DELIMITACIÓN DE ESPECIES Y POSICIÓN FILOGENÉTICA DEL

DELIMITACIÓN DE ESPECIES Y POSICIÓN
FILOGENÉTICA DEL GÉNERO DE BAMBÚ
AMERICANO Otatea (POACEAE: BAMBUSOIDEAE)
TESIS QUE PRESENTA EDUARDO RUIZ SÁNCHEZ
PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS
DIRECTORES DE TESIS
VICTORIA SOSA Y MARÍA TERESA MEJÍA SAULÉS
SISTEMÁTICA
Xalapa, Veracruz, México 2009
Aprobación final del documento final de tesis de grado:
Delimitación de especies y posición filogenética del género de bambú
Americano Otatea (Poaceae: Bambusoideae)
Nombre
Firma
Director
Dra. Victoria Sosa
________________________
Co-director
Dra. Teresa Mejía Saulés
________________________
Comité Tutorial
Dr. Francisco Lorea
________________________
Dr. Aarón Rodríguez
________________________
Ph.D. Lynn G. Clark
________________________
Jurado
2
RECONOCIMIENTOS
La realización de la presente tesis fue posible gracias a la participación y apoyo de
colaboradores, amigos e Instituciones al CONACYT (19006) e Instituto de Ecología, A.C. Mis
más sinceros agradecimientos a:
A las Dras. Victoria Sosa y Teresa Mejía por su excelente dirección del trabajo de
investigación, por todas las facilidades, apoyos y consejos brindados durante la realización de
ésta tesis.
A los miembros del comité tutorial. Dr. Aarón Rodríguez y Dr. Francisco Lorea, por sus
comentarios, sugerencias y revisión de ésta tesis.
A la Dra. Lynn Clark, por sus comentarios, sugerencias y participación activa en cada
uno de los capitulos de éste trabajo. A la Dra. Helga Ochoterena, por sus valiosos comentarios. A
Ximena Londoño y el Dr. Jaime Eduardo Muñoz, por su amistad y colaboración con las colectas
de Colombia. Al Dr. Philip Silverston, por la logística para el intercambio de material entre el
INECOL y la Universidad del Valle en Calí, Colombia. Al Gilberto Cortés y Ana Paula SantosGonçalves por su valiosa colaboración con ejemplares de donados de bambues y la bonita
amistad bambusera que nos une. Al Dr. Jerzy Rzedowski, por su ayuda con el latín de las
especies nuevas.
A Edumuno Saavedra, por sus excelentes ilustraciones incluidas en esta tesis. A Bianca
Delfosse, por su ayuda en la edición de la versión en inglés de los manuscritos. A Cristina
Barcenas, por su ayuda en las secuencias a Gloria Martínez, por su valiosa ayuda en la parte
administrativa al Posgrado y todo su personal.
A mis profesores duante del doctorado, en especial a los Drs. Alejandro Espinosa y
Francisco Ornelas por el conocimiento y motivación que me brindaron.
A todos aquellos que me acompañaron y/o colectaron material de campo: Pablo Carrillo,
Arturo de Nova, Flor Rodríguez, José Luis Martínez, Nelly Jiménez, Jaime Pacheco, Xochitl
Galarza, Diego Ángulo, Etelvina Gándara, Eva Piedra y Fernando Nicolalde.
A todos mis amigos y compañeros de mi generación y de generaciones pasadas y
posteriores del INECOL, a todos mis hermanos académicos y amigos fuera del INECOL.
A la Red Latinoamericana de Botáncia (RLB07-ATP01), Bamboos of the Americas e
International Association for Plant Taxonomists, por las becas obtenidas para las colectas de
material botánico.
3
DEDICATORIA
A las tres F´s
Para la “Flor” mas bella de mi ejido
Flor
Con todo mi amor
Mi Familia
Con gran respeto, cariño y amor
y Filo
(Filogenio Parsimonio Bayes del Likelihood)
4
DECLARACIÓN
Excepto cuando es explícitamente indicado en el texto, el trabajo de investigación
contenido en esta tesis fue efectuado por (nombre completo del alumno) como estudiante de la
carrera de (Maestría y/o Doctorado) en Ciencias (Ecología y Manejo de Recursos Naturales /
Manejo de Fauna Silvestre o Sistemática) entre (mes) de (año) y (mes) del (año), bajo la
supervisión del (nombre del director de tesis).
Las investigaciones reportadas en esta tesis no han sido utilizadas anteriormente para
obtener otros grados académicos, ni serán utilizadas para tales fines en el futuro.
Candidato:
Eduardo Ruiz Sánchez
_____________________________
Director de tesis:
Dra. Victoria Sosa
Dra. Teresa Mejía Saulés
_____________________________
_____________________________
INDICE
5
RESUMEN……………………………………………………………………………………...13
CAPITULO I. Introducción general…………………………………………………………..15
LITERATURA CITADA (Capítulo I)………………………………………………………...21
CAPITULO II. Filogenia de Otatea inferida por morfología y secuencias del ADN del
cloroplasto y recircunscripción de Guaduinae (Poaceae: Bambusoideae)………………….29
Resumen…………………………………………………………………………………………31
Introducción…………………………………………………………………………………….32
Materiales y Métodos……………………………………………………………………...……34
Resultados……………………………………………………………………………………….36
Discusión………………………………………………………………………………………...39
Literatura citada…………………………………………………………………..……………43
CAPITULO III. Delimitando especies en el bambú neotropical Otatea (Poaceae:
Bambusoideae) usando datos morfológicos, moleculares y ecológicos……………………...67
Resumen…………………………………………………………………………………………69
Introducción…………………………………………………………………………………….70
Materiales y Métodos……………………………………………………………………...……73
Resultados……………………………………………………………………………………….78
Discusión………………………………………………………………………………………...83
Literatura citada…………………………………………………………………..……………91
CAPITULO IV. Cuatro especies nuevas en Otatea (Poaceae: Bambusoideae) y revisión
taxonómica………………………………………..……………………………………………117
Resumen………………………………………………………………………………….……119
6
Introducción……………………………………………………………………………..…….120
Materiales y Métodos……………………………………………………………………….…122
Resultados……………………………………………………………………………….….….122
Discusión………………………………………………………………………………...……..126
Tratamiento Taxonómico……………………………………………………………………..129
Literatura citada…………………………………………………………..………..…………159
CAPITULO V. Conclusiones generales…………………...…………………………………177
LITERATURA CITADA (Capítulo V)………………….…………………………………..182
7
LISTA DE APENDICES, FIGURAS Y TABLAS
CAPITULO II
APPENDIX 1. Taxa used in the phylogenetic study of Otatea, selected specimens for
morphological analysis, and vouchers, GenBank accession numbers for sequences
obtained in this project as well as for the previously published sequences of the DNA
sequences used in this paper. GenBank accessions correspond to rpl16 and trnH-psbA; if
there is only one accession it corresponds to rpl16……………………………………...49
APPENDIX 2. Morphological characters used in analyses based in the Bamboo Phylogeny Group.
Only characters marked with * were based in Londoño and Clark (2002)……………...54
APPENDIX 3. Morphological data matrix of 61 characters. “?” = character not observable, “-” =
inapplicable. Polymorfism: A = (0,1); B = (1,2); C = (2,3); E (0,1,2); G (0,2); I (0,3) All
species names are listed with authorship in Appendix 1. Characters states and
descriptions are listed in Appendix 2…………………………………………………….59
FIG. 1. Strict consensus of six most-parsimonious trees inferred from analysis of the
morphological data set L = 204 steps, CI = 42, RI = 64). Numbers below branches
indicate jackknife/Bremer support. Character numbers are listed in Appendix 2. Filled
circles are synapomorphic. Subtribe abbreviations: Gua = Guaduinae; Art =
Arthrostylidiinae; Chu = Chusqueinae; Bam = Bambusinae…………………………….62
FIG. 2. Single most parsimonious tree based on rpl16 intron and trnH-psbA intergenic spacer
combined sequence data (L = 48 steps, CI = 0.68, RI = 80). Numbers above branches
8
indicate jackknife support, and numbers below indicate Bremer support. Subtribe
abbreviations: Gua = Guaduinae; Art = Arthrostylidiinae; Chu = Chusqueinae; Bam =
Bambusinae……………………………………………………………………………....63
FIG. 3. Strict consensus of 53 most-parsimonious trees inferred from analysis of the combined
morphological and molecular data (L = 261, CI= 45, RI = 67). Numbers below branches
indicate jackknife/Bremer support. Character numbers are as listed in Appendix 2. Filled
circles are synapomorphies. .Subtribe abbreviations: Gua = Guaduinae; Art =
Arthrostylidiinae; Chu = Chusqueinae; Bam = Bambusinae…………………………….64
FIG. 4. Distribution of the southern Otatea species, Olmeca erecta, O. reflexa, and Aulonemia
fulgor and A. clarkiae in southeastern Mexico. Numbers indicated the terrestrial
protected areas. 1. Pico de Orizaba – Cofre de Perote region in central Veracruz; 2. Los
Tuxtlas region in southern Veracruz; 3. Sierra de Juarez in Oaxaca; 4. Uxpanapa region
in the junction of Chiapas, Oaxaca and Veracruz; 5. Bosques mesófilos en Los altos,
Chiapas; 6. Cañon del Sumidero, Chiapas and 7. El Triunfo, Chiapas…………...……..65
CAPITULO III
Table 1. Study populations and their haplotypes. n = number of individuals sampled for cpDNA
markers, and numbers below ITS are the individuals sampled to this marker…………102
Table 2. Nineteen climate variables used in GARP and MAXENT analysis and PCA loadings for
the four principal components. Values in bold indicate higher loadings……………….103
Appendix 1: Morphological characters……………………………………………………...…104
Appendix 2: Morphological character matrix……………………………………………….…106
Appendix 3: Vouchers and specimens examined……………………………………………...107
9
FIG. 1. Distribution and sampling localities of the previously recognized species of Otatea.
Numbers correspond to localities in Table 1. A and B show details of localities in central
Mexico and Chiapas respectively…………………………………………..…………..110
FIG. 2. MPT on chloroplast DNA haplotypes for Otatea (left). Population numbers and
haplotypes in parenthesis correspond to Table 1. Number below branches indicates
Bootstrap values. New species retrieved by the morphological tree are indicated. Strict
consensus from parsimony analysis of the ITS (center) and combined cpDNA-ITS (right).
Populations numbers correspond to Table 1. Number below branches indicates Bootstrap
values. New species retrieved by the morphological tree are indicated……..…………111
FIG. 3. Statistical parsimony network compound cpDNA-ITS genotypes…………….…….…112
FIG. 4. The single most parsimonious tree retrieved from the morphological data set (L = 179; CI
= 47; RI = 76). Population numbers and haplotypes in parenthesis correspond to Table 1.
Black circles indicate synapomorphies, numbers above and below the circles indicate
character number and character state respectively. Numbers below the branches indicate
Bootstrap and Bremer support. Ol.recta = Olmeca recta; Oa = Otatea acuminata; Of =
Otatea fimbriata; Og = Otatea glauca…………………..……………………………...113
FIG. 5. GARP and Maxent niche-based distribution models for: a. and b. O. acuminata maps, c.
and d. O. fimbriata, e and f. O. sp. nov. Transvolcanic maps, g and g. O. sp. nov.
Jalisco...............................................................................................................................114
CAPITULO IV
Table 1. Diagnostic characters for the new four species of Otatea……………………………..161
FIG. 1. Micromorphology of the abaxial surface of lemma in Otatea. A. Microhair (m) in O.
glauca (E. Ruiz-Sánchez 144, XAL) and B. O. mixtecana (J. Panero & F. Calzada 4441,
10
XAL). C. Macrohairs (ma) in O. acuminata (F. J. Santana 2529, XAL) and D. O.
mixtecana (J. Panero & F. Calzada 4441 XAL). E. Prickles with extended barb (prd) in
O. acuminata (F. J. Santana 2529, XAL). F. Hooks (h) in O. glauca (E. Ruiz-Sánchez
144, XAL)………………………………………………………………………………166
FIG. 2. Micromorphology of the abaxial surface of the lemma in Otatea. A. Silica bodies with an
irregular dumb-bell shape (sbd) in O. glauca (E. Ruiz-Sánchez 144, XAL). B. Silica
bodies saddle-shaped (sbs) in O. glauca. C. Silica bodies rounded (sbr) in O. acuminata
(F. J. Santana 2529, XAL)……………………………………………………..………167
FIG. 3. Micromorphology of the abaxial surface of palea in Otatea. A. Intercostal long-cells with
sinuous outline U-shaped (Lc) in O. glauca (E. Ruiz-Sánchez 144, XAL). B. Prickles with
extended barb (prd) in O. glauca. C. Prickles with extended barb (prd) in O. acuminata
(F. J. Santana 2529, XAL). D. Prickles with extended barb (prd) and prickles with barb
not developed (pr) in O. mixtecana (J. Panero & F. Calzada 4441 XAL). E. Silica bodies
irregular dumb-bell shaped (sbd) in O. glauca. F. Silica bodies saddle-shaped (sbs) in O.
mixtecana……………………………………………………………………………......168
FIG. 4. Culm leaves. A. Otatea carrilloi. B. O. trasnvolcanica. C. O. reynosoana. D. O.
mixtecana…………………………………………………………………………………..…169
FIG. 5. Geographical distribution of Otatea acuminata and O. fimbriata…………...…………170
FIG. 6. Otatea carrilloi. a; rhizome. b; culm with persistent culm leaf sheath. c; branch
complement. d; foliage leaf complement. e; culm leaf, abaxial apical view. f; ligular area
of foliage leaf with fimbriae and oral setae. (a, d-f. based on E. Ruiz-Sánchez & R.
Córdoba 147; b-c. based on P. Carrillo-Reyes, D. Cabrera-Toledo y M. A. Perez-Farrera
5144)…...……………….................................................................................................171
11
FIG. 7. Geographical distribution of Otatea carrilloi, O. glauca and O. mixtecana……………172
Fig. 8. Otatea mixtecana. a; rhizome. b; culm with culm leaves. c; branch complement. d; culm
leaf apex witn oral setae. e; Synflorescence and foliage leaf complement. f; ligular area of
foliage with oral setae. g; spikelet. (a-d, f. based on E. Ruiz-Sánchez, F. Rodriguez & V.
Sosa 217; e, g. based on J. Panero & I. Calzada 4441)………………………………173
FIG. 9. Otatea reynosoana. a; culm with overlapping culm leaves. b; apical shoot with culm
leaves. c; branch complement. d; synflorescence and foliage leaf complement e; ligular
area of foliage leaf with oral setae. f; spikelet with proximal floret remaining. (a-c, e.
based on E. Ruiz-Sánchez & F. Rodriguez 130; d, f. based on G.B. Hinton 9879)……174
FIG. 10. Geographical distribution of Otatea reynosoana and O. transvolcanica………...……175
FIG. 11. Otatea transvolcanica. E. Ruiz-Sánchez, Londoño and L.G. Clark. a, branch
complement from mid section to culm apex. b, culm middle section with extravaginal
branching. c, apical shoot with reflexed culm leaves. d, foliage leaf complement. e,
ligular area of foliage leaf with oral setae and outer ligule lobes in an early stage of
development. f, ligular area of foliage leaf with connate oral setae and outer ligule lobes
at maturity. g, culm leaf abaxial view. i, detail of foliar leaf. (a-i. based on E. RuizSánchez, D. Angulo & E. Gándara 179)……………………………………………......176
12
RESUMEN
Esta tesis se realizó con tres objetivos : 1) determinar la posición filogenética del género
Otatea en la subtribu Guaduinae con base en caracteres moleculares y morfológicos; 2) delimitar
las especies del género Otatea, utilizando caracteres moleculares, morfológicos y ecológicos y 3)
describir las especies nuevas detectadas y preparar una monografía del género
Para determinar la posición filogenética de Otatea en Guaduinae se secuenciaron un
intron y un espaciador del cloroplasto (rpl16 y trnH-psbA), además se codificaron 61 caracteres
morfológicos. Los resultados filogenéticos identificaron a Otatea como un grupo monofilético
perteneciente a la subtribu Guaduinae, aunque su grupo hermano no pudo ser corroborado
debido a la falta de resolución. Sin embargo, resulta inespearada la inclusión de Aulonemia
clarkiae y A. fulgor dentro de la subtribu Guaduinae y no en la subtribu Arthrostyliidinae, donde
habían sido clasificadas antes, por lo que probablemente tengan que ubicarse bajo una nueva
categoría taxonómica.
En la delimitación de las especies de Otatea secuencias de ADN del cloroplasto (atpFatpH, psbI-psbK, trnL-rpl32), nucleares (ITS), caracteres morfológicos y la modelación del
nicho. Encontramos que las hipótesis filogenéticas resultantes de los análisis moleculares y
morfológicos eran incongruentes. Un minucioso análisis de los resultados moleculares nos llevó
a sugerir que en la evolución de las especies de Otatea hubo retención de polimorfismos
ancestrales, reticulación (flujo genético pasado) o una hibridización, procesos que explican la
incongruencia del árbol de genes con el morfológico. Por otra parte, el análisis del nicho
ecológico sugiere que nicho divergente es el causante de la especiación de Otatea.
13
Finalmente, reconocemos siete especies para el género Otatea. Sinonimizamos las
subespecies de Otatea acuminata y describimos cuatro especies nuevas, todas ellas endémicas de
México.
14
CAPÍTULO I. INTRODUCCIÓN GENERAL
15
Los bambúes pertenecen a la subfamilia Bambusoideae, una de las 13 subfamilias
reconocidas de la familia Poaceae (GPWG, 2001, Sánchez-Ken et al., 2007). Bambusoideae
agrupa de 80 a 90 géneros y de 1000 a 1500 especies (GPWG, 2001; Sungkaew et al., 2008).
Están presentes en Asia, África, Australia y las Américas, crecen desde el nivel del mar hasta los
4000 m (Sungkaew et al., 2008). Bambusoideae, está compuesta por dos tribus: Bambuseae
(bambúes leñosos) y Olyreae (bambúes herbáceos) y constituye un grupo monofilético con base
en caracteres moleculares y morfológicos (Zhang y Clark, 2000; GPWG, 2001; Sungkaew et al.,
2008). Sin embargo, estudios filogénéticos de Poaceae y Bambusoideae indican que Bambuseae
no es monofilética (Bouchenak-Khelladi et al., 2008; Sungkaew et al., 2008).
Bambuseae se subdivide en nueve subtribes: Arthrostylidiinae, Arundinariinae,
Bambusinae, Chusqueinae, Guaduinae, Hickeliinae, Melocanninae, Racemobambosinae and
Shibataeinae (Judziewicz et al., 1999; Zhang y Clark, 2000; Sungkaew et al., 2008). Pero hasta
la fecha solo se ha comprobado y confirmado la filogenia de las subtribus Chusqueinae y
Hickeliinae (Clark et al., 2007). Por otra parte, en el estudio filogenético de Bambusoideae
realizado por Zhan y Clark (2000), se identificaron tres clados principales de Bambuseae: 1) el
clado de los bambúes templados asiáticos, y dos clados de bambúes tropicales, 2) los asiáticos y
3) los americanos. En el más reciente estudio filogenético para los bambúes, éstos tres clados se
siguen identificando como monofiléticos, sin embargo Bambuseae resulta parafilética, en otras
palabras Bambusoideae fue divida en tres tribus: Arundinarieae, Bambuseae y Olyreae
(Sungkaew et al., 2008). Arthrostylidiinae, Chusqueinae, Guaduinae, se agrupan en un clado
llamado el clado de bambúes neotropicales que incluyen a 21 géneros y más de 345 especies,
distribuidas desde en el sur de Estados Unidos, México, Centroamérica, Sudamérica e islas del
16
Caribe (Judziewicz et al., 1999; Zhang y Clark, 2000; Sungkaew et al., 2008). Guaduinae, está
conformada por cinco géneros: Apoclada, Eremocaulon, Guadua, Olmeca y Otatea (Judziewicz
et al., 1999).
Existen algunos trabajos taxonómicos sobre bambúes americanos, (Guzmán et al., 1984;
Londoño y Clark 2002) y algunos análisis filogenéticos (Guala 1995; Guala et al., 2000;
Kelchner y Clark 1997), utilizando marcadores moleculares de ADN (ndhF y rpl16) y datos
morfológicos (Clark et al., 2007). De los análisis filogenéticos realizados con bambúes asiáticos
destacan los elaborados por (Hodkinson, 2000; Guo et al., 2001, 2002; Guo y Li 2004; Sun et al.,
2005; Yang et al., 2007; Peng et al., 2008) con marcadores moleculares GBSSI, ITS y trnL-F.
El género de estudio en esta tesis es Otatea. Es un grupo que no se ha estudiado desde el
punto de vista filogenético. Se distribuye desde el sur de Sonora y Chihuahua en México hasta,
Centroamérica (Calderón y Sorderstrom, 1980; Guzmán et al., 1984; Judziewicz et al., 1999).
Londoño y Clark (1998) reportaron una población de Otatea fimbriata en el Norte de Santander
al noreste de Colombia, lo que marca una clara disyunción de esta especie y del género.
En México, las especies de Otatea tienen diversos usos: los culmos o tallos son utilizados
en la elaboración de canastos, bastones, mangos para escobas, garrochas para diversos usos,
además son utilizados para la construcción de casas donse se utilizan los tallos con una mezcla
de lodo (bahereque) para hacer paredes y como vigas para los techos, además las hojas son
consumidas por el ganado (Anaya, 1989; Guzmán et al., 1984; Judziewicz et al., 1999; Cortés,
2000; Vázquez, 1995).
McClure (1973) describio el subgenero Otatea in Yushania y comprendía dos especies Y.
aztecorum y Y. acuminata. Yushania aztecorum McClure fue descrita de una colecta de El
Rosario, Sinaloa, México. Y. acuminata fue una combinación basada en Arundinaria acuminata
17
Munro (descrita de Jalcomulco, Veracruz). Calderón y Sodersrom (1980) elevaron a género a
Otatea y O. aztecorum fue considerada sinonimo de O. acuminata. En 1983, se describe O.
fimbriata Soderstrom de Chiapas. Posteriormente se dividió O. acuminata en dos subespecies O.
acuminata subsp. acuminata y O. acuminata subsp. aztecorum Guzmán, Anaya & Santana con
base a caracteres morfológicos derivados del tipo de hoja culmea y tipo de floración (Guzmán et
al., 1984). En el 2004, se describe O. glauca L.G. Clark & G. Cortés de Chiapas (Clark y Cortés,
2004) y Ruiz-Sánchez et al., (2008) citán una nueva especie no descrita para Chiapas.
La distribución de las especies de Otatea es la siguiente; O. acuminata subsp. aztecorum
se distribuye por la vertiente del Pacífico, desde Sonora hasta Chiapas y simpátricamente con
este taxón encontramos a O. fimbriata, con una población disyunta en Colombia. Otatea
acuminata subsp. acuminata se distribuye a lo largo de la Faja Transvolcánica Mexicana y parte
del Golfo de México y por último O. glauca se conoce solo de una población en Chiapas.
(Guzmán et al., 1984; Beetle et al., 1995; Judziewicz et al., 1999; Londoño y Clark, 1998).
Resumiendo, se reconocen tres especies y una subespecie de Otatea. No se ha llevado a cabo una
revisión del género, ni se ha realizado algún estudio filogenético.
Por otra parte, la posición filogenética de Otatea es incierta. Se ha identificado como
grupo hermano de Guadua con base en caracteres moleculares de sitios de restricción y
secuencias del ADN ndhF (Soreng y Davis, 1998; Zhan y Clark, 2000). Los resultados de Zhan
(2000)
sugieren
una
relación
de
grupos
hermanos
entre Otatea
y
Glaziophyton
(Arthrostylidiinae). Alternativamente Guala et al., (2000) indican una relación cercana entre
Otatea y el clado Guadua - Apoclada. Sin embargo el número de taxones utilizados en estos
estudios filogenéticos ha sido muy pobre. De ahí la importancia en esclarecer su posición
filogenética.
18
En esta tesis los objetivos son: 1) identificar grupos monofiléticos ; 2) describir especies
y 3) determinar relaciones filogenéticas entre las especies (Sites y Marshall, 2003, 2004; Wiens,
2007) y en este trabajo aplicaremos estos tres en Otatea. Primero investigaresmos si se identifica
como un grupo monofilético, posteriormente determinaremos sus relaciones filogenéticas y
finalmente delimitaremos y describiremos la o las especies nuevas resultantes.
La delimitación de especies es importante en el contexto del entendimiento de muchos
procesos y mecanismos evolutivos (Sites y Marshall, 2003). Las especies son utilizadas en
estudios de ecología, macroevolución, sistemática, filogeografía, biogeografía y biología de la
conservación (Barraclough y Nee, 2001; Wiens y Penkrot, 2002; Sites y Marshall, 2003, 2004;
Agapow et al., 2004). Los datos morfológicos han sido utilizados tradicionalmente para delimitar
especies y continúan siendo ampliamente utilizados, pero muchos estudios recientes han
utilizado las secuencias de ADN, para evaluar la taxonomía tradicional morfológica (Wiens y
Penkrot, 2002). Recientemente, la utilización de datos ecológicos como es la modelación del
nicho ecológico, ha demostrado ser útil para identificar y diagnosticar especies (Raxworthy et al.,
2007; Rissler y Apodaca, 2007; Stockman y Bond, 2007; Bond y Stockman, 2008) y para
encontrar potenciales especies nuevas (Raxworthy et al., 2003).
El criterio operacional utilizado para la delimitación de las especies, lleva consigo la
utilización de algún concepto de especie y a pesar de la larga historia de disputas sobres
conceptos de especies, la mayoría concuerdan que las especies son linajes y se considera que
todas las otras definiciones son como herramientas “secundarias” para el reconocimiento de las
especies (Wiens y Penkrot, 2002; Sites y Marshall, 2003, 2004; de Queiroz 2005, 2007) bajo esta
premisa de que las especies son linajes, es el concepto de especie que seguiremos. Por otra parte
existen diferentes métodos relacionados con la detección y delimitación de las propiedades de los
19
linajes, los cuales se dividen en dos: métodos no basados en árboles y métodos basados en
árboles (Sites y Marshall, 2003, 2004). Entre los criterios operacionales basados en árboles
(haplotipos y caracteres morfológicos) donse se asume que no existe flujo génico entre la especie
focal a estudio y una o más especies cercanamente relacionadas, además de encontrar caracteres
morfológicos diágnosticos, y congruencia geográfica. Éste método es propuesto por Wiens y
Penkrot (2002), mismo que se utilizará en este trabajo para la delimitación de las especies del
género Otatea.
Los objetivos de esta tesis son: 1) determinar la posición filogenética del género Otatea,
con base en secuencias de ADN del cloroplasto (intron rpl16, espaciador trnH-psbA) y caracteres
morfológicos; 2) delimitar las especies del género Otatea, utilizando haplotipos no
recombinantes de los espaciadores atpF-atpH, psbI-psbK, trnL-rpl32 del cloroplasto e ITS
nuclear, caracteres morfológicos y ecológicos y 3) describir las especies nuevas resultantes del
análisis filogenético del género Otatea.
20
LITERATURA CITADA
(CAPITULO I )
21
LITERATURA CITADA
Agapow, P.M., Bininda-Edmonds, O.R., Crandall, K.A., Gittleman, J.L., Mace, G.M., Marshall,
J.C., Purvis, A. 2004. The impact of species concept on biodiversity studies. Q. Rev. Biol. 79,
161-79.
Anaya, C. 1989. Estudio de la Subfamilia Bambusoideae (Poaceae), con Revisión Taxonómica
para el Estado de Jalisco, México. Tesis de Licenciatura. Facultad de Agronomía. Universidad de
Guadalajara. Guadalajara, Jalisco, México.
Barraclough, T.G., Nee, S. 2001. Phylogenetics and speciation. Trends Ecol. Evol. 16, 391-99.
Beetle, A.A, Miranda, S J., Jaramillo, L.V., Rodríguez, R.A., Aragón, M.L., Vergara, B.M.,
Chimal, H.A., Domínguez, S.O. 1995. Las Gramíneas de México IV. COTECOCA. México,
D.F.
Bond, J.E., Stockman, A.K. 2008. An integrative method for delimiting cohesion species: finding
the population-species interface in a group of Californian trapdoor spiders with extreme genetic
divergence and geographic structure. Syst. Biol. 57, 628-646.
Bouchenak-Khelladi, Y., Salamin, N., Savolainen, V., Forest, F., van der Bank, M., Chase,
M.W., Hodkinson, T.R. 2008. Large multi-gene phylogenetic trees of the grasses (Poaceae):
22
progress towards complete tribal and generic level sampling. Mol. Phylogenet. Evol. 47, 488505.
Calderon, C.E., Soderstrom, T. R. 1980. The genera of bambusoideae (Poaceae) of the American
Continent: Keys and Comments. Stmith. Cont. Bot. 44: 1-27.
Clark, L.G., Cortés, G. 2004. A new species of Otatea from Chiapas, Mexico. Bamboo Science
and Culture 18, 1-6.
Clark, L.G., Dransfield, S., Triplett, J., Sánchez-Ken, J.G. 2007. Phylogenetic relationships
among the one-flowered, determinate genera of Bambuseae (Poaceae: Bambusoideae). Aliso 23,
315-322.
Cortés, R.G. 2000. Los bambúes nativos de México. Biodiversitas 30: 12-15.
de Queiroz, K., 2005. A unified species concept and its consequences for the future of taxonomy.
Proc. Calif. Acad. Sci. 56, 196-215.
de Queiroz, K. 2007. Species concepts and species delimitation. Syst. Biol. 56, 879–886.
Grass Phylogeny Working Group. 2001. Phyllogeny and subfamilial classification of the grasses
(Poaceae). Ann. Miss. Bot. Gard. 88: 373-475.
23
Guala, G.F. 1995. A cladistic Analysis and Revision of the Genus Apoclada (Poaceae:
Bambusoideae: Bambuseae). Syst. Bot. 20: 207-223.
Guala, G., Bogler, D., Sadle, J., Francisco-Ortega, J. 2000. Molecular evidence for polyphyly in
the genus Apoclada (Poaceae: Bambusoideae). Bamboo Science and Culture 14: 15–20.
Guo, Z.H. Li, D.Z. 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae:
Bambusoideae) inferred from the sequences of GBSSI gene and ITS spacer. Mol. Phylogenet.
Evol. 30, 1-12.
Guo, Z.H., Chen, Y.Y., Li, D.Z., Yang, J.B. 2001. Genetic variation and evolution of the alpine
bamboos (Poaceae: Bambusoideae) using DNA sequence data. J. Plant Res. 114, 315-322.
Guo, Z.H., Chen, Y.Y., Li, D.Z. 2002. Phylogenetic studies on Thamnocalamus group and its
allies (Bambusoideae: Poaceae) based on ITS sequence data. Mol. Phylogenet. Evol. 2, 20-30.
Guzmán, R., Anaya, M.C., Santana, F.J. 1984. El género Otatea (Bambusoideae), en México y
Centroamérica. Boletín del Instituto de Botánica 5, 2-20.
Hodkinson, T.R., Renvoize, S.A., Ni Chonghaile, G., Stapleton, C.M.A., Chase, M.W. 2000. A
comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in
Phyllostachys (Bambusoideae, Poaceae). J. Plant Res. 113, 259-269.
24
Judziewicz, E.J., Clark, L.G., Londoño, X., Stern, M.J. 1999. American Bamboos. Smithsonian
Institution Press. New York.
Kelchner, S.A., Clark, L.G. 1997. Molecular Evolution and Phylogenetic Utility of the
Chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol. Phylogenet. Evol.
8: 385-397.
Londoño, X., Clark, L.G. 1998. Eight new taxa and two new reports of Bambuseae (Poaceae:
Bambuseae) from Colombia. Novon 8, 408-428.
Londoño, X., Clark, L.G. 2002. A revision of the Brazilian bamboo genus Eremocaulon
(Poaceae: Bambuseae: Guaduinae). Syst. Bot. 27, 703-721.
McClure, F. A. 1973. Genera of bamboos native to the New World (Gramineae: Bambuosideae).
Smithsonian Contribution to Botany 9: 1-148.
Peng, S., Yang, H.Q., Li, D.Z. 2008. Highly heterogeneous generic delimitation within the
temperate bamboo clade (Poaceae: Bambusoideae): evidence from GBSSI and ITS sequences.
Taxon 57, 799-810.
Raxworthy, C.J., Martínez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider G.E., OrtegaHuerta, M.A., Peterson, A.T. 2003. Predicting distributions of known and unknown reptile
species in Madagascar. Nature 426, 837-841.
25
Raxworthy, C.J., Ingram, C.M., Pearson, R.G. 2007. Species delimitation applications for
ecological niche modeling: a review and empirical evaluation using Phelsuma day gecko groups
from Madagascar. Syst. Biol. 56, 907-923.
Rissler, L.J., Apodaca, J.J. 2007. Ecological niche models and phylogeography help uncover
cryptic biodiversity. Syst. Biol. 56, 924-942.
Ruiz-Sánchez, E., Sosa, V., Mejía-Saules, M.T. 2008. Phylogenetics of Otatea inferred from
morphology and chloroplast DNA sequence data and recircumscription of Guaduinae (Poaceae:
Bambusoideae). Syst. Bot. 33, 277-283.
Sánchez-Ken J.G., Clark, L.G., Kellog, E.A., Kay, E.E. 2007. Reinstatement and Emendation of
Subfamily Micrairoideae (Poaceae). Syst. Bot. 32: 71-80
Sites, J.W., Marshall, J.C. 2003. Delimiting species: a renaissance issue in systematic biology.
Trends Ecol. Evol. 18, 462-470.
Sites, J.W., Marshall, J.C. 2004. Operational criteria for delimiting species. Annu. Rev. Ecol.
Evol. Syst. 35, 199-227.
26
Soreng, R.J., Davis J.I. 1998. Phylogenetics and character evolution in the grass family
(Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site
character sets. Bot. Rev. 64: 1-85.
Stockman, A.K., Bond, J.E. 2007. Delimiting cohesion species: extreme population structuring
and the role of ecological interchangeability. Mol. Ecol. 16, 3374-3392.
Sun, Y., Xia, N., Lin, R. 2005. Phylogenetic analysis of Bambusa (Poaceae: Bambusoideae)
based on internal transcribed spacer sequences of nuclear ribosomal DNA. Biochem Genet. 43,
603-612.
Sungkaew, S., Stapleton, C.M.A., Salamin, N., Hodkinson, T.R. 2008. Non-monophyly of the
woody bamboos (Bambuseae; Poaceae): a multi-gene region phylogenetic analysis of
Bambusoideae s.s. J Plant Res. 122, 95-108.
Vázquez, J.M. 1995. Estudio Etnológico del Aprovechamiento del Otate (Otatea acuminata
(Munro) Cald. & Sod. subsp. aztecorum Guzmán, Anaya & Santana) en el Ejido Platanarillo,
Municipio de Minatitlan, Colima. Tesis de Licenciatura. División de Ciencias Biológicas y
Ambientales. Universidad de Guadalajara. Guadalajara, Jalisco.
Wiens, J.J. 2007. Species delimitation: new approaches for discovering diversity. Syst. Biol. 56,
875-878.
27
Wiens, J.J., Penkrot, T.A. 2002. Delimiting species using DNA and morphological variation and
discordant species limits in spiny lizards (Sceloporus). Syst. Biol. 51, 69-91.
Yang, H.Q., Peng, S., Li, D.Z. 2007. Generic delimitations of Schizostachyum and its allies
(Gramineae: Bambusoideae) inferred from GBSSI and trnL-F sequence phylogenies. Taxon 56,
45-54.
Zhang, W. 2000. Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data. Mol.
Phylogenet. Evol. 15: 135-146.
Zhang, W., Clark. L.G. 2000. Phylogeny and Classification of the Bambusoideae (Poaceae). En
S. W. L. Jacobs & J. E. Everett. (Eds.), Grasses: systematics and evolution, 35-42. CSIRO
Publishing, Collingwood, Victoria.
28
CAPÍTULO II. FILOGENIA DE OTATEA INFERIDA POR MORFOLOGÍA Y
SECUENCIAS DEL ADN DEL CLOROPLASTO Y RECIRCUNSCRIPCIÓN DE
GUADUINAE (POACEAE: BAMBUSOIDEAE)
Publicado en:
Systematic Botany 33: 277-283. 2008
29
Phylogenetics of Otatea inferred from morphology and chloroplast DNA sequence data and
recircumscription of Guaduinae (Poaceae: Bambusoideae)
EDUARDO RUIZ-SÁNCHEZ 1, VICTORIA SOSA1, 2, M. TERESA MEJÍA-SAULES1
1
Departamento de Biologia Evolutiva
Instituto de Ecologia, A. C.
Apartado Postal 63
91070 Xalapa, Veracruz, Mexico
2
Correspondence: [email protected]
30
ABSTRACT. Representative taxa of the five genera of Guaduinae, a subtribe of Neotropical
woody bamboos, were sampled to investigate the phylogenetic relationships of the species of the
genus Otatea using morphological and molecular (cpDNA intergenic spacer trnH-psbA and the
rpl16 intron) evidence. Phylogenetic analysis of a combined data set retrieved 53 most
parsimonious trees in which subtribe Guaduinae is monophyletic if two species of Aulonemia (A.
clarkiae and A. fulgor) are included. They were previously classified within subtribe
Arthrostylidiinae. Guaduinae is supported by the lack of papillae from the abaxial surface, by an
almost solid style, a short rachis extension, and oral setae present in culm and foliage leaves.
Monophyly of the genera in Guaduinae (Eremocaulon, Guadua, Apoclada, Otatea and Olmeca)
was corroborated. Otatea species formed a monophyletic clade, supported by culms with three
subequal ascending branches and pubescent lemmas. Eight species in Guaduinae (the four
species in Otatea, Olmeca recta, O. reflexa, Aulonemia clarkiae and A. fulgor) are distributed in
southeastern Mexico in areas determined as Pleistocene refuges. Some of them possess baccoid
caryopses and long culm necks, and grow in threatened vegetation types such as cloud, tropical
and tropical deciduous forests, therefore they are important bamboos to preserve.
KEYWORDS, Aulonemia, Olmeca, Eremocaulon, rpl16 intron, trnH-psbA intergenic spacer,
woody bamboos.
31
One of the two tribes of subfamily Bambusoideae in the Poaceae is the Bambuseae, an
assemblage of woody bamboos comprised of nine subtribes, three of which are exclusive to the
Neotropics (Soderstrom and Ellis 1987; Judziewicz et al. 1999). These subtribes,
Arthrostylidiinae, Chusqueinae and Guaduinae, were retrieved in a clade by Zhang and Clark
(2000) in their molecular phylogeny of the Bambusoideae, with strong support for a sister
relationship between Guaduinae and Arthrostylidiinae and weak support for the association of
Chusqueinae with these two subtribes. Subtribe Arthrostylidiinae has 13 genera, while subtribes
Chusqueinae and Guaduinae have two and five genera respectively (Judziewicz et al. 1999).
Subtribe Guaduinae includes Otatea, Olmeca, Guadua, Eremocaulon, and Apoclada. The
subtribe is distributed from northeastern Mexico to Uruguay, Argentina and Bolivia and it has
been diagnosed by leaf characters. Soderstrom and Ellis (1987) mistakenly indicated that leaves
in the subtribe lack abaxial stomates but they correctly noted that the adaxial surface often has
unusual papillae, which they called refractive papillae, associated with the stomates. Judziewicz
et al. (1999) and Londoño and Clark (2002) showed that Guaduinae indeed usually have
abundant stomates on both leaf surfaces, and that the adaxial surface often has refractive papillae
associated with the stomates whereas papillae are frequently absent from the abaxial surface. In
contrast, the other subtribes of woody bamboos have abundant stomates only on the abaxial
surface and papillae are usually found only on the abaxial surface (although small papillae may
occur on the adaxial surface, particularly on bulliform cells) and are not usually refractive.
We are interested in Otatea, one of the genera in subtribe Guaduinae which has four
species: O. acuminata (Mexico to Central America), O. fimbriata (Mexico to Central America
and northeastern Colombia), O. glauca (endemic to Chiapas, Mexico) and an undescribed
species found in Chiapas, Mexico during field work for this study. Otatea is distinguished from
32
the other genera in Guaduinae by the presence of branch complements with three subequal
branches per node (Guzmán et al. 1984; Londoño and Clark 1998, 2002; Judziewicz et al. 1999;
Clark and Cortés 2004). The position of Otatea within Guaduinae has not yet been determined.
Otatea has been retrieved either as the sister group to Guadua and Apoclada from subtribe
Guaduinae or to a clade formed by Rhipidocladum and Glaziophyton from subtribe
Arthrostylidiinae (Kelchner and Clark 1997; Soreng and Davis 1998; Guala et al. 2000; Zhang
2000; Zhang and Clark 2000). Furthermore, taxon sampling of Guaduinae in those studies has
been incomplete. Guala et al. (2000), in their phylogenetic study of Apoclada, included three
genera of Guaduinae, one of them Otatea. However Eremocaulon and Olmeca have never been
included in any published phylogenetic studies.
Only a few chloroplast DNA regions have been explored in phylogenetic studies of the
taxa in Bambusoideae. Among them are the rpl16 intron (Kelchner and Clark 1997; Clark et al.,
2007), and the ndhF gene (Guala et al. 2000; Zhang and Clark, 2000). Among nuclear DNA
regions, ITS and the GBSSI gene have been studied (Hodkinson et al. 2000; Guo et al. 2001;
Guo et al. 2002; Guo and Li 2004; Sun et al. 2005). The trnH-psbA intergenic spacer has never
been used for bamboos, though it has been useful in other groups of angiosperms (Holdreggrer
and Abbott 2003; Miller et al. 2003; Tate and Simpson 2003; Shaw et al. 2005; Clark et al.
2006). Moreover, due to its high level of species and interspecific divergence it has been
proposed as a candidate for DNA barcoding research (Kress et al. 2005).
The aims of this study are to determine phylogenetic relationships of the species of
Otatea based on morphological characters and cpDNA sequences from the rpl16 intron and the
trnH-psbA intergenic spacer considering representative taxa of the five genera of Guaduinae.
33
MATERIALS AND METHODS
Taxon sampling. A total of 26 terminal taxa were included in the analyses, 15 as the ingroup and
11 as the outgroup. Ingroup taxa considered representative taxa (type species) of the four genera
of subtribe Guaduinae and the fifth, Otatea, included its three species and an undescribed taxon.
Currently about 35 or 36 species are included within the Guaduinae, in this study we considered
about 40% of them. Selection of the outgroup was based on Zhang and Clark (2000).
Representative species of Aulonemia, Arthrostylidium, Atractantha, Glaziophyton and
Rhipidocladum from subtribe Arthrostylidiinae; Chusquea and Neurolepis from Chusqueinae
and Bambusa from Bambusinae were selected. Bambusa vulagaris was used as the functional
root because it represents the most distant taxon according to Zhang and Clark (2000). Taxa and
vouchers are listed in Appendix 1. Specimens for this project were collected either in the field or
from the Mexican bamboo collection of the “Francisco Javier Clavijero” botanical garden of the
Instituto de Ecologia, A.C. Herbarium material analyzed is also recorded in Appendix 1.
Morphological data. The morphological matrix included 61 characters (29 vegetative, 21 floral
and 11 leaf micromorphological characters; Appendix 2). Selection of characters was based on
the list and illustrations of L. Clark in “Bamboo Biodiversity”
(http://www.eeob.iastate.edu/research/bamboo) and on Londoño and Clark (2002). Characters
were scored by examining live material, herbarium specimens, and when necessary,
complemented with literature (McClure 1973; Stapleton 1997; Judziewicz et al. 1999; Londoño
and Clark 2002).
There are two hypotheses to code bud and branch characters. The first one was proposed
by McClure (1973), and considers that only one of the buds is homologous to the single primary
bud typical of bamboos, while the two to many additional smaller subsidiary buds are derived
34
separately from meristematic tissue of the nodal region with one usually much larger than the
others. In contrast, the second hypothesis was proposed by Stapleton (1997), and considers that
an extensive loss or reduction of prophylls was consistent with condensation of a single primary
axis as a pathway for the evolution of the bud complement. For coding these characters
(characters 9-11), we followed the second hypothesis because it gives the most parsimonious
explanation for the evolution of these vegetative attributes (Clark et al. 2007).
To observe leaf micromorphological characters in Arthrostylidium ecuadorense,
Atractantha radiata, Otatea glauca and Otatea sp. nov we followed the techniques described by
Hilu and Randall (1984). The samples were prepared as described in the protocols of the
Bamboo Biodiversity website (http://www.eeob.iastate.edu/). For the rest of taxa in our study we
examined scanning electron micrographs provided by L. Clark (unpubl. data). Characters are
listed in Appendix 2. The morphological and molecular data matrices are available in TreeBASE
(study accession number S1860; www.treebase.org/treebase/) and from the authors. The
combined data matrix comprised 26 terminal taxa each with 1606 characters; out from the total
number of characters in the data matrix 4.48% were scored as missing.
DNA, extraction, amplification, and sequencing. DNA was isolated using either the modified
2x CTAB method (Rogers and Bendich 1985; Doyle and Doyle 1987; Cota-Sánchez et al. 2006)
or the DNeasy Plant Mini Kit (Quiagen, Valencia, California), according to the manufacturer’s
instructions. The rpl16 intron was amplified using primers F71 and R1661 (Zhang 2000) and
based on protocols by Kelchner and Clark (1997), and by Shaw et al. (2005). Sequencing was
performed using the primers F71 and R1516 (Zhang 2000). The trnH-psbA intergenic spacer was
amplified and sequenced using primers trnH2 and psbA (Tate and Simpson 2003) and based on
the protocol by Shaw et al. (2005). Amplified double-stranded DNA fragments were purified
35
using QIAquick columns (Qiagen) following protocols provided by the manufacturer and
sequenced using Taq BigDye Terminator Cycle Sequencing Kits (Perkin Elmer Applied
Biosystems, California) on an ABI 310 automated DNA sequencer (Perkin Elmer Applied
Biosystems, California). GenBank accessions are recorded in Appendix 1. Sequences were
aligned manually using the program Se-Al v. 2.0a11 (Rambaut 2002). Gaps were coded using
the method of Simmons and Ochoterena (2000), in which each gap is treated as a separate
character.
Phylogenetic analyses. Data matrices were constructed with Winclada (Nixon 2002) and
Mesquite v 1.1 (Maddison and Maddison 2006). Three analyses were performed, a
morphological analysis, a molecular analysis with rpl16 and trnH-psbA cpDNA sequences, and a
total evidence analysis. Parsimony searches were conducted using Nona (Goloboff 1999)
including only potentially informative characters. A total of 5,000 random addition sequences in
sets of 1,000 seeds were submitted to TBR holding 100 trees, followed by more extensive TBR
holding 50,000 trees (5 times: h 50,000 h/100 mu*1,000 max*). The potential incongruence of
the molecular and morphological data sets was tested using the incongruence length difference
(ILD) test of Farris et al. (1994) as implemented in WinClada (Nixon 2002). Clade support was
estimated by jackknife (Farris et al. 1996) as implemented in WinClada (Nixon 2002),
resampling 1,000 times with TBR set to 100 replications holding 20 trees, followed by a more
extensive TBR holding 5,000 trees, and saving the consensus for each resampling matrix.
Bremer support (Bremer, 1994) was calculated using the BS5 option of Nona (Goloboff 1999)
on 10,000 trees held in memory.
RESULTS
36
Morphological analysis. Parsimony analysis of morphological data retrieved six trees (L = 204
steps, CI = 42, RI = 67). The strict consensus is shown in Fig. 1. Otatea was supported as a
monophyletic group with low support (jk = 54%, brs = 1) by two synapomorphic states: a branch
complement with three subequal and ascending branches (14, CI = 50) and pubescent lemmas
(39, CI = 57). Olmeca is supported as monophyletic (jk = 96%, brs = >5) by a single
synapomorphic character state: a baccoid caryopsis (50, CI = 1) (Fig 1). The Chusqueinae clade
received support (jk = 97%, brs = >5). There were other clades with jackknife support: the two
species of Eremocaulon (jk = 97%, brs >5), Aulonemia patula and A. laxa (jk = 95%, brs = >5),
the clade formed by Atracthanta radiata, Arthrostylidium ecuatorense, Aulonemia laxa and A.
patula (jk = 82%, brs = >5) and the clade formed by the six species of Guadua (jk = 55%, brs =
2) (Fig. 1). However the majority of the clades did not receive support, moreover tribe
Guaduinae is retrieved as paraphyletic (Fig. 1).
Molecular analyses. Separate analyses of rpl16 intron and trnH-psbA sequence data retrieved
both a single most parsimonious tree (MPT) without resolution (not shown). The data matrix of
rpl16 intron and trnH-psbA intergenic spacer sequences included 1545 bp (1014 and 531
respectively), with 30 bp (1.94%) being parsimony informative. An inversion of 16 bp was found
in the trnH-psbA intergenic spacer in species such as: Aulonemia clarkiae, A. fulgor, Bambusa
vulgaris, Chusquea bilimekii, Eremocaulon asymmetricum, E. aureofimbriatum, Guadua
longifolia, G. velutina and Rhipidocladum racemiflorum. A similar inversion has been described
for several groups of plants on this cpDNA region (Tate and Simpson 2003; Clark et al. 2006).
However, this inversion was omitted from analyses because it has been suggested that it was
37
most likely caused by an intramolecular recombination (Kelchner and Wendel 1996; DumolinLapègue et al. 1998; Kelchner 2000).
The parsimony analysis of the two molecular markers retrieved a single MPT (L = 48
steps, CI = 0.68, RI = 80), with the species of Otatea in a weakly supported clade (jk= 63%, brs
= >2) (Fig. 2). Two other genera of the subtribe were grouped in clades with weak jackknife and
Bremer support: the six species of Guadua (53%, >2) and the two species of Eremocaulon (54%,
>2). Olmeca was retreived as paraphyletic. Guaduinae formed a monophyletic clade but without
jackknife support (Fig. 2). The clade formed by Aulonemia laxa and A. patula had moderate
support as a clade (jk=76%, brs = >2). Subtribes Guaduinae and Arthrostyliidinae were grouped
in a large clade with moderate support (jk=80%, brs = >2) (Fig. 2).
Total evidence analysis. Out of 1606 characters of the combined analysis, 91 were parsimony
informative. The parsimony analysis of combined data retrieved 53 MPT (L = 261, CI= 45, RI =
67) and the strict consensus tree is shown in Fig.3. The ILD results indicated that the
morphology and molecular partitions were significantly incongruent (P = 0.010). However when
the morphological and molecular data are combined the MPT are more resolved.
The strict consensus tree shows tribe Guaduinae as a monophyletic group (jk=87%,
brs=>5), and although the position of Otatea and Olmeca was not resolved, species of Guadua,
Eremocaulon, Otatea and Olmeca were grouped in their respective subclades with moderate to
high support. Two species previously included in subtribe Arthrostylidiinae were grouped within
Guaduinae: Aulonemia fulgor and A. clarkiae (in a subclade with low support) (Fig. 3). The
relationship between Arthrostylidiinae and Guaduinae was not resolved either. Chusqueinae (jk =
90%, brs = >5) was sister to Arthrostylidiinae and Guaduinae but with no support for this
relationship (Fig. 3).
38
DISCUSSION
Initially subtribe Guaduinae comprised five genera (Criciuma, Eremocaulon, Guadua,
Olmeca and Otatea) (Soderstrom and Ellis, 1987). Judziewicz et al. (1999) included Apoclada
with these other five genera in their circumscription of the Guaduinae. Guala et al. (2000), based
on molecular phylogenetic analyses, found that Apoclada was polyphyletic and placed Apoclada
simplex in Guaduinae and the two other species in the new genus Filgueirasia in subtribe
Arthrostylidiinae. Later, in their revision of Eremocaulon, Londoño and Clark (2002) concluded
that the genus Criciuma should be synonymized with Eremocaulon and followed Guala et al.
(2000) in including Apoclada simplex within the subtribe.
Our analyses found Aulonemia clarkiae and A. fulgor nested within the Guaduinae clade;
this result has important consequences for the circumscription of the subtribe. These species are
the only ones in Aulonemia with a stomate distribution pattern like that of Guaduinae
(Judziewicz et al. 1999). When Soderstrom (1988) described A. fulgor, he indicated that this
species was morphologically similar to Aulonemia but anatomically similar to Olmeca.
Moreover, when Davidse and Pohl (1992) described A. clarkiae they pointed out its similarity
with A. fulgor and suggested that these two species might be segregated as a different genus. Our
study confirmed the relationship between these two taxa and their inclusion in subtribe
Guaduinae. Further studies are needed, extending analyses to include greater sampling of species
of Aulonemia, before a decision to describe a new genus can be made. Our results also confirmed
that Apoclada simplex forms part of Guaduinae as suggested by Guala et al. (2000) and Guala
(2003), and supported the close relationship between Eremocaulon and Guadua, as previously
suggested by Londoño and Clark (2002). Therefore we conclude that subtribe Guaduinae should
39
include Apoclada, Eremocaulon, Guadua, Olmeca, Otatea and Aulonemia clarkiae and A.
fulgor.
Judziewicz et al. (1999) indicated that the diagnostic feature of Guaduinae is the usual
presence of abundant stomates on both adaxial and abaxial foliage leaf blade surfaces, often
combined with the presence of refractive papillae associated with adaxial stomates whereas
papillae are usually absent from the abaxial surface. Our study found the same characters
defining the subtribe (characters 51 and, 53). The Guaduinae clade was also supported by having
an almost solid style, a short rachis extension, and oral setae present in culm and foliage leaves,
which were lost in Guadua. Solid style has not been examined for most other bamboo groups
and needs further analysis.
Previous phylogenetic studies of subfamily Bambusoideae and Bambuseae have included
only Otatea acuminata to represent the genus. This species was sister either to Guadua
paniculata, to a clade formed by Guadua-Apoclada, or to the Rhipidocladum-Glaziophyton clade
(Kelchner and Clark 1997; Guala et al. 2000; Zhang and Clark 2000). However, Olmeca and
Eremocaulon, the other genera in Guaduinae, have not been sampled before. The total evidence
analysis retrieved a subclade in which Otatea species is monophyletic but it did not resolve
which of the genera in Guaduinae is the most closely related to Otatea. Olmeca recta and O.
reflexa resulted in a subclade. Olmeca is an interesting genus that is restricted to a few localities
of tropical forests in southeastern Mexico. According to our results the Olmeca subclade is
supported by a single synapomorphic character: a baccoid caryopsis. Moreover, the distributions
of Olmeca and Otatea coincide in this area of southeastern Mexico.
The Otatea clade received moderate jackknife and strong Bremer support, and was
diagnosed by the character states of three subequal, ascending branches and pubescent lemmas.
40
The first character was previously recognized as diagnostic when Calderón and Soderstrom
(1980) described the genus and our results confirm this.
The combination of all three datasets retrieved more resolved trees than the individual
analysis of every data set did, stressing the importance of total evidence analysis (Clark et al.
2006; Wortley and Scotland, 2006). Morphological and molecular matrices were combined
although the ILD test determined incongruence between the two data sets for two reasons. The
first is that it has been pointed out that incongruence is related to the number of variable
characters in every matrix (Cunningham, 1997). In this study, the molecular matrix included 30
parsimony informative characters, while the morphological matrix included 61 parsimony
informative characters. Therefore the difference in variable characters between the two data sets
was enormous. The second reason for merging data matrices is that a combined analysis can
improve the estimate by increasing the number of informative characters, revealing groups not
seen in the trees from the separate data sets (Chippindale and Wiens 1994). Moreover, secondary
phylogenetic signals emerge from both molecular and morphological characters sets when they
are combined (Nixon and Carpenter 1996).
Southeastern Mexico is a common area of distribution of some populations of the four
species of Otatea, of Olmeca recta, O. reflexa and Aulonemia clarkiae and A. fulgor (Fig. 4).
Five of the eight species are endemic to Mexico, and A. clarkiae is known only from two
populations in Mexico and Nicaragua. The account of terrestrial protected areas of Mexico by
Arriaga et al. (2000) included four areas localized in Pleistocene refuges (Toledo 1988; Wendt
1993): the Pico de Orizaba – Cofre de Perote region in central Veracruz, the Los Tuxtlas region
in southern Veracruz, the Sierra de Juarez in Oaxaca, and the Uxpanapa region in the junction of
Chiapas, Oaxaca and Veracruz (Fig. 4). The eight taxa are found in these areas. Some of these
41
species possess interesting characters such as a baccoid caryopsis and long culm necks, and grow
as well in threatened vegetation types such as cloud, tropical and tropical deciduous forests,
therefore they are an important group of bamboos to preserve.
Future studies including additional plastid and nuclear genomic markers will resolve the
phylogenetic position of Otatea within Guaduinae. In addition, analyses considering more taxa
from Arthrostylidiinae and Chusqueinae will further test the apparent close relationship between
the Arthrostylidiinae and Guaduinae, and clarify their relationship to other tropical woody
bamboo subtribes, including the Chusqueinae. These studies are being addressed in the Bamboo
Phylogeny Project (Bamboo Phylogeny Group, 2006).
ACKNOWLEDGEMENTS. We are grateful to Lynn Clark for providing reviews that improved this
manuscript singnificantly as well as unpublished material and micrographs. We are grateful to
Aarón Rodríguez for his review. We thank Gilberto Cortés and Ana Paula Santos-Gonçalves for
providing plant material. We are grateful to Pablo Carrillo-Reyes, Arturo de Nova, Flor
Rodríguez-Gómez, José Luis Martínez, Nelly Jiménez-Pérez, Jaime Pacheco and Xóchitl
Galarza for their assistance with field work. Bianca Delfosse edited the English version of the
manuscript. We thank Cristina Bárcenas for her help in lab work. We thank the curators of the
following herbaria for access to their collections and the loan of specimens: ISC, MEXU, MO,
NY, US and XAL. Field work was supported by a graduate student grant of the Instituto de
Ecologia, A. C., by a grant of the student assistance program of BOTA “Bamboos of the
Americas”, by a grant provided by “Red Lationamericana de Botanica” (RLB07-ATP01) and
also by a student grant from the International Association for Plant Taxonomists. A fellowship to
ER-S by CONACYT (190069) is also acknowledged.
42
LITERATURE CITED
ARRIAGA, L., J. M. ESPINOZA, C. AGUILAR, E. MARTÍNEZ, L. GÓMEZ and E. LOA. 2000. Regiones
terrestres prioritarias de México. Comisión Nacional para el Conocimiento y Uso de la
Biodiversidad, México.
BAMBOO PHYLOGENY GROUP. 2006. The Bamboo Phylogeny Project. BAMBOO, The Magazine
of the American Bamboo Society, December 2006, Vol. 27 (6): 11-14.
BREMER, K. 1994. Branch support and tree stability. Cladistics 10: 295-304.
CALDERÓN, C. E. and T. R. SODERSTROM. 1980. The genera of Bambusoideae (Poaceae) of the
American continent: Keys and comments. Smithsonian Contributions to Botany 44: 1-27.
CHIPPINDALE, P. T. and J. J. WIENS. 1994. Weighting, partitioning, and combining characters in
phylogenetic analysis. Systematic Biology 43: 278-287.CLARK, L. G. and G. CORTÉS.
2004. A new species of Otatea from Chiapas, Mexico. Bamboo Science and Culture 18:
1-6.
, S. DRANSFIELD, J. TRIPLETT and J. G. SÁNCHEZ-KEN. 2007. Phylogenetic relationships
———
among the one-flowered, determinate genera of Bambuseae (Poaceae: Bambusoideae).
Columbus, J. T. et al. (eds.), Proceedings of the 4th International Conference on Grass
Diversity and Evolution, Rancho Santa Ana Botanic Garden, Claremont, California.
CLARK, J. L., P. S. HERENDEEN, L. E. SKOG, and E. A. ZIMMER. 2006. Phylogenetic relationships
and generic boundaries in the Episcieae (Gesneriaceae) inferred from nuclear,
chloroplast, and morphological data. Taxon 55: 313-336.
COTA-SÁNCHEZ, H. J., K. REMARCHUK, and K. UBAYASENA. 2006. Ready-to-use DNA extracted
with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue.
Plant Molecular Biology Reporter 24: 161-167.
43
CUNNINGHAM, C. W. 1997. Can three incongruence tests predict when data should be combined?
Molecular Biology and Evolution 14: 733-740.
DAVIDSE, G. and W. P. POHL. 1992. New taxa and nomenclatural combinations of Mesoamerican
grasses (Poaceae). Novon 2: 81-110.
DOYLE, J. J. and J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of
fresh leaf material. Phytochemical Bulletin 19: 11-15.
DUMOLIN-LAPÈGUE, S., M. H. PEMONGE, and R. J. PETIT. 1998. Association between chloroplast
and mitochondrial lineages in oaks. Molecular Biology and. Evolution 15: 1321-1331.
FARRIS, J. S., M. KÄLLERSJÖ, A. G. KLUGE, AND C. BULT. 1994. Testing significance of
incongruence. Cladisticis 10: 315-319.
, V. A. ALBERT, M. KÄLLERSJÖ, D. LIPSCOMB, and A. G. KLUGE. 1996. Parsimony
———
jackknifing outperforms neighbor-joining. Cladistics 12: 99-124.
GOLOBOFF, P. 1999. NONA (NO NAME) ver. 2 Published by the author, Tucumán, Argentina.
GUALA, G. F. 2003. A new genus of bamboo from Cerrados of Brazil (Poaceae: Bambusoideae).
Bamboo Science and Culture 17: 1-3.
, D. BOGLER, J. SADLE, and J. FRANCISCO-ORTEGA. 2000. Molecular evidence for polyphyly
———
in the genus Apoclada (Poaceae: Bambusoideae). Bamboo Science and Culture 14: 1520.
GUO, Z. H., Y. Y. CHEN, D. Z. LI, and J. B. YANG. 2001. Genetic variation and evolution of the
alpine bamboos (Poaceae: Bambusoideae) using DNA sequence data. Journal of Plant
Research 114: 315-322.
44
,
, and D. Z. LI. 2002. Phylogenetic studies on Thamnocalamus group and its allies
——— ———
(Bambusoideae: Poaceae) based on ITS sequence data. Molecular Phylogenetics and
Evolution 2: 20-30.
, and D. Z. LI. 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae:
———
Bambusoideae) inferred from the sequences of GBSSI gene and ITS spacer. Molecular
Phylogenetics and Evolution 30:1-12.
GUZMÁN, R., M. C. ANAYA, and M. SANTANA. 1984. El género Otatea (Bambusoideae), en
México y Centroamérica. Boletín del Instituto de Botánica 5: 2-20.
HILU, K. W. and J. L. RANDALL. 1984. Convenient method for studying grass leaf epidermis.
Taxon 33: 413-415.
HODKINSON, T. R., S. A. RENVOIZE, G. N. CHONGHAILE, C. M. A. STAPLETON, and M. W. CHASE.
2000. A comparison of ITS nuclear rDNA sequence data and AFLP markers for
phylogenetic studies in Phyllostachys (Bambusoideae, Poaceae). Journal of Plant
Research 113: 259-269.
HOLDREGGER, R. and R. J. ABBOTT. 2003. Phylogeography of the Arctic-Alpine Saxifraga
oppositifolia (Saxifragaceae) and some related taxa based on cpDNA and ITS sequence
variation. American Journal of Botany 90: 931–936.
JUDZIEWICZ, E. J., L. G. CLARK, X. LONDOÑO, and M. J. STERN. 1999. American Bamboos. New
York: Smithsonian Institution Press.
KELCHNER, S. A. 2000. The evolution of non-coding chloroplast DNA and its application in plant
systematics. Annals of the Missouri Botanical Garden 87: 482-498.
. AND J. F. WENDEL. 1996. Hairpins create a minute inversions in non-coding regions of
———
chloroplast DNA. Current Genetics 30: 259-262.
45
. and L. G. CLARK. 1997. Molecular evolution and phylogenetic utility of the chloroplast
———
rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Molecular Phylogenetics and
Evolution 8: 385-397.
KRESS, W. J., K. J. WURDACK, E. A. ZIMMER, L. A. WEIGT, and D. H. JANZEN. 2005. Use of DNA
barcodes to identify flowering plants. Proceedings of the National Academy of. Sciences
USA 102: 8369-8374.
LONDOÑO, X. and L. G. CLARK. 1998. Eight new taxa and two new reports of Bambuseae
(Poaceae: Bambuseae) from Colombia. Novon 8: 408-428.
. and ———. 2002. A Revision of the Brazilian bamboo genus Eremocaulon (Poaceae:
———
Bambuseae: Guaduinae). Systematic Botany 27: 703-721.
MADDISON, W. P., and D. R. MADDISON. 2006. Mesquite: A modular system for evolutionary
analysis. Version 1.1. http://mesquiteproject.org
MCCLURE, F. A. 1973. Genera of bamboos native to the New World. Smithsonian Contributions
to Botany 9: 1-148.
MILLER, J. T., J. W. GRIMES, D. J. MURPHY, R. J. BAYER, and P. Y. LADIGES. 2003. A
phylogenetic analysis of the Acacieae and Ingeae (Mimosoideae: Fabaceae) based on
trnK, matK, psbA-trnH, and trnL/trnF sequence data. Systematic Botany 28: 558-566.
NIXON, K. C. 1999-2002. WinClada ver. 1.0000 Published by the author, Ithaca, NY, USA.
. and J. CARPENTER. 1996. On simultaneous analysis. Cladistics 12: 221-241.
———
RAMBAUT, A. 2002. Se-Al Sequence Alignment Editor, v2.0a11. Department of Zoology,
University of Oxford, Oxford.
ROGERS, S. O. and A. J. BENDICH. 1985. Extraction of DNA from milligram amounts of fresh,
herbarium and mummified plant tissues. Plant Molecular Biology 5: 69-76.
46
SHAW, J., E. LICKEY, J. T. BECK, S. B. FARMER, W. LIU, J. MILLER, K. C. SIRIPUN, C. T. WINDER,
E. E. SCHILLING, and R. L. Small. 2005. The tortoise and the hare II: relative utility of 21
noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of
Botany 92: 142-166.
SIMMONS, M. P. and H. OCHOTERENA. 2000. Gaps as characters in sequence-based phylogenetic
analyses. Systematic Biology 49: 369-381.
SODERSTROM, T. R. 1988. Aulonemia fulgor (Poaceae: Bambusoideae), a new species from
Mexico. Brittonia 40: 22-31.
. and R. P. ELLIS. 1987. The position of bamboo genera and allies in a system of grass
———
classification. Pp. 225-238 in: Grass systematics and evolution, eds. Soderstrom, T. R.,
K. W. Hilu, C. S. Campbell, and M. E. Barkworth. Washington, D. C.: Smithsonian
Institution Press.
SORENG, R. J. and J. I. DAVIS. 1998. Phylogenetics and character evolution in the grass family
(Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site
character sets. The Botanical Review 64: 1-85.
STAPLETON, C. M. A. 1997. The morphology of woody bamboos. Pp. 251-267 in: The Bamboos,
ed. Chapman, G. P. London: Linnean Society of London Symposium Series. Academic
Press.
SUN, Y., N. XIA, and R. LIN. 2005. Phylogenetic analysis of Bambusa (Poaceae: Bambusoideae)
based on Internal Trascribed Spacer sequences of nuclear ribosomal DNA. Biochemical
Genetics. 43: 603-612.
TATE, J. A. and B. B. SIMPSON. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the
polyploid species. Systematic Botany 28: 723-737.
47
TOLEDO V. M. 1988. La diversidad biológica de México. Ciencia y Desarrollo 14: 17-30.
WENDT, T. 1993. Composition, floristic affinities, and origins of the canopy tree flora of the
Mexican Atlantic slope rain forests. Pp. 595-680 in: Biological Diversity of Mexico:
Origins and Distribution, eds. Ramamoorthy,T. P., Bye R. Lot, A. and J. Fa. Oxford
Univ. Press, Oxford.
WORTLEY, A. H. and R. W. SCOTLAND. 2006. The effect of combining molecular and
morphological data in published phylogenetic analyses. Systematic Biology 55: 677-685.
ZHANG, W. 2000. Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data.
Molecular Phylogenetics and Evolution 15: 135-146.
, and L. G. CLARK. 2000. Phylogeny and classification of the Bambusoideae (Poaceae). Pp.
———
53-42 in: Grasses: systematics and evolution, eds. S. W. L. Jacobs and J. E. Everett.
Collingwood, Victoria: CSIRO Publishing.
48
APPENDICES
APPENDIX 1. Taxa used in the phylogenetic study of Otatea, selected specimens for
morphological analysis, and vouchers, GenBank accession numbers for sequences obtained in
this project as well as for the previously published sequences of the DNA sequences used in this
paper. GenBank accessions correspond to rpl16 and trnH-psbA; if there is only one accession it
corresponds to rpl16.
Apoclada simplex McClure & L.B.Sm., Brazil: L. Clark, X. Londoño & W. de Oliveira 1027
(ISC, MO, US); L. Clark & W. de Oliveira 898 (ISC, US); G. Davidse, T. R. Ramamoorthy & D.
V. Vital 10903 (MO); P. Dusén 17506 (MO, NY); J. R. Swallen 8270 (MO, NY); J. Valls, H.
Longhi & A. Barcellos 3113 (MO, US); R. M. Klein 4108 (NY, US); X. Londoño & L. Clark
695 (US); R. M. Klein 4657 (US); A. Castellaños 3461 (US); R. M. Klein 7779 (US); R. M.
Klein & M. M. Klein 11059 (US). Arthrostylidium ecuadorense E.J.Judziewicz & L.G.Clark,
Ecuador: B. Lojtnant, U. Molau & M. Madison 12588 (MO); B. Löjtnant, U. Molau & M.
Madison 12469 (MO); S. Lægaard 55168 (MO, NY); L. Clark, S. Lægaard & P. Stern 1101
(US); L. B. Holm-Nielsen, J. Jaramillo, F. Coello & E. Asanza 27037 (US); S. Lægaard 53778
(US); J. Cuatrecasas 11878 US. AY912189 Clark et al (in press). Atractantha radiata McClure,
Brazil: A. M. de Carvalho, L. Clark, W. W. Thomas & J. Kallunki 4362 (ISC); A. M. de
Carvalho, L. Clark & W.W. Thomas 4387 (ISC); F. O. Zuloaga 2476 (MO, US); C. E. Calderón,
T. S. dos Santos & L. de Oliveira 2397 (MO, NY, US); C. E. Calderón, T. S. dos Santos & L. de
Oliveira 2452 (MO); W. W. Thomas, J. Pirani, J. Kallunki & I. Cordeiro 10370 (MO); T. S.
Santos 2928 (MO, US); C. E. Calderón & T. S. dos Santos 2485 (MO, NY, US); F. O. Zuloaga,
G. Marinelli & J. Caruso 2465 (MO, US); T. S. Santos & T. R. Soderstrom & al. 3913 (MO); C.
E. Calderón & T. S. dos Santos 2479 (MO, NY); C. E. Calderón 2474 (MO); T. S. Santos & T.
49
R. Soderstrom & al. 3914 (MO, NY); C. E. Calderón 2454 (MO, NY); X. Londoño, T. dos
Santos y S. Sant'Ana 723 (US). AY912190 Clark et al. (in press). Aulonemia clarkiae Davidse
& R.W.Pohl, Honduras: G. Davidse & R. Zuniga 34651 (ISC, MO). Mexico: D.E. Breedlove
58512 (US); G. Cortés s/n (MEXU) (EF589612, EF589628). Aulonemia fulgor Soderstr.,
Mexico: L. Clark, M. Cházaro, P. Tenorio & G. Bol 454 (ISC, MO, NY); L. Clark, G. Cortés, P.
Tenorio & L. Hornberger 1143 (ISC, MO, NY, US); W. Ruiz 101 (MO). G. Cortés 324 (MO); G.
Davidse, M. Souza, O. Téllez, E. Martínez & J. Davidse 30258 (MO, US); L. G. Clark, M.
Cházaro, P. Tenorio & G. Bol 458 (MO, NY); Rzedowski 33350a (US); J. Bauml & M. Kimnach
491 (US); A. A. Beetle 5025 (US); A. A. Beetle 5027 (US); S. D. Koch 75549 (US); T. MejiaSaulés. 2018 (XAL) (EF589613, EF589629). Aulonemia laxa (F.Maek.) McClure, Mexico: L.
Clark, P. Tenorio & G. Bol 485 (ISC, MO, US); C. Santiz 252 (MO, NY); D. E. Breedlove
28181 (NY); S.D. Koch & P.A. Fryxell 82133 (NY, US); R. Ortega 1113 (US); T. Tateoka 1164
(US); G. N. Ross 144 (US); G. Cortés 311 (MEXU) (EF589614, EF589630). Nicaragua: T.B.
Croat 43057 (US). Aulonemia patula (Pilg.) McClure, Colombia: X. Londoño & L. Clark 385
(MO, US); (US); M. L. Bristol 819 (US). Ecuador: L. Clark, C. Calderón & B. Treviño 324 (ISC,
MO); L. Clark, C. Calderón & E. Azanza 306 (ISC, NY); L. Clark & P. Asimbaya 1482 (ISC,
MO); P.M. Peterson, E. J. Judziewicz, R. M. King & P.M. Jørgensen 9207 (MO); S. Lægaard
52399, 53030 (MO, US); L. Clark, S. Lægaard & P. Stern 1075 (MO, US); L. Clark, H.
Navarrete, A. Freire & K. Romoleroux 1135 (MO, US); S. M. Young 121, 122, 127 (MO); P. M.
Peterson & C. R. Annable 9010 (MO); L. Clark, R. Townsend, G. Reiners & F. Santiana 1639
(MO); F. A. McClure 21419, 21423(MO). AY912191 Clark et al. (in press). Bambusa vulgaris
Schrad. ex J.C. Wendl., Mexico: J. L. Martínez y Pérez s/n (XAL); AY912192 Clark et al. (in
press); E. Ruiz-Sánchez 158 (XAL) (EF589631). Chusquea bilimekii E.Fourn., Mexico: L.
50
Clark, M. Cházaro, P. Tenorio & G. Bol 455 (MO, NY); C. Cortés, V. Luna, G. Cooper & J.
Mora 345 (MO); N. Santacruz & R. Acosta 901 (MO); U54757 Kelchner and Wendel, 1996; T.
Mejia-Saulés 2012 (XAL) (EF589632). Eremocaulon asymmetricum (Soderstr. & Londoño)
Londoño, Brazil: A. M de Carvalho, L. Clark, W. W. Thomas, J. Kallunki & S. Sant´Ana 4372
(ISC, US); X. Londonño., A. Carvalho & S. Sant'Ana 740 (MO, US); T. R. Soderstrom & G.
Martinelli 3898 (US); Santos-Gonçalves 595 (UEC, XAL) (EF589615, EF589633).
Eremocaulon aureofimbriatum Soderstr. & Londoño, Brazil: C. E. Calderón & R. S. Pinheiro
2234 (ISC, US); X. Londoño, T. dos Santos & S. Sant´Ana 734 (ISC, MO); C. E. Calderón, T. S.
Santos & L. de Oliveira 2396 (US); Santos-Gonçalves 590 (UEC, XAL) (EF589616, EF589634).
Glaziophyton mirabile Franch., Brazil: AF133471 Zhang, 2000. Guadua aculeata Rupr. ex
E.Fourn., Guatemala: F.A. McClure 21572 (ISC, US). Honduras: F. A. McClure 21556 (US).
Mexico: L. Clark & P. Tenorio 949 (ISC, US). Nicaragua: F. Ortiz 2059 (ISC, MO). Panama: P.
H. Allen 300 (US); J. Pale Pale 23 (XAL) (EF589617, EF589635). Guadua amplexifolia J.Presl,
Colombia: X. Londoño & L. Clark 473 (ISC, MO, NY). Costa Rica: U. Chavarria 766 (MO,
US). Ecuador: F. A. McClure 21382 (MO). Mexico: L. Clark, P. Tenorio & G. Bol 474 (ISC,
MO). Nicaragua: F. A. McClure 21479 (US). Panama: P. H. Allen 4039 (ISC, US). Venezuela:
G. S. Bunting 9200 (MO, NY, US); J. Pale Pale 24 (XAL) (EF589618, EF589636). Guadua
angustifolia Kunth, Colombia: X. Londoño 964 (US). Ecuador: L. Clark, S. Lægaard & P. Stern
1095 (ISC). Peru: F. A. McClure 21464 (MO). Trinidad: C. D. Adams 14710 (NY). Venezuela:
R. Liesner & A. González 10663 (MO, US); AY912198 Clark et al. (in press); E. Ruiz-Sánchez
157 (XAL) (EF589637). Guadua longifolia (E.Fourn.) R.W.Pohl, Belice: T. B. Croat 23424
(MO); C. L. Lundell 3870 (MO)Guatemala: A. Molina 15876 (US). Mexico: L. Clark, I. Calzada
& D. Farrar 1314 (ISC, MO, US); T. Mejia-Saulés 2020 (XAL) (EF589619, EF589638).
51
Guadua paniculata Munro, Bolivia: W. W. Thomas., P. Betella & A. Centurion 5659 (MO); T.
Killeen 752. Brazil: H.S. Irwin & T. R. Soderstrom 7187 (ISC, MO). Costa Rica: R.W. Pohl &
R. Pinette 13239 (MO, US). Guatemala: J. A. Steyermark 51248 (US). (MO). Mexico: L. Clark,
P. Tenorio & G. Bol 464 (MO). Nicaragua: S. B. Robbins 5827 (MO); E. Ruiz-Sánchez 95
(XAL) (EF589620, EF589639). Guadua velutina Londoño & L.G.Clark, Mexico: L. G. Clark &
P. Tenorio 946 (ISC, MO); G. Cortés & F. Aguilar 79 (US); T. Mejia-Saulés 2021 (XAL)
(EF589621, EF589640). Neurolepis aperta (Munro) Pilg., Colombia: C. E. Calderon., L. Clark
& J. Cavalier 2994 (US, NY). Ecuador: S. Lægaard 55191 (MO, US, NY). Venezuela: L.J. Dorr,
E. Briceno, G. Briceno & R. Caracas 8491 (MO, NY). U62793 Kelchner and Clark, 1997.
Olmeca recta Soderstr., Mexico: M. Nee 29749 (ISC, MO, US); T.R. Soderstrom 2235 (US); L.
G. Clark, G. Cortés, I. Calzada & D. Farrar 1313 (ISC, US); E. Ruiz-Sánchez 132 (XAL)
(EF589622, EF589643). Olmeca reflexa Soderstr., Mexico: T. R. Soderstrom 2243 (ISC, US); L.
Clark, P. Tenorio & G. Bol 467 (ISC, MO); G. Cortés & W. Sánchez 312 (MO); E. RuizSánchez 117 (XAL) (EF589623, EF589644). Otatea acuminata (Munro) C. E.Calderón &
Soderstr., Mexico: Liebmann 127 (US); F. A. McClure 21204 (ISC); D. E. Breedlove 27177
(NY); L. Clark, P. Tenorio, M. Cházaro & G. Bol 450 (ISC, US, NY); R. Guzmán 6122 (ISC,
US); AF133473 Zhang, 2000; E. Ruiz-Sánchez 112 (XAL) (EF589645). Otatea fimbriata
Soderstr., El Salvador: F. A. McClure 21617 (ISC, US, MO, NY). Colombia: X. Londoño, A.
Amaya, J. Jácome y M. V. Forgioni 884 (US, NY). Mexico: L. Clark, P. Tenorio & G. Bol 469
(ISC, US, MO, NY); R. Guzmán 6113 (US); D. E. Breedlove 28085 (US, NY); E. Ruiz-Sánchez
118 (EF589624, EF589641), 130 (XAL). Otatea glauca L.G.Clark & G.Cortés, Mexico: G.
Cortés & W. Sánchez 306 (ISC); L. Clark, P. Tenorio & G. Bol 481 (US, NY); E. Ruiz-Sánchez
144 (XAL) (EF589625, EF589642). Otatea sp. nov Mexico: P. Carrillo-Reyes 5144 (XAL)
52
(EF589626); E. Ruiz-Sánchez 147 (XAL) (EF589646). Rhipidocladum racemiflorum (Steud.)
McClure, Brazil: L. S. Sarahyba., L. Clark & M. Alves da Silva (1062) (NY). Bolivia: M.
Saldias & A. Veliz 4333(NY). Colombia: X. Londoño & L. G. Clark 396 (MO). Costa Rica: R.
W. Pohl 15683 (MO, NY). Ecuador: W. H. Camp 3814 (MO, NY). El Salvador: A. Monro, K.
Sidwell, G. Davidse & C. Ramirez 1911 (MO). Guatemala: P. C. Standley 77650 (MO).
Honduras: A. Molina & A. R. Molina 27900 (MO, NY). Mexico: L. Clark, F. Santana, P.
Tenorio & L. Hornberger 1152 (MO). Venezuela: G. Davidse, O. Huber & S.S. Tillet 17119
(MO); E. Ruiz-Sánchez 128 (XAL); J. Pale Pale 15 (XAL) (EF589627, EF589647).
53
APPENDIX 2. Morphological characters used in analyses based in the Bamboo Phylogeny Group.
Only characters marked with * were based in Londoño and Clark (2002).
Rhizomes and Culms:
1. Culm neck development: 0 = short (neck ≤ 1/2 rhizome length); 1 = long (neck > 1/2
rhizome lenght).
2. Habit: 0 = erect; 1 = apically arching/pendulous; 2 = clambering/scandent; 3 = twining; 4 =
decumbent.
3. Culm internodes: 0 = all solid (at least when young); 1 = all hollow; 2 = some proximal
internodes (including the basalmost ones) solid, distal internodes hollow.
4. Wall thickness (ratio of 2X wall thickness:culm diameter): 0 = walls very thin (ratio up to
0.15); 1 = walls thin (ratio 0.16-0.30); 2 = walls moderately thick (ratio 0.31-0.45); 3 = walls
thick (ratio 0.46-0.60); 4 = walls very thick (ratio 0.61-0.99).
Nodes, Buds and Branching:
5. Vegetative culm branching: 0 = present; 1 = absent.
6. Supranodal ridge: 0 = inconspicuous (a line, diameter less than at the nodal line); 1 =
conspicuous (a ridge, diameter equal to or greater than at the nodal line).
7. Aerial roots: 0 = absent; 1 = present on the lower nodes only; 2 = present on lower and upper
nodes.
*8. Infra- and supranodal bands of hairs: 0 = absent; 1 = present.
9. Compression of the proximal internodes of the primary axis: 0 = no compressed
internodes present; 1 = one compressed proximal internode present at the basalmost portion; 2 =
two to several compressed proximal internodes at the base; 3 = all internodes compressed.
54
10. Relative sizes of secondary branches developing from the primary axis: 0 = secondary
axes subequal to the central primary axis; 1 = at least some of the secondary axes no more than
one-half the diameter of the central axis.
11. Primary axis size relative to the main culm: 0 = more or less equal in diameter; 1 =
primary axis smaller in diameter than the main culm.
12. Thorns developing from the primary axis (or central primary axis): 0 = absent; 1 =
present.
13. Bud/branch complement base: 0 = indistinguishable from the adjacent nodal region
(promontory absent); 1 = swollen, forming a promontory that bears the bud/branch complement.
*14. Branch complement: 0 = 1 divergent branch; 1 = 1 dominant divergent bearing few to
several, small 2° branches basally; 2 = 2 divergent, subequal branches; 3 = 3 subequal, ascending
branches; 4 = numerous secondary branches.
Culm Leaves:
15. Girdle: 0 = absent or poorly developed; 1 = present as a band at least 1 mm wide, no flap,
prominent or not; 2 = prominent, with or without a flap covering the bud complement. 16.
Abaxial sheath surface: 0 = stiff, dark, irritating hairs present; 1 = only soft hairs present; 2 =
glabrous, no hairs present; 3 = scabrous.
17. Sheath apex (or summit or shoulders) indument: 0 = glabrous; 1 = fimbriate.
18. Oral setae: 0 = absent; 1 = present, whether adnate to the inner ligule or not.
19. Culm leaf blade position: 0 = erect to slightly spreading; 1 = reflexed.
20. Culm leaf blade shape: 0 = broadly triangular; 1 = narrowly triangular; 2 = lanceolate
(pseudopetiolate).
55
21. Culm leaf blade midrib abaxial development: 0 = indistinguishable; 1 = visible or even
prominent toward the apex.
22. Auricle (blade-derived appendage) development: 0 = absent; 1 = present and contiguous
with the base of the blade; 2 = present on the sheath apex but not contiguous with the blade.
23. Auricle size: 0 = auricles more or less equal on both sides of the blade base; 1 = strongly
unequal, at least 2 times as large (or long) on one side as on the other side.
24. Auricle indument: 0 = glabrous or ciliate; 1 = fimbriate.
Foliage Leaves:
25. Blade-derived appendages on the sheath summit: 0 = no true auricles or fimbriae
(glabrous); 1 = efimbriate auricles present; 2 = fimbriate auricles present; 3 = fimbriae only
present; 4 = cilia (or tufts of cilia) present.
26. Sheath: 0 = rounded on the back; 1 = strongly keeled at least near the apex.
27. Foliage leaf blade: 0 = abaxial marginal green stripe absent; 1 = abaxial marginal green
stripe present.
28. Midrib placement: 0 = centric; 1 = excentric (wider side of the blade > 1.3 times as wide as
the narrower side).
29. Oral setae: 0 = absent; 1 = present.
Synflorescences:
30. Gemmiparous bracts subtending the spikelet proper: 0 = absent; 1 = present, buds
developing subsequently or not.
31. Subtending bracts at the base of the first- (lowermost) and/or second-order paraclades:
0 = absent; 1 = present, as a scar/rim or scale-like, blade absent, a few mm long; 2 = present,
well developed, with sheath and blade (modified).
56
32. Prophylls at the base of the first- or second-order paraclades: 0 = absent; 1 = present.
Spikelets:
33. Compression: 0 = terete; 1 = lateral; 2 = dorsal.
34. Number of glumes (in female-fertile spikelets or spikelets proper): 0 = absent; 1 = one; 2
= two; 3 = three; 4 = four; 5 = five or six.
35. Awns on the lower two glumes: 0 = absent; 1 = present.
36. Number of female-fertile florets per spikelet or spikelet proper: 0 = one; 1 = two or
more.
37. Rachis extension (internode only, with or without rudimentary spikelet): 0 = absent; 1 =
present and short (< floret); 2 = present and long (> floret).
38. Rachis extension (internode only): 0 = glabrous; 1 = hairy.
39. Lemma indument: 0 = glabrous (glabrescent); 1 = scabrous; 2 = densely hispid; 3 = hispid
only near the apex; 4 = pubescent (all or in part).
40. Palea indument (excluding the sulcus): 0 = glabrous; 1 = scabrous; 2 = pubescent; 3 =
hispid.
41. Sulcus indument: 0 = glabrous; 1 = pubescent; 2 = scabrous.
*42. Palea keel wings: 0 = absent; 1 = present.
Flower:
43. Lodicule margin pubescence: 0 = ciliate (or ciliolate); 1 = glabrous (entire).
44. Stamen number: 0 = two; 1 = three; 2 = six; 3 = > 6.
45. Style proper length: 0 = absent (including extremely short, < 0.1 mm); 1 = elongated > 0.1
mm up to the length of the ovary; 2 = elongated and greater than the length of the ovary.
46. Style proper pubescence: 0 = glabrous; 1 = pubescent.
57
47. Style proper core: 0 = hollow; 1 = solid.
48. Stigma number: 0 = three; 1 = two.
49. Stigma branching: 0 = very branched and plumose (2 or more orders of branching); 1 =
limited branching/simple, hispid (1 order of branching).
Fruit:
50. Fruit type: 0 = dry caryopsis; 1 = baccoid.
Foliar Micromorphology:
51. Papillae over long cells in stomatal zone (abaxial): 0 = absent; 1 = present.
52. Papillae over long cells in stomatal zone (abaxial): 0 = simple; 1 = branched; 2 = simple
and branched.
53. Papillae over the long cells in interstomatal zone (abaxial): 0 = absent; 1 = present.
54. Papillae over adaxial surface: 0 = absent; 1 = present only on bulliform cells; 2 = present
only on long cells; 3 = present on both bulliform and long cells.
55. Papillae over subsidiary cells of the stomatal apparatus: 0 = absent; 1 = present and
simple; 2 = present and branched.
56. Stomates on foliage leaf blades: 0 = present and common only on the abaxial surface; 1 =
present and common on both surfaces; 2 = present only on adaxial surface.
57 Silica bodies, vertical tall and narrow (abaxial, intercostal): 0 = present; 1 = absent.
58 Silica bodies saddle-shaped (abaxial, intercostal): 0 = present; 1 = absent.
59. Silica bodies vertical tall and narrow (abaxial, costal): 0 = present; 1 = absent.
60. Silica bodies saddle-shaped (abaxial, costal): 0 = present; 1 = absent.
61. Silica bodies horizontal dumbbell-shaped (abaxial, costal): 0 = present; 1 = absent.
58
APPENDIX 3. Morphological data matrix of 61 characters. “?” = character not observable, “-” = inapplicable. Polymorfism: A = (0,1);
B = (1,2); C = (2,3); E (0,1,2); G (0,2); I (0,3) All species names are listed with authorship in Appendix 1. Characters states and
descriptions are listed in Appendix 2.
Apoclada simplex
Arthrostylidium ecuadorense
Atractantha radiata
Aulonemia clarkiae
Aulonemia fulgor
Aulonemia laxa
Aulonemia patula
Bambusa vulgaris
Chusquea bilimekii
Eremocaulon asymmetricum
Eremocaulon aureofimbriatum
Glaziophyton mirabile
Guadua aculeata
Guadua amplexifolia
Guadua angustifolia
Guadua longifolia
Guadua paniculata
Guadua velutina
Neurolepis aperta
Olmeca recta
Olmeca reflexa
Otatea glauca
Otatea acuminata
Otatea fimbriata
Otatea sp. nov
Rhipidocladum racemiflorum
0000000001
1234567890
0114000010
020-001011
02G3000011
0112010021
0113010021
0112011011
0112011011
0113010021
000-001021
020-010021
0112010121
A01?1000-0112010121
0112010121
0123010121
0122010021
A113010121
0112000121
000-1010-1111011011
1223011011
0111000020
01A2000020
0113000020
0113000020
0111000031
1111111112
1234567890
1012020001
1011131012
1011120001
0011001111
0011001111
1010121012
1010121012
1001000000
1001020001
1011121111
1111000000
----?20001
1111000000
1111000000
1111000000
1111020000
1111120000
1111000000
-0--2----0010000101
0010000111
1013000111
1013000A01
1013000101
1013001111
-004020000
59
2222222223
1234567890
00--300000
00--311000
00--301001
00--300010
00--300010
10--311000
10--311000
0100010001
00--000000
0201200111
00--000001
10--301001
00--000001
0210I00001
00--C00001
00--200001
00--300001
0210I00001
----100000
00--300010
00--300010
00--300010
00--300000
00--300110
00--30001?
00--301000
3333333334
1234567890
0012111110
0012012000
1120-02000
0022111030
0022111000
0012112011
0012112110
1112010000
0024000-01
2110-11100
1110-11100
B11E012001
1110-11100
1110-11110
1110-11100
1110-11100
B110-11100
1110-11120
0024000-01
0012011000
0012011000
0012111141
0012111141
0012111141
??????????
0012112011
4444444445
1234567890
2001101110
0001??????
0001110100
1001101110
1001101110
2001000100
2001110100
0002210010
1001000110
1002201100
1112111010
001110?100
1112111010
0112211010
1112111010
1111111010
0112211010
0112111010
-011000110
1001101011
1001101111
1001101110
1001101110
1001101110
??????????
1001210110
5555555556
1234567890
0-02020000
1212000101
1210000101
0-02011010
0-03011010
1210000101
1212000101
1012011010
1011101010
0-02011010
0-02010010
1012010110
0-02010010
0-02010010
0-02010010
0-02010010
1013010010
0-02010010
1010110000
0-02011010
0-02011010
0-02010110
1013010110
0-02010110
1012010110
1213011111
6
1
1
0
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
FIGURE LEGENDS
FIG. 1. Strict consensus of six most-parsimonious trees inferred from analysis of the
morphological data set L = 204 steps, CI = 42, RI = 64). Numbers below branches indicate
jackknife/Bremer support. Character numbers are listed in Appendix 2. Filled circles are
synapomorphic. Subtribe abbreviations: Gua = Guaduinae; Art = Arthrostylidiinae; Chu =
Chusqueinae; Bam = Bambusinae.
FIG. 2. Single most parsimonious tree based on rpl16 intron and trnH-psbA intergenic
spacer combined sequence data (L = 48 steps, CI = 0.68, RI = 80). Numbers above branches
indicate jackknife support, and numbers below indicate Bremer support. Subtribe abbreviations:
Gua = Guaduinae; Art = Arthrostylidiinae; Chu = Chusqueinae; Bam = Bambusinae.
FIG. 3. Strict consensus of 53 most-parsimonious trees inferred from analysis of the
combined morphological and molecular data (L = 261, CI= 45, RI = 67). Numbers below
branches indicate jackknife/Bremer support. Character numbers are as listed in Appendix 2.
Filled circles are synapomorphies. .Subtribe abbreviations: Gua = Guaduinae; Art =
Arthrostylidiinae; Chu = Chusqueinae; Bam = Bambusinae.
FIG. 4. Distribution of the southern Otatea species, Olmeca erecta, O. reflexa, and
Aulonemia fulgor and A. clarkiae in southeastern Mexico. Numbers indicated the terrestrial
protected areas. 1. Pico de Orizaba – Cofre de Perote region in central Veracruz; 2. Los Tuxtlas
60
region in southern Veracruz; 3. Sierra de Juarez in Oaxaca; 4. Uxpanapa region in the junction of
Chiapas, Oaxaca and Veracruz; 5. Bosques mesófilos en Los altos, Chiapas; 6. Cañon del
Sumidero, Chiapas and 7. El Triunfo, Chiapas.
61
62
63
64
65
CAPÍTULO III. DELIMITANDO ESPECIES EN EL BAMBÚ NEOTROPICAL OTATEA
(POACEAE: BAMBUSOIDEAE) USANDO DATOS MORFOLÓGICOS,
MOLECULARES Y ECOLÓGICOS.
Enviado a:
Molecular Phylogenetics and Evolution. 2009
66
Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae:
Bambusoideae) using molecular, morphological and ecological data
Eduardo Ruiz-Sánchez* and Victoria Sosa
Departamento de Biologia Evolutiva, Instituto de Ecologia, A. C., Apartado Postal 63, 91000
Xalapa, Veracruz, México.
Apartado Postal 63, 91000 Xalapa, Veracruz, Mexico. Tel. (52) (228) 842-1874 Fax (52) (228)
818-7809 ruizSá[email protected]; [email protected]
*Correspondence: Eduardo Ruiz-Sánchez, Departamento de Biologia Evolutiva, Instituto de
Ecologia, A. C., Apartado Postal 63, 91070 Xalapa, Veracruz Mexico. E-mail:
ruizSá[email protected]; [email protected]
67
Abstract
Species delimitation is a task that has engaged taxonomists for more than two centuries.
Recently, it has been demonstrated that molecular data and ecological niche modeling are useful
in species delimitation. In this paper multiple data sets (molecular, morphological, ecological)
were utilized to set limits for the species belonging to the Neotropical bamboo Otatea, because
there is disagreement about species circumscriptions and also because the genus has an
interesting distribution, with most of its populations in Mexico and a single disjunct population
in Colombia. Molecular and morphological phylogenetic analyses recovered trees with
conflicting topologies. Tree-based morphological and character-based analyses recognized the
same entities. Ecological niche models and PCA/MANOVAS agreed with the recognition of the
same entities that resulted from the morphological analyses. Morphological analyses retrieved
clades supported by diagnostic characters and coherent geographical distributions. Based on
these results seven entities should be recognized in Otatea, instead of the three previously
described species.
Key words: diagnostic characters, ecological niche modeling, molecular parsimony, morphology
tree-based analysis, niche divergence, statistical parsimony network
68
Introduction
Traditionally, species delimitation in the plant kingdom has been based on morphological
differences. However, the inclusion of molecular and ecological data in recent years has
provided more evidence for delimiting species. Sites and Marshall (2003, 2004), in their synopsis
of operational criteria for delimiting species boundaries, designated two broad categories: treebased and non-tree-based methods. Among procedures for establishing species boundaries is the
novel method proposed by Wiens and Penkrot (WP; 2002), which uses morphological and
molecular data and tree-based and character-based analyses simultaneously. The WP method
utilizes DNA haplotypes in parsimony analysis assuming a phylogeny of nonrecombining
haplotypes which may show the focal species to be either exclusive or not exclusive. The treebased morphological analysis uses populations as terminals rather than individuals to avoid a
biased treatment of the polymorphisms shared between populations as homoplasies rather than
synapomorphies. Furthermore, the character-based analysis in the WP method involves finding
diagnostic character states that represent differences among the putative species. The WP method
considers strongly supported set of exclusive and geographically coherent populations to be
potentially distinct species. In this paper this concept was expanded by performing niche
modeling analyses. Current research considers niche modeling to be useful for identifying and
diagnosing species (Raxworthy et al., 2007; Rissler and Apodaca, 2007; Stockman and Bond,
2007; Bond and Stockman, 2008) and for finding potential new species (Raxworthy et al., 2003).
Niche modeling is able to provide evidence for geographic isolation among populations (based
on either conserved or divergent ecological niches) and takes populations to be separately
evolving lineages when gene flow is considered unlikely for the intervening geographic regions
(Wiens and Graham, 2005).
69
A number of animal species were defined with the WP method (e.g. Hendrixson and
Bond 2005; Leavitt et al. 2007; Mulcahy 2008) yet it has never been utilized with plants. It has
been argued that polyploidy, asexual reproduction or hybridization are factors that solely affect
evolutionary processes in plants (Rieseberg 1997; Mable 2004; Rieseberg and Willis 2007;
Silvertwon, 2008; Soltis et al. 2007). However, Rieseberg et al (2006) have suggested that a lack
of congruence between correspondence of plant and animal species could be in relation to these
same factors but not by contemporary hybridization. Moreover, Rieseberg et al (2006)
generalized that plant species are more likely than animal species to represent reproductively
independent lineages.
We selected the Neotropical bamboo Otatea (McClure & E. W. Sm) C. Calderón &
Soderstr. as a test of the WP for delimiting plant species for a number of reasons. The first reason
is that there is controversy on the recognition of two groups within O. acuminata, a variable
species with the widest distribution in the genus. Initially Otatea was described with Otatea
acuminata (Munro) C. Calderón & Soderstr. Later Otatea aztecorum was described but it is now
considered to be a subspecies of O. acuminata (subsp. aztecorum). Therefore O. acuminata is the
focal species in our analyses. Two additional species were later described, O. fimbriata Soderstr.
and O. glauca L.G. Clark & G. Cortés, and a new, still undescribed species from Chiapas is also
known (Guzmán et al., 1984; Judziewicz et al., 1999; Clark and Cortés, 2004; Ruiz-Sánchez et
al., 2008). What is more, our intensive fieldwork has discovered an elevated morphological
variation in populations from previously unexplored areas, which have not yet been
characterized.
The second reason to select this taxon, is that species in Otatea have allopatric
distribution patterns and occupy different habitats, so that niche modeling could give new
70
insights to identify and diagnose taxa. Otatea acuminata is endemic to Mexico, from Sonora
along of the Pacific slopes to Chiapas and in central Mexico along the Transvolcanic Belt in
tropical dry forest and xerophytic scrubs. Otatea fimbriata has a disjunct distribution, collected
from three areas in Mexico and Central America, and one record from Colombia (Londoño and
Clark 1998) in dry pine-oak-juniper or even in dry tropical forests. O. glauca is endemic to
Chiapas and only recollected from a single population, on slopes in the ecotone of tropical dry
forests and oak forests. The undescribed species from Chiapas is currently only known from a
single population in tropical dry forest.
The third reason for selecting Otatea is because its plants are monocarpic with a mass
flowering. Populations usually flower for two or three years, and then the plants die. Herbarium
records indicate that the cycles of mass flowering last 17-30 years. Thus it is difficult to find
flowering plants to analyze floral characters. Molecular evidence for specimens lacking
inflorescences might increase the number of informative characters used in defining species
boundaries, together with vegetative morphological characters.
The main objective of this study is to set limits for the species belonging to Otatea using
multiple data sets (molecular, morphological, and ecological). Four questions emerge from this
objective: Do subspecies in O. acuminata merit species status? Could the disjunct population of
O. fimbriata from Colombia be recognized as different? Can recently collected populations be
assigned to previously described species or do they need to de described as new taxa? Does
ecological niche modeling give new insights to identify and diagnose taxa? How many species
should be recognized in the Neotropical bamboo genus Otatea?
71
Materials and Methods
Taxon sampling
Individuals of Otatea were collected during 2005-2007 throughout the entire range of
distribution of the genus (Fig. 1). Olmeca recta Soderstr., a taxon closely related to Otatea, was
used as the outgroup (Ruiz-Sánchez et al., 2008). A total of 109 individuals from 28 populations
were sampled with three to twelve individuals per population (Fig. 1, Table 1). Fresh leaves were
collected from each individual and dried in silica (Chase & Hills, 1991) and the vouchers were
deposited at XAL.
Morphological data set
The morphological matrix included 54 characters (40 vegetative, six from
synflorescences and flowers and eight leaf micromorphological characters (Appendix 1; data
matrix in Appendix 2). Character selection was based on the list and illustrations by L. Clark in
“Bamboo Biodiversity” (http://www.eeob.iastate.edu/research/bamboo) and on Londoño and
Clark (2002). Characters were scored by examining live material and herbarium specimens.
Vouchers and examined specimens are also listed in Appendix 3.
Molecular data set
DNA extraction, amplification, and sequencing.- DNA was isolated using the modified
2X CTAB method (Cota-Sánchez et al., 2006). Three chloroplast regions (atpF-atpH, psbK-psbI,
trnL-rpl32) were used; the first two were amplified and sequenced using primers and protocols
by Lahaye et al. (2008) and the latter following Shaw et al. (2007). In addition, the nuclear DNA
region ITS, using the ITS5 and ITS4 primers of White et al. (1990), following the protocol of
Shrestha et al (2003) was also sequenced. Amplified products and DNA were purified using the
72
QIAquick PCR purification kit (Qiagen, California, USA) following the protocols provided by
the manufacturer. Clean products were sequenced using the Taq BigDye Terminator Cycle
Sequencing Kit (Perkin Elmer Applied Biosystems, Foster City, USA) with an ABI 310
automated DNA sequencer (Perkin Elmer Applied Biosystems, Foster City, USA).
Electropherograms were edited and assembled using Sequencher 4.1 (Gene Codes, Ann. Arbor,
MI). Sequences were manually aligned with Se-Al v. 2.0a11 (Rambaut, 2002).
Phylogenetic analyses
Two sets of phylogenetic analyses were conducted, molecular and morphological. With
molecular data, initially two parsimony (MP) analyses were conducted, one based on the
combined chloroplast atpF-atpH, psbK-psbI, trnL-rpl32 intergenic loci and a second with the
nuclear ITS. Finally a combined molecular analysis with chloroplast and nuclear DNA loci was
performed.
Parsimony analyses were run in TNT (Goloboff et al., 2003) using a new technology
search approach, the ratchet algorithm with 200 iteration. Parsimony bootstrapping support for
internal branches was estimated with one thousand replicates using TBR branch swapping, with
10 random entry orders saving one tree per replicate. The potential incongruence of the
molecular and morphological data sets was tested using the incongruence length difference (ILD)
test of Farris et al. (1994) as implemented in WinClada (Nixon 2002).
In the morphological phylogenetic analysis the 28 populations of Otatea were treated as
terminal units (Fig. 1, Table 1). The data matrix included 54 characters, two of which were
autapomorphic (Appendix 3), and it was constructed with WinClada (Nixon, 2002). Parsimony
and bootstrap support analyses were run in TNT (Goloboff et al., 2003) with the same settings
73
indicated for the molecular data. Bremer support (Bremer, 1994) was calculated using the BS5
option of Nona (Goloboff, 1999) on 10,000 trees held in memory.
A statistical parsimony network was obtained with the program TCS v.1.21 (Clement et
al. 2000), to understand the genotype relationships of every individual. The network was
constructed using concatenated sequences (chloroplast and nuclear DNA sequences).
Morphological character-based species delimitation
The character-based approach was implemented by comparing the frequencies of
qualitative characters and the range of trait values for quantitative continuous and meristic
characters across all populations to search for potentially diagnostic characters. Characters were
considered to diagnose a species or a set of populations if they were invariant for alternative
character states or showed no overlap in trait values as indicated by Wiens and Penkrot (2002).
Ecological niche modeling
To determine niche dimensions, niche differences and geographic predictions in the
studied populations of Otatea, two algorithms that vary in their predictive performance were
used (Elith et al., 2006); GARP (DesktopGarp v 1.1.6;
http://nhm.ku.edu/desktopgarp/index.html) and Maxent v 3.2.1 (Phillips et al., 2006). The use of
niche modeling can help differentiating between two hypothesis (niche conservatism vs niche
divergence). Niche conservatism promotes allopatric speciation, by limiting dispersal between
populations (e.g., Wiens and Graham, 2005). Niche divergence indicate, adaptation to different
climate conditions in allopatric or parapatric populations accelerating the evolution of
reproductive isolation (Kozak et al., 2008).
74
A total of 134 georeferenced records were compiled, including 102 for O. acuminata and
37 for O. fimbriata. However, O. glauca and O. sp. nov. Chiapas have each been recorded in
only a single locality. Georeferenced locality data were obtained during the fieldwork of this
project and from herbarium specimens from the following herbaria: ENCB, F, IBUG, IEB, ISC,
MEXU, MO, NY, US and XAL. The dataset was modeled with 19 standard bioclimatic variables
derived from modern temperature and precipitation data from WorldClim 1.4 (Hijmans et al.,
2005) with a resolution of one square kilometer.
Maxent creates species distribution models (DMs) by combining presence-only data with
ecological layers using a statistical approach known as maximum entropy. The maximum
entropy approach estimates a species’ environmental niche by finding a probability distribution
that is based on a distribution of maximum entropy (Rissler and Apodaca, 2007). Following
Phillips et al. (2006), we used the default modeling parameters for all species with a logistic
output. Binary maps (predicted presence or absence) were created from the Maxent-generated
niche distribution models using the lowest presence threshold value (LTP) (Pearson et al., 2007;
Stockman and Bond, 2007; Bond and Stockman, 2008).
The genetic algorithm for rule-set prediction (GARP) (Stockwell and Noble, 1992;
Stockwell and Peters, 1999) like Maxent, reconstructs the potential distribution of species with
an evolutionary computing genetic algorithm to search for a nonrandom association between
environmental variables and known occurrences of species, as contrasted with environmental
factors across the study area (Stockwell and Peters, 1999). GARP was run for species with more
than 25 records with the parameters: 50% for training, 50% for testing, runs = 100, convergence
limit = 0.01, iterations = 1000. “Best subsets” omission measure = extrinsic, omission threshold
= hard and 10% omission, total models under hard omission threshold = 20, commission
75
threshold = 50%). For species with fewer than 20 records GARP analysis was run with the same
parameters except for 100% for training and omission measure = intrinsic. Both procedures
generated 10 best models. The geographic predictions (binary predictions, 0 = absence, 1 =
presence) of the 10 best models were averaged to provide a summary of potential geographic
distributions (Anderson et al., 2003). Otatea glauca and O. sp. nov. Chiapas were not considered
for ecological niche modeling because there are fewer than five records for each. The resultant
Maxent and GARP ASCII file was converted to raster format using ArcView GIS 3.2.
To evaluate ecological interchangeability, two evaluations were performed (Stockman
and Bond, 2007; Bond and Stockman, 2008). From the closely related lineages we estimated the
degree of overlap following Barraclough and Vogler (2000) from the DMs generated by Maxent
and GARP. Firstly, from the closed related lineages the degree and significance of overlap
between closely related lineages was estimated with D-NOVL v 1.3 (Stockman et al., 2008).
This program uses a Monte Carlo algorithm that creates a null model to determine the probability
distribution of the degree of overlap for DMs of known sizes (Stockman and Bond, 2007). We
then used standard methods of statistical inference to evaluate the amount of overlap observed.
The null hypothesis that the DMs are randomly distributed is rejected if the observed overlap has
a probability < 0.05. Lineages whose DMs are completely or largely overlapping are considered
to be ecologically interchangeable (Stockman and Bond, 2007). For each closed related lineage
we performed 1000 simulations following Stockman et al. (2008). Secondly, a PCA was
performed using the extracted values of 19 climate variables (WorldClim 1.4; Hijmans et al.,
2005) for each unique locality of each clade to examine the overall level of divergence in
environmental space among the extant taxa. We then quantified how pairs of sister taxa
overlapped in environmental space using the environmental variables. A MANOVA
76
(multivariate analysis of variance) of PC scores was performed to test for significant differences
among the PC scores of closely related lineages. The F-statistic was reported, as well as a test of
between-subject effects to determine which PCs account for significance in the overall test
(Graham et al., 2004; Stockman and Bond, 2007).
Results
DNA haplotype phylogenetic analyses
Sequence lengths for the three chloroplast atpF-atpH, psbK-psbI and trnL-rpl32
intergenic loci were 622, 438 and 847 base pairs (bp) respectively and total length was 1907 bp.
All sequences were deposited in GenBank (accession numbers; atpF-atpH; FJ483849-FJ483862;
psbK-psbI: FJ483863-FJ483876; rpl32-trnL: FJ483877-FJ483888); twenty parsimonyinformative characters, 36 variable sites and twelve haplotypes were found (Table 1). Sequence
length for nuclear ITS, was 587-593 bp; 42 parsimony-informative characters, 49 variable sites
and 33 haplotypes were found (accession numbers; GQ384308- CQ384341).
The cpDNA data resulted in a single most parsimonious tree (MPT) (L= 21, CI = 95, RI =
99) (Fig. 2). The ITS resulted in eight MPT (L= 95, CI = 64, RI = 88), strict consensus is shown
in (Fig. 2). The combined data set resulted in five MPT (L= 124, CI = 65, RI = 91) strict
consensus is shown in Fig. 2. The ILD test revealed no incongruence between the chloroplast
and the nuclear datasets (p = 0.1517). The single chloroplast MPT shows that the haplotypes of
O. acuminata and O. fimbriata are not exclusive and formed two different supported clades.
Individuals of the two subspecies of O. acuminata did not form groups. Individuals of Otatea
glauca and O. sp. nov. Chiapas are combined and only two individuals of the populations of O.
sp. nov. Chiapas formed an exclusive group (Fig. 2). ITS strict consensus tree shows similar
77
topology to the chloroplast single MPT (Fig. 2). Strict consensus topology of the combined data
matrix is similar to the chloroplast MPT, showing besides the two main clades an additional
supported clade formed by individuals of O. glauca and O. sp. nov. Chiapas (Fig. 2).
Statistical parsimony network
The network with the 108 Otatea individuals resulted in 34 unique compound
(chloroplast + nuclear) genotypes grouped in a single network (Fig. 3). Seventeen genotypes
were found in O. acuminata, three in O. fimbriata, two in O. glauca, seven in O. sp. nov.
Transvolcanic, and one for O. sp. nov. Oaxaca, O. sp. nov. Chiapas and O. sp. nov. Jalisco,
respectively (Fig. 3). The biggest outgroup probability was for population 28 of O. fimbriata
from Colombia.
Morphological phylogeny
Parsimony analysis of morphological data resulted in a single most parsimonious tree
(MPT) (L = 179, CI = 0.47 and RI = 0.76), shown in Figure 4. MPT displays populations of O.
acuminata (B = 4) (Bootstrap support = BS and Bremer support = B) and O. fimbriata in their
own clades, as well as populations of O. glauca and the single population (22) of O. sp. nov.
Chiapas. Populations from the subspecies of O. acuminata are combined in the same clade.
Three main clades were retrieved, a first clade formed by populations of O. glauca and O. sp.
nov. Chiapas; a second clade formed by populations of O. fimbriata, O. sp. nov. Transvolcanic,
O. sp. nov. Oaxaca and O. sp. nov. Jalisco; the third clade was formed by populations of the two
subspecies of O. acuminata (Fig. 4).
Character-based species delimitation
78
The morphological character-based approach supports the recognition of seven different
entities, the same entities identified by the morphology tree-based phylogeny. Otatea acuminata
is the most morphologically variable species with a widespread distribution (Fig. 1) and is
recognized by a single diagnostic character: the lack of oral setae in foliar leaves (Char. 28) and
the two subspecies can not be recognized based on morphological characters. O. fimbriata is
distributed from Chiapas, through Central America down to South America, and is recognized by
three diagnostic characters: nodal line dipping slightly below the buds, brown foliar oral setae,
and a patch of brown of cilia on the abaxial foliar surface. O. sp. nov. Transvolcanic has five
diagnostic characters: an extravaginal branching pattern, branch complement with one or two
divergent branches, a glabrous sheath apex, foliar oral setae connate at the basal third or more,
and a patch of yellow cilia on the abaxial foliar surface. O. sp. nov. Oaxaca has two diagnostic
characters: purple foliar oral setae with a length of 6 mm. O. sp. nov. Jalisco has three diagnostic
characters: papyraceous foliar oral setae, white culm and foliage leaf oral setae. O. glauca from
Chiapas has three diagnostic characters: thin culm walls and glabrous foliar oral setae. O. sp.
nov. Chiapas has two diagnostic characters: fimbriate culm leaf bases and straight fimbriae of
foliar leaves.
Ecological niche models and PCA/MANOVA
Based on the morphological tree phylogeny, which was coherent with geographic distribution
(Fig. 1, 4), GARP and Maxent predictive models were produced based on 19 environmental
variables (Table 2) for only the four entities with more than five records (Pearson et al., 2007).
These species were Otatea acuminata, O. fimbriata, O. sp. nov. Transvolcanic, and O. sp. nov.
Jalisco, none of which are sister taxa (Fig. 4). Distribution models (DMs) of O. acuminata (Fig.
79
5a GARP and 5b Maxent; LTP = 11%) were based on 103 samples, the highest number of
records with the widest distribution in Mexico. GARP and Maxent DMs for O. acuminata (Fig.
5a) found the areas of predicted occurrence to be similar. The DMs of O. fimbriata (Fig. 5c
GARP and 5d Maxent; LTP = 57%) were based on 19 records and both algorithms predicted
almost the same DMs, with suitable areas in Oaxaca, Guerrero, Michoacán, Estado de México,
Colima and Jalisco from Mexico and Guatemala, Nicaragua and Venezuela. DMs of O. sp nov 2
Transvolcanic (Fig. 5e GARP and 5f Maxent; LTP = 58%) were based on 10 records. The GARP
(Fig. 5e) prediction was better than that of Maxent (Fig. 5f), because it excluded a record from
Nayarit. The DMs of O. sp. nov. Jalisco (Fig. 5g GARP and 5h Maxent; LTP = 56%) were based
on seven records. In this case the GARP prediction was better than that of Maxent, because the
latter overpredicted suitable areas in Nayarit, Jalisco, Michoacán, Estado de Mexico and D.F.
GARP DMs for O. sp. nov. Transvolcanic and O. sp. nov. Jalisco, and with 10 or fewer records
gave better predictive models than Maxent did (Fig. 5e-h).
The PCA based on 19 climate variables found that PC1 = 33%; PC2 = 30%; PC3 =
13.7% and PC4 = 10.3% explained almost 87% of the variability. Table 2 shows that seven
temperature variables load negatively on PC1, one temperature and three precipitation variables
load on PC2, one temperature and one precipitation variable load on PC3, and finally two
precipitation variables load on PC4.
The PCA/MANOVAs of the lineages recognized from the morphological phylogeny gave
the following results. The comparison between O. glauca with O. sp. nov. Chiapas was not
performed because of the low number of sample records for the two species. However a
statistically significant difference between PC1 and PC4 (P = 0.007, P = 0.01) was found for
these groups, suggesting that they are found in areas with different precipitation and temperature
80
regimes. The overall MANOVA shows a statistically significant difference between O. sp. nov.
Oaxaca and O. sp. nov. Jalisco (F1,8 = 841.7, P < 0.0001). This difference occurs along PC2 (F =
18.7, P = 0.004), PC3 (F = 42.07, P = 0.0006) and PC4 (F = 62.7, P = 0.0002), suggesting that
these two entities are found in areas with different amounts precipitation, but similar
temperatures. The comparison of the groups formed by populations from Oaxaca-Jalisco with
populations from the Transvolcanic Belt showed no statistically significant differences (F1,16 =
1.21, P = 0.3526), suggesting that the three entities are found in areas with similar temperature
and precipitation. O. fimbriata and (O. sp. nov. Jalisco, O. sp. nov. Oaxaca, O. sp. nov.
Transvolcanic) were significantly different (F1,35 = 23.89, P < 0.0001). This difference occurs
along PC1 (F = 6.19, P < 0.018), PC2 (F = 43.09, P < 0.0001) and PC4 (F = 14.93, P = 0.0005),
suggesting that the entities are found in areas with different precipitation and temperature
regimes.
The ecological interchangeability models produced by GARP and Maxent
revealed that O. sp. nov. Jalisco and O. sp. nov. Transvolcanic showed a large degree of overlap
(GARP = 70.8 % and Maxent = 65.4%) and the probability of detecting overlap if the ranges
were randomly distributed was < 0.05, suggesting that these two clades display little ecological
divergence. This agreed with the MANOVA results. GARP and Maxent DMs for O. fimbriata
with O. sp. nov. Transvolcanic and O. sp. nov. Jalisco had minimal or no overlap. O. fimbriata
with O. sp. nov. Transvolcanic (GARP = 8.2 % and Maxent = 8.3%) and O. fimbriata with O. sp.
nov. Jalisco (GARP = 0 % and Maxent = 3.9%) were consistent with a random distribution (P >
0.05), therefore there is no ecological interchangeability between O. fimbriata with either O. sp.
nov. Transvolcanic or O. sp. nov. Jalisco and they have divergent ecological niches. In
81
conclusion, the results of the above combinations indicate that populations of O. fimbriata occur
in areas with different precipitation and temperature regimes.
Discussion
Molecular analyses
Instead of chloroplast loci such as trnD-trnT, trnC-rpoB, rps16-trnQ, and the rpl16
intron, which are currently being utilized in the Bamboo Phylogeny Project
(http://www.eeob.iastate.edu/research/bamboo), we sequenced atpF-atpH, psbK-psbI, because
more variation in a large number of angiosperms has been reported for them (Lahaye et al.,
2008), and we used the spacer trnL-rpl32 because it is one of the most variable according to
Shaw et al. (2007). The loci of the Bamboo Phylogeny Project were selected to determine the
relationships of groups at higher taxonomic levels. The nuclear ITS has been sequenced for
temperate woody bamboos and we used it as well (Hodkinson et al., 2000; Guo et al., 2001; Guo
and Li, 2002, 2004; Peng et al., 2008; Sun et al., 2005; Yang et al., 2008).
Trees retrieved by molecular analyses were mostly unresolved. Low substitution rates
have been found in Bambusoideae phylogenetic analyses that used different DNA markers
(Kelchner and Clark, 1997; Hodkinson, 2000; Guo et al., 2001, 2002; Guo and Li, 2004; Sun et
al., 2005; Yang et al., 2007, 2008; Bouchenak-Khelladi et al., 2008; Peng et al., 2008; RuizSánchez et al., 2008; Sungkaew et al., 2008). In spite of the fact that we selected these previously
reported and variable markers, they had low numbers of informative molecular characters in the
phylogenetic analyses for Otatea.
Tree topologies retrieved by the molecular analyses were similar and individuals of
Otatea glauca and O. sp. nov. Chiapas were the only ones to form supported clades. However,
82
according to the WP method, molecular- and morphological tree-based, character-based analysis
and geographic coherence should be taken into account to define species, so decisions for Otatea
were taken based in all evidence.
The statistical parsimony network identified a single network, implying that both markers
(chloroplast and nuclear) have congruent histories with low global homoplasy levels (GómezZurita and Vogler 2006). The network exhibits some reticulation, particularly between genotypes
of Otatea acuminata and O. sp. nov. Transvolcanic.
Morphological analyses
Morphological parsimony retrieved only three well supported clades (O. fimbriata
populations, O. sp. nov. Transvolcanic populations, and two populations of O. sp. nov. Jalisco).
Character-based analysis recognized seven identities, which possess the diagnostic character
states indicated above. These are: O. acuminata (including subsp. aztecorum), O. fimbriata
(including the Colombian population), O. glauca, and four putative new species: O. sp. nov.
Jalisco, O. sp. nov. Transvolcanic, O. sp. nov. Oaxaca and, O. sp. nov. Chiapas. Diagnostic
characters were all vegetative. In Otatea, in contrast to many other Neotropical bamboo genera,
there appear to be relatively few good characters in the floral structures even when they are
present to distinguish reliably among its species, but flowering specimens were not known for
some of our populations. Traditionally, a number of morphological characters have been used to
differentiate taxa in bamboos (Londoño and Clark 1998, 2002; Judziewicz et al., 1999). The
vegetative attribute of a branch complement with three subequal branches per node is the
character that has been used to distinguish Otatea from the other genera in subtribe Guaduinae
(Guzmán et al., 1984; Londoño and Clark, 1998; 2002; Judziewicz et al., 1999; Ruiz-Sánchez et
83
al., 2008). An additional character is the presence of oral setae at the apex of the culm and
foliage leaf sheaths (Ruiz-Sánchez et al., 2008). These characters vary among the taxa
recognized by our analyses, but differences in habitats (types of vegetation) and an allopatric
distribution could be responsible for this variation.
The focal species in our study, Otatea acuminata, displayed an elevated morphological
variation. Diameter of stems was variable. The subsp. aztecorum was recognized by having thick
stems, more than 3 cm in diameter. Also, pubescence on abaxial sheath surface was another
character for differentiating O. acuminata subsp. aztecorum from subsp. acuminata. Yet our
results did not find these characters supporting groups of populations in the tree-based nor as
diagnostic in the character-based analyses. Oral setae on culm leaves were either present or
lacking in populations of O. acuminata, but they were always absent from foliar leaves, and this
was a diagnostic attribute according to the character-based analysis. In contrast to vegetative
attributes, floral characters were not variable in populations of this species. Qualitative
characters, such as color of oral setae or cilia on the abaxial foliar surface or pubescence on
sheath apex that resulted diagnostic for entities such as O. sp. nov. Jalisco, O. sp. nov.
Transvolcanic and, for O. fimbriata were observed from both wild plants and from new shoots of
cultivated plants in the Clavijero Botanical Garden.
Ecological niche
The principle for projecting ecological niche is that adaptation to different climate
conditions in allopatric or parapatric populations might play an important role in speciation by
driving phenotypic divergences and accelerating the evolution of reproductive isolation (Kozak
et al., 2008). Niche divergence implies that there is no ecological interchangeability while niche
84
conservatism implies the contrary (Graham et al., 2004; Jakob et al., 2007; McGuire et al., 2007;
Rissler and Apodaca, 2007; Stockman and Bond, 2007; Bond and Stockman, 2008). The results
of GARP, MAXENT and PCA/MANOVAS suggest niche divergence for O. sp. nov. Jalisco, O.
sp. nov. Oaxaca, O. sp. nov. Transvolcanic and O. fimbriata. Otatea sp. nov. Jalisco and O. sp.
nov. Oaxaca have divergent ecological niches. Morphological results indicate that the allopatric
sister species, O. sp. Jalisco and O. sp. Oaxaca, are divergent in ecological niches. The species
from Jalisco grows in pine-oak humid forests or cloud forests and the species from Oaxaca
grows in pine-juniper-oak forests with differences in precipitation. Populations of Otatea
acuminata resulted the sister group to a clade formed by populations of O. sp. nov. Jalisco, O. sp.
nov. Oaxaca, O. sp. nov Transvolcanic and O. fimbriata in the morphological tree. Ecological
niche models are projected for sister taxa, thus it was not possible to consider O. acuminata, our
focal species, in these projections. Moreover, populations of O. acuminata are found from
tropical dry forest to even drier habitats, like xerophytic scrubs. In addition this species is found
in altitudes from 400 to 2000 m.
Conflicting results from molecular and morphological analyses
Molecular and morphological analyses retrieved trees with conflicting topologies.
Probable causes of incongruence between molecular and morphological data sets include
processes like lineage sorting of ancestral polymorphisms, paralogy, lateral gene transfer and
hybridization (Brower et al., 1996; Maddison, 1997). Recent research on plants (Jakob and
Blattner, 2006; Bänfer et al., 2006; Flagel et al., 2008; van der Niet and Linder, 2008) and
animals (Pollard et al., 2006; Carstens and Knowles, 2007; Carstens and Knowles, 2007a;
Leaché and Mulcahy, 2007; McGuire et al., 2007; Gray et al., 2008; Trewick, 2008) has found
85
that incomplete lineage sorting is often one of the causes of incongruence between gene and
species trees. Furthermore, the effect of lineage sorting persists regardless of whether more and
more regions within a genome are added to the analyses or not (Hudson and Coyne, 2002;
Degnan and Rosenberg, 2006; Knowles and Carstens, 2007). Recently derived species may
reflect the incongruence between species boundaries inferred with genetic markers and the
boundaries inferred with morphology (Knowles and Carstens, 2007), which could be the case in
Otatea.
As mentioned above, in plants, hybridization processess can also cause
discordance between morphological and molecular data (e.g. Lihová et al., 2007, Pan et al.,
2007). In Bambusoideae natural hybridization has been reported in the Neotropical genus
Chusquea (Clark et al. 1989) and in a Japanese lineage formed by genera such as Pleioblastus,
Sasamorpha, Phyllostachys, and Sasa, representing intergeneric hybrids (Triplett and Clark
2009). The statistical parsimony network found evidence of gene flow between populations of
Otatea acuminata and O. sp. nov. Transvolcanic, but according to Gómez-Zurita and Vogler
(2006), proponents of this method, this single network does not suggest potential hybridization.
Most of the ancient cases of hybridization appear to be caused by introgression rather than by
hybrid speciation (Rieseberg et al., 1997). Rieseberg et al. (2006) elucidated that plant species
are more likely than animal species to represent reproductively independent lineages.
Conclusions
Trees recovered by molecular and morphological analyses retrieved two contrasting
hypotheses. Molecular analyses indicated that species of Otatea have diverged recently with
gene exchange, hybridization or incomplete lineage sorting. Therefore, we base our conclusions
86
on the tree-based and character-based morphological analyses as suggested by the WP
methodology, recognizing four new species plus three currently recognized in Otatea, each with
fixed diagnostic characters. Moreover ecological niche modeling agreed that niche divergence
could be one of the causes of speciation, because allopatric groups of populations were separated
by different mountains and we think that niche divergence could be the responsible for speciation
in Otatea species. In Otatea, the morphology data set was more useful for studying recently
diverged taxa than the molecular data set. It was advantageous to gather morphological,
molecular and ecological data simultaneously in order to detect recently diverged taxa, because
the molecular data alone was unable to distinguish recently formed species.
Furthermore, the species will be described based on the vegetative characters that
supported the new taxa. Niche modeling corroborated that the groups recognized in the
morphological analyses occupy different habitats. The molecular statistical parsimony network
indicated that the ancestral genotype in Otatea is found in the population from Colombia,
corroborating the hypothesis of Kelchner and Clark (1997) that the bamboos originated in South
America, migrating to Central and to North America.
We conclude that the two subspecies in Otatea acuminata can not be segregated and
raised to the level of species. In addition we resolved that the population in Colombia indeed
forms part of O. fimbriata. Therefore, based in the morphology tree- and character-based
analyzes and corroborated by the modeling of ecological niche we decided to recognize seven
entities in Otatea.
Further research considering additional DNA markers (AFLP, microsatellites, other
nuclear DNA sequences) will allow to date time of origin of Otatea species. Timing will detect if
87
Pleistocene climate fluctuations could be responsible for the process of speciation in Otatea.
They will also allow to elucidate if some of the species had an hybrid origin.
88
Acknowledgements
We are particularly grateful to two anonymous reviewers which greatly improved the
manuscript. To John J. Wiens for his thoughtful review of a preliminary version of the paper, to
Ximena Londoño and Jaime Eduardo Muñoz for assistance in field work in Colombia, and for
kindly providing DNA sequences for the Colombian Otatea population. We thank Francisco
Ornelas for providing reviews that improved this manuscript significantly. We are grateful to
Pablo Carrillo-Reyes, Arturo de Nova, Flor Rodríguez-Gómez, José Luis Martínez, Nelly
Jiménez-Pérez, Jaime Pacheco, Xóchitl Galarza, Diego Angulo and Etelvina Gándara for their
assistance with field work. Bianca Delfosse edited the English version of the manuscript. We
thank the curators of the following herbaria for access to their collections and the loan of
specimens: ISC, MEXU, MO, NY, US and XAL. Field work was supported by a graduate
student grant of the Instituto de Ecologia, A. C., by a grant of the student assistance program of
BOTA “Bamboos of the Americas”, by a grant provided by “Red Lationamericana de Botánica”
(RLB07-ATP01) and also by a student grant from the International Association for Plant
Taxonomists. A fellowship to ER-S by CONACYT (190069) is also gratefully acknowledged.
89
References
Anderson, R.P., Lew, D., Peterson, A.T. 2003. Evaluating predictive models of species’
distributions: criteria for selecting optimal models. Ecol. Mod. 162, 211-232.
Bänfer, G., Moog, U., Fiala, B., Mohamed, M., Weising, K., Blattner, F.R. 2006. A chloroplast
genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals
hybridization, vicariance and long-distance dispersals. Mol. Ecol. 15, 4409-4424.
Barraclough, T.G., Vogler, A.P. 2000. Detecting the geographical pattern of speciation from
species-level phylogenies. Am. Nat. 155, 419-434.
Bond, J.E., Stockman, A.K. 2008. An integrative method for delimiting cohesion species: finding
the population-species interface in a group of Californian trapdoor spiders with extreme genetic
divergence and geographic structure. Syst. Biol. 57, 628-646.
Bouchenak-Khelladi, Y., Salamin, N., Savolainen, V., Forest, F., van der Bank, M., Chase,
M.W., Hodkinson, T.R. 2008. Large multi-gene phylogenetic trees of the grasses (Poaceae):
progress towards complete tribal and generic level sampling. Mol. Phylogenet. Evol. 47, 488505.
Bremer, K. 1994. Branch support and tree stability. Cladistics 10, 295-304.
90
Brower, A.V.Z., DeSalle, R., Vogler, A.P. 1996. Gene trees, species trees, and Systematics: A
cladistic perspective. Annu Rev Ecol Syst 27:423–450.
Carstens, B.C., Knowles, L.L. 2007. Estimating species phylogeny from gene-tree probabilities
despite incomplete lineage sorting: an example from Melanoplus grasshoppers. Syst. Biol. 56,
400-411.
Carstens, B.C., Knowles, L.L. 2007a. Shifting distributions and speciation: species divergence
during rapid climate change. Mol. Ecol. 16, 619-627.
Chase, M.W., Hills, H.H. 1991. Silica gel: An ideal material for field preservation of leaf
samples for DNA studies. Taxon 40, 215-220.
Clark, L.G., Cortés, G. 2004. A new species of Otatea from Chiapas, Mexico. Bamboo Science
and Culture 18, 1-6.
Clark, L.G., Davidse, G., Ellis, R. 1989. Natural Hybridization in Bamboos: Evidence from
[Chusquea] sect. [Swallenochloa] (Poaceae: Bambusoideae). Nat. Geo. Res. 5, 459-476.
Clement, M., Posada, D., Crandall, K.A. 2000. TCS: a computer program to estimate gene
genealogies. Mol. Ecol. 9, 1657-1999.
91
Cota-Sánchez, H.J., Remarchuk, K., Ubayasena, K. 2006. Ready-to-use DNA extracted with a
CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol. Biol.
Rep. 24, 161-167.
Degnan, J.H., Rosenberg, N.A. 2006. Discordance of Species Trees with Their Most
Likely Gene Trees. PLoS Gen. 2, e68. DOI: 10.1371/journal.pgen.0020068.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J.,
Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G.,
Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J.,
Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S.,
Zimmermann, N.E. 2006. Novel methods improve prediction of species' distributions from
occurrence data. Ecography 29, 129-151.
Farris, J.S., Källersjö, M. Kluge, A.G., Bult, C. 1994. Testing significance of incongruence.
Cladisticis 10, 315-319.
Flagel, L.E., Rapp, R. A., Grover, C.E., Widrlechner, M.P., Hawkins, J., Grafenberg, J.L.,
Álvarez, I. 2008. Phylogenetic, morphological, and chemotaxonomic incongruence in the North
American endemic genus Echinacea. Am. J. Bot. 95, 756-765.
Goloboff, P. 1999. NONA (NO NAME) ver. 2 Published by the author, Tucumán, Argentina.
92
Goloboff, P.A., Farris, J.S., Nixon, K. 2003. TNT: Tree Analysis Using New Technology,
Version 1.0. Program and documentation available from
http://www.zmuc.dk/public/phylogeny/tnt.
Gómez-Zurita, J., Vogler, A.P. 2006. Testing introgressive hybridization hypothesis using
statistical network analysis of nuclear and cytoplasmatic haplotypes in the leaf beetle Timarcha
goettingensis species complex. J. Mol. Evol. 62, 421-433.
Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz, C. 2004. Integrating
phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid
frogs. Evolution 58, 1781-1793.
Gray, D.A., Huang, H., Knowles, L.L. 2008. Molecular evidence of a peripatric origin for two
sympatric species of field crickets (Gryllus rubens and G. texensis) revealed from coalescent
simulations and population genetic tests Mol. Ecol.17, 3836-3855.
Guo, Z.H. Li, D.Z. 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae:
Bambusoideae) inferred from the sequences of GBSSI gene and ITS spacer. Mol. Phylogenet.
Evol. 30, 1-12.
Guo, Z.H., Chen, Y.Y., Li, D.Z., Yang, J.B. 2001. Genetic variation and evolution of the alpine
bamboos (Poaceae: Bambusoideae) using DNA sequence data. J. Plant Res. 114, 315-322.
93
Guo, Z.H., Chen, Y.Y., Li, D.Z. 2002. Phylogenetic studies on Thamnocalamus group and its
allies (Bambusoideae: Poaceae) based on ITS sequence data. Mol. Phylogenet. Evol. 2, 20-30.
Guzmán, R., Anaya, M.C., Santana, F.J. 1984. El género Otatea (Bambusoideae), en México y
Centroamérica. Boletín del Instituto de Botánica 5, 2-20.
Hendrixson, B.E., Bond, J.E. 2005. Testing species boundaries in the Antrodiateus unicolor
complex (Aranae: Megalomorphae: Antrodiaetidae): “Paraphyly” and criptic diversity. Mol.
Phylogenet. Evol. 36, 405-416.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high resolution
interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978.
Hodkinson, T.R., Renvoize, S.A., Ni Chonghaile, G., Stapleton, C.M.A., Chase, M.W. 2000. A
comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in
Phyllostachys (Bambusoideae, Poaceae). J. Plant Res. 113, 259-269.
Hudson, R.R., Coyne, J.A. 2002. Mathematical consequences of the genealogical species
concept. Evolution 56, 1557-1565.
Jakob, S.S., Blattner, F.R. 2006. A chloroplast genealogy of Hordeum (Poaceae): long-term
persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for
phylogenetic inference. Mol. Biol. Evol. 23, 1602-1612.
94
Jakob, S.S., Ihlow, A., Blattner, F.R. 2007. Combined ecological niche modeling and molecular
phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)—Niche
differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia.
Mol. Ecol. 16, 1713-1727.
Judziewicz, E.J., Clark, L.G., Londoño, X., Stern, M.J. 1999. American Bamboos. Smithsonian
Institution Press. New York.
Kelchner, S.A., Clark, L.G. 1997. Molecular evolution and phylogenetic utility of the chloroplast
rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol. Phylogenet. Evol. 8, 385-397.
Knowles, L.L., Carstens, B.C. 2007. Delimiting species without monophyletic gene trees. Syst.
Biol. 56, 887-895.
Kozak, K.H., Grahahm, C.H., Wiens, J.J. 2008. Integrating GIS-based environmental data into
evolutionary biology. Trends Ecol. Evol, 23, 141-148.
Lahaye, R., Savolainen, V., Duthoit, S., Maurin, O., van der Bank, M. 2008. A test of psbK-psbI
and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park
(South Africa) as a model system. Available from Nature Precedings
<http://hdl.handle.net/10101/npre.2008.1896.1>
95
Leaché, A.D., Mulcahy, D.M. 2007.Phylogeny, divergence times and species limits of spiny
lizards (Sceloporus magister species group) in western North American deserts and Baja
California. Mol. Ecol. 16, 5216-5233.
Leavitt, D.H., Bezy, R.L., Crandall, K.A., Sites, Jr. J.W. 2007. Multi-locus DNA sequence data
reveal a history of deep cryptic vicariance and habitat-driven convergence in the desert night
lizard Xantusia vigilis species complex (Squamata: Xantusiidae). Mol. Ecol. 16, 4455-4481.
Lihová, J., Kučera, J., Perný, M., Marhold, K. 2007. Hybridization between Two Polyploid
Cardamine (Brassicaceae) Species in North-western Spain: Discordance Between Morphological
and Genetic Variation Patterns. Ann. Bot. 99, 1083-1096.
Londoño, X., Clark, L.G. 1998. Eight new taxa and two new reports of Bambuseae (Poaceae:
Bambuseae) from Colombia. Novon 8, 408-428.
Londoño, X., Clark, L.G. 2002. A revision of the Brazilian bamboo genus Eremocaulon
(Poaceae: Bambuseae: Guaduinae). Syst. Bot. 27, 703-721.
Mable, B.K. 2004. Why polyploidy is rarer in animals than in plants? Biol. J. Linn. Soc. 82: 453466.
Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 46, 523-536.
96
McGuire, J.A., Linkem, C.W., Koo, M.S., Hutchison, D.W., Lappin, A.K., Orange, D.I., LemosEspinal, J., Riddle, B.R., Jaeger, J.F. 2007. Mitochondrial introgression and incomplete lineage
sorting through space and time: phylogenetics of crotaphytid lizards. Evolution 61, 2879-2897.
Mulcahy, D.G. 2008. Phylogeography and species boundaries of the western North American
Nigthsnake (Hypsiglena torquata): Revisiting the subspecies concept. Mol. Phylogenet. Evol.
46, 1095-1115.
Nixon, K.C. 1999-2002. WinClada ver. 1.0000 Published by the author, Ithaca, NY, USA.
Pan, J., Zhang, D., Sang, T. 2007. Molecular phylogenetic evidence for the origin of a diploid
hybrid of Paeonia (Paeoniaceae). Am. J. Bot. 94, 400-408.
Pearson, R.G., Raxworthy, C.J., Nakamura, M., Peterson, A.T. 2007. Predicting species
distributions from small numbers of occurrence records: a test case using cryptic geckos in
Madagascar. J. Biogeogr. 34, 102-117.
Peng, S., Yang, H.Q., Li, D.Z. 2008. Highly heterogeneous generic delimitation within the
temperate bamboo clade (Poaceae: Bambusoideae): evidence from GBSSI and ITS sequences.
Taxon 57, 799-810.
Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species
geographic distributions. Ecol. Model. 190, 231-259.
97
Pollard, D.A., Iver, V.N., Moses, A.M., Eisen, M.B. 2006 Widespread discordance of gene trees
with species tree in Drosophila: evidence for incomplete lineage sorting PLoS Gen 2, e173. DOI:
10.1371/journal.pgen.0020173
Rambaut, A. 2002. Se-Al Sequence Alignment Editor, v2.0a11. Department of Zoology,
University of Oxford, Oxford.
Raxworthy, C.J., Martínez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider G.E., OrtegaHuerta, M.A., Peterson, A.T. 2003. Predicting distributions of known and unknown reptile
species in Madagascar. Nature 426, 837-841.
Raxworthy, C.J., Ingram, C.M., Pearson, R.G. 2007. Species delimitation applications for
ecological niche modeling: a review and empirical evaluation using Phelsuma day gecko groups
from Madagascar. Syst. Biol. 56, 907-923.
Rieseberg, L.H. 1997. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 28, 359-389.
Rieseberg, J.H., Wood, T.E., Baack, E.J. 2006. The nature of plant species. Nature 440: 524-527.
Rieseberg, L.H., Willis, J.H. 2007. Plant speciation. Science 317: 910-914.
Rissler, L.J., Apodaca, J.J. 2007. Ecological niche models and phylogeography help uncover
cryptic biodiversity. Syst. Biol. 56, 924-942.
98
Ruiz-Sánchez, E., Sosa, V., Mejía-Saules, M.T. 2008. Phylogenetics of Otatea inferred from
morphology and chloroplast DNA sequence data and recircumscription of Guaduinae (Poaceae:
Bambusoideae). Syst. Bot. 33, 277-283.
Shaw, J., Lickey, E.B., Schilling, E.E., Small, R.L. 2007. Comparison of whole chloroplast
genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the
tortoise and the hare. III. Am. J. Bot. 94, 275-288.
Shrestha, S., Adkins, S.W., Graham, G.C., Loch, D.S. 2003. Phylogeny of the Sporobolus
indicus complex, based on internal transcribed spacer (ITS) sequences. Aust. Syst. Bot. 16, 165176.
Silvertwon, J. 2008. The evolutionary maintenance of sexual reproduction: evidence from the
ecological distribution of asexual reproduction in clonal plants. Int. J. Pl. Scs. 169: 157-188.
Sites, J.W., Marshall, J.C. 2003. Delimiting species: a renaissance issue in systematic biology.
Trends Ecol. Evol. 18, 462-470.
Sites, J.W., Marshall, J.C. 2004. Operational criteria for delimiting species. Annu. Rev. Ecol.
Evol. Syst. 35, 199-227.
99
Soltis, D.E., Soltis, P.S., Schemske, D.W., Hancock, J.F., Thompson, J.N., Husband, B.C., Judd,
W.S. 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of
species?. Taxon. 1, 13-30.
Stockman, A.K., Bond, J.E. 2007. Delimiting cohesion species: extreme population structuring
and the role of ecological interchangeability. Mol. Ecol. 16, 3374-3392.
Stockman, A.K., Danell, R.M., Bond, J.E. 2008. D-NOVL: A program to simulate overlap
between two niche-based distribution models. Mol. Ecol. Resour. 8, 290-294.
Stockwell, D.R.B., Noble, I.R. 1992. Induction of sets of rules from animal distribution data: a
robust and informative method of analysis. Math. Comp. Simul. 33, 385-390.
Stockwell, D.R., Peters, D., 1999. The GARP modeling system: problems and solutions to
automated spatial prediction. Int. J. Geogr. Inform. Sys. 13, 143-158.
Sungkaew, S., Stapleton, C.M.A., Salamin, N., Hodkinson, T.R. 2008. Non-monophyly of the
woody bamboos (Bambuseae; Poaceae): a multi-gene region phylogenetic analysis of
Bambusoideae s.s. J Plant Res. 122, 95-108.
Sun, Y., Xia, N., Lin, R. 2005. Phylogenetic analysis of Bambusa (Poaceae: Bambusoideae)
based on internal transcribed spacer sequences of nuclear ribosomal DNA. Biochem Genet. 43,
603-612.
100
Trewick, S.A. 2008. DNA Barcoding is not enough: mismatch of taxonomy and genealogy in
New Zealand grasshoppers (Orthoptera: Acrididae). Cladistics 24, 240 254.
Triplett, J. K., Clark, L.G. 2009. Molecular phylogenetics of Pleioblastus sensu stricto (Poaceae:
Bambusoideae) and allies in the Japanese Archipelago. Botany 2009. Utah.
van der Niet, T., Linder, H.P. 2008. Dealing with incongruence in the quest for the species tree: a
case study from the orchid genus Satyrium. Mol. Phylogent. Evol. 47, 154-174.
White, T. J., Bruns, Y., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of
fungal RNA genes for phylogenetics. In “PCR Protocols: A Guide to Methods and Applications”
(M. Innis, D. Gelfand, J. Sninsky, and T. White, Eds.), pp. 315–322, Academic Press, San Diego.
Wiens, J.J., Graham, C.H. 2005. Niche conservatism: integrating evolution, ecology, and
conservation biology. Annu. Rev. Ecol. Syst. 36, 519-539.
Wiens, J.J., Penkrot, T.A. 2002. Delimiting species using DNA and morphological variation and
discordant species limits in spiny lizards (Sceloporus). Syst. Biol. 51, 69-91.
Yang, H.Q., Yang, J.B., Peng, Z.H., Gao, J., Yang, Y.M.,Peng, S., Li, D.Z. 2008. A molecular
phylogenetic and fruit evolutionary analysis of the major groups of the paleotropical woody
bamboos (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene and plastid trn L-F
DNA sequences. Mol. Phylogenet. Evol. 48, 809-824.
101
Table 1. Study populations and their haplotypes. n = number of individuals sampled for cpDNA markers, and numbers below ITS are
the individuals sampled to this marker.
Population
1
2
3
4
5
5a
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Locality
Sonora
Sinaloa
Durango
Nayarit
Jalisco
Jalisco
Jalisco
Colima
Colima
Colima
Jalisco
Jalisco
Guanajuato
Michoacán
Michoacán
Edo. Mexico
Hidalgo
Veracruz
Puebla
Guerrero
Oaxaca
Oaxaca
Chiapas
Chiapas
Chiapas
Chiapas
Chiapas
Chiapas
N Santander
Lat.
28 21
23 26
23 29
21 35
20 42
20 43
20 27
19 24
19 22
19 27
19 26
19 26
20 32
19 14
18 50
19 03
20 38
19 21
18 36
17 44
18 01
16 37
16 02
16 28
16 45
16 42
16 41
15 19
08 10
Long.
109 15
105 50
104 26
104 56
104 53
104 53
105 17
103 51
103 51
103 43
103 28
103 21
101 53
100 47
100 53
100 01
98 59
96 51
97 55
98 35
97 20
96 54
93 35
93 13
92 56
92 54
92 51
92 19
73 18
Altitude(m a.s.l.)
430
1205
1652
758
1506
1393
425
1710
1436
1146
922
1181
1917
650
710
1840
1735
667
1606
1020
1967
1525
843
1030
1086
1017
1320
1200
1230
102
n
3
3
3
3
3
3
5
4
3
3
5
5
3
5
10
3
3
3
3
3
3
3
3
3
3
3
3
12
Specie
Haplotype
O. acuminata
F
O. acuminata
F
O. acuminata
F
O. acuminata
F
O. fimbriata
F
O. fimbriata
O. acuminata
F
O. fimbriata
F
O. acuminata
A
O. acuminata
A
O. acuminata
F
O. fimbriata
F
O. acuminata
F
O. acuminata
F
O. acuminata
G
O. fimbriata
E-F
O. acuminata
D
O. acuminata
C
O. acuminata
F
O. acuminata
F
O. acuminata
F
O. fimbriata
B
O. sp. nov. Chiapas
I-J
O. fimbriata
B
O. fimbriata
B
O. acuminata
B
O. fimbriata
B
O. glauca
H
O. fimbriata
B
ITS
2
1
1
1
3
1
4
3
3
1
3
1
1
1
4
2
3
1
1
1
3
3
1
1
3
1
2
8
Table 2. Nineteen climate variables used in GARP and MAXENT analysis and PCA loadings for
the four principal components. Values in bold indicate higher loadings.
Climate variable
PC1
Annual Mean Temperature
Mean Diurnal Range
Isothermality
Temperature Seasonality
Max Temperature of Warmest Month
Min Temperature of Coldest Month Temperature Annual Range
Mean Temperature of Wettest Quarter
Mean Temperature of Driest Quarter
Mean Temperature of Warmest Quarter
Mean Temperature of Coldest Quarter
Annual Precipitation
Precipitation of Wettest Month
Precipitation of Driest Month
Precipitation Seasonality
Precipitation of Wettest Quarter
Precipitation of Driest Quarter
Precipitation of Warmest Quarter
Precipitation of Coldest Quarter
-0.975320
-0.112774
-0.023475
0.027975
-0.889275
0.769070
-0.070883
-0.906086
-0.957026
-0.946860
-0.882372
-0.002388
-0.051603
0.324830
-0.431499
-0.118377
0.373867
0.152462
0.191493
PC2
-0.143425
0.753569
-0.685331
0.728738
0.337008
-0.563384
0.860841
0.119898
-0.130334
0.124293
-0.393891
-0.906328
-0.764931
-0.423210
0.301014
-0.807392
-0.435252
-0.362475
-0.322610
103
PC3
0.032460
0.194854
-0.514544
0.623226
0.241534
-0.199986
0.418231
0.314140
0.071173
0.236632
-0.197232
0.282775
0.397377
0.511135
-0.062085
0.305036
0.549025
0.571041
0.468286
PC4
-0.145066
0.180583
0.002727
-0.033811
-0.078595
-0.190892
0.113930
-0.133796
-0.029564
-0.149047
-0.114134
0.167807
0.464326
-0.579483
0.746604
0.446147
-0.538394
0.423750
0.021680
Appendix 1: Morphological characters
Culms
1. Habit: 0 = erect; 1 = apically arching/pendulous.
2. Culm internodes: 0 = all solid (at least when young); 1 = all hollow; 2 = some proximal
internodes (including the basalmost ones) solid, distal internodes hollow.
3. Wall thickness (ratio of 2X wall thickness: culm diameter): 0 = walls very thin (ratio up to
0.15); 1 = walls thin (ratio 0.16-0.30); state 2 = walls moderately thick (ratio 0.31-0.45); 3 =
walls thick (ratio 0.46-0.60); 4 = walls very thick (ratio 0.61-0.99).
4. Lacuna size: 0 = lacuna large, > 1/3 the diameter of the culm; 1 = lacuna small, < 1/3 the
diameter of the culm.
5. Nodal line position: 0 = horizontal; 1 = dipping slightly below the bud.
Buds and Branching
6. Branching pattern: 0 = intravaginal; 1 = extravaginal.
7. Branch complement (Londoño and Clark, 2002): 0 = 1 divergent branch; 1 = 1 or 2 divergent
branches; 2 = 3 subequal, ascending branches
Culm Leaves
8. Abaxial sheath surface: 0 = stiff, dark, irritating hairs present; 1 = glabrous, no hairs present.
9. Relative size of the culm leaf with regard to sheat: 0 = same size; 1 = a half of the sheat; 2 = a
third of the sheath.
10. Relative size of the culm leaf with regard to internode: 0 = same size; 1 = larger than
internode; 2 = a half of the sheat; 3 = a third of the sheat.
11. Sheath apex: 0 = more or less horizontal; 1 = symmetrically convex; 2 = symmetrically
concave.
12. Sheath apex (or summit or shoulders) indument: 0 = glabrous; 1 = ciliate; 2 = fimbriate
13. Sheath summit extension: 0 = absent; 1 = present on one or both sides.
14. Oral setae: 0 = absent; 1 = present, whether adnate to the inner ligule or not.
15. Oral setae indument: 0 = glabrous; 1 = all long setae scabrous; 2 = only at base scabrous.
16. Oral setae color when live: 0 = brown; 1 = green; 2 = white; 3 = yellow; 4 = purple.
17. Oral setae length in mm: 0 = more than 13 mm; 1 = 4.5-12 mm.
18. Culm leaf blade position: 0 = erect to slightly spreading; 1 = reflexed.
19. Culm leaf blade shape: 0 = broadly triangular; 1 = more or less narrowly triangular.
20. Culm leaf blade midrib abaxial development: 0 = indistinguishable; 1 = visible or even
prominent toward the apex.
21. Culm leaf sheath base indument: 0 = glabrous; 1 = ciliate; 2 = fimbriate
Foliage Leaves
22. Sheath summit extension: 0 = absent; 1 = present on one or both sides.
23. Sheath summit indument: 0 = glabrous; 1 = fimbriate.
24. Sheath: 0 = rounded on the back; 1 = strongly keeled at least near the summit.
25. Sheath indument: 0 = glabrous; 1 = hispidous.
26. Outer ligule (contraligule): 0 = absent; 1 = present continuously along the width of the sheath
summit; 2 = bilobed.
27. Outer ligule (contraligule), maximum length in mm of the lobes: 0 = 5 mm; 1 = 1 mm.
28. Oral setae: 0 = absent; 1 = present whether adnate to the inner ligule or not.
29. Oral setae connation: 0 = free; 1 = connate at base; 2 = connate 1/3 or more
30. Oral setae consistency: 0 = coriaceous; 1 = papyraceous.
104
31. Oral setae color when live; 0 = purple; 1 = yellow; 2 = white; 3 = brown; 4 = green.
32. Oral setae indument: 0 = glabrous; 1 = all long setae scabrous.
33. Oral setae length in mm: 0 = more than 10 mm; 1 = 6 mm.
34. Fimbria growth: 0 =curly; 1 = straight.
35. Foliage leaf blade wide: 0 = less than 1.5 cm; 1 = more than 1.6 cm
36. Midrib placement: 0 = centric; 1 = excentric (wider side of blade 1.3 times or more as wide
as the narrower side).
37. Patch of cilia on the base of the blade abaxial side: 0 = absent; 1 = present.
38. Patch of cilia on the base of the blade abaxial side position: 0 = at one side of the central
nerve; 1 = on both sides of the central nerve.
39. Patch of cilia on the base of the abaxial side density: 0 = very dense; 1 = dispersed. 40. Patch
of cilia on the base of the abaxial side color: 0 = brown; 1 = yellow; 2 = white.
Synflorescences and spikelets
41. Maximum synflorescence length in cm: 0 = 9; 1 = 10; 2 = 12; 3 = 15.
42. Maximum number of spikelets: 0 = 7; 1 = 8; 2 = 15; 3 = 30.
43. Spikelets length in cm: 0 = 2; 1 = 3; 2 = 3.5; 3 = 4.
44. Rachilla joint length in mm: 0 = 4; 1 = 5; 2 = 6; 3 = 7.
45. Glume abaxial surface: 0 = scabrous; 1 = glabrous.
46. Lemma abaxial surface: 0 = pubescent; 1 = scabrous; 2 = scabrid; 3 = glabrous.
Foliar Micromorphology
47. Papillae on the long cells in the stomatal zone (abaxial): 0 = absent; 1 = present
48. Papillae on the long cells in the interstomatal zone (abaxial): 0 = absent; 1 = present
49. Papillae on the adaxial surface position: 0 = present on the long cells only; 1 = present on
both bulliform and long cells
50. Distribution of stomates on foliage leaf blades: 0 = present and common on the abaxial
surface only; 1 = present and common on both surfaces.
51. Vertically tall and narrow silica bodies (abaxial, intercostal): 0 = present; 1 = absent.
52. Vertically tall and narrow silica bodies (abaxial, costal): 0 = present; 1 = absent.
53. Saddle-shaped silica bodies (abaxial, costal): 0 = present; 1 = absent.
54. Horizontal dumbbell-shaped silica bodies (abaxial, costal): 0 = present; 1 = absent.
105
Appendix 2: Morphological character matrix
Inapplicable data = “-“, not seen = “?”, A = 0-1
Olrecta
Oa4
Oa6
Oa10
Oa9
Oa17
Oa2
Oa1
Oa3
Oa16
Of26
Of23
Of24
Of28
Oa25
Oa20
Oa18
Of5
Of5(a)
Of21
Og27
Ospnov22
Oa19
Oa12
Oa18
Of15
Of11
Of7
Oa14
Oa13
000000000111111111122222222223333333333444444444455555
123456789012345678901234567890123456789012345678901234
11100000120201030010001100-100100000101-21341300001011
11300020100200---010101000-0-----0001112??????00100101
11300020100200---010101000-0-----0001112??????00110100
1231002010020100-000101000-0-----000111212220000100101
1231002010020100-000101000-0-----000111212220000100100
10--0021101110---010111000-0-----0000---12220000110101
10--0020200200---000101000-0-----0000---12220011100110
10--0020200200---000101000-0-----0000---??????11100110
00--0021221200---000001000-0-----0001112??????00100101
00--0021221200---000001000-0-----0000---??????00100100
01201020010201000010101101-110300011100033001200000100
01201020010201000010101101-110300011100033001200000101
01201020010201000010101101-110300011100033001200000100
112010200102010000A0101101-1103000111000??????00000110
00--0021121200---000101000-0-----0001112??????11100101
00--0020200200---000101000-0-----0001112??????11100101
00--0020200200---000101000-0-----0001012??????11100101
024100111121110200110001121101200-111102??????11100000
024100111121110200110001121101200-111102??????11000000
02410021222211141110010000-100001-011102??????00000101
11100020202201110110001000-100411001111200311100001011
11400020012211110111211000-1004001001012??????00101011
12310021200200---000001000-0-----0010---??????11100101
12310020100201200000101010-0-----000111212220011100100
12310020100201200000101000-0-----000111212220000100100
022001101120010101100000020120000-111101??????00100001
022001101120010101100000020120000-111101??????00100001
022001101120010101100000020120000-111101??????00100001
10--0020100201200000101010-100101001111212220011100101
10--0020100201200000101010-100101001111212220011100101
106
Appendix 3: Vouchers and specimens examined
Olmeca recta Soderstr. MEXICO, Veracruz: E. Ruiz-Sánchez 132 (XAL).
Otatea acuminata (Munro) C. Calderón & Soderstr. MEXICO, Colima: E. Ruiz-Sánchez et al.
101, 176 (XAL). Chiapas: E. Ruiz-Sánchez and J.L. Martínez 119 (XAL). Durango: E. RuizSánchez and P. Carrillo-Reyes 113 (XAL). Guanajuato: E. Ruiz-Sánchez and F. RodriguezGomez 173 (XAL). Guerrero: P. Carrillo-Reyes 4863 (XAL). Hidalgo: E. Ruiz-Sánchez and P.
Carrillo-Reyes 114 (XAL). Jalisco: E. Ruiz-Sánchez et al. 97, 102 (XAL). Michoacán: E. RuizSánchez et-al. 181, 182 (XAL). Nayarit: E. Ruiz-Sánchez et al. 96 (XAL). Oaxaca: E. RuizSánchez and J.L. Martínez 125 (XAL). Puebla: E. Ruiz-Sánchez and J.L. Martínez 126 (XAL).
Sinaloa: E. Ruiz-Sánchez et al. 105 (XAL). Sonora: E. Ruiz-Sánchez et al. 112 (XAL). Veracruz:
E. Ruiz-Sánchez and F. Rodriguez-Gomez 103 (XAL).
Otatea fimbriata Soderstr. COLOMBIA, Norte de Santander: X. Londoño and E. Ruiz-Sánchez
987 (CUCV). MEXICO, Colima: E. Ruiz-Sánchez et al. 183 (XAL). Chiapas: E. Ruiz-Sánchez
and J.L. Martínez 118 (XAL); E. Ruiz-Sánchez 136, 155 (XAL). Estado de Mexico: E. RuizSánchez et al. 179 (XAL). Jalisco: E. Ruiz-Sánchez et al. 130, 186, 189 (XAL). Oaxaca: P.
Carrillo-Reyes 4986 (XAL); E. Ruiz-Sánchez et al 217 (XAL).
Otatea glauca L.G. Clark and G. Cortés MEXICO, Chiapas: E. Ruiz-Sánchez 144 (XAL).
Otatea sp. nov. Chiapas MEXICO, Chiapas: P. Carrillo-Reyes 5144 (XAL); E. Ruiz-Sánchez
147 (XAL).
107
Figure Legends
Figure 1. Distribution and sampling localities of the previously recognized species of Otatea.
Numbers correspond to localities in Table 1. A and B show details of localities in central Mexico
and Chiapas respectively.
Figure 2. MPT on chloroplast DNA haplotypes for Otatea (left). Population numbers and
haplotypes in parenthesis correspond to Table 1. Number below branches indicates Bootstrap
values. New species retrieved by the morphological tree are indicated. Strict consensus from
parsimony analysis of the ITS (center) and combined cpDNA-ITS (right). Populations numbers
correspond to Table 1. Number below branches indicates Bootstrap values. New species
retrieved by the morphological tree are indicated.
Figure 3. Statistical parsimony network compound cpDNA-ITS genotypes.
Figure 4. The single most parsimonious tree retrieved from the morphological data set (L = 179;
CI = 47; RI = 76). Population numbers and haplotypes in parenthesis correspond to Table 1.
Black circles indicate synapomorphies, numbers above and below the circles indicate character
number and character state respectively. Numbers below the branches indicate Bootstrap and
Bremer support. Ol.recta = Olmeca recta; Oa = Otatea acuminata; Of = Otatea fimbriata; Og =
Otatea glauca.
108
Figure 5. GARP and Maxent niche-based distribution models for: a. and b. O. acuminata maps,
c. and d. O. fimbriata, e and f. O. sp. nov. Transvolcanic maps, g and g. O. sp. nov. Jalisco.
109
110
111
112
113
114
115
CAPÍTULO IV. CUATRO ESPECIES NUEVAS EN OTATEA (POACEAE:
BAMBUSOIDEAE) Y REVISIÓN TAXONÓMICA.
Preparado para enviar a:
Systematic Botany. 2009
116
RUIZ-SÁNCHEZ ET AL.: NEW SPECIES IN OTATEA
Four new species in Otatea (Poaceae: Bambusoideae) and a taxonomic revision of the genus
EDUARDO RUIZ-SÁNCHEZ 1, 4, VICTORIA SOSA1, M. TERESA MEJÍA-SAULES1, X. LONDOÑO2 AND L.
G. CLARK3.
1
Biologia Evolutiva
Instituto de Ecologia, A. C.
Apartado Postal 63
91070 Xalapa, Veracruz, Mexico
2
3
Department of Ecology, Evolution and Organismal Biology, 253 Bessey Hall, Iowa State
University, Ames, Iowa 50011-1020 U. S. A.
4
Autor for correspondence: (ruizSá[email protected])
117
ABSTRACT. Previous molecular and morphological phylogenetic analyses, character based
analysis and ecological niche modeling identified seven monophyletic groups formed by
populations of Otatea (Poaceae: Bambusoideae: Bambuseae), a neotropical woody bamboo
genus belonging to subtribe Guaduinae. Therefore, the genus comprises at present seven species,
four of them new to science. These four new species, all from Mexico, are here described and
illustrated: Otatea carrilloreyesii E. Ruiz-Sanchez, Sosa and T.M. Mejia-Saulés from Chiapas,
O. mixtecana E. Ruiz-Sanchez and Londoño from Oaxaca, O. reynosoana E. Ruiz-Sanchez and
L.G. Clark from the Pacific slopes of Guerrero, Jalisco and Nayarit and O. transvolcanica E.
Ruiz-Sanchez, Londoño and L.G. Clark from the Transmexican Volcanic Belt in Colima,
Mexico State and Jalisco. A comprehensive taxonomic revision of the genus Otatea is presented
based on collections for this project and on herbarium specimens.
KEYWORDS, Culm and foliar leaves fimbriae, disjunct distribution, Guaduinae, Mexican
endemics, oral setae, otate.
118
Otatea (McClure & E. W. Sm) C. Calderón & Soderstr. (Poaceae: Bambusoideae:
Bambuseae) is a woody bamboo genus endemic to the Neotropics and is one of the five genera
currently recognized in subtribe Guaduinae (Londoño and Clark 2002; Dávila et al. 2006; RuizSánchez et al. 2008). Otatea was retrieved as a monophyletic group supported by molecular
characters and by two morphological synapomorphic character states: stems with a branch
complement with three subequal and ascending branches and spikelets with pubescent lemmas
(Ruiz-Sánchez et al. 2008).
McClure (1973) originally Otatea as a subgenus within Yushania K. H. Keng, comprising
two New World species, Y. aztecorum McClure & E. W. Sm. and Y. acuminata (Munro)
McClure The lack of culm proliferation form subterranean buds, synflorescences with numerous
spikelets, awned lemmas and apically obtuse paleas were cited as diagnostic for the subgenus
(McClure 1973). The type of Y. aztecorum was collected in El Rosario, Sinaloa, Mexico and
Yushania acuminata was a combination based on Arundianria acuminata Munro with its type
collected in Jalcomulco, Veracruz, Mexico. Later, Calderón and Soderstrom (1980) later
elevated subgenus Otatea to generic status, based on unpublished notes of F. A. McClure and
using the same characters used to give the subgenus status. But Guzmán et al. (1984) differed in
opinion and recognized O. aztecorum as a subespecies O. acuminata (O. acuminata subsp.
aztecorum [McClure & E. W. Sm.] R. Guzmán, Anaya & Santana) based on culms up to 3 cm in
diameter, culm leaves persistent and densely hispid in the upper third and evanescent, oral setae
growing from the back of the ligule and an indeterminate synflorescence in subsp. aztecorum.
Two additional species were subsequently described, O. fimbriata Soderstr. and O. glauca L.G.
Clark & G. Cortés, were subsequently described (McVaugh 1983; Guzmán et al. 1984;
Judziewicz et al. 1999; Clark and Cortés 2004). A fourth species, still undescribed, was
119
discovered during field work for the phylogenetic study of subtribe Guaduinae (Ruiz-Sánchez et
al. 2008).
Otatea includes monocarpic plants with mass flowering in cycles that, according to
herbarium records, last 17-30 years (Guzmán et al. 1984; Judziewicz et al. 1999) populations
usually flower for two or three years, and then the plants die. Plants are medium sized, up to 3 m
tall, branching is usually characterized by three subequal branches arising from a single bud,
rhizomes are pachymorphic and solid or hollow culms have a short neck (Guzmán et al. 1984;
Judziewicz et al. 1999). One of the most distinctive vegetative character in Guaduinae, is the
occurrence of thickened appendages that originate from the culm and foliar sheaths, called oral
setae (Judziewicz et al. 1999). In Otatea oral setae are papyraceous or coriaceous.
In a previous study, molecular, morphological and ecological data were utilized to delimit
the species comprising Otatea (Ruiz-Sánchez & Sosa, in prep.). Phylogenetic analyses including
populations of all recognized species in Otatea, from their entire range of distribution were
conducted. Molecular and morphological characters retrieved two contrasting phylogenetic
hypotheses, in which the molecular dataset did not retreive the same groups of populations as the
morphological dataset. Populations of O. acuminata and O. fimbriata were paraphyletic in
molecular trees. Several arguments were proposed to explain the disagreement between the two
analyses, like an incomplete lineage sorting with the retention of ancestral polymorphisms or a
past gene-flow (Ruiz-Sánchez & Sosa, in prep.). In contrast, morphological trees and characterbased analyses, identified seven monophyletic well supported groups of Otatea which can be
identified by diagnostic characters and which have coherent geographical distributions. As a
result, four new species are described and illustrated based on (Ruiz-Sánchez & Sosa,in prep). In
120
addition, the previous three known species in Otatea are characterized and an identification key
is provided for the seven species to complete a taxonomic revision of the genus.
MATERIALS AND METHODS
Plant material was collected in the field and voucher specimens were deposited at XAL.
In adition, more than 350 specimens from the following herbaria were examined: CIIDIR,
CUCV, ENCB, F, FCME, IBUG, IEB, ISC, MEXU, MO, NY, TULV, UAS, US, USON, XAL.
Digital photographs were also examined from the following herbaria: CIIDIR, ENCB, IBUG,
IEB, MEXU and US. Micromorphogical features of the lemma and palea were observed using
scanning electron microscopy (SEM; JEOL JSM–5600). For SEM samples were glued to
aluminium stubs and coated with gold–palladium (1:1). Micromorphological characters of the
lemma were observed in the epidermis of the middle section, which has previously been
demostrated to display a number of variable characters (Acedo and Llamas 2001). Lemma
micromorphological terminology followed Metcalfe (1960) and Ellis (1979).
RESULTS
Morphology―CULMS― Culms in Otatea are solid or hollow. In some species culms are solid
when young and they become hollow later. Otatea acuminata has both solid and hollow culms.
Otatea mixtecana has solid culms and O. carrilloi, O. fimbriata, O. glauca, O. reynosoana and
O. transvolcanica have hollow culms. In the (O. carrilloi, O. fimbriata, O. glauca, O.
reynosoana and O. transvolcanica) the lacuna is > 50% diameter of the internode such that
walls are thin. In O. transvolcanica the lacuna is <50% of the internode diameter and the walls
are considered to be thick. Culms are erect or they arch at the apex; O. acuminata and O
121
fimbriata are polymorphic in this respect. Culms of O. mixtecana, O. reynosoana and O.
transvolcanica are erect and culms in O. carrilloi and O. glauca are arched.
CULM LEAVES―An abaxial sheath surface with irritating stiff dark hairs is observed in O.
acuminata, O. carrilloi, O. fimbriata, O. glauca and O. transvolcanica whereas this surface is
glabrous in O. mixtecana, O. reynosoana and in some populations of O. acuminata. Culm leaves
are either longer or shorter than the internode in O. acuminata, O. carrilloi, O. fimbriata, O.
transvolcanica, but in O. reynosoana they are always longer than the internode and overlapping
to each other. In O. glauca, O. mixtecana and some populations of O. acuminata culm leaves are
shorter than the internode and they do not overlap. The culm leaf blade is erect or reflexed.
Otatea acuminata, O. fimbriata and O. reynosoana have erect blades and in O. carrilloi, O.
glauca, O. mixtecana and O. transvolcanica they are reflexed. All species have persistent oral
setae in the culm leaves, but only in some populations of Otatea acuminata these are absent. In
O. transvolcanica these are deciduos. In living plants the color of oral setae, is brown in O.
acuminata and O. fimbriata, green in O. carrilloi, O. glauca and O. transvolcanica, whitish in O.
reynosoana and purple in O. mixtecana. When fimbriae are present they are free, and curly or
straight. Fimbriae in Otatea transvolcanica are absent, they are barely developed in O.
reynosoana and in one population of O. acuminata. In O. carrilloi the fimbriae are the largest
(10-19 mm) and erect. Otatea acuminata, O. fimbriata, O. glauca and O. mixtecana have smaller
(2-7 mm) curly f imbriae.
BRANCHING PATTERN― There are two types of branching pattern in Otatea: O. transvolcanica is
the only species with an extravaginal branching (branches emerge through and break the sheath);
the rest of the species have an intravaginal branching (branches grow on the inside of the sheath).
122
BRANCH COMPLEMENT― Otatea species are characterized by having three subequal branches
that arise from a single bud per node, although in O. reynosoana and O. transvolcanica one or
two branches per node are sometimes found.
FOLIAGE LEAF BLADES―The foliage leaf blades in Otatea, are 0.3-6 cm wide and 15-60 cm
large. Otatea acuminata, O. carrilloi, O. glauca and O. mixtecana have narrow and short leaves
(0.3-1.2 mm; 15-27 cm). Otatea fimbriata, O. reynosoana and O. transvolcanica have wide and
large leaves (1.5-6 mm; 27-60 cm). The abaxial surface in O. fimbriata, O. mixtecana, O.
reynosoana and O. transvolcanica is glaucous, while in the rest of the species the abaxial surface
is green. The midrib is centric in O. acuminata, O. carrilloreyesii and O. glauca and excentric in
O. fimbriata, O. mixtecana, O. reynosoana and O. transvolcanica. In some Otatea species the
outer ligule (contraligule) overgrows on both sides of the apex of the foliage sheath forming two
lobes. In O. reynosoana these lobes are small and poorly developed (0.6-1.5 mm) while in O.
transvolcanica they are large and well developed (3-8.5mm). In the rest of the species the outer
ligules are absent. In most species, when culm leaves have oral setae or fimbriae they are also
present on foliage leaves, but in O. acuminata the oral setae are absent on foliage leaves. Otatea
carrilloi has oral setae up to 24 mm long, which are the largest in the genus. Otatea mixtecana
has the smallest oral setae (6 mm) long and they are purple. Otatea transvolcanica has purple
large oral setae ca. 21.5mm long and connate for the basal third. Otatea. reyosoana has oral setae
ca. 11 mm long that are white and free. Lastly Otatea fimbriata has larger oral setae up to 15 mm
long, brown or purple and connate only at the base. Otatea mixtecana is the only species lacking
fimbriae. The rest of Otatea species have a small to medium (2.5-14 mm) curly fimbriae, but O.
carrilloi has large straight fimbriae up to 21 mm long.
123
SPIKELET COLOR―Otatea mixtecana is the only species with blue-purplish spikelets. In O.
acuminata, O. fimbriata, O. glauca and O. reynosoana they are green and in O. carrilloi and O.
transvolcanica the spikelet are unknown.
GLUMES―In Otatea acuminata, O. mixtecana, O. reynosoana and O. fimbriata glume abaxial
surface is scabrous or pubescent. In O. glauca the abaxial surface is always glabrous. Otatea
acuminata has the smallest glumes (2.5-6 mm) (both glumes I and II) and O. glauca has the
largest glumes (6-14 mm).
LEMMA― The largest lemmas are found in Otatea glauca (14.5-21 mm). The rest of species
have shorter lemmas (10-14 mm).
Micromorphology – LEMMA – The abaxial surface of the lemma is variable. Otatea acuminata
and O. fimbriata have rectangular intercostal long-cells with sinuous outline. Otatea glauca and
O. mixtecana have U-shaped cells. Prickles are frequent in O. fimbriata, distributed irregularly
on both costal and intercostal zones. Otatea acuminata has also prickles while the rest of the
species lack them. In O. acuminata hooks are frequently distributed in both costal and intercostal
zones but in O. fimbriata hooks are found only in the intercostal zone. Microhairs can be either
absent or present in O. glauca and O. mixtecana, but if present they are usually found in
intercostal zones. Microhairs are two-celled with the basal cell larger than the distal cell, obtuse
at the apex. Macrohairs are present only in O. acuminata and O. mixtecana. Silica bodies are
frequent in both costal and intercostal zones in all species but O. fimbriata. Silica bodies are
rounded in O. acuminata and in O. mixtecana, saddle-shaped in O. glauca and O. mixtecana and
irregular dumb-bell shaped in O. acuminata and O. glauca. (Fig. 1, 2).
PALEA –Rectangular intercostal long-cells with sinuous outline and U-shaped sinuses are present
in most of Otatea species, except in O. mixtecana which has cells with a straight outline. Prickles
124
are frequent in most Otatea species sometimes but in O. fimbriata they are absent. Pricles are
distributed irregularly in both costal and intercostal zones in all species, except in O. fimbriata in
which they are only found in costal zones. In O. glauca prickles have a flattened base. Hooks are
frequent in O. glauca distributed in both costal and intercostal zones. In O. fimbriata they are
found only in the intercostal zone. Silica bodies are present in most Otatea species; some
populations of O. fimbriata lack silica bodies. Silica bodies have a saddle-shape in O. glauca, O.
fimbriata and O. mixtecana and they have an irregular dumb-bell shape in O. glauca (Fig. 3).
DISCUSSION
Wild populations of Otatea are found in Mexico, El Salvador, Honduras and Colombia.
Mexico is the only country where all seven species are present and six of them are resticted to its
territory. Cultivated plants, utilized as ornamental, have been reported from Honduras, Costa
Rica and the United States (Judziewicz et al. 1999).
Otatea acuminata is the most abundant and widespread species and is also the species
with the most reported uses. It is known as “otate” or “otate dulce” which means solid cane, a
name derived form the nahuatl “otatl” and sometimes forms dense thickets, known as “otatales”
(McClure 1973; Beetle et al. 1995; Vázquez-López et al. 2004). The name otate, however, is also
given to some other bamboos such as Rhipidocladum McClure or Guadua Kunth or even to
Arundo L. In the archaeological zone of Loma Iguana in Veracruz, it was found that culms of O.
acuminata were used for construction. They were mixed with mud to build walls, known as
“bajereques” or “bahereques”. Some of them still remain, and with a radiocarbon dating
technique their age was estimated at 800-890 AC (Juárez and Márquez 1992). Culms of this
species are currently utilized to build roofs or walls of rural houses, doors, fences, baskets,
125
walking sticks and sticks utilized in agriculture (Guzmán et al. 1984; Judziewicz et al. 1999;
Cortés 2000).
Otatea acuminata is the most widespread species in Mexico, occurring from Sonora to
Chiapas and from Jalisco to Veracruz along the Transmexican Volcanic Belt. Morphological
variation is remarkable in this species. For example, the height of plants varies from 2 to 10 m,
and the basal diameter of culms varies from 1 to 6 cm. Culm leaves sometimes overlap,
pubescence is either glabrous or hispidous, oral setae are present or absent in some populations,
and they are absent in foliage leaves. (McVaugh 1983; Guzmán et al. 1984; Judziewicz et al.
1999; Londoño and Clark 2002; Clark and Cortés 2004). Flowering cycles in Otatea acuminata
go from 30-35 years and flowers are produced in patches. In other words, not all plants in a
population flower simultaneously. Seedlings are fragile and highly sensitive to herbivory. Plants
germinating from seeds reach their full size in 7 to 8 years. Seeds usually germinate during the
first year (Vázquez-López et al. 2004). Mostly plants reproduce vegetatively, producing new
shoots every year during the rainy season (Vázquez-López et al. 2004).
Guzmán et al. (1984) divided Otatea acuminata into two subspecies O. acuminata subsp.
acuminata and O. acuminata subsp. aztecorum based on diameter of culm and indument of the
culm leaves. However, molecular and morphological phylogenetic analyses performed by RuizSánchez and Sosa (in mss) did not retrieve groups of populations which can be assigned to these
entities. Moreover, the diagnostic characters which Guzmán et al. (1984) indicated to separate
the two subspecies were homoplasic (Ruiz-Sánchez and Sosa in mss).
Otatea fimbriata has a disjunct distribution with populations found from Mexico to
Central America (El Salvador and Honduras) and then reappear in Colombia (Londoño and
Clark 1998). In spite of this distributional range, morphological variation is not as remarkable as
126
in O. acuminata. Habitats of O. fimbriata in Mexico and in Colombia are similar. Plants grow in
tropical dry and oak forests on calcareous soils, either on slopes or flatter terrains near rivers
(Londoño and Clark 1998). In Mexico O. fimbriata is called “carrizo”, “otate” or “otate hoja
ancha” and the same uses reported for O. acuminata are cited for this species (Guzmán et al.
1984; Beetle et al. 1995). Flowering periods of O. fimbriata are from 8 to 20 years, and
flowering is synchronous as reported in some populations from Chiapas.
Soderstrom (1983) described Otatea fimbriata based on flowering specimens from
Chiapas, Mexico. However he cited additional specimens from Jalisco; all of them were
identified by us as O. transvolcanica excep for one specimen, identified as O. acuminata. Three
of the new species described here Otatea mixtecana, O. reynosoana and O. transvolcanica are
similar to Otatea fimbriata while O. carrillorreyesii is more similiar to O. acuminata.
Differentiating characters are synthesized in Table 1.
TAXONOMIC TREATMENT
OTATEA (McClure & E. W. Smith) Calderón & Soderstrom, Smithsonian Contr. Bot. 44: 21.
1980.
Yushania K. H. Keng subgen. Otatea McClure & E. W. Smith in McClure, Smithsonian Contr.
Bot. 9: 116. 1973.―TYPE: Otatea acuminata (Munro) Calderón & Soderstrom.
127
Plants woody, unarmed, at first compactly caespitose, at maturity with an open habit,
erect or apically arched; rhizomes pachymorph, sympodial, the neck from 10 to 90 cm long.
Culms from 2 to 10 m tall, 0.7 to 6 cm in diameter; internodes 11-30 cm long subequal in size
glabrous, yellow, green or glaucous with a waxy coating below the nodes that exfoliates like
dandruff; solid or hollow with walls thin or thick. Culm leaves deciduous or disintegrating in
place, overlapping or not, triangular or rectangular; sheaths hispid or glabrous with or without
oral setae and fimbriae; leaf blades erect or reflexed; inner ligule truncate, entire or irregular.
Branching pattern intravaginal or extravaginal (one species), branching from the middle to up
high on the culm; nodes with one bud borne on a promontory, the bud usually developing into
three subequal branches and in two species sometimes developing into one or two branches per
node, these diverging from each other and rebranching for one or two additional orders. Foliage
leaves 3-10 per complement; leaf blades 15 to 60 cm long and 0.3 to 40 (-60) mm in diameter;
sheaths hispid or glabrous, rounded or slightly keeled at the apex on back; outer ligule irregular
or developed into two lobes; inner ligule irregular, entire or truncate; pseudopetioles pulvinate at
base. Synflorescences racemose or paniculate, 2-30 spikelets per synflorescence; spikelets 2-4
cm long, laterally compressed; glumes 2, unequal, the second longer than the first, awned,
glabrous, scabrous or pubescent; lemma conspicuously awned, scabrous or pubescent; palea
obtuse, broadly sulcate and 2-keeled dorsally; lodicules 3, hyaline or brownish, vasculated, the
anterior pair longer than the posterior one; stamens 3; stigmas 2, plumose; caryopsis fusoid
KEY TO SPECIES OF OTATEA
128
1. Culms solid if hollow with thick walls and with lacunae <50% of the internode diameter;
glumes (I, II) 2.5-13.7 mm long, scabrous …………………………………………………….2
1. Culms hollow, wit thin walls and with lacunae > 50% of the internode diameter; glumes (I, II)
6-14mm long, glabrous…………………………………………………………………..O. glauca
2. Oral setae on foliage leaves absent; foliage leaf blades of the primary branches 0.3-0.7 cm
wide, 10-22 cm long; …………………………………………………………………O.
acuminata
2. Oral setae on foliage leaves present; foliage leaf blades of the primary branches 0.6-4 (-6) cm
wide; 18-60 cm long; ……………………………………………………………………………3
3. Midrib centric; foliage leaf blades of the primary branches 0.6-0.9; 18-26 cm long; abaxially
greenish; fimbriae erect, well developed, 8-21.8 m long………………………O. carrilloi
3. Midrib excentric; foliage leaf blades of the primary branches 0.7-4 (-6) cm wide; 19-60 cm
long; abaxially glaucous; fimbriae curly, poorly developed, 2.5-14 mm long or
absent…………………………………………………………………………...………………4
4. Culm basal diameter less than 1 cm; culm leaves not overlapping and deciduous; fimbriae on
foliage leaves absent………………………………………………………………….O. mixtecana
4. Culms basal diameter more than 3 cm; culm leaves overlapping and persistent; fimbriae on
foliage leaves present……..……………………………………………………………………….5
5. Culm leaves blade reflexed; pseudoauricles present and well developed 3-8 mm long; oral
setae on foliage leaves connate at basal third section or more……….………O. transvolcanica
5. Culm leaves blades erect; pseudoauricles absent or poorly developed, 0.6-1.5 mm long; oral
setae on foliage leaves, free or connate at the base……………………………….………………6
129
6. Oral setae of culm and foliage leaves papiraceous, whitish; one or two branches per node;
patch of cilia on the base of the abaxial surface of foliage blades on both sides of the midrib,
white……..................................................................................................................O. reynosoana
6. Oral setae of culm and foliage leaves coriaceous, brown or purple; three subequal branches per
node; patch of cilia on the base of the foliage blade abaxial surface on one side of the midrib,
brown…………………………………………………………………………….…..O. fimbriata
1. OTATEA ACUMINATA (Munro) Calderón & Soderstrom, Smithson. Contr. Bot. 44: 21. 1980.
Arundinaria acuminata Munro, Trans. Linn. Soc. Bot. 26: 25. 1868. TYPE: MEXICO. Veracruz,
Liebman 73 (Holotype: K!; isotype: C, US-2808847!)
Yushania aztecorum McClure & E. W. Smith, Smithson. Contr. Bot. 9: 116. 1973. TYPE:
MEXICO. Sinaloa, La Dispensa, F. A. McClure 21204 (holotype: US!; isotypes: F!, IEB!, ISC!,
MO!, NY!)
Otatea aztecorum (McClure & E. W. Smith) Calderón & Soderstrom, Smithson. Contr. Bot. 44:
21. 1980.
Otatea acuminata (Munro) Calderón & Soderstrom subsp. aztecorum Guzmán, Anaya &
Santana. Bol. Inst. Bot. (Universidad de Guadalajara) 5: 8. 1984.
Rhizomes sympodial, pachymorph, the neck in some populations reaching up to 90 cm long.
Culms 2 to 10 m tall, 1-5 cm in basal diameter, erected or apically arched; internodes glabrous,
green to yellow when old, pruinose; solid or hollow with thick walls. Culm leaves 10-38 cm
long, longer or shorter than the internodes, when longer overlapping; sheaths 5- 30 cm long,
rectangular; the abaxial surface glabrous or hispidous, deciduous or disintegrating in place; the
130
margins glabrous or ciliate; inner ligule a coriaceous rim 1-5 mm long, truncate; oral setae up to
1.5 cm long, flat, erect, retrorsely scabrous, brown or absent; fimbriae at apex of sheath on both
sides of the blade 3-7 mm long, terete, free, flexuous, curly or absent; leaf blades 6-18 cm long,
triangular, erect, persistent or deciduous, shorter than sheaths, strigose-glabrescent on both sides,
margin ciliate, glabrous or hirsute. Branching intravaginal; three main subequal branches per
node borne on a promontory, these diverging from each other and rebraching, diverging from the
main culm at 30-90 o; supranodal ridge pronounced; nodal line more or less horizontal. Foliage
leaves with sheaths glabrous, puberulent or pilose; outer ligule absent or sometimes
membranous, ciliate; inner ligule 0.5-2 mm long, glabrous or ciliate; oral setae mostly absent;
fimbriae on both blade surfaces at apex, 1-3 mm long, terete, flexuous, free; blades 4-22 cm
long, 3-12 mm wide, linear to linear lanceolate, green, densely pubescent at the base on both
surfaces and glabrous or slightly pilose over the rest of the blade, midrib centric. Synflorescences
6.5-10 cm long, racemose or paniculate 6-15 spikelets per synflorescence. Spikelets 2.5-4 cm
long, laterally compresed, green with 3-7 florets per spikelet; rachilla joints 5-6 cm long, densely
pubescent at the apex of each joint; glumes, narrowly triangular and navicular, abaxially
scabrous, 1-7 nerved, awn 1-3 mm long; glume I 2.5-5 mm long; glume II 3.5-6 mm long;
lemmas 8-13 mm long, awn terminal 1-3 mm long, lanceolate, pubescent or scabrous, 9-11
nerved, awn 2-5 mm long, the margins papilose to the apex; palea 8-11 mm long, 2-keeled, keels
pubescent or scabrous, sulcate over its full length, the sulcus pubescent, wings glabrous, apex
bifid. Lodicules glabrous on both sides, apically ciliate 0.5mm long, the two anteriors 1.2-1.5mm
long, the posterior one 0.8-1mm long; anters stramineous when old, 4.5-6.5 mm long. Ovary
glabrous. Caryopsis 5.7-8.5 mm long, sublinear, tapering to a narrow beak, brown to amber.
Phenology. Flowering in July to October.
131
Distribution and habitat. Otatea acuminata is endemic to Mexico. Its geographical distribution
goes from the northern Sonora to Chihuahua, Sinaloa, Durango and Nayarit to Chiapas and along
the Transmexican Volcanic Belt. This species is sometimes cultivated in Costa Rica, Honduras
and theUnited States as an ornamental plant Plants are found on slopes with tropical dry forest,
xerophytic scrub, and in the ecotone between oak forest and tropical dry forest, at altitudes from
400 to 2000 m (Fig. 5).
Specimens examined―COSTA RICA. Alajuela: cultivated, Estación experimental Fabio
Baudrit, 3 km S.W. de Alajuela, R.W. Pohl 14083 (ISC, NY, US). Cartago: cultived, Río
Reventazón Canyon, housing area: Instituto Interamericano de Ciencias Agrícolas, Turrialba.
R.W. Pohl & G. Davidse 11765 (US). Cultived on grounds of IICA (Instituto Interamericano de
Ciencias Agrícolas). T.R. Soderstrom 1842 (US). CATIE field. L.C. Umaña 15 (US). Campus
CATIE. R.W. Pohl & M. Gabel 13576 (ISC).
HONDURAS. Morazan: Cultivated, Campus of former arboretum of EAP, El Zamorano. A.
Molina & A.R. Molina 34772 (MEXU). Cultivated as ornamental, Zamorano. J. Valerio
Rodríguez 3030 (MEXU). Cultivated, El Zamorano, Escuela Agricola Panamericana. F.A.
McClure 21484, 21605 (US).
MEXICO. Chiapas: El Aguacero, canyon of the Río La Venta G. Davidse, M. Sousa, O. Téllez,
E. Martínez & J. Davidse 30076 (ISC, MO). Autopista de Tuxtla a San Cristobal, puente El
Federalista Km 14.5. E. Ruiz-Sánchez and J.L. Martínez 119, 150 (XAL). Chihuahua: Barranca
de Batopilas, near Creel-La Bufa, road 15 km below (east of) La Bufa; south of side of the
canyon. R.S. Felger & R. Russell 8104 (MEXU). Arroyo La Bufa, on S side of Barranca de
Batopilas. R. Bye 7366 (MEXU). Sierra Madre Occidental. 1-2 km south of Rio Osichi and Rio
132
Basihuare junction. P.M. Peterson & P. Catalan 17638 (US). Colima: 2 km al S del crucero
Manzanillo-Cihuatlán, brecha a Peña Blanca. F.J. Santana Michel & N. Cervantes 648 (IBUG,
MEXU). Near top of pass, near Minatitlán on road to Manzanillo. A.A. Beetle et al 3524
(MEXU). 8 km de El Sauz camino al Terrero, 9-10 km al NE de Minatitlán. F.J. Santana Michel
4502 (IEB). Carretera nueva a Comala de Zapotitlan de Vadillo. E. Ruiz-Sánchez, N. Jimenez, De
Nova & F. Rodriguez 101 (XAL). Brecha de carretera de Minatitlán a Campo Cuatro a 6 km del
entronque. E. Ruiz-Sánchez, S. Ruiz. F. Rodríguez & J. Rodríguez 175 (XAL). 4 km al N de
Campo Cuatro por el camino a Lagunitas. E. Ruiz-Sánchez, S. Ruiz, F. Rodríguez & J. Rodríguez
176 (XAL). Durango: Rancho El Purgatorio, por la vereda que baja al río Humaya. M. González
2589 (CIIDIR, IEB). Huasamota. J.N. Rose 3494 (US). Entre Pedro Paulo-San Blasato. J.N. Rose
3344 (US). Carretera Mezquital-Temoaya Km 5.5 del cruce a El Troncon. E. Ruiz-Sánchez & P.
Carrillo-Reyes 113 (XAL). 5 km de El Troncón por el camino a Temoaya. M. González 1007
(CIIDIR). 7 km de Agua Zarca, camino a Temoaya. M González 45 (CIIDIR). Below Los
Molinos (just below Topia). M. Kimnach & H. Sánchez-Mejorada 1798 (MEXU).
Estado de Mexico: Sto. Tomás. Matuda et al 27493 (MEXU). Piedras Paradas, San Antonio
Tlatlaya. Matuda et al 31081 (MEXU, MO, US). Cerro Los Capulines, Palmar Chico. Matuda et
al 31331 (MEXU, US). Guanajuato: Barranca del Chilar, 39 km al SW de Cuerámaro. J.
Rzedowski 45021 (IEB). La Barranca, Barranca El Chilar a 500 m rumbo a Cuerámaro de La
Barranca. E. Ruiz-Sánchez & F. Rodríguez 173 (XAL). Guerrero: La Esperanza reserva
campesina. N. Diego, D.E. Cruz & H. Ordonemum 7568 (MEXU). 4 km el E de Omitemi,
camino a Xocomanatlán. G. Lozano V. 835 (MEXU). Cañon de La Mano entre los Amates y El
Naranjo, 10 km al N de Iguala por el ferrocarril. C. Catalán, F. Terán & S. Vázquez 827 (IEB,
MEXU). Cañon de La Mano entre los Amates y El Naranjo, 10 km al N de Iguala por el
133
ferrocarril. C. Catalán, S.D. Koch & F. Terán 521b (IEB) 522 (MEXU). Teloloapan, 6.3 km
along road to El Caracol, Acatempan. L. Clark, P. Tenorio & G. Bol 486 (ISC, MEXU, MO,
US). A 4.5 km al WSW de Tecoyame. I. Calzada & C. Toledo 15796 (FCME, MEXU).
Teloloapán. H. Brailly s/n (MEXU). Km 60 on highway 51 between Iguala (km 1) and Arcelia
(km 126); 2 km E of Teloloapán. H. Iltis, B. Benz & M. Burd 28712 (ENCB, F, MEXU, US). 6.5
km al N de Chilpancingo por la carretera a Iguala. S.D. Koch, P.A. Fryxell & T. Wendt 79102
(ENCB, IEB, ISC, NY). 11 Km al N de Iguala por la autopista a México. S.D. Koch, P.A. Fryxell
& T. Wendt 7962 (CIIDIR, IEB, NY). Rte. 85, 14.5 km E of Iguala between Iguala and
Cuernavaca, between km 84-85. L. Clark, P. Davila, B. Garofalo & A. Davila 331 (ISC, NY,
US). Entre el Mogote y Cacahuamilpa. R. Guzmán 6060 (MEXU, US). Salto de Valadés, arriba
de Chilpanchingo. E. Matuda 38407 (MEXU, US). Iguala cañon. C.G. Pringle 13924 (US). 5Km
delante de Chilpancingo por la carr. federal a Acapulco. E.M. Piedra 279 (XAL). 3.8 km al O de
Santa Cruz sobre el camino a Olinalá. P. Carrillo-Reyes, F:Z. Vaz de Mello & A. Abundis 4863
(XAL). Cañada Las Pozas, 2.5 km al NO de Jitotepec, cerro Xilotzin. E. Moreno Gutiérrez et al
943 (CIIDIR, FCME). 1 km por el camino a Tlalixtaquilla al este de la carretera HuamuxtitlánTlapa. J.L Contreras Jimenez 2468 (FCME). 1.5 km al N de Tecoyo. J. Calónico Soto 2175
(FCME). 3 km al SE de Amatitlan camino a Carrizalillo. M.E Garcia Granados 53C (FCME).
1.61 km al norte de Maguey. J. Calónico Soto 18121 (FCME). 4 km al S de Poliutla, camino a
San Miguel Totolapan. O. Garcia, A. Monrey & G. Segura 62 (FCME). La Lucha Campo
Morado. A. Ponce 684 (FCME). Hidalgo: Barranca de Tolantongo. F.G. Medrano & P. Hiriart
10272 (MEXU). La Barranca de Tolantongo, cerro de La Corona. F.G. Medrano & M. Pontet
10553 (MEXU). Barranca de Tolantongo 13.6 Km por carretera a Barranca de Tolantongo de El
Cubo. E. Ruiz-Sánchez & P. Carrillo 114 (XAL). Jalisco: Lower W-facing slopes of Cerro
134
Grande at Km. marker 2, 13.4 km by new dirt rd. WSW of El Terrero, 1 km SE of Los Sauces 34
km NW of Colima. T.S. Cochrane, M.A. Wetter & R. Cuevas 11736 (IBUG). Arroyo Los
Pajaritos. L.M.V. de Puga & R. McVaugh 16590 (IBUG). W-facing slopes, ca. 1km of Caseta
Forestal in hairpin curve, 9.5 km due N of Casimiro Castillo (km 177). H. Iltis., S. Solheim & R.
Guzmán 3114 (ENCB, IBUG, MEXU, US). Sierra de Manantlán. L.M.V. de Puga 12652
(IBUG). En la loma frente a la vía de ferrocarril al N de Tequila cerca de la preparatoria. D. de
Niz & S. Fabian s/n (IBUG). Barranca del río Santiago camino a La Soledad, desviación a
Ixcatán desde la carretera Guadalajara-Saltillo. E. Sahagú-Godínez, J.A. Lomelí & R. A. Leon-M
1366 (IBUG). 2 km al oeste de Tuxpan. R. Soltero & J. Perez de la Rosa s/n (IBUG). 1 km
después de pto Los Mazos rumbo a Casimiro Castillo. R. de la Mora 336 (IBUG). Camino al
volcán de Tequila cerca de Choloaca. J.O. Navarro & A. Navarro 219 (IBUG). Arroyo EL Tigre,
7 km distancia área al N de Casimiro Castillo en la carretera entre Autlán y la costa. J.
Judziewicz, T.S. Cochrane & R. Guzmán 5153 (IBUG). La Cueva, cerro de Tamazula. I Romero
22 (IBUG, ISC). Rancho Los Guayabos al NE de Zapopán, inmediaciones del hospital Leaño.
L.M.V. Puga 3168 (IBUG). Arroyo El Tigre, 4 km al NE de El Zapotillo. F.J. Santana Michel
2529 (ENCB, IBUG, XAL). Brecha El Tezcalame-La Lobera. O. Reyna, M. Chazaro & R.
Delgadillo 302 (ENCB, IBUG, IEB, MEXU). 1 km después del crucero de Zuluapan, carretera a
Santo Tomás. R. Guzmán, R. de la Mora y F. Santana 4162 (IBUG, MEXU). Km 42 por la
brecha El Tuito-Minas Zimapán. F.J. Santana-Michel, R. Guzmán & J. Perez de la Rosa 1212
(IBUG). 3 km al N de el Zapotillo por la carretera Melaque-Autlán s/n (IBUG, MEXU). Como a
3-4 km después de Tequila rumbo a la estación de microondas, cerro de Tequila. M. Cházaro
4208 (IBUG, IEB). Cerro El Narigon al N, exposición norte. F.J. Santana Michel 398 (IBUG).
Cerro El Narigón, al N del poblado El Limón F.J. Santan Michel 1182 (IBUG, MEXU) 21 Km
135
por la brecha San Sebastián-Pto. Vallarta al W de San Sebastián. F.J. Santana Michel 1007
(IBUG, MEXU). 33 Km al SE de Autlán, carretera a Barra de Navidad. F.J. Santan Michel 801
(IBUG, MEXU). Sierra de Quila, 1 km al NNE de Lagunillas casi en el arroyo Palmillas. J.J. &
E. Guerrero Nuño 314 (IBUG). Rancho La Higuera. F.J. Santana Michel, L. Clark & P. Tenorio
6210 (IBUG). Barranca de Huentitán, cercano al arroyo del zoológico. R. Acevedo & M.
Hernández-Galaviz 1692 (IBUG, MEXU). Arroyo de los Pajaritos, junto al balneario, 5 km al
SW de Sta. Lucía. F.J. Santana Michel 1233 (IBUG). Desviación al rancho el Rodeo, en la
cascada Salto del Nogal. G. Coronado 57 (IBUG). 8 km al N de Bolaños, por la brecha a
Tuxpan. F.J. Santana Michel 663 (IBUG, MEXU). La Venta de Nochtiltic, a 3 km a El Saucillo,
por la carretera Magdalena-Ixtlán del Río. F.J. Santana Michel 1186 (IBUG). Por San Cristobal.
Navarro & Cervantes 168 (IBUG). Km 82 brecha Tecalitlán-Jilotlán de los Dolores. F.J.
Santana Michel 1078 (IBUG, MEXU). Rancho El Casco, ca. 15 km al SW de Tapalpa. E.J Lott
323 (MEXU). 8 to 10 miles southwest of Autlán. H.S. Gentry 10948 (MEXU, US). Barranca of
Río Verde, between Tepatitlán and Yahualica. R. McVaugh 26700 (MEXU). Río Cihuatlán
below the bridge 13 miles north of Santiago. R. McVaugh 15946 (MEXU, NY, US). 9 km
adelante de Tecolotlán, carretera para Juchitlán. J.I. Calzada & J. Elizondo 8395 (ENCB,
MEXU). Al S de Atenquique, en el puente por la carretera a Colima. R. Guzmán 4585 (MEXU).
El Rodeo, a small pueblo in a deep valley between the Sierra de Manantlán Oriental and cerro
Toxin; ca. 21 km SE of El Chante (ca. 35 km ESE of Autlán. H.H. Iltis, B.F. Benz & M. Burd
28935 (IEB). Road from Autlan to Casimiro Castillo, 1 km below Puerto Los Mazos. H.H. Iltis,
B.F. Benz., A. Vazquez & M. Cházaro 29454a (IEB). Barranca de Huentitán, 2 km al E de
Tonalá. A. Flores & M. Cházaro 2437 (ENCB, IEB). 5 km al sur de los Mazos, por la carretera
Autlán-Barra de Navidad. R. Guzmán 6122 (ISC, US). Montañas al SSE de Puerto Vallarta, al E
136
de El Tuito, 42 km por la brecha el Tuito-Cuale. R. Guzmán 6095 (MEXU, US). 10 km de
Autlán hacia Barra de Navidad, orilla de carretera. G. Cortés s/n (US). 25 Km al S de Autlán,
sobre la carretera a Barra de Navidad. J. Rzedowski 14725 (US). Slopes of a ravine a Los
Arboles near Autlán. F.A. McClure 21202 (US). La Venta de Mochitiltic, a 3 km del Saucito por
la carretera Magdalena-Ixtlán del Río. R. Guzmán 6071 (MEXU, US). Carretera Puerto Vallarta
al Tuito Km 25. E. Ruiz-Sánchez, N. Jimenez, De Nova & F. Rodriguez 97 (XAL). Carretera
libre a Colima de Guadalajara. E. Ruiz-Sánchez, N. Jimenez, De Nova & F. Rodriguez 102
(XAL). Michoacán: Los Chorros del Varal 30 km al NW de Los Reyes. L. Avila s/n (IBUG). A
5 km la N de La Huacana, carretera Pátzcuaro-La Huacana. E.J Lott 1874 (MEXU, US). Los
Filtros Viejos, aprox. 2 km al E de Morelia. E. Pérez C. et al 2183 (IEB, MEXU). 24 km from
Tiquicheo on Hwy 51 between Erendira and Tiquicheo, road Cd. Altamirano-Morelia. L. Clark,
P. Tenorio & G. Bol 487 (ISC, MEXU, MO, NY, US). 15 km south of Taretán by the MoreliaLázaro Cárdenas autopista. V.W. Steinmann 2000 (IEB). Los Filtros Viejos, aprox. 2 km al E de
Morelia. E. Pérez C. & H. Díaz 2192 (IEB). 13 km al norte de Nueva Italia sobre la carretera a
Uruapan. S.D. Koch 77444 (CIIDIR, ENCB, IEB, ISC, NY, US). 35 Km al N de Huetamo, por la
carretera a Zitácuaro. S.D. Koch & P.A. Fryxell 8390 (CIIDIR, ISC, NY, US). Monte de San
Aparicio. E. Langlasse 24 (US). West-facing slopes of Cerro Carboneras above the Río
Cupatitzio, ca. 22 km south of Uruapan. T.R. Soderstrom 4866a (US). Carretera de Huetamo a
Tiquicheo a 7 km de Erendira a Tiquicheo. E. Ruiz-Sánchez, E. Gándara & D. Ángulo 181
(XAL). Río San Carlos a 300 m después de San Carlos y antes del Tamarindo, carretera
Tiquicheo-Morelia km 38. E. Ruiz-Sánchez, E. Gándara & D. Ángulo 182 (XAL). Morelos: El
Mogote. J. Vázquez 2147 (MEXU). Nayarit: Margenes del río Santiago, aprox. 2 km río abajo
del arroyo El Platanar. R. Acevedo & J. Sosa s/n (MEXU). 32.5 km al NE de Jesús María, La
137
China. G. Flores & P. Tenorio 996 (IEB, MEXU). Km 2-4 de la vereda de la Mesa del Nayar al
Cangrejo (Villa de Guadalupe), cruzando el barranco. O. Tellez, P. Tenorio, G. Flores, A.
Cadena & C. Ramírez 12463 (IEB, MEXU, MO). Arroyo El Salitre, Río Santiago, 3 km río
abajo de Paso Golondrinas. R. Acevedo & J. Sosa 1083 (IEB). Mountains 10 miles southeast of
Ahuacatlán, on road to Barrancas del Oro. R. McVaugh 15160 (US). Between Tepic and San
Blas, near Otates, cultived en Quail Botanical Garden. R. Haubrich 8101.652-D (ISC). Carretera
libre Tepic-Mazatlan Km 13 a 200m al rancho La Godorniz. E. Ruiz-Sánchez, N. Jimenez, De
Nova & F. Rodriguez 96 (XAL). Oaxaca: Puente Morelos, presa El Boqueron 3 km al NE de
Tonalá, carretera a Huajuapán. J.I. Calzada 18547 (MEXU). Arroyo El Tapesco, 2 km al S del
Poblado, 37 km al O de Tehuantepec entrando por Pozo Zorrillo. C. Martínez 1344 (MEXU). La
Loma 5 km al W de San Jorge Nuchita, hacia Yucuyachi. J.I. Calzada, A. Ramos & R. Torres
18250 (MEXU). Hwy. 131, Tehuacán-Oaxaca, ca. 8-10 km past San Juan Bautista de Cuicatlán,
Km 149. L. Clark, M. Chazaro, P. Tenorio & G. Bol 451 (ISC, MO, NY, US). 30 km de
Huahuapan al oeste, 9 km de San Marcos al oeste. A.A. Beetle 4613 (US). By small tributary
stream of Rio San Carlos east of road camp 75 kms. From El Temascal on road to Huetamo. H.E.
Moore, Jr., E. Hernandez X., H. Porras 5671 (US). Autopista Oaxaca-Mexico Km 107.2. E.
Ruiz-Sánchez and J.L. Martínez 125 (XAL). Km 159-160, carretera libre Oaxaca-Tehuacán. E.
Ruiz-Sánchez, F. Rodriguez & V. Sosa 218 (XAL). Ladera Oeste de Cerro Pluma. P. Tenorio
20635 (CIIDIR). Puebla: Montañas al E de Santana Coatepec, al SSE de Atlixco. R. Guzmán
6065 (ISC, MEXU, US). Matamoros. F. Miranda 2411 (MEXU). Mitepec. Vázquez Rojas 61
(MEXU). Rancho San Antonio, 10 km al NW de Molcaxac, brecha a Huatlatlauca. P. Tenorio,
C. Romero & F. Tenorio 7669 (MEXU). Past Molcaxac, ca. 3 km befote Tepeje de Rodríguez. L.
Clark, P. Tenorio, M. Chazaro & G. Bol 450 (ISC, MEXU, MO, NY, US). Northwestern slope
138
of cerro de Chantepec, 2 miles south of Pilcaye. F.A. McClure 21201 (F, US). 13 km SE of
Izucar de Matamoros on highway to Oaxaca. T.R. Soderstrom 2250 (US). Carretera Tepexi a
Puebla Km 5.2 saliendo de Tepexi. E. Ruiz-Sánchez and J.L. Martínez 126 (XAL). Queretaro:
Un km al S de Escanelilla, por la carretera Pinal de Amoles-Ahuacatlán. R. Guzmán 5990a
(MEXU, US). Carretera de Jalpan a Pinal de Amoles km 163 a 1 km pasando Escanelilla por las
barrancas del Río Escanelilla. E. Ruiz-Sánchez, E. Gándara & J. Alvarez 226a (XAL). Sinaloa:
Between Mazatlán and Durango near La Guayanera. A.A. Beetle et al 3667 (MEXU). La
Dispensa near Rosario. F.A. McClure 21204 (F, IEB, ISC, MO, NY). 32 miles from Mexico
route 15 along route 40. M.L. Roberts & D. Keil 10185. (US). Carretera Durango a Mazatlan a
1.5 Km de Chirimollos entre Santa Lucia y Chirimollos. E. Ruiz-Sánchez, P. Carrillo & De Nova
105 (XAL). El Guayabito, carretera Tepuche-El Espejo a ± 50 km al N de Culiacán. R. Vega &
J.A. Hernández 9171 (UAS). A 5 km al Sureste de piedras blancas, rivera de arroyo San Pablo.
R. Vega & H. Aguilar 9684 (UAS). Sonora: Arroyo San Ana at SON. 12 (Tepeca-Cd. Obregon
highway), 2.3 km southwest of the turnoff La Quemada, 8.5 km by air west of Guadalupe
Tayopa. T.R. Van Devender et al 97-1057 (MEXU, USON). Cueva de La Borrega, arroyo
Infiernillo. M. Fishbein, G. Ferguson, S. Hale & A. Porras 988 (MEXU). Rancho san Ysidrio
(ruins) at mouth of Arroyo Chinalito, a side canyon on the Río Sátachi, ca 8 airline km NE of
Nacori Chico. R.S. Felger, J.T. Marshall & P. Marshall 3320 (MEXU, MO, NY, USON). Sierra
de Alamos, arroyo Igualama, just below and to the north of Pico de Aguila. V.W. Steinmann
1319 (IEB). Conejos, Río Mayo. H.S. Gentry 1103 (F, US). El Pilar a Ciudad Obregon a 10 Km
del entronque a Yecora y a 2.5 Km de la Quemada. E. Ruiz-Sánchez, P. Carrillo & De Nova 112
(XAL). Veracruz: Cerros calizos al suroeste de Cuetzala. M. Chazaro, L. Robles & J.L. Tapia
5805 (IBUG, IEB, MEXU). Barranca sobre el río Los Pescados, a la orilla de la carretera G.
139
Cortés & M. Nee 60 (IBUG, MEXU, US). Un km al SSE de Jalcomulco. R. Guzmán, H. H. Iltis
& B. Benz 6057 (MEXU, US). Ejido Tlacotalpan, Mezeta del Barro por la vereda que va de
Jalcomulco al Palmar. G. Castillo & L. Tapia 1143 (MEXU). Barranca Los Pescados, 2 km
before Puente Los Pescados. L. Clark, M. Chazaro, P. Tenorio & G. Bol 456 (ISC, MEXU, US).
Arroyo Techacastla, Valle de Río Pescados, ca. 1 km SSE of Jalcomulco. H.H. Iltis, B.F. Benz,
R. Guzmán & M. Burd 28960 (IEB, MEXU, MO, NY, US). Barranca Los Pescados. L.G. Clark,
G. Cortés, I. Calzada & D. Farrar 1312 (MEXU, US). Lomas aledañas a la curva de Cerro
Gordo. 2 km sobre la carretera Cerro Gordo-Veracruz. G. Cortés, G. Cooper & J. Mora 99-14
(MEXU). Barranca de Panoaya, 1.5 km al NO de EL Coyol. N.E. Medina & G. Castillo 871
(ENCB, IEB). 1 km south of Rio Pescados on Huatusco-Jalapa road. S.M. Young 203 (US).
Jalcomulco. Liebmann 127 (US). Steep, rocky, calcareous canyon walls of Río de Pescados,
Barranca de Xinacatlla, 3 km SW of Jalcomulco. T.R. Soderstrom 2233 (US). Carretera de
Coatepec a Cordoba Km 24 rancho El Campanario. E. Ruiz-Sánchez, & F. Rodriguez 103
(XAL). Zacatecas: San Juan Capistrano, límite de los estados de Zacatecas y Durango. J.J.
Balleza 2366 (IEB).
UNITED STATES. California: Cultivated, Santa Barbara, 2696 Dorking Place. C.R. Annable &
R. Crombie 4034. (NY). Cultived, San Diego Zoo. J.B. Walker 1727 (NY). Hawaii: Cultived,
Kauia: Koloa district, Kalhaeo. T. Flynn 5820 (US). Harris county: Bamboo garden. S.M. Young
589 (US).
2. Otatea carrilloi E. Ruiz-Sánchez, Sosa and T.M. Mejia-Saulés, sp. nov. TYPE: MEXICO.
Chiapas: municipio de Tonalá, Ejido Raymundo Flores, vereda que va a El Filo, 843 m, 25 Sep.
140
2006, E. Ruiz-Sánchez, & R. Córdoba 147 (holotype: XAL; isotypes: IBUG, ISC, MEXU, MO,
NY, US). Fig. 6.
Otatea acuminatae similis sed folii caulinaris lamina reflexa et vagina foliari majore,
differens. Vaginae caulinares fimbrias bene evolutas erectas ad 19 mm longas deciduas ferentes.
Folia ramique fimbrias erectas persistentes ad 21 mm longas ferentia. Vaginarum caulinarium
setae orales ad 30 mm longae, foliorum frondosarum setae ad 24 mm longae. In juventute
fimbriae setaeque orales virides, deinde luteae et stramineae.
Rhizomes sympodial, pachymorph, the necks 5-12 cm long. Culms 3-5 m tall, 1- 3.5 cm in basal
diameter, erect and apically arching when old; internodes 11-19 cm long, terete, glabrous,
pruinose between internodes, green when young and yellow when old, hollow, the walls 3.5-6.9
mm thick, the lacuna occupying > 50% of the total diameter.Culm leaves 38-54 cm long
overlapping and deciduous, sheaths 19-28 cm long, 3-7 cm wide at the base, the leaf blades 1-1.4
times as long as the sheaths or sometimes the sheaths larger than blades, ± rectangular, glabrous
to abaxially hispid for the upper 1/2 to 2/3, the shoulders rounded and sometimes with a small
extension at apex about 2-8mm long, the margins ciliate; inner ligule 2.5-6.3 mm long, irregular;
oral setae 15-30.6 mm long, 0.2-0.9 mm wide, green-yellow, free for the inner ligule, flattened,
retrorsely scabrous, green in living specimens; fimbriae along the apex of the sheath on both
surfaces of the blade, 10.3-19.3 mm long, 0.2 mm wide, terete, free, straight, retrorsely scabrous;
blades 10-31 cm long, triangular, reflexed, adaxially and abaxially glabrous, the margins
fimbriate at base and the rest glabrous, these frimbriae 8.8 to 15 mm long 0.2 mm wide, terete,
retrorsely scabrous, apex attenuate-subulate. Branching intravaginal; three main, subequal
141
branches per node originating on a promontory, these diverging from each other and
rebranching, 27-40 cm long, diverging from the main culm at 35-75 o; supranodal ridge
pronounced; nodal line horizontal. Foliage leaves 3-5 per complement; sheaths glabrous,
rounded on the back, prolonged apex of sheath present; outer ligule with an irregular glabrous or
ciliolate rim up to 0.1 mm long without lobes; inner ligule 0.6-1.4 mm long, truncate; oral setae
6.6-24.1 mm long, 0.2-0.3 mm wide, green-yellow, slightly flattened, scabrid, fused with the
inner ligule; fimbriae on both surfaces of the blade at the large apex, 8.4-21.8 mm long, 0.1 mm
in diameter, more or less terete, scabrid, free; blades 18-26 cm long, 0.6-0.9 cm wide, linear to
linear-lanceolate, adaxially glabrous, green-glaucous, abaxially glabrous, green, patch of cilia at
the base of the leaf blade along one side of the midrib, 5-8 mm long, white; midrib centric, the
base attenuate, the apex attenuate-subulate, the margins weakly serrulate; pseudopetioles ca. 2
mm long, greenish, pulvinate at the base. Synflorescences not seen.
Paratypes―MEXICO. Chiapas: municipio de Tonalá, Ejido Raymundo Flores, 2.75 km al E. de
Raymundo Flores, 860 m, 2 March 2006, P. Carrillo-Reyes, D. Cabrera-Toledo y M. A. PerezFarrera 5144 (XAL); aproximadamente 6-8 km al Norte del Ejido Raymundo Flores, al interior
de la reserva La Sepultura, 900 m, 10 Sep. 2007, F. Nicolalde-Morejón & J. González-Astorga
1584 (XAL).
Etymology. The specific epithet honors Pablo Carrillo-Reyes, a Crassulaceae taxonomist and an
enthusiast collector, who was the first to gather plants of this species.
Phenology. Flowers of this species have never been collected.
142
Distribution and habitat This species has been found only in Chiapas, from a single population.
It grows on slopes in tropical dry forests from 850 to 1000 m (Fig. 7).
Disscussion. Otatea carrilloi is similar to O. acuminata and O. glauca but it differs in having
erect and larger fimbriae.
3. OTATEA FIMBRIATA Soderstr., Fl. Novo-Galiciana: Gramineae, 14:280. 1983. TYPE:
MEXICO. Chiapas: municipio de San Fernando, Cañón El Sumidero, ca. 20 km N of Tuxtla
Gutiérrez, T. R. Soderstrom 2245 (holotype: MEXU!; isotypes: CHAPA, DD, K, LE, MICH,
MO!, P, PRE, US!)
Rhizome neck 20-30 cm long. Culms 2.5-6 (-8) m tall, 1-6 cm in basal diameter, smooth,
pruinose below nodes, solid or hollow, with very thick walls and small lacunae. Culm leaves
deciduous as the branches develop, sheaths stramineous with appressed spicules, deciduous from
the main culm, overlapping and persistent on the branches; oral setae at apex of the sheath 1-1.5
cm long, seeming like a ligule or fused into a broad lacerate scale, bright purple or brown when
new, fading to brown or black; leaf blades triangular, erect, persistent. Branching intravaginal;
three main, subequal branches per node borne on a promontory, divergent and branching again,
50 to 100 cm long; supranodal ridge pronounced; nodal line dipping slightly below the bud.
Foliage leaves 5-7 per complement, sheaths glabrous; orale setae 10-15 mm long, brown or
purple connate at the base, frimbria, free or absent; blades 20-33 cm long, 1-3.6 cm wide,
glabrous, or commonly pilose (specially when young) in a patch near base on the abaxial surface,
yellowish to brownish, extending along one side of the midrib; midrib excentric; cross-veins
obscure, or prominent abaxial surface; leaf blades of secondary or smaller branches much
143
smaller and narrower, 0.5-1.2 cm wide. Synflorescence 10-15 cm long, with more than 30
spikelets. Spikelet ca. 2 cm long, 3-4 florets per spikelet, on thin pedicels 1-2 cm long; florets
closely overlapping, the apical a rudimentary floret, smaller, aborting; rachilla joints about half
as long as the florets or shorter; glumes awned, keeled, 7-nerved; glume I ovate-lanceolate, 5-7
mm long including the awn; glume II oblong-lanceolate, 7-9.5 mm long including the awn;
lemmas 10-13 mm long including the awn, ovate-lanceolate with 10 prominent scabrous nerves;
palea about as long as the lemma, with ample broad inflexed margins, entire, apex and margins
scabrid; anthers 4.5-5 mm long. Caryopsis 6.4-6.8 mm long, fusiform with a broad linear hilum
extending through the length of caryopsis.
Phenology. Flowering in September and in October.
Distribution and habitat. Otatea fimbriata has a disjunct distribution. It has been collected in
Mexico (Chiapas), Central America (El Salvador and Honduras), and Colombia. The ecological
conditions of O. fimbriata are similar in all of the locations. On the southern Pacific slopes
(Chiapas) in dry oak and tropical forests at altitudes from 1000 to 1300 m, while in Colombia
populations are found in tropical dry forest at 1230 m (Fig. 5).
Specimens examined―COLOMBIA. Norte de Santander: Vereda San Luis, aproximadamente
4 km de Ocaña por la via Abrego, margen derecha del Río Algodonal. X. Londoño, A. Amaya, J.
Jacome y M.V. Forgioni 884. (CUVC, NY, TULV, US). Vía de Ocaña a Abrego 7.8 km a orillas
del Río El Algodonal. X. Londoño & E. Ruiz-Sánchez 987 (CUVC, TULV, XAL).
El SALVADOR. Ahuachapán: Parque Nacional El Imposible, hacienda San Benito, Peña
Reventada. O. Rivera Dávila s/n (MO). North of Tacuba F.A. McClure 21623 (MO, US).
Usulatán: Upper slopes of the Volcan El Tigre above Santiago de María beyond the Hacienda
Las Brisas. F.A. McClure 21617 (ISC, MO, NY, US). Volcan Usulatán above Hacienda San
144
Mariano F.A. McClure 21620 (MO, US). Summit of Volcán de Usulután. S. Calderón 2534
(US).
HONDURAS. El Paraiso: Río Lizapa Departamento de Pariso, entre Galeras y Lizapa Grande.
A Molina s/n (US).
MEXICO. Chiapas: cliff faces and limestone bluffs at El Sumidero, 22 km north of Tuxtla
Gutiérrez. D.E. Breedlove 27177 (ENCB, MEXU, NY, US). 15 km southwest of Suchiapa along
road to Villa Flores. D.E. Breedlove 28085 (ENCB, MEXU, NY, US). Near Tuxtla Gutiérrez,
cañones El Sumidero befote Mirador La Coyota. L. Clark, P. Tenorio & G. Bol 469 (ISC,
MEXU, MO, NY, US). 36 Km W of Tuxtla Gutierrez on highway 190 to San Cristobal de las
Casas. G. Davidse & J. Davidse 9476 (ISC, MEXU, MO). 5-6 km from Avda. 5a in Motozintla
de Mendoza, on the road to Cerro Mozotal and El Porvenir. L. Clark, P. Tenorio & G. Bol 478
(ISC, MEXU, MO, NY, US). Carretera de Cañon Sumidero, 16 km N de Tuxtla Gutiérrez. S.D.
Koch 75590 (ENCB, US). Km 16 camino al cañon del Sumidero. G. Cortés & J.I. Calzada 105
(ENCB, US). Km 29 sobre la carretera Tuxtla Gtz. a San Cristobal en la desviación para
Pichcalco. G. Cortés 314 (MO). Forest near the Zinacantán Paraje of Muctajoc. D.E. Breedlove
53992 (NY, US). 8 km east of Las Margaritas along road to La Soledad. D.E. Breedlove 37939
(US). Km 15-16 road N of Tuxtla Gutiérrez along El Sumidero Canyon. J. Bauml., M. Kimnach
& H. Sánchez-Mejorada 577 (US). Cañon del Sumidero. G. Cortés & H. González 35 (US). On
road right of way along forested mountain slopes; 37 km west of San Cristobal. F.W. Gould
12703 (US). Autopista Tuxtla a San Cristobal de las Casas Km 21.2. E. Ruiz-Sánchez & J.L.
Martinez 118 (XAL). Carretera Tuxtla a San Cristobal entroque a carretera a Bochil. E. RuizSánchez, J. Pacheco & X. Galarza 136 (XAL). Km 45.7 carretera antigua o libre a San Cristobal
145
de las Casas. E. Ruiz-Sánchez 153 (XAL). Colonia Roblada Grande. E. Ruiz-Sánchez, A. Robles,
H. Robles & F. Robles 155 (XAL).
4. OTATEA GLAUCA L.G. Clark & G. Cortés, J. Amer. Bamboo Soc. 18: 3-6. 2004. TYPE:
Mexico. Chiapas: municipio de Motozintla, Tolimán, km 39 Huixtla-Motozintla, en cañada a la
orilla del río, 600 m, 20 Jan 2003, G. Cortés & W. Sánchez 306 (holotype: MEXU; isotype: ISC,
MO!, US!, XAL!).
Rhizome neck at least slightly elongated. Culms up to 8 m tall, 3 cm in basal diameter, erect;
internodes 27-30 cm long, terete, glabrous, glaucous especially when young, hollow with the
walls 1.5-2 mm thick, the lacuna occupying > 50% of the total diameter. Culm leaves 18-30 cm
long; sheaths 14-22 cm long, 8-17 cm wide at the base, 2.4-5.2 times as long as the blades,
triangular, abaxially hispid on upper 1/2 to 2/3, the shoulders rounded, the margins glabrous;
inner ligule 0.4-0.5 mm long, truncate, ciliolate; oral setae 2.5-11.5 mm long, 0.4-0.8 mm wide,
free from the inner ligule, flattened, connate at the bases for up to 2 mm, splitting into narrower
segments above, these straight to barely curved and retrorsely scabrous-hispid; fimbriae at sheath
apex on both blade surfaces, 1.5-4 mm long, 0.1-0.3 mm long, more or less terete, free, curly,
retrorsely scabrous; leaf blades 3.5-8.2 cm long, triangular, reflexed, deciduous, adaxially
densely pubescent, abaxially glabrous, apex attenuate or subulate. Branching intravaginal; three
subequal branches per node originating on a promontory, diverging and branching again, up to
80 cm long, diverging from the main culm at 45-90o; supranodal ridge pronounced; nodal line
more or less horizontal. Foliage leaves 4-5 per complement; sheaths glabrous, weakly keeled at
apex, sheath apex extension absent; outer ligule an irregular glabrous or ciliolate rim to 0.2 mm
146
long; inner ligule 0.2-0.5 mm long, truncate; oral setae 2.5-6 mm long, 0.1-0.2 mm wide, slightly
flattened, scabrid, free from inner ligule; fimbriae on both blade surfaces at apex, 1-4 mm long,
0.05-0.1 mm in diameter, more or less terete, scabrid; blades 10-16 cm long, 0.3-1 cm wide,
linear to linear-lanceolate, green, adaxially glabrous, rarely pilose, not tessellate, abaxially
densely pubescent at the base, with hairs extending along the midrib at base and the rest glabrous
or pilose over much of surface, weakly tessellate, midrib centric, the base attenuate, the apex
attenuate-subulate, the margins serrulate, sometimes weakly so; pseudopetioles ca. 1 mm long,
white, pulvinate at the base. Synflorescences 4-9 cm long, racemose; rachis flattened to angular,
scabrous-pubescent; pedicels 2.5-5 mm long, angular, scabrous-pubescent. Spikelets 3-4 cm
long, laterally compressed, 3-5 florets per spikelet with an additional apical rudimentary floret;
rachilla joints 3.5-5 mm long, minutely pubescent, densely pubescent at the apex on each joint;
glumes narrowly triangular and navicular, abaxially glabrous awned; glume I 6-9.5 mm long
including the awn, 7-9-nerved, the awn 1.3-3.6 mm long; glume II 9.5-14 (-17) mm long
including the awn, 9-11-nerved, the awn 2-5 mm long; lemmas 14.5-21 mm long including the
awn, narrowly, triangular and navicular, abaxially scabrous-pubescent, cross-vein evident, 1115-nerved, awn 3-4.7 mm long, antrorsely scabrous; paleas 14-15.4 mm long, 6-nerved, the keels
scabrous, sulcate for the full length, the sulcus pubescent on the upper half, scabrid bellow,
wings glabrous, apex bifid, the teeth acute. Lodicules apically ciliate, basally slightly thickened;
the anterior pair 1.5-2 mm long, the posterior one narrower, ca. 1.6 mm long. Ovary glabrous;
stigmas 2, plumose. Fruit not seen.
Phenology. Flowers from January to April and in September.
147
Distribution and habitat. O. glauca is endemic to Chiapas and recorded from two or three
localities. This species grows in the ecotone of tropical dry forests and oak forests at
approximately 1200 m. (Fig. 7).
Representative specimens examined―MEXICO. Chiapas: 37 km before Huixtla, Hwy. 190
between Motozintla de Mendoza and Huixtla. L. Clark, P. Tenorio & G. Bol 481 (MEXU, NY).
UNITED STATES. California: cultived, Encinitas, Quail Botanical Garden. L.G. Clark 1334.
(US). Los Angeles, CA. Jardín Botánico de Quail. G. Cortés & G. Cooper 333 (US). Carretera
Motozintla a Huixtla km 39. E. Ruiz-Sánchez 144 (XAL).
5. Otatea mixtecana E. Ruiz-Sánchez and Londoño, sp. nov. TYPE: MEXICO. Oaxaca: hills of
Las Sedas, 6000 ft, 21 Jul. 1897, G. C. Pringle 6742 (holotype: US!, isotype: CM, ENCB!, F,
MO). Fig. 8.
Otatea fimbriatae similis sed culmi diametro quam 1 cm non majore, folii frondosi
lamina reflexa, vaginis minoribus et ramorum foliis angustioribus, differens. Setae orales foliares
purpureae ad 6 mm longae. Spiculae azureo-purpureae, glumis scabro-pubescentibus.
Rhizomes sympodial, pachymorph, neck 3-9 cm long. Culms 2-3 m tall, 0.6 to 1 cm in basal
diameter, erect; internodes 20.5-29 cm long, terete, glabrous, greenish to glaucous, pruinose
between internodes when young and ochreous when old, solid when young and hollow when old,
the walls 1.8-3.1 mm thick, the lacuna occupying < 50% of the total diameter. Culm leaves 11.517.5 cm long not overlapping and deciduous; sheaths 9.5-12.5 cm long, 3.5-4 cm wide at the
base, 2-4 times as long as the blades, ± rectangular, abaxially glabrous, the shoulders rounded
148
and sometimes with a small prolonged apex about 2-3 mm long, the margins ciliate; inner ligule
1.1-1.8 mm long, truncate; oral setae 4.5-12.8 mm long, 0.1-0.3 mm wide, free in the inner
ligule, flattened, retrorsely scabrous, purplish in living specimens; fimbriae at apex of sheath on
both surfaces, 3.9-4.8 mm long, 0.1 mm wide, flattened, curly, retrorsely scabrous; leaf blades
1.6-7.5 cm long, triangular, reflexed, deciduos, adaxially and abaxially glabrous, the margins
ciliate, apex attenuate subulate. Branching intravaginal; three subequal branches per node, these
diverging from each other and rebranching, 17-42 cm long, diverging from the main culm at 4570o; supranodal ridge pronounced; nodal line horizontal. Foliage leaves 3-4 per complement;
sheaths glabrous, weakly keeled at apex, with an extended apex; outer ligule an irregular
glabrous rim to 0.4 mm long without lobes; inner ligule 1-1.5 mm long, rounded; oral setae 4.3-6
mm long, 0.05-0.1 mm wide, flattened, glabrous, fused with the inner ligule, purple in living
specimens with green apices; fimbriae absent; blades 19-27 cm long, 0.7-1.08 cm wide, linearlanceolate, adaxially slightly pilose, glaucous, abaxially scabrous, green, patch of cilia at the base
of the blade very dense, white, extending along the midrib 5-10 mm and the rest scabrous; midrib
excentric, the base attenuate, the apex attenuate subulate, the margins serrulate, pseudopetioles
ca. 0.5 mm long, purple, pulvinate at the base. Synflorescences 6-15 cm long, paniculate, 3-5
spikelets per synflorescence, purple-blue; rachis flattened to angular, slightly scabrous; pedicels
5-20 mm long, angular, scabrous. Spikelets 2-3.5 cm long, 3-5 florets per spikelet with an
additional apical rudimentary floret; rachilla joints 4-5 mm long, pubescent and densely
pubescent at the apex of each joint; glumes 2, narrowly triangular and navicular, abaxially
scabrous-pubescent, awned; glume I 6-11 mm long including the awn, 5-nerved, the awn 1-5 mm
long; glume II 8-12.7 mm long including the awn, 7-nerved, the awn 1.5-5 mm long; lemmas
11.5-17 mm long including the awn, narrowly triangular and navicular, abaxially scabrous
149
pubescent, cross-veins evident, awned, 9-15- nerved, the awn 2.3-7 mm long, antrorsely
scabrous; paleas 8.3-11 mm long, the keels scabrous, sulcate for the full length, the sulcus
pubescent on long scabrous wings, apex bifid with an acute teeth. Lodicules apically ciliate; the
anterior pair 1-1.3 mm long, the posterior one narrower 0.7-0.9 mm long. Anthers 6.5-7.4 mm
long. Ovary yellow-amber, glabrous, ca 1-1.5mm long. Fruit not seen.
Paratypes―MEXICO. Oaxaca: Tlaxiaco, municipio de San Pedro Molinos, km 64 de la
carretera Tlaxiaco-Putla, 2000 m, 3 Ago. 1994, J. Panero & I. Calzada 4441 (IEB, MEXU).
Distrito Ejutla, municipio de San Martín Lachilá, 2.7 Km al Oeste de El Vado sobre el camino a
San Sebastián de las Grutas, 1525 m 7 Nov. 2005, P. Carrillo-Reyes, FZVM & AAS 4986 (XAL).
2.2 Km al O. de El Vado sobre el camino a San Sebastián de las Grutas, 1458 m, 14 Jun. 2008,
E. Ruiz-Sánchez, F. Rodriguez & V. Sosa 217 (XAL).
Etymology. The specific epithet is in relation to its distribution in the Mixtec region of Oaxaca,
Mexico.
Phenology. Flowering from July to August.
Distribution and habitat. Endemic to Oaxaca and recorded from three localities.This species
grows on slopes in dry pine-oak-juniper and tropical forests, from 1500 to 1700 m. (Fig. 7).
Discussion. Morphologically, Otatea mixtecana is similar to O. fimbriata but differs in having
culms smaller in diameter and the culm leaf blades are reflexed and smaller. One of the most
striking characters of O. mixtecana is the blue-purple color of its spikelets (see Table 1).
150
6. Otatea reynosoana E. Ruiz-Sánchez and L.G. Clark, sp. nov. TYPE: MEXICO. Guerrero:
District Minas, Río Frio, 1500 m, 11 Nov. 1936, G.B. Hinton 9879 (holotype: US!; isotype:
MO). Fig. 9.
Otatea fimbriatae similis sed differens setis oralibus albis papyraceis in vaginis
caulinaribus et in foliis frondosis, folii caulinare recta, ciliarum caespede albo usque 8.5 mm
longo ad laminae basem in pagina adaxiale posito et ad nervi centralis latera extenso, et floribus
cum glumis majoribus.
Rhizome neck 10-30 cm long. Culms to to 3-6 m tall, 1-6 cm in basal diameter, erect to apically
arched; internodes 11-19 cm long, terete, glabrous, pruinose, light green when young and greenyellow when old, solid at based and hollow in the first third, the walls 2-4 mm thick, the lacuna
occupying < 50% of the total diameter. Culm leaves 24-54 cm long overlapping and persistent;
sheaths 16-31 cm long, 4-9 cm wide at the base, 1.2-1.8 times as large as the blades, rectangular,
glabrous or slightly hispid abaxially for the upper 2/3, the shoulders with a small apex, about 25mm long, the margins ciliate; inner ligule 0.5-2.5 mm long, truncate, glabrous; oral setae 7-17.3
mm long, 0.1-0.4 mm wide, free for the inner ligule, flattened, glabrous, white; fimbriae absent
or sometimes present at the end sheath summit on either side of the blade, 2-7 mm long, 0.05
mm wide, flattened, curly, glabrous, free; leaf blades 8-23 cm long, triangular, erect, deciduous,
adaxially and abaxially glabrous, the margins ciliate, apex subulate. Branching intravaginal; one
or two main, subequal branches per node sometimes three or more, 40 to 75 cm long, diverging
from the main culm at 45o; supranodal ridge pronounced; nodal line more or less horizontal.
Foliage leaves 4-5 per complement; sheaths hispid, rounded on the abaxial surface, sheath
151
prolonged apex absent; outer ligule an irregular glabrous rim to 0.1 mm long with two lobes on
each side of the apex, 0.6-1.5 mm long, 0.8-1.8 wide; inner ligule 0.3-0.5 mm long, truncate; oral
setae 5.1-11.2 mm long, , flattened, glabrous, free from the inner ligule, whitish; fimbriae on
both surfaces at apex, 2.5-5 mm long, 0.05 mm in diameter, flattened, curly, glabrous and
deciduous; blades 27.5-39 cm long, 0.95-4 cm wide, lanceolate, adaxially scabrous, glaucous and
scabrous abaxially, patch of cilia at the base of the blade very dense, white, extending along both
sides of the midrib 5.8-8.5 mm long; midrib excentric, the base attenuate, the apex attenuatesubulate, the margins serrulate; pseudopetioles ca. 2 mm long, greenish, pulvinate at the base.
Synflorescences ca. 18 cm long, paniculate, ca. 33 spikelets per synflorescence, green; rachis
flattened, slightly scabrous; pedicels 6-29 mm long. Spikelets 2-2.5 cm long, 3 florets per
spikelet; rachilla joints 4.5-6.2 mm long, terete, densely long-scabrous to subhispid; glumes
narrowly triangular and navicular, short, scabrous abaxially, finely scabrous adaxially; glume I
7-13 mm long including the awn, 3-nerved, the awn 4-6.8 mm long; glume II 9.5-13.7 mm long
including the awn, 7-nerved, the awn 1.5-5 mm long; lemmas 14.3-18 mm long including the
awn, narrowly triangular and navicular, slightly dorsoventrally compressed, uniformly spaced
scabrous hooks moderately dense, from 0.1—0.25 mm long over the surfaces, distinctly longer
and denser, hispid, in and about the margins to 0.6 mm long, 11- nerved, the awn 2.8-5.6 mm
long, scabrous adaxially; paleas 9.7-11.7 mm long, similar to texture and vestiture of lemmas,
the hairs usually longer, densely hispid at margins. Lodicules 3, brown, 2.5 mm, lanceolate (apex
triangular), densely ciliate in the margins, scabrous abaxially, 8-veined. Ovary glabrous, brownamber ca 2 mm long. Anthers 3 per flower, 8 mm long. Caryopsis 5.8-7 mm long, fusiform with
a small 0.6 mm rostellum, glabrous, dark brown, dull, subtriagonous, slightly keeled, sulcate.
152
Paratypes―MEXICO, Jalisco: municipio de San Sebastián del Oeste, 40 Km al NW de
Mascota, brecha a San Sebastián del Oeste, 1610 m, 27 Dic 1981, F.J. Santana Michel 941
(IBUG, MEXU). 40 Km al NW de Mascota, brecha a San Sebastian del Oeste, 1550 m, 2 Feb.
1983, F.J. Santana Michel, R. Guzmán & J. A. Pérez de la Rosa 1222 (IBUG). 25 Km al NE de
Mascota por la brecha a San Sebastian del Oeste, 2 Feb 1983, R. Guzmán 6114 (MEXU), F.J.
Santana Michel, R. Guzmán & J. A. Pérez de la Rosa 1225 (IBUG). 39-40 Km al NE de Mascota
por la brecha a San Sebastian del Oeste, 2 Feb. 1983, R. Guzmán 6113 (MEXU, US). km 29.7
carretera Mascota a Puerto Vallarta a 8.3 Km de La Estancia rumbo a Mascota, 1506 m, 1 Ene.
2006, E. Ruiz-Sánchez & F. Rodriguez 130 (XAL). San Sebastian del Oeste, Km 32-33 carretera
de Mascota a Puerto Vallarta, 1393 m, 10 sep 2007, E. Ruiz-Sánchez, D. Ángulo & E. Gándara
189 (XAL). Mun. Atengo, Sierra Verde, vereda que va de Tacota a Mixtlán, 1 Mar. 1992, J.A.
Machuca & M. Cházaro 6804 (MEXU, NY, XAL).
Etymology. The specific epithet honors Jacqueline Reynoso Dueñas, a grass taxonomist from the
University of Guadalajara.
Phenology. Flowering in November.
Distribution and habitat. Endemic to Mexico on the Pacific slopes, in Guerrero, Jalisco and
Nayarit. It grows on slopes in humid pine-oak and cloud forests at elevations of 1300 to 1650 m.
(Fig. 10).
Discussion. Morphologicallly, Otatea reynosoana is similar to O. fimbriata but differs from it in
having oral setae of culm and foliar leaves white and brown. A morphological comparison with
among all species is presented in table 1.
7. Otatea transvolcanica E. Ruiz-Sánchez, Londoño and L.G. Clark, sp. nov. TYPE: MEXICO.
Estado de México: municipio de Temascaltpec, Puente Río Verde a 4.5 km de Temascaltepec
153
por la carretera rumbo a Toluca, creciendo en la cañada a orilla del río Verde, 1840 m, 4 Sep.
2007, E. Ruiz-Sánchez, D. Ángulo & E. Gándara 179 (holotype: XAL; isotype: IBUG, ISC,
MEXU, MO, NY, US). Fig. 11.
O. fimbriatae similis sed differens folii caulinaris lamina reflexa, ramificatione
extravaginali, foliorum caulinarium setis oralibus cito deciduis in primo tertio basali connatis
purpureis sed ad apices viridibus, et ciliarum caespede luteo usque 26 mm longo ad laminae
basem in pagina adaxiale posito et ad nervi centralis latera extenso.
Rhizome neck 30-45 cm long. Culms 3-8 m tall, 1-6 cm in basal diameter, erect to apically
arched; internodes 24-27 cm long, terete, glabrous, light green when young and yellow when old,
pruinose between internodes, solid at based and hollow in the first third, the walls 2.8-4 mm
thick, the lacuna occupying ≥ 50% of the total diameter. Culm leaves 36-46 cm long; sheaths 2429.5 cm long overlapping and persistent, 7-11 cm wide at the base, 1.3-3.2 times as long as the
blades, ± rectangular, abaxially hispid for the upper 1/2 to 2/3, the shoulders rounded and
sometimes with a small extended apex about 2-3mm long, the margins glabrous; inner ligule 0.92.2 mm long, truncate, glabrous; oral setae free, present only in young shoots 10-15 mm long,
green; fimbriae absent; leaf blades 9-20 cm long, triangular, reflexed, deciduous, adaxially and
abaxially glabrous, apex subulate. Branching extravaginal; one or two main, unequal branches
per node, if three then the central 2X wider than the lateral, 110 to 130 cm long, diverging from
the main culm at 45o; supranodal ridge pronounced; nodal line more or less horizontal. Foliage
leaves 6-10 per complement; sheaths glabrous, rounded on the back, sheath summit extension
absent; outer ligule an irregular glabrous rim to 0.1 mm long with two lobes at apex, 3-11 mm
154
long, 1.9-4.5 wide; inner ligule 0.1-0.2 mm long, truncate; oral setae 13-21.5 mm long, connate
at basal 1/3 or more, splitting into narrower segments above, flattened, glabrous, free from the
inner ligule, purple in living specimens with green apices; fimbriae on both surfaces of blade at
apex, 5-14.8 mm long, 0.05-0.1 mm in diameter, slightly flattened, curly, glabrous and
deciduous; blades 34-60 cm long, 2.5-5 cm wide, lanceolate, adaxially glabrous, glaucous,
abaxially scabrous, green, patch of cilia at the base of the blade on the abaxial surface very
dense, yellow, extending along both sides of the midrib 12.5-26.1 mm long; midrib excentric, the
base attenuate, the apex attenuate-subulate, the margins serrulate; pseudopetioles ca. 3 mm long,
yellowish, pulvinate at the base. Synflorescences not seen.
Paratypes―MEXICO. Colima: municipio de Comala, E. facing slopes of Cerro Grande in deep
cañada on road from Lagunillas to Campo Cuatro and Juluapan, 1500 msnm, 15 Marz 1987, H.
H. Iltis, B. F. Benz, A. Vázquez & M. Cházaro 29712 (MEXU, MO, US). 5 km al N de Campo 4,
por la brecha a Lagunitas, 1400 msnm, 23 Nov. 1987, F.J. Santana Michel 2670 (ENCB, IBUG,
MEXU). Campo Cuatro a 7.8 Km de Campo Cuatro por el camino a Lagunitas, 1710 m, 9 Sep.
2007, E. Ruiz-Sánchez, D. Ángulo & E. Gándara 183 (XAL). Estado de México: municipio de
Temascaltpec, Barrancas cerca de Temascaltepec, 3 Apr. 1981, R. Guzmán & L. Rico 1201
(MEXU, XAL). Carr. entre Tejupilco y Temascaltepec, 4 Ago. 1981, R. Guzmán & L. Rico 1478
(MEXU, US). 4.5 km al E de Temascaltepec por la carretera a México D.F. R. Guzmán 6043,
6044, 6045, 6050, 6051, 6052, 6053 (MEXU). 4.5 km al E de Temascaltepec por la carretera a
México D.F. Manrique, Guerrero, Guzmán & Jaramillo 201 (MEXU). Jalisco: municipio de
Tamazula, Agua Hedionda Km 55-60 brecha a Manuel M. Díeguez, 1850 m, 27 Oct. 1973, C.
Díaz Luna 4513 (IBUG). Km 80 de la brecha a Manuel M. Díeguez, 1040 m, 19 Nov. 1973.
155
L.M.V. Puga 13844A (IBUG). Mun. Ciudad Guzmán, Parte Este de la cuenca Zapotlán, 1710 m,
4 Feb. 1994, J.J. Reynoso et al., 1741 (IBUG). In canyon east of Ciudad Guzmán, 6000ft, 18
Nov. 1968, F. Boutin, 2267 (US). Mun. Tecalitlán, Puente San Pedro, carretera de Pihuamo a
Tecalitlán entre el Km 140-141, 1181 m, 8 Sep. 2007, E. Ruiz-Sánchez, D. Ángulo & E. Gándara
186 (XAL). Nayarit: municipio de Nayar, 5-8 km al NW de la Mesa del Nayar, camino a La
Mesa del Nayar-Villa Guadalupe (Cerro Cangrejo), 1300 m, 19 Sep. 1989, G. Flores, O. Tellez,
P. Tenorio & A. Salinas 1123 (MEXU).
Etymology. The specific epithet relates to its geographical distribution along the Transmexican
Volcanic Belt. It harbours 13 of the highest mountains of Mexico.
Phenology. Flowers not seen.
Distribution and habitat. Endemic to Mexico from Colima, Jalisco to the State Mexico. This
species grows in slopes with humid pine-oak and cloud forests at elevations from 1040 to 1850
m. (Fig. 10).
Discusion. Otatea transvolcanica differs from O. fimbriata in its reflexed culm leaf blades in a
extravaginal branching pattern with one or two branches per node and in its larger and wider
foliar leaves (Table 1).
156
ACKNOWLEDGEMENTS.
We are particularly grateful to Robert Soreng for kindly providing images of the type specimens
of Otatea from the US herbarium. We express our gratitude to Jerzy Rzedowski for preparing the
Latin diagnoses. We are grateful to Edmundo Saavedra for his excellent illustrations of the new
species and to Tiburcio Láez for his help with the SEM photographs. We thank Pablo CarrilloReyes, Arturo de Nova, Flor Rodríguez-Gómez, José Luis Martínez, Nelly Jiménez-Pérez, Jaime
Pacheco, Xóchitl Galarza, Diego Angulo and Etelvina Gándara for their assistance during the
field work, Eva María Piedra and Fernando Nicolalde collected some Otatea specimens and we
appreciate the curators of the following herbaria for access to their collections and the loan of
specimens: CIIDIR, CUCV, ENCB, F, FCME, IBUG, IEB, ISC, MEXU, MO, NY, TULV,
UAS, US, USON and XAL. Field work was supported by a graduate student grant of the
Instituto de Ecología, A. C., by a grant of the student assistance program of Bamboos of the
Americas (BOTA) by a grant provided by the Red Lationamericana de Botánica (RLB07ATP01) and also by a student grant from the International Association for Plant Taxonomists. A
fellowship to ER-S by CONACYT (190069) is also acknowledged.
157
LITERATURE CITED
ACEDO, C. AND F. LLAMAS. 2001. Variation of micromorphological characters of lemma and
palea in the genus Bromus (Poaceae). Annales Botanici Fennici 38: 1–14.
BEETLE, A. A., S. J. MIRANDA., L. V. JARAMILLO., R. A. RODRÍGUEZ., M. L. ARAGÓN., B. M.
VERGARA., H. A. CHIMAL AND S. O. DOMÍNGUEZ. 1995. Las Gramíneas de México IV.
COTECOCA. México, D.F.
CALDERÓN, C. E. AND T. R. SODERSTROM. 1980. The genera of Bambusoideae (Poaceae) of the
American Continent; keys and coments. Smithsonian Contribution to Botany 44: 1-27.
CLARK, L.G. AND G. CORTÉS. 2004. A new species of Otatea from Chiapas, Mexico. Bamboo
Science and Culture 18: 1-6.
CORTÉS, R. G. 2000. Los bambúes nativos de México. Biodiversitas 30: 12-15.
DÁVILA, P.A., M.T. MEJIA-SAULÉS, M. GOMEZ-SÁNCHEZ, J. VALDÉS-REYNA, J.J. ORTÍZ, C.
MORIN, J. CASTREJON AND A. OCAMPO. 2006. Catálogo de las Gramíneas de México. Universidad
Nacional Autónoma de México y Comisión Nacional para el Conocimiento y uso de la
Biodiversidad. México, D.F.
158
ELLIS, R. P. 1979. A procedure for standardizing comparative leaf anatomy in Poaceae. II. The
epidermis seen in surface view. Bothalia 12: 641-671.
GUZMÁN, R., M. C. ANAYA, and M. SANTANA. 1984. El género Otatea (Bambusoideae), en
México y Centroamérica. Boletín del Instituto de Botánica 5: 2-20.
JUÁREZ, E. O. AND G. MÁRQUEZ. 1992. Posibles impresiones de otate (Otatea acuminata spp.
acuminata) (Gramineae: Bambusoideae) en el bajereque arqueológico de sitio Loma Iguana,
Ver. La Ciencia y El Hombre 12-13: 143-159.
JUDZIEWICZ, E. J., L. G. CLARK, X. LONDOÑO, and M. J. STERN. 1999. American Bamboos.
Washington D.C.: Smithsonian Institution Press.
LONDOÑO, X. and L. G. CLARK. 1998. Eight new taxa and two new reports of Bambuseae
(Poaceae: Bambuseae) from Colombia. Novon 8: 408-428.
———. and ———. 2002. A Revision of the Brazilian bamboo genus Eremocaulon (Poaceae:
Bambuseae: Guaduinae). Systematic Botany 27: 703-721.
MCCLURE, F. A. 1973. Genera of bamboos native to the New World (Gramineae:
Bambuosideae). Smithsonian Contribution to Botany 9: 1-148.
159
METCALFE, C. R. 1960. Anatomy of the Monocotyledons I: Gramineae. Claredon Press, Oxford.
RUIZ-SÁNCHEZ, E., V. SOSA, AND M.T. MEJÍA-SAULES. 2008. Phylogenetics of Otatea inferred
from morphology and chloroplast DNA sequence data and recircumscription of Guaduinae
(Poaceae: Bambusoideae). Systematic Botany 33: 277-283.
SODERSTROM T.R IN MCVAUGH, R. 1983. Gramineae. Pp. 1-223. in Flora Novo-Galiciana: A
descriptive account of the vascular plants of Western Mexico vol. 14, ed. W. R. Anderson. Ann
Arbor: The University of Michigan Press.
VÁZQUEZ-LÓPEZ, J. M., H. VIBRANS, E. GARCÍA-MOYA, J. I. VALDEZ-HERNÁNDEZ, A. ROMEROMANZANARES AND R. CUEVAS-GUZMÁN. 2004. Effects of harvesting on the structure of a
Neotropical woody bamboo (Otatea: Guaduinae) populations. Interciencia 29: 207-211
160
Table 1. Diagnostic characters for the new four species of Otatea.
Character/taxa
O. carrilloi
O. mixtecana
O. reynosoana
O. transvolcanica
Culm habit
arching apically
erect
erect to apically
arched
erect to apically
arched
3-5
1-3.5
2-3
0.6-1
3-6
1-6
3-8
1-6
11-19
3.5-6.9
20.5-29
1.8-3.1
11-19
2-4
24-27
2.8-4
19-28
overlapping
deciduous
9.5-12.5
No overlapping
deciduous
16-31
overlapping
persistent
24-29.5
No overlapping
persistent
10-31
reflexed
fimbriate
1.6-7.5
reflexed
ciliate
8-23
erect
ciliate
9-20
reflexed
glabrous
15-30.6
green-yellow
4.5-12.8
purple
7-17.3
white
10-15 (deciduous)
green
present
present
present or
absent
absent
at entire apex
sheath
straight
10.3-19.3
intravaginal
3
only at apex of
sheath
curly
3.9-4.8
intravaginal
3
only at apex of
sheath
curly
2-7
intravaginal
1-2
extravaginal
1-2
19-27
0.7-1.08
absent
27.5-39
0.95-4
present
34-60
2.5-6
present
-
0.6-1.5
0.8-1.8
3-11
1.9-4.5
Culm size
length (m)
diameter (cm)
Internode size
length (cm)
wall thickness
(mm)
Culm leaves
sheath length (cm)
overlapping
duration
Culm leave blades
length (cm)
position
margin base
indument
Oral setae on
culm leaves
length (mm)
color in living
specimens
Presence of
fimbriae on culm
leaves
position
posture
length (mm)
Branching
Branches per
node
Foliage leaf blade
length (cm)
18-26
width (cm)
0.6-0.9
absent
Lobes on foliage
leaves
length (mm)
width (mm)
Oral setae on foliage leaves
161
length (mm)
6.6-24.1
connate at base
no
Color in living
green-yellow
specimens
Fimbriae on foliage leaves
length (mm)
8.4-21.8
posture
straight
centric
Midrib on foliar
leaves
tropical dry
Habitat
forest
Distribution
Chiapas
4.3-6
no
purple
5.1-11.2
no
white
13-21.5
yes
purple with green
tips
absent
excentric
2.5-5
curly
excentric
5-14.8
curly
excentric
mixed forest
with pine-oakjuniper and
tropical dry
forest
Oaxaca
humid pine-oak
and cloud forest
humid pine-oak
and cloud forest
Jalisco,
Guerrero and
Nayarit
Colima, Jalisco
and Mexico State
162
FIG. 1. Micromorphology of the abaxial surface of lemma in Otatea. A. Microhair (m) in O.
glauca (E. Ruiz-Sánchez 144, XAL) and B. O. mixtecana (J. Panero & F. Calzada 4441, XAL).
C. Macrohairs (ma) in O. acuminata (F. J. Santana 2529, XAL) and D. O. mixtecana (J. Panero
& F. Calzada 4441 XAL). E. Prickles with extended barb (prd) in O. acuminata (F. J. Santana
2529, XAL). F. Hooks (h) in O. glauca (E. Ruiz-Sánchez 144, XAL).
FIG. 2. Micromorphology of the abaxial surface of the lemma in Otatea. A. Silica bodies with an
irregular dumb-bell shape (sbd) in O. glauca (E. Ruiz-Sánchez 144, XAL). B. Silica bodies
saddle-shaped (sbs) in O. glauca. C. Silica bodies rounded (sbr) in O. acuminata (F. J. Santana
2529, XAL).
FIG. 3. Micromorphology of the abaxial surface of palea in Otatea. A. Intercostal long-cells with
sinuous outline U-shaped (Lc) in O. glauca (E. Ruiz-Sánchez 144, XAL). B. Prickles with
extended barb (prd) in O. glauca. C. Prickles with extended barb (prd) in O. acuminata (F. J.
Santana 2529, XAL). D. Prickles with extended barb (prd) and prickles with barb not developed
(pr) in O. mixtecana (J. Panero & F. Calzada 4441 XAL). E. Silica bodies irregular dumb-bell
shaped (sbd) in O. glauca. F. Silica bodies saddle-shaped (sbs) in O. mixtecana.
FIG. 4. Culm leaves. A. Otatea carrilloi. B. O. trasnvolcanica. C. O. reynosoana. D. O.
mixtecana.
FIG. 5. Geographical distribution of Otatea acuminata and O. fimbriata.
163
FIG. 6. Otatea carrilloi. a; rhizome. b; culm with persistent culm leaf sheath. c; branch
complement. d; foliage leaf complement. e; culm leaf, abaxial apical view. f; ligular area of
foliage leaf with fimbriae and oral setae. (a, d-f. based on E. Ruiz-Sánchez & R. Córdoba 147; bc. based on P. Carrillo-Reyes, D. Cabrera-Toledo y M. A. Perez-Farrera 5144)
FIG. 7. Geographical distribution of Otatea carrilloi, O. glauca and O. mixtecana.
Fig. 8. Otatea mixtecana. a; rhizome. b; culm with culm leaves. c; branch complement. d; culm
leaf apex witn oral setae. e; Synflorescence and foliage leaf complement. f; ligular area of foliage
with oral setae. g; spikelet. (a-d, f. based on E. Ruiz-Sánchez, F. Rodriguez & V. Sosa 217; e, g.
based on J. Panero & I. Calzada 4441)
FIG. 9. Otatea reynosoana. a; culm with overlapping culm leaves. b; apical shoot with culm
leaves. c; branch complement. d; synflorescence and foliage leaf complement e; ligular area of
foliage leaf with oral setae. f; spikelet with proximal floret remaining. (a-c, e. based on E. RuizSánchez & F. Rodriguez 130; d, f. based on G.B. Hinton 9879)
FIG. 10. Geographical distribution of Otatea reynosoana and O. transvolcanica.
FIG. 11. Otatea transvolcanica. a; branch complement from mid section to culm apex. b; culm
middle section with extravaginal branching. c; apical shoot with reflexed culm leaves. d; foliage
leaf complement. e; ligular area of foliage leaf with oral setae and outer ligule lobes in an early
stage of development. f; ligular area of foliage leaf with connate oral setae and outer ligule lobes
164
at maturity. g; culm leaf abaxial view. h; detail of foliar leaf. (a-i. based on E. Ruiz-Sánchez, D.
Angulo & E. Gándara 179).
165
166
167
168
169
170
171
172
173
174
175
176
CAPÍTULO V. CONCLUSIONES GENERALES
177
Los resultados obtenidos en los análisis filogenéticos con matrices de datos moleculares y
morfológicas indican que Otatea es un grupo monofilético, soportado por dos estados de
caracteres sinapomorfícos morfológicos: la presencia de tres ramas subiguales por nodo y lemas
pubescentes. Sin embargo, al utilizar los tres juegos de datos combinados (dos regiones de ADN
del cloroplasto (rpl16 y trnH-psbA) y los caracteres morfológicos en análisis filogenéticos no
pudieron identificar cuál de los géneros dentro de Guaduinae es el grupo hermano de Otatea.
Guaduinae está conformada por los géneros: Apoclada, Eremocaulon, Guadua, Olmeca y
Otatea (Judziewicz et al., 1999). Es importante mencionar que nuestros resultados indican que
Guaduinae es un grupo natural soportado tanto por caracteres moleculares como por caracteres
morfológicos siempre y cuando se incluyan en esta subtribu a Aulonemia clarkiae y A. fulgor,
previamente clasificadas dentro de la subtribu Arthrostylidiinae (Judziewicz et al., 1999). Las
dos especies de Aulonemia fueron descritas dentro de éste género por compartir algunas
características morfológicas diagnósticas (Soderstrom, 1988; Davidse y Pohl, 1992). Sin
embargo estos autores habían considerado la posibilidad de segregar a éstas dos especies en un
nuevo género, por presentar caracteres morfológicos similares a algunas especies de Olmeca,
aunque debido a que no había una monografía para el género decidieron mantenerlas en
Aulonemia. Más aún nuestros resultados identifican a estas dos especies dentro de Guaduinae.
Sin embargo, se requieren otros estudios que incluyan especies adicionales de Aulonemia para
tomar una decisión taxonómica final. En conclusión, Otatea es un género monofilético, dentro de
Guaduinae, y junto con Apoclada, Eremocaulon, Guadua, Olmeca, Aulonemia clarkiae y A.
fulgor.
La delimitación de las especies, es una tarea que los taxónomos han realizado desde hace
más de 200 años. En tiempos recientes, la inclusión de marcadores moleculares y datos
178
ecológicos proveen una mayor evidencia en la delimitación de las especies (Sites y Marshall
2003, 2004). Utilizamos una metodología que combina caracteres moleculares del cloroplasto
(atpF-atpH, psbI-psbK y trnL-rpl32), nucleares (ITS), morfológicos y ecológicos (modelación
del nicho ecológico) para delimitar las especies Otatea.
Encontramos resultados contradictorios de los análisis filogenéticos. Los marcadores
moleculares no apoyan Otatea acuminata ni a O. fimbriata como grupos monofiléticos.
Solamente se recuperan dos clados con las poblaciones de Otatea glauca y las de la O. sp. nov de
Chiapas. Sin embargo el árbol construido con caracteres morfológicos identificó a O. acuminata,
O. fimbriata, O. glauca, O. sp nov de Chiapas y tres especies mas O. sp. nov de Jalisco, O. sp.
nov de Oaxaca y O. sp. nov de la Faja Volcánica Transmexicana como grupos naturales y
además con los resultados del análisis de caracteres diagnósticos.
Con frecuencia los resultados morfológicos y los moleculares producen resultados
contradictorios en la delimitación de especies (Wiens y Penkrot, 2002; Doan y Castoe, 2003;
Říčan y Kullander, 2006). Estas discrepancias se han atribuido al flujo genético (hibridización),
retención del polimorfismo ancestral (asignación incompleta de linajes) y transferencia
horizontal (Pamilo y Nei, 1988; Takahata, 1989; Maddison, 1997; Nichols, 2001). Se ha
encontrado que la retención del polimorfismo ancestral en coníferas está facilitada por la baja
tasa de sustitución (Du et al., 2009). Así mismo, se han encontrado tasas bajas de sustitución en
estudios filogenéticos recientes en bambúes (Kelchner y Clark, 1997; Hodkinson, 2000; Guo et
al., 2001, 2002; Guo y Li, 2004; Sun et al., 2005; Yang et al., 2007, 2008; Bouchenak-Khelladi
et al., 2008; Peng et al., 2008; Ruiz-Sánchez et al., 2008; Sungkaew et al., 2008). Por otra parte,
los procesos de hibridización en plantas son muy comunes y pueden derivar en procesos de
especiación. Es más fácil rechazar la hipótesis de hibridazación que confirmarla con marcadores
179
moleculares (Riesberg 1997). Así mismo, las especies híbridas probablemente se originan a
través de un evento fundador híbrido, en el cual una o más generaciones tempranas híbridas
colonizan una nueva localidad y así llegan a estar espacial y ecológicamente aisladas de las
especies parentales (Ungerer et al. 1998).
Si tres de las especies de Otatea tienen un posible origen híbrido, lo vemos reflejado en
los marcadores moleculares y en su distribución geográfica, no así en la morfología. Nuestros
resultados de la intercambiabilidad ecológica sugieren que pudo haber una conservación del
nicho o una divergencia del mismo. Un nicho conservado en especies hermanas sugiere la falta
de evolución del nicho lo que facilita la especiación produciendo distribución alopátrica en
respuesta a los cambios de las condiciones ambientales (Ricklefs y Latham, 1992; Peterson et al.,
1999; Wiens, 2004; Kozak y Wiens, 2006). Por otra parte, un nicho divergente en especies
hermanas indica adaptación a diferentes condiciones ambientales permitiendo la especiación
(Losos et al., 2003; Graham et al., 2004; Kozak y Wiens, 2006; Raxworthy et al., 2007).
Aparentemente en las especies de Otatea pueden estar ocurriendo tres procesos; 1)
retención del polimorfismo ancestral, 2) especiación híbrida y 3) reticulación (flujo genético
pasado) causantes de la incongruencia encontrada entre los marcadores moleculares y la
morfología. Sin embargo, necesitamos otro tipo de marcadores como los AFLP´s o microsatélites
para discernir entre hibridación o retención del polimorfismo ancestral. Así mismo, falta un
estudio cariológico de todas las especies de Otatea, porque hasta la fecha no se ha determinado
el número cromosómico o tipo de cromosomas de ninguna de ellas.
Por lo anterior tomamos las siguientes decisiones taxonómicas: 1)Las poblaciones
correspondientes a las subespecies de Otatea acuminata no se identificaron en clados diferentes
y no presentaron caracteres diagnósticos s. 2) la población disyunta de Colombia de O. fimbriata,
180
aparentemente es la población más ancestral de las especies de Otatea, resultado obtenido del
análisis de haplotipos en una red de parsimonia estadística y no presenta caracteres diagnósticos
que pudieran elevarla a especie nueva, por lo que se mantiene como parte de O. fimbriata. 3)
Otatea glauca y O. carrilloi son posiblemente las especies donde el proceso de retención del
polimorfismo ancestral pudo haber actuado y dos de las especies más divergentes morfológica y
molecularmente. 4) Otatea reynosoana y O. transvolcanica probablemnte son de origen híbrido
o han tenido intercambio genético con poblaciones de O. acuminata. Otatea agrupa siete
especies; seis de ellas son endémicas a México y O. fimbriata se encuentra en México,
Centroamérica y Sudamérica.
181
LITERATURA CITADA
(CAPITULO V)
182
LITERATURA CITADA
Bouchenak-Khelladi, Y., Salamin, N., Savolainen, V., Forest, F., van der Bank, M., Chase,
M.W., Hodkinson, T.R. 2008. Large multi-gene phylogenetic trees of the grasses (Poaceae):
progress towards complete tribal and generic level sampling. Mol. Phylogenet. Evol. 47, 488505.
Davidse, G., Pohl, W.P. 1992. New taxa and nomenclatural combinations of Mesoamerican
grasses (Poaceae). Novon 2: 81-110.
Doan, T.M., Castoe, T.A. 2003. Using morphological and molecular evidence to infer species
boundaries within Proctoporus bolivianus Werner (Squamata: Gymnophthalmidae).
Herpetologica 59, 432-449.
Du, F.K., Petit, R.J., Quan, L. J. 2009. More introgression with less gene flow: chloroplast vs.
mitochondrial DNA in the Picea asperata complex in China, and comparison with other
Conifers. Mol. Ecol. 18, 1396-1407.
Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz, C. 2004. Integrating
phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid
frogs. Evolution 58, 1781-1793.
183
Guo, Z.H. Li, D.Z. 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae:
Bambusoideae) inferred from the sequences of GBSSI gene and ITS spacer. Mol. Phylogenet.
Evol. 30, 1-12.
Guo, Z.H., Chen, Y.Y., Li, D.Z., Yang, J.B. 2001. Genetic variation and evolution of the alpine
bamboos (Poaceae: Bambusoideae) using DNA sequence data. J. Plant Res. 114, 315-322.
Guo, Z.H., Chen, Y.Y., Li, D.Z. 2002. Phylogenetic studies on Thamnocalamus group and its
allies (Bambusoideae: Poaceae) based on ITS sequence data. Mol. Phylogenet. Evol. 2, 20-30.
Hodkinson, T.R., Renvoize, S.A., Ni Chonghaile, G., Stapleton, C.M.A., Chase, M.W. 2000. A
comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in
Phyllostachys (Bambusoideae, Poaceae). J. Plant Res. 113, 259-269.
Judziewicz, E.J., Clark, L.G., Londoño, X., Stern, M.J. 1999. American Bamboos. Smithsonian
Institution Press. New York.
Kelchner, S.A., Clark, L.G. 1997. Molecular Evolution and Phylogenetic Utility of the
Chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol. Phylogenet. Evol.
8: 385-397.
Kozak, K.H., Wiens, J.J. 2006. Does niche conservatism promote speciation? A case study in
North American salamanders. Evolution 60, 2604-2621.
184
Losos, J.B., Leal, M., Glor, R.E., de Queiroz, K., Hertz, P.E. 2003. Niche lability in the evolution
of a Caribbean lizard community. Nature 424, 542-550.
Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 46, 523-536.
Nichols, R. 2001. Gene trees and species trees are not the same. Trends Ecol.
Evol. 16, 358-364.
Pamilo, P., Nei, M. 1988. Relationships between gene trees and species trees.
Mol. Biol. Evol. 5, 568-583.
Peng, S., Yang, H.Q., Li, D.Z. 2008. Highly heterogeneous generic delimitation within the
temperate bamboo clade (Poaceae: Bambusoideae): evidence from GBSSI and ITS sequences.
Taxon 57, 799-810.
Peterson, A.T., Soberón, J., Sánchez-Cordero, V. 1999 Conservatism of ecological niches in
evolutionary time. Science 285, 1265-1267.
Raxworthy, C.J., Ingram, C.M., Pearson, R.G. 2007. Species delimitation applications for
ecological niche modeling: a review and empirical evaluation using Phelsuma day gecko groups
from Madagascar. Syst. Biol. 56, 907-923.
185
Říčan, O., Kullander, S.O. 2006. Character- and tree-based delimitation of species in the
‘Cichlasoma’ facetum group (Teleostei, Cichlidae), with the description of a new genus. J. Zool.
Syst. Evol. Res. 44, 136-152.
Ricklefs, R.E., Latham, R.E. 1992. Intercontinental correlation of geographical ranges suggests
stasis in ecological traits of relict genera of temperate perennial herbs. Am. Nat. 139, 1305-1321.
Riesberg, L.H. 1997. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 28: 359-389
Ruiz-Sánchez, E., Sosa, V., Mejía-Saules, M.T. 2008. Phylogenetics of Otatea inferred from
morphology and chloroplast DNA sequence data and recircumscription of Guaduinae (Poaceae:
Bambusoideae). Syst. Bot. 33, 277-283.
Sites, J.W., Marshall, J.C. 2003. Delimiting species: a renaissance issue in systematic biology.
Trends Ecol. Evol. 18, 462-470.
Sites, J.W., Marshall, J.C. 2004. Operational criteria for delimiting species. Annu. Rev. Ecol.
Evol. Syst. 35, 199-227.
Soderstrom, T.R. 1988. Aulonemia fulgor (Poaceae: Bambusoideae), a new species from Mexico.
Brittonia 40: 22-31.
186
Sun, Y., Xia, N., Lin, R. 2005. Phylogenetic analysis of Bambusa (Poaceae: Bambusoideae)
based on internal transcribed spacer sequences of nuclear ribosomal DNA. Biochem Genet. 43,
603-612.
Sungkaew, S., Stapleton, C.M.A., Salamin, N., Hodkinson, T.R. 2008. Non-monophyly of the
woody bamboos (Bambuseae; Poaceae): a multi-gene region phylogenetic analysis of
Bambusoideae s.s. J Plant Res. 122, 95-108.
Takahata, N. 1989. Gene genealogy in three related populations: consistency probability between
gene and population trees. Genetics 122, 957-966.
Ungerer, M.C., Baird S.J.E., Pan, J., Rieseber, L.H. 1998. Rapid hybrid speciation in wild
sunflowers. Proc. Natl. Acad. Sci. USA. 95: 11757-11762.
Wiens, J.J. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the
origin of species. Evolution 58, 193-197.
Wiens, J.J. Penkrot, T.A., 2002. Delimiting species using DNA and morphological variation and
discordant species limits in spiny lizards (Sceloporus). Syst. Biol. 51, 69-91.
Yang, H.Q., Peng, S., Li, D.Z. 2007. Generic delimitations of Schizostachyum and its allies
(Gramineae: Bambusoideae) inferred from GBSSI and trnL-F sequence phylogenies. Taxon 56,
45-54.
187