducto o chimenea Seguridad y misceláneos (Ver PDVSA–MID–L–TP–2.7) a. Medidas contra fallas de alimentación o de combustible c. Refractario especial y requerimientos de soportes de tubos. (3) b. Previsiones para purgar con vapor la cámara de combustión a. Fabricación Quemadores (Ver PDVSA–MID–L–TP–2.7) f. Ubicación (1) b. Tiro (tiro natural o forzado, combinación de combustible gas/aceite) c. Modelo del quemador d. Tamaño g. Flujo normal y máx. de combustible h. Tiro mínimo en el nivel del quemador i. Protecciones de los quemadores (pilotos) (4) j. Plenum Chambers, si se requieren e. Número Combustible Aceite f. Presión del vapor de atomización a quemadores a. Requerimiento total b. Densidad (4) g. Contenido de sólidos y/o componentes corrosivos (4) (V, Na, S, Cenizas) c. Temperatura de aceite en el quemador h. Poder calorífico inferior y superior(PCI, PCS) d. Viscosidad del aceite en el quemador e. Presión en el quemador Combustible Gas d. Componentes corrosivos (S)(4) a. Requerimientos totales b. Presión y temperatura en los quemadores e. Peso molecular c. Poder calorífico inferior y superior (PCI, PCS) Instrumentos (3)(5) a. Controles de temperatura a la salida del serpentín e. Analizador del oxígeno (especificado en la sección de instrumentos) b. Puntos de temperatura del metal del tubo c. Puntos de presión y temperatura del fluido f. Controles del tiro forzado d. Tiro manométrico g. Sistema de parada de emergencia Decoquificación Aire–Vapor a. Proporcionados para expansión térmica (4) b. Diseño del sistema de decoquificación (3) a. Tipo (retractable) Sopladores de Hollín (Ver PDVSA–MID–L–TP–2.7) d. Presión y cantidad de vapor (Nota en sección de hornos: si es menor que 1720 kPa (250 psig) manométricos b. Número c. Ubicación (1) Plataformas (Ver PDVSA–MID–L–TP–2.7) Cualquier requerimiento adicional referente a plataformas y accesos debe ser especificado (4). Sistema de Tiro Forzado Consultar PDVSA–MDP–05–F–05 MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 30 Indice norma TABLA 1 (Cont.) NOTAS 1. Puntos mostrados en dibujo del horno 2. Eliminada 3. Cubierto en el diagrama de flujo 4. Información requerida PDVSA–MID–L–TP–2.7 5. Los instrumentos son mostrados en el diagrama de flujo. También se encuentran en el dibujo del horno. MANUAL DE DISEÑO DE PROCESO PDVSA TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS .Menú Principal Indice manual PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Indice volumen Página 31 Indice norma TABLA 2. LISTA DE PUNTOS CUBIERTOS EN LAS ESPECIFICACIONES DE SERVICIOS DE HORNOS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Calor del Combustible Incluye cualquier servicio requerido para flexibilidad. Combustible Quemado, Temperatura Chimenea, PCI y Eficiencia (Factores con los cuales el fabricante puede desarrollar el diseño económico) Densidad Calórica Máxima Permisible Para cada sección sobre la base de tubos lisos Diseño del Porcentaje de Exceso de Aire Características de la Alimentación Quemadores a. Tipo b. Pilotos requeridos c. Tipo de control requerido contra el ruido Combustible(s) a. Flujo requerido b. Características (PCI, PCS, *Densidad, etc.) c. Condiciones operacionales en los quemadores (temperatura y presión del combustible, presión de atomización del (Tipo, gravedad, viscosidad, temperatura, curvas de entalpía, etc). Condiciones Operacionales A. Flujo de alimentación B. Presión y temperatura de entrada C. Presión y temperatura de salida D. Vaporización a la salida del serpentín vapor, etc). d. Características del combustible de los pilotos e. *Cantidad de V, Na, S y cenizas en aceites combustibles Instrumentos Requeridos (PDVSA–MID–K–337) a. Termopozos e indicadores de temperatura Descoquificación Aire–Vapor a. *Márgen de seguridad para expansiones térmicas Limpieza de la Sección de Convección E. Caída de presión mínima y máxima (limpia y a. *Sopladores de hollín requeridos si el con carbón) combustible contiene más de 0.1 g/kg (0,01 % F. Velocidad másica mínima Limpieza de la Sección de Convección Tubos A. Diámetro externo (D.E.) B. Materiales C. Corrosión permitida y/o vida útil requerida peso) de cenizas 1. Tipo de sopladores (retractable) 2. Presión de vapor para los sopladores MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 32 Indice volumen Indice norma ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ TABLA 2 (Cont.) Chimenea A. Altura (altura mínima requerida por Manual de Ingeniería de Diseño consideraciones de contaminación ambiental o por cercanía a estructuras o edificios) B. Temperatura de diseño para el aire en verano. a. PDVSA–MID–L–TP–2.7, Hornos de Procesos, Requisicion, análisis de ofertas y detalles de compra b. Otros relacionados con Hornos de Procesos, como B–201–PR “Calentadores de fuego directo”, K–337 “Instrumentación para Hornos”, etc. * Información requerida por PDVSA–MID–L–TP–2.7 MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Indice volumen Página 33 Indice norma ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ TABLA 3. FACTORES QUE AFECTAN EL DISEÑO Y SELECCION DE HORNOS Consideraciones de Diseño Observaciones Tipo de Servicio (fluido deseado) Requieren velocidad máxima adecuada para minimizar formación de coque S S S Puro líquido Vaporización (70–80% máx. dentro del serpentín) Puro Vapor Carga Calórica Condiciones operacionales S S Flujo de alimentación Normalmente no coquifica; velocidad másica baja para ∆P mín. Determina el tipo de horno Afecta tamaño de tubos y número de pasos Condiciones de entrada y salida – Propiedades – Temperatura – Presión Alta presión, 7000 kPa man. (1000 psig), requiere consideraciones especiales – Vaporización Para evitar sobrevaporización se debe minimizar la entrada de vapor en hornos multipasos – Composición Los fluidos con un solo componente requieren consideraciones especiales en servicios de vaporización Características del Fluido S S S S S Coquificación Estabilidad del calor Es importante el tiempo de residencia/temperatura Corrosividad Afecta el material del tubo requerido Contenido H2/H2S Viscosidad Alta viscosidad origina un bajo coeficiente fílmico Combustibles Gas y/o líquido Afecta la superficie de la sección de convección, su limpieza y tipo de quemadores Componentes corrosivos Afecta el soporte de los tubos y el material refractario Costo Afecta la eficiencia del horno Afecta la justificación de un precalentador de aire Requerimientos Especiales S S S S S S Alto rango de operación Geometría del horno, velocidad másica, ∆P Pre–inversión Se consideran dos grupos de condiciones Limitaciones de espacio Tipo de horno Requerimientos especiales de refinería Experiencia operacional y en mantenimiento Contaminación ambiental, concentración de SO2 Altura de la chimenea Ruido Muflas, quemadores de tiro forzado. MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen Fig 1. HORNOS – VERTICALES CILINDRICOS TUBOS DE CONVECCION ALETEADOS Manga deflectora ZONA DE COMBUSTION PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 34 Indice norma MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 35 Indice norma Fig 2. HORNO VERTICAL – CILINDRICO CON SECCION DE CONVECCION HORIZONTAL MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen Fig 3. HORNOS CON TUBOS HORIZONTALES PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 36 Indice norma MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen Fig 4. VARIACIONES EN HORNOS TIPO CABINA PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 37 Indice norma MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen Fig 5. HORNO TIPO CAJA CON TUBOS VERTICALES PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 38 Indice norma MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 39 Indice norma Fig 6. HORNO TIPO CAJA CON TUBOS HORIZONTALES CON ALA SENCILLA MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen Fig 7. GUIA PARA LA SELECCION DE HORNOS PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 40 Indice norma MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 41 Indice norma Fig 8. CALOR DE COMBUSTION DE ACEITES COMBUSTIBLES Y FRACCIONES DE PETROLEO MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 42 Indice norma Fig 9. CALOR DE COMBUSTION PARA GASES PARAFINICOS Y OLEOFINICOS MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 43 Indice norma Fig 10.A ENTALPIA DE LOS COMPONENTES DEL GAS DE CHIMENEA A BAJAS PRESIONES (H2O, CO, CO2, SO2) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 44 Indice norma Fig 10.B ENTALPIA DE LOS COMPONENTES DEL GAS DE CHIMENEA A BAJAS PRESIONES (H2O, CO, CO2, SO2) (CONT.) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 45 Indice norma Fig 11.A ENTALPIA DE LOS COMPONENTES DEL GAS DE CHIMENEA A BAJAS PRESIONES (AIRE, O2, NO2) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 46 Indice norma Fig 11.B ENTALPIA DE LOS COMPONENTES DEL GAS DE CHIMENEA A BAJAS PRESIONES (AIRE, O2, NO2) (CONT.) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 47 Indice norma Fig 12. CALOR DISPONIBLE POR COMBUSTION DE ACEITE COMBUSTIBLE (0°API) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 48 Indice norma Fig 13. CALOR DISPONIBLE POR COMBUSTION DE ACEITE COMBUSTIBLE (5°API) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 49 Indice norma Fig 14. CALOR DISPONIBLE POR COMBUSTION DE ACEITE COMBUSTIBLE (10°API) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 50 Indice norma Fig 15. CALOR DISPONIBLE POR COMBUSTION DE ACEITE COMBUSTIBLE (15°API) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 51 Indice norma Fig 16. CALOR DISPONIBLE POR COMBUSTION DE ACEITE COMBUSTIBLE (20°API) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 52 Indice norma Fig 17. CALOR DISPONIBLE POR LA COMBUSTION DE GAS COMBUSTIBLE DE REFINERIA* MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 53 Indice norma Fig 18. CALOR DISPONIBLE POR LA COMBUSTION DE GAS COMBUSTIBLE DE REFINERIA* MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 54 Indice norma Fig 19. CALOR DISPONIBLE POR LA COMBUSTION DE GAS COMBUSTIBLE DE REFINERIA* MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 55 Indice norma Fig 20. CALOR DISPONIBLE POR LA COMBUSTION DE GAS COMBUSTIBLE DE REFINERIA* MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 56 Indice norma Fig 21.A CONTENIDO DE DIOXIDO DE CARBONO EN EL GAS DE CHIMENEA (UNIDADES METRICAS) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 57 Indice norma Fig 21.B CONTENIDO DE DIOXIDO DE CARBONO EN EL GAS DE CHIMENEA (UNIDADES METRICAS) (CONT.) MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 58 Indice norma Fig 22.A KG DE GAS DE CHIMENEA POR KG DE COMBUSTIBLE MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 59 Indice norma Fig 22.B LB DE GAS DE CHIMENEA POR LB DE COMBUSTIBLE MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 60 Indice norma Fig 23. VISCOSIDAD ABSOLUTA DEL GAS DE CHIMENEA A 1 ATM MANUAL DE DISEÑO DE PROCESO PDVSA .Menú Principal TRANSFERENCIA DE CALOR HORNOS PRINCIPIOS BASICOS Indice manual Indice volumen PDVSA MDP–05–F–01 REVISION FECHA 0 OCT.95 Página 61 Indice norma Fig 24. CONDUCTIVIDAD TERMICA DEL GAS DE CHIMENEA A 1 ATM
© Copyright 2025