Martinez, G. J. and Adamatzky, A. (2015) Comportamiento colectivo no trivial en sistemas complejos con mini-robots. In: ESCOM IPN seminar, Mexico City, Mexico, 8 September 2015. National Polytechnic Institute: LCCOMP Available from: http://eprints.uwe.ac.uk/26735 We recommend you cite the published version. The publisher’s URL is: http://uncomp.uwe.ac.uk/genaro/Papers/Talks.html Refereed: Yes (no note) Disclaimer UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited. UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights. UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement. PLEASE SCROLL DOWN FOR TEXT. COMPORTAMIENTO COLECTIVO NO TRIVIAL EN SISTEMAS COMPLEJOS CON MINI-ROBOTS Genaro Juárez Martínez http://uncomp.uwe.ac.uk/genaro/ Laboratorio de Ciencias de la Computación (LCCOMP) Escuela Superior de Cómputo, Instituto Politécnico Nacional, México D.F. International Center of Unconventional Computing (ICUC) University of the West of England, Bristol, United Kingdom Seminario de Investigación de ESCOM México D.F., a 8 de septiembre de 2015 COLABORACIÓN EN MÉXICO Estephania Molina Delgado Luz Noé Oliva Moreno Rosa Graciela Chávez Barrera COLABORACIÓN EN INGLATERRA Andrew Adamatzky Jeff Jones RESUMEN / INTRO Se discutirá el problema del fenómeno comportamiento colectivo no trivial, frecuentemente referido como auto-organización, en sistemas complejos analizado a través de mini-robots. Durante la conferencia se presentarán algunos prototipos desarrollados en la Escuela Superior de Cómputo del Instituto Politécnico Nacional en conjunto con la University of the West of England en el Reino Unido. Además se presentará el proyecto de investigación swarm-robotics, que actualmente se está impulsado en ESCOM. NON-TRIVIAL COLLECTIVE BEHAVIOUR videos source: youtube NON-TRIVIAL COLLECTIVE BEHAVIOUR videos source: youtube CLASSES IN CELLULAR AUTOMATA Stephen Wolfram defines his classification in simple rules (1986), known as elementary cellular automata. Also, this classification is extended to any dimension. • A CA is class I, if there is a stable state xi ∈ Σ, such that all finite configurations evolve to the homogeneous configuration. • A CA is class II, if there is a stable state xi ∈ Σ, such that any finite configuration become periodic. • A CA is class III, if there is a stable state, such that for some pair of finite configurations ci and cj with the stable state, is decidable if ci evolve to cj, such that any configuration become chaotic. video source: youtube • Class IV includes all previous CA, also called complex. [Culik II & Yu, 1988] Stephen Wolfram, Cellular Automata and Complexity, Addison-Wesley Publishing Company, 1994. Karel Culik II and Sheng Yu, Undecidability of CA Classification Schemes, Complex Systems 2, 177-190, 1988. Harold V. McIntosh, One Dimensional Cellular Automata, Luniver Press, United Kingdom, 2009. Genaro J. Martínez, A Note on Elementary Cellular Automata Classification, Journal of Cellular Automata 8(3-4) 233-259, 2013. COMPLEXITY, CHAOS, PATTERNS, AND BEYOND … Andrew Adamatzky (Ed.) Game of Life Automata, Springer, 2010. Genaro J. Martínez, Andrew Adamatzky, and Harold V. McIntosh, Localization dynamics in a binary twodimensional cellular automaton: the Diffusion Rule, Journal of Cellular Automata 5(4-5), 289-313, 2010. Andrew Wuensche, Exploring Discrete Dynamics, Luniver Press, United Kingdom, 2011. 6 H. Chafe and P. formal setting, as local structure theory at order 1,12) a framework which provides natural extensions to the simplest approximation. For the two-state rules considered Manneville here, the approximation produces an iterative map f for the concentration c of "1" sites which is the expectation value of state "1": COLLECTIVE BEHAVIOUR IN SPATIALLY EXTENDED SYSTEMS following, a rule will thus be denoted as: ct=Pr{A/=I}=I- Pr{A/=O}. Spatially extended systems with local interactions and synchronous updating are of fundamental And since of the rules totalistic, importance in trying to understand the nature the are complexity exhibited by such phenomena as developed and neural dynamics. the neighborhood are clearly definedpr{Ar in the=I}= context. S (C(l/)=S}. if the lattice andturbulence 'J/ 1 s=o The simple mean-field analysis described here is also known, in a somewhat more formal setting, as local structure theory at order 1,12) a framework which provides natural extensions to the simplest approximation. O.BFor the two-state rules considered 0.8 here, the approximation produces an iterative map f for the concentration c of "1" 0.6 sites which is the expectation value of state "1": 0.6 Mean field approximation ct=Pr{A/=I}=I- Pr{A/=O}. And since the rules are totalistic, pr{Ar =I}= 'J/ S (C(l/)=S}. 1 s=o 0.4 0.4 0.2 0.2 o.0 x O. 0 LLLL..L.L..L..L.L...L.L-'---.l-'---1..LJc.=I..J.....L..L.L..L..L..L..J 0.0 0.2 0.4 0.6 O.B 1.0 0.0 0.8 O.B 0.6 0.6 0.6 0.4 0.6 0.8 1.0 (b) (a) O.B 0.2 0.4 0.4 Hugues Chaté and Paul Manneville, Collective0.4 Behaviours in Spatially Extended Systems with Local 0.2 Interactions and Synchronous Updating,0.2 Progress of Theoretical Physics, Vol. 87, No. 1, 1992. o.0 x 0.2 0.4 0.6 O.B O. 0 0.0 LLLL..L.L..L..L.L...L.L-'---.l-'---1..LJc.=I..J.....L..L.L..L..L..L..J 0.0 0.2 1.0 0.2 0.4 O. 0 0.6 O.B (c) 0.0 0.2 0.4 0.6 0.8 1.0 Fig.1. Three types of mean-field maps: (a) X =0 is an unstable fixed point (Smln=l, map R2 3 ); (b) the map has another attractor (chaotic) than X =0 (map /]2 6 ); (c) X =0 is the only attract or (map /128). 1.0 NON-TRIVIAL COLLECTIVE BEHAVIOUR IN CELLULAR AUTOMATA Non-trivial collective behaviour in 2D cellular automata (von Neumann function) Harold V. McIntosh, IX Verano de Investigation 1999, Verano de la Investigación Científica, Departamento Aplicación de Microcomputadoras, UAP, 1999. Genaro J. Martínez, Comportamiento colectivo no trivial en sistemas dinámicos caóticos, Verano de la Investigación Científica, Departamento Aplicación de Microcomputadoras, UAP, 1998. KILOBOT PROJECT, HARVARD UNIVERSITY, USA video source: Harvard University and youtube. SWARM ROBOTICS PROJECT, ESCOM-MEXICO, UWE-UK Spatially extended systems with local interactions and synchronous updating are of fundamental importance in trying to understand the nature of the complexity exhibited by such phenomena as developed turbulence and neural dynamics. Cubelets reprogramming Low cost mini robots SWARM ROBOTICS PROJECT, ESCOM-MEXICO, UWE-UK SWARM ROBOTICS PROJECT, ESCOM-MEXICO, UWE-UK CONCLUSIONES Y DEMOSTRACIÓN Proyectos e investigación en progreso: • • • Implementación de nuevos algoritmos. Experimentación para seguimiento autómatico con slime mould. Implementación de un sistema de seguridad para ESCOM … Andrew Adamatzky, Physarum Computers, World Scientific Press, 2010. Jeff Jones, From Pattern Formation to Material Computation, Springer 2015. FIN Gracias por su atención! Computer Science Laboratory (LCCOMP) http://uncomp.uwe.ac.uk/LCCOMP/en/ International Center of Unconventional Computing (ICUC) http://uncomp.uwe.ac.uk/ Complex Systems Group IPN (CCSIPN) http://comunidad.escom.ipn.mx/sistemascomplejos/
© Copyright 2025