para DESCARGAR el documento. - Docencia en Matemática Aplicada

CAPÍTULO
Ecuaciones
de una variable
La edad de Diofanto
Un matemático griego muy importante fue Diofanto de
Alejandría (c. 250 d.C.), quien hizo contribuciones en
varias áreas de las matemáticas. Tal vez su trabajo más
importante lo realizó en lo que ahora se conoce como teoría de números. De su obra Arithmetica sólo sobreviven
seis de los libros originales; el número total es un misterio. En ella se encuentra una colección de problemas cuya
solución es, en muchos de los casos, muy ingeniosa.
Poco se sabe de él, pero algunos detalles de su vida
se conocen a través del epitafio que, como un homenaje, se
inscribió en su tumba. Una traducción libre del original es
la siguiente:
Transeúnte, ésta es la tumba de Diofanto: es él quien con
esta sorprendente distribución te dice el número de años
TEMARIO
2-1
2-2
2-3
2-4
2-4
2
que vivió. Su niñez ocupó la sexta parte de su vida; después de la doceava parte, su mejilla se cubrió con el primer bozo. Pasó aún una séptima parte de su vida antes de
tomar esposa y, cinco años después, tuvo un precioso
niño que, una vez alcanzada la mitad de la edad de su
padre, pereció de una muerte desgraciada. Su padre tuvo
que sobrevivirle, llorándole, durante cuatro años. De todo
esto se deduce su edad.
Con base en el texto del epitafio, plantee una ecuación para
determinar la edad de Diofanto y responda las siguientes
preguntas.
i.
ii.
iii.
iv.
¿A qué edad falleció Diofanto?
¿Cuántos años vivió antes de casarse?
¿Cuántos años vivió su hijo?
¿Qué edad tenía Diofanto cuando nació su hijo?
ECUACIONES LINEALES
APLICACIONES DE ECUACIONES LINEALES
ECUACIONES CUADRÁTICAS
APLICACIONES DE ECUACIONES CUADRÁTICAS
REPASO DEL CAPÍTULO
59
REPASO DEL CAPÍTULO 2
Términos, símbolos y conceptos importantes
Fórmulas
2.1 Ecuación, solución o raíz de una ecuación. Ecuaciones
equivalentes.
Los principios de suma y multiplicación para ecuaciones.
Ecuación polinomial, grado, ecuación lineal, ecuación cuadrática.
Procedimiento paso a paso para resolver una ecuación lineal.
Fórmula del interés anual:
2.2 Procedimiento paso a paso para manipular problemas planteados en palabras.
Fórmula de interés anual.
2.3 Forma estándar de una ecuación cuadrática.
Propiedad del factor cero: solución de una ecuación cuadrática por medio de factorización.
Fórmula cuadrática. Propiedad de la raíz cuadrada: completar el cuadrado.
2.4 Ingreso, costos, utilidad.
R
I P 100
R
Valor después de un año P 1 100
Fórmula cuadrática: Si ax2 bx c 0, entonces
b b2
4ac
x 2a
Utilidad ingreso – costos.
Ingreso (precio de venta por unidad) (número de unidades vendidas)
PROBLEMAS DE REPASO DEL CAPÍTULO 2
1. Establezca la veracidad o falsedad de cada una de las proposiciones siguientes. Cada enunciado falso, cámbielo por
una proposición verdadera correspondiente.
a) Si ambos lados de una ecuación se elevan al cuadrado,
sus raíces no cambian.
b
raíces iguales, éstas son iguales a 2a
(2-30) Resuelva las ecuaciones siguientes para x. Suponga que
a, b y c son constantes mayores que cero.
b) Si ambos lados de una ecuación se multiplican por una
constante, las raíces de la ecuación no cambian.
2. 3(x 4) 5(x 6) 9(3x 2) 2
c) Una ecuación no se altera si se suma a ambos lados la
misma expresión.
4. 4(2x 3) 5(2x 3) 3(2x 3)
d) Si ambos lados de una ecuación se dividen por una
constante, las raíces de la ecuación no cambian.
6. 4(x 1) 2(3x 1) (1 2x)
e) Una ecuación cuadrática es una ecuación de la forma
ax2 bx c 0 donde a, b y c son constantes arbitrarias.
f) El discriminante de la ecuación cuadrática, ax2 bx c 0, es b2
4ac
g) Una ecuación lineal siempre tiene una raíz.
h) Una ecuación cuadrática siempre tiene dos raíces distintas.
i) Es factible que una ecuación cuadrática no tenga raíces
reales.
j) Si el discriminante de una ecuación cuadrática es positivo, entonces la ecuación tiene dos raíces reales distintas.
88
*k)Si la ecuación cuadrática, ax2 bx c 0, tiene dos
CAPÍTULO 2 ECUACIONES DE UNA VARIABLE
3. 3x 2(x 1) 6x 9
5. x2 5x 6 0
7. x2 8x 6x 3
8. 3x(x 1) 2(x2 27)
9. 3x2 5x 20 16 x x2
14
10. 1 3x 20
x
x
3
1
11. 6
x
2
12. 2(x2 x) x 1
13. (x 1)2 (x 2)2 2(x 1)
12
14. 2(x 6)
x1
15. (3x 2) 5(x 2) (6x 1)(6 x) 1
16. 21x 30 45x 26
17. 32x
8 x
*18. 6x
19 x 2
*19. x 1 4
x2
26x
46
20. 4
x x 4
1
1
1
21. x3
3
6
a
b
ab
22. x
x
ab
x
x
x
23. ab ac bc
b
c
a
24. 9x 27(3x)
25. 25(x2) 125/5x
x2
8x
x
26. 7
x1
7
27. 6x2 x 1
28. 3x
1 x 3
29. (x 1)(1 2x) (2x 7)(19 x)
30. (1 2x)2 (1 x)(1 x) 3x2 2x 4
(31-36) Para cada una de las siguientes ecuaciones resuelva
para las variables que se indican.
31. (Interés simple) I Prt, para r.
32. (Suma de n términos de una progresión geométrica)
a(1 rn)
S , para a.
1r
1
1
1
33. , para R2
R1
R2
R
34. (Depreciación lineal) T a (n 1)d, para n.
*35. (Suma de una progresión aritmética con n términos)
n
S [2a (n 1)d], para a.
2
*36. (Suma de los primeros n números naturales)
n(n 1)
S , para n.
2
37. (Inversiones) Oliva Sánchez invirtió 800 dólares en una
cuenta de ahorros que paga una tasa de interés de R% anual.
Al final del año, el capital y el interés los dejó para que generarán interés el segundo año a la misma tasa. Si al final del
segundo año Oliva recibió $882, ¿cuál es el valor de R?
38. (Interés compuesto) Arturo Erdely, gerente de la compañía
de Seguros La Confianza debe realizar un pago de
$112,360 dentro de dos años. ¿A qué tasa de interés com-
puesta anualmente tiene que invertir $100,000 a fin de poder saldar la deuda?
39. (Utilidades del productor) Para la próxima Copa Mundial
de Futbol, la compañía de balones Chutagol decide producir balones conmemorativos. Enrique Lemus, encargado
del proyecto, fue informado por el departamento de mercadotecnia que si los balones se venden en $25 cada uno, entonces pueden vender todos los balones que se puedan producir. Por otro lado, él sabe que cuesta $10 producir cada
balón, por los materiales y la mano de obra, además se tiene un costo adicional mensual de $3000 al mes por operar
la planta. ¿Cuántos balones debe producir y vender para
obtener una ganancia de $6000 al mes?
40. (Utilidades del productor) La fábrica de chocolates Mi
Alegría elabora barras de chocolate. El costo de elaboración de cada barra es de $0.50. El número de barras que
puede vender a la semana depende del precio que les fije,
de forma tal que si el precio es de p dólares entonces se
pueden vender x chocolates, en donde x 5000(4 p).
Así, la utilidad por cada barra es (p 0.50) dólares y la
utilidad semanal es (p 0.50)x dólares. Determine el valor de p que producirá una utilidad semanal de $4800.
41. (Inversión de una herencia) La señorita Hortensia Rodríguez recibió una herencia de $250,000. Después de analizar diversas opciones, decide invertir parte de este monto
en una cuenta de ahorros que paga 4% anual, y el resto en
otra que paga 6% anual. Si desea recibir $13,000 de ingresos anuales, ¿cuánto debe invertir la señorita Hortensia en
cada cuenta?
*42. (Mezclas) En su tienda de dulces, Adriana vende cacahuates a un precio de 1.50 dólares por kilogramo, nueces a
$1.60 por kilogramo y pistaches a $2.2 por kg. Para las
fiestas decembrinas, ella desea ofrecer a sus clientes bolsas de 1 kg. con una mezcla de cacahuates, nueces y pis4
taches, en $0.47 cada una. Si la cantidad, en kg, de pistache debe ser igual al total de cacahuates y nueces en cada
bolsa ¿cuántos gramos de cacahuates, nueces y pistaches
debe colocar Adriana en cada bolsa? Nota: El reto de este
problema es escribir el problema verbal en términos de
una variable.
En el capítulo 8 se abordará un método para resolver problemas como éste, planteando el problema como uno con
más de una variable.
43. (Decisión de precio) Si un editor pone un precio de $16 a
un libro, se venderán 10,000 copias. Por cada dólar que
aumente al precio se dejarán de vender 300 libros. ¿Cuál
debe ser el precio al que se debe vender cada libro para generar un ingreso total por las ventas de $124,875?
PROBLEMAS DE REPASO DEL CAPÍTULO 2
89