CAPÍTULO Ecuaciones de una variable La edad de Diofanto Un matemático griego muy importante fue Diofanto de Alejandría (c. 250 d.C.), quien hizo contribuciones en varias áreas de las matemáticas. Tal vez su trabajo más importante lo realizó en lo que ahora se conoce como teoría de números. De su obra Arithmetica sólo sobreviven seis de los libros originales; el número total es un misterio. En ella se encuentra una colección de problemas cuya solución es, en muchos de los casos, muy ingeniosa. Poco se sabe de él, pero algunos detalles de su vida se conocen a través del epitafio que, como un homenaje, se inscribió en su tumba. Una traducción libre del original es la siguiente: Transeúnte, ésta es la tumba de Diofanto: es él quien con esta sorprendente distribución te dice el número de años TEMARIO 2-1 2-2 2-3 2-4 2-4 2 que vivió. Su niñez ocupó la sexta parte de su vida; después de la doceava parte, su mejilla se cubrió con el primer bozo. Pasó aún una séptima parte de su vida antes de tomar esposa y, cinco años después, tuvo un precioso niño que, una vez alcanzada la mitad de la edad de su padre, pereció de una muerte desgraciada. Su padre tuvo que sobrevivirle, llorándole, durante cuatro años. De todo esto se deduce su edad. Con base en el texto del epitafio, plantee una ecuación para determinar la edad de Diofanto y responda las siguientes preguntas. i. ii. iii. iv. ¿A qué edad falleció Diofanto? ¿Cuántos años vivió antes de casarse? ¿Cuántos años vivió su hijo? ¿Qué edad tenía Diofanto cuando nació su hijo? ECUACIONES LINEALES APLICACIONES DE ECUACIONES LINEALES ECUACIONES CUADRÁTICAS APLICACIONES DE ECUACIONES CUADRÁTICAS REPASO DEL CAPÍTULO 59 REPASO DEL CAPÍTULO 2 Términos, símbolos y conceptos importantes Fórmulas 2.1 Ecuación, solución o raíz de una ecuación. Ecuaciones equivalentes. Los principios de suma y multiplicación para ecuaciones. Ecuación polinomial, grado, ecuación lineal, ecuación cuadrática. Procedimiento paso a paso para resolver una ecuación lineal. Fórmula del interés anual: 2.2 Procedimiento paso a paso para manipular problemas planteados en palabras. Fórmula de interés anual. 2.3 Forma estándar de una ecuación cuadrática. Propiedad del factor cero: solución de una ecuación cuadrática por medio de factorización. Fórmula cuadrática. Propiedad de la raíz cuadrada: completar el cuadrado. 2.4 Ingreso, costos, utilidad. R I P 100 R Valor después de un año P 1 100 Fórmula cuadrática: Si ax2 bx c 0, entonces b b2 4ac x 2a Utilidad ingreso – costos. Ingreso (precio de venta por unidad) (número de unidades vendidas) PROBLEMAS DE REPASO DEL CAPÍTULO 2 1. Establezca la veracidad o falsedad de cada una de las proposiciones siguientes. Cada enunciado falso, cámbielo por una proposición verdadera correspondiente. a) Si ambos lados de una ecuación se elevan al cuadrado, sus raíces no cambian. b raíces iguales, éstas son iguales a 2a (2-30) Resuelva las ecuaciones siguientes para x. Suponga que a, b y c son constantes mayores que cero. b) Si ambos lados de una ecuación se multiplican por una constante, las raíces de la ecuación no cambian. 2. 3(x 4) 5(x 6) 9(3x 2) 2 c) Una ecuación no se altera si se suma a ambos lados la misma expresión. 4. 4(2x 3) 5(2x 3) 3(2x 3) d) Si ambos lados de una ecuación se dividen por una constante, las raíces de la ecuación no cambian. 6. 4(x 1) 2(3x 1) (1 2x) e) Una ecuación cuadrática es una ecuación de la forma ax2 bx c 0 donde a, b y c son constantes arbitrarias. f) El discriminante de la ecuación cuadrática, ax2 bx c 0, es b2 4ac g) Una ecuación lineal siempre tiene una raíz. h) Una ecuación cuadrática siempre tiene dos raíces distintas. i) Es factible que una ecuación cuadrática no tenga raíces reales. j) Si el discriminante de una ecuación cuadrática es positivo, entonces la ecuación tiene dos raíces reales distintas. 88 *k)Si la ecuación cuadrática, ax2 bx c 0, tiene dos CAPÍTULO 2 ECUACIONES DE UNA VARIABLE 3. 3x 2(x 1) 6x 9 5. x2 5x 6 0 7. x2 8x 6x 3 8. 3x(x 1) 2(x2 27) 9. 3x2 5x 20 16 x x2 14 10. 1 3x 20 x x 3 1 11. 6 x 2 12. 2(x2 x) x 1 13. (x 1)2 (x 2)2 2(x 1) 12 14. 2(x 6) x1 15. (3x 2) 5(x 2) (6x 1)(6 x) 1 16. 21x 30 45x 26 17. 32x 8 x *18. 6x 19 x 2 *19. x 1 4 x2 26x 46 20. 4 x x 4 1 1 1 21. x3 3 6 a b ab 22. x x ab x x x 23. ab ac bc b c a 24. 9x 27(3x) 25. 25(x2) 125/5x x2 8x x 26. 7 x1 7 27. 6x2 x 1 28. 3x 1 x 3 29. (x 1)(1 2x) (2x 7)(19 x) 30. (1 2x)2 (1 x)(1 x) 3x2 2x 4 (31-36) Para cada una de las siguientes ecuaciones resuelva para las variables que se indican. 31. (Interés simple) I Prt, para r. 32. (Suma de n términos de una progresión geométrica) a(1 rn) S , para a. 1r 1 1 1 33. , para R2 R1 R2 R 34. (Depreciación lineal) T a (n 1)d, para n. *35. (Suma de una progresión aritmética con n términos) n S [2a (n 1)d], para a. 2 *36. (Suma de los primeros n números naturales) n(n 1) S , para n. 2 37. (Inversiones) Oliva Sánchez invirtió 800 dólares en una cuenta de ahorros que paga una tasa de interés de R% anual. Al final del año, el capital y el interés los dejó para que generarán interés el segundo año a la misma tasa. Si al final del segundo año Oliva recibió $882, ¿cuál es el valor de R? 38. (Interés compuesto) Arturo Erdely, gerente de la compañía de Seguros La Confianza debe realizar un pago de $112,360 dentro de dos años. ¿A qué tasa de interés com- puesta anualmente tiene que invertir $100,000 a fin de poder saldar la deuda? 39. (Utilidades del productor) Para la próxima Copa Mundial de Futbol, la compañía de balones Chutagol decide producir balones conmemorativos. Enrique Lemus, encargado del proyecto, fue informado por el departamento de mercadotecnia que si los balones se venden en $25 cada uno, entonces pueden vender todos los balones que se puedan producir. Por otro lado, él sabe que cuesta $10 producir cada balón, por los materiales y la mano de obra, además se tiene un costo adicional mensual de $3000 al mes por operar la planta. ¿Cuántos balones debe producir y vender para obtener una ganancia de $6000 al mes? 40. (Utilidades del productor) La fábrica de chocolates Mi Alegría elabora barras de chocolate. El costo de elaboración de cada barra es de $0.50. El número de barras que puede vender a la semana depende del precio que les fije, de forma tal que si el precio es de p dólares entonces se pueden vender x chocolates, en donde x 5000(4 p). Así, la utilidad por cada barra es (p 0.50) dólares y la utilidad semanal es (p 0.50)x dólares. Determine el valor de p que producirá una utilidad semanal de $4800. 41. (Inversión de una herencia) La señorita Hortensia Rodríguez recibió una herencia de $250,000. Después de analizar diversas opciones, decide invertir parte de este monto en una cuenta de ahorros que paga 4% anual, y el resto en otra que paga 6% anual. Si desea recibir $13,000 de ingresos anuales, ¿cuánto debe invertir la señorita Hortensia en cada cuenta? *42. (Mezclas) En su tienda de dulces, Adriana vende cacahuates a un precio de 1.50 dólares por kilogramo, nueces a $1.60 por kilogramo y pistaches a $2.2 por kg. Para las fiestas decembrinas, ella desea ofrecer a sus clientes bolsas de 1 kg. con una mezcla de cacahuates, nueces y pis4 taches, en $0.47 cada una. Si la cantidad, en kg, de pistache debe ser igual al total de cacahuates y nueces en cada bolsa ¿cuántos gramos de cacahuates, nueces y pistaches debe colocar Adriana en cada bolsa? Nota: El reto de este problema es escribir el problema verbal en términos de una variable. En el capítulo 8 se abordará un método para resolver problemas como éste, planteando el problema como uno con más de una variable. 43. (Decisión de precio) Si un editor pone un precio de $16 a un libro, se venderán 10,000 copias. Por cada dólar que aumente al precio se dejarán de vender 300 libros. ¿Cuál debe ser el precio al que se debe vender cada libro para generar un ingreso total por las ventas de $124,875? PROBLEMAS DE REPASO DEL CAPÍTULO 2 89
© Copyright 2024