lix evento prenacional deportivo de los institutos tecnológicos

Report for the SouthAmerica CryoNet Workshop WMO meeting 27-29 October 2014
Argentine Naval Hydrographic Service
Meteorological Department
Dr. Sandra Barreira
Research Director
The Glaciological Division of the Meteorological Department is focused on studies of Sea Ice in
the Antarctic Seas and the Arctic Ocean.
We work on five areas:
Research (Dr. Sandra Barreira)
Data quality control and storage (Lic. Elisa Nuré)
SAC-D satellite sea ice data verification (Dr. Héctor Salgado)
Operative tasks (Mrs. Beatriz Lorenzo)
Education (Mr. Norberto Cattaneo)
The research group works on three areas: sea ice and climate, climatological forecast and
numerical modelling. We also participate in of the Antarctic Chapter- State of the ClimateBulletin of the American Meteorological Society every year since 2006.
1.1.1. Sea Ice fields
We use monthly mean Arctic and Antarctic Sea ice concentration data derived
from satellite passive microwave measurements. These data are obtained from the
Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor
Microwave/Imager (SSM/I), derived from Nimbus-7 SMMR and DMSP-F8, -F11 and
-F13 SSM/I daily brightness temperatures. These data were processed by the NASA
Goddard Space Flight Center (GSFC) using the NASA Team algorithm and provided
by the National Snow and Data Center (NSIDC). Values are in a polar stereographic
grid with a cell size of 25 x 25 km and ranged from 0% (for no sea ice in the grid
area) to 100% (for a completely ice-covered grid area). Data are available since
November 1978.
These monthly means of sea ice concentration (percentage of ocean covered by
ice for a given region) over the Arctic Ocean and Antarctic Seas are analysed to
obtain two different kinds of products: sea ice anomalies fields and sea ice series
Here sea ice fields anomalies fields patterns (T-Mode) will be explained and the
indexes (S-Mode) will be explained at section 1.1.2.
In order to isolate dominant Sea Ice Concentration Anomalies (SICA) patterns, a Tmode (month-by-month) correlation matrix of spatial fields is subjected to
Principal Component Analysis. Monthly anomalies are computed prior to the
Principal Component Analysis by removing the long term 1981-2010 mean and
thus removing the annual cycle.
The statistical variables are the spatial SICA fields, the domain is time and the
statistical observations are the different grid points included in the area. The
resulted Principal Components are Varimax rotated. The results are Principal
Component Scores (PCS) that describe the leading types of the SICA spatial
variability and the associated time series called Principal Component Loading
(PCL), that represent the correlation between the PCS and each field of real
monthly mean anomalies. Positive (negative) values of PCL are connected with the
positive (negative) phase of the associated PCS. Due to the fact that each PCL time
series corresponded to the amplitude that the associated PCS had for every
monthly SICA, composites of SICA clustered for each PCS, as positive (negative)
phase when loadings values were 0.4 (≤ -0.4), are used instead of the PCS to
facilitate the physical interpretation.
The analysis of the interaction between SICA patterns and atmospheric circulation
characteristics is performed through the composites for the months classified
under each SICA pattern of the atmospheric variable anomalies.
So that, by mean of Principal Component Analysis it was possible to obtain 8 SICA
patterns fields for the Antarctic Seas and 6 for the Arctic Ocean. Figure 1 shows the
first summer-autumn pattern for the Antarctic Seas in positive and negative
phases. And, figure 2 shows the first winter-spring pattern. These patterns are
actually present at the sea ice in Antarctica as it can be seen at the figures (right
side). Figure 3 shows the pattern that was present this last winter.
Once we can stablish which kind of pattern will dominate the characteristic of sea
ice for a season, it is possible to forecast how could be the atmospheric behaviour.
Each of SICA patterns has a unique relationship with temperature, pressure, and
precipitation fields. These atmospheric fields have been used every month for the
last eight years at our National Meteorological Service for its monthly and seasonal
forecast. As an example, figure 4 shows the atmospheric fields for the first winterspring pattern in positive phase for the Southern Hemisphere.
On the other hand, we also forecast monthly sea ice fields three months ahead. An
example for September, October and November can be seen in figure 6.
1.1.2. Sea Ice Indexes (time series)
By mean of Principal Component Analysis applied to sea ice concentration series in
Antarctica and the Arctic Ocean (S-Mode), it was possible to obtain six sea ice
indexes that represent the temporal behaviour of the areas with the greatest
variability in Antarctica and five indexes for the Arctic Ocean. As an example, it is
shown in Figure 6 the distribution of these areas in red and the indexes for them.
Example of the second temporal pattern sea ice Index for the region and the
correlation with Surface temperature and Sea level Pressure is shown in Figure 7.
These indexes work the same way as other atmospheric indexes like SAM or AAO
indexes. When one index is positive that implies that sea ice in the area of validity
has been over the average value for that month. These indexes could be available
to the community.
These indexes can be correlated with atmospheric variables to be use as forecast
too. Figure 8 shows the correlation between the second sea ice index and the
surface pressure from three months before the sea ice event happens to 3 months
after the event. As these are correlation fields they have to be interpreted as
positive areas meaning direct correlation and negative areas, opposite correlation.
As well as with other indexes, these maps can not be compared with real maps as
the ones of T-Mode (Figure 4 can be compared directly with the real fields of
pressure, temperature and precipitation). These are interpreted as: if sea surface
pressure increase in a region with positive correlation with sea ice then, sea ice
anomaly in that region is/will/was positive in the area of validity of the sea ice
Figure 1. First sea ice field pattern for summer-autumn period on the left side (top figure is
positive phase, bottom figure the negative phase) and real examples from NSIDC data archives.
Figure 2. First sea ice field pattern for winter-spring period on the left side (top figure is positive
phase, bottom figure the negative phase) and real examples from NSIDC data archives.
Figure 3. Second positive winter-spring pattern (right). This pattern was the one of this last
winter as can be seen from the figure above left.
Figure 4. Sea level Pressure (top left), surface air temperature (top right) and,
precipitation (bottom centre) anomalies fields associated to the first winter-spring
positive pattern of sea ice.
Figure 5. Sea Ice field forecast for September (top left), October (top right) and
November (bottom centre) 2014.
Figure 6. Sea ice indexes for the Antarctic Seas and the area where they are valid.
Figure 7. Second sea Ice Index.
Figure 8. Area where the second sea ice index is representative.
Figure 9. Second Sea Ice Index correlation with Surface Pressure. From Lag +3 above left, to
Lead -3 bottom centre. Blue areas represent negative correlations. So that, the sea ice
will/is/was positive at the area of figure 8 if the pressure at the blue areas has been/is/will be
below the average value.
1.1.3. Several neuronal networks applied to sea ice and atmospheric fields have been
developed for sea ice forecast and to complete sea ice data back to 1948.
These are under check at this moment but they have been used for forecast with a
good success in its performance. The atmospheric neuronal networks are based on
the T-Mode analysis and the sea ice networks produce their own classification that
are similar to the T-Mode results.
Figure 10. Second Sea Ice Index correlation with Surface Air Temperature. From Lag +3
above left, to Lead -3 bottom centre. Blue areas represent negative correlations. So that,
the sea ice will/is/was positive at the area of figure 8 if the surface air temperature at the
blue areas has been/is/will be below the average value.
Daily data from ships and Antarctic stations that come coded according IISS (Coast
Stations) and IILL (sailing ships) rules are storage at the Meteorological Department (MD)
and send to the International Centres of Sea Ice Information.
These data are being quality controlling on line and the code is generating automatically by
the SIGLAC software developed at the MD. Figure 11 shows a screen example of the
Glaciological Information System that is on board ship and at Antarctic stations.
Figure 11. Example of SIGLAC system for sea ice record (top left). This figure shows an example
of the screens that appears when sea ice messages option is selected from sailing ships (top
right). Authorized edition functions (bottom left) with the complete observation by positioning
the cursor (bottom right). SIGLAC offers help on line at every step of the process.
CONAE (Argentine National Commission of Space Activities-Comisión Nacional de
Actividades Espaciales) and NASA’s Goddard Space Flight Center and Jet Propulsion
Laboratory have jointly developed the SAC-D/Aquarius mission in the framework of a
space cooperation program. The scientific objective was to conduct observations of the
Earth in order to obtain new information on climate by measuring sea surface salinity and
bright temperature and resolve missing physical processes that link the water cycle, the
climate, and the ocean. SAC-D also identifies hot spots on the ground surface to allow the
mapping of fire risk, and perform measurements of soil humidity to prevent floods (early
warning). Example in Figure 11.
Mission Profile
Weight 1.600 kg
Orbit Sun synchronous 657 km
Ascending Node 06:00 PM (local time)
Launcher Delta II
Launched June 10, 2011.
Figure 11. Example of sea ice
provided by SAC-D for August 2014
from CONAE link :
We are verifying these data at the Meteorological Department against NSIDC-NASA
algorithm data. Figure 12 shows an example for a day and Figure 13 an example for a
Figure 12. Sea ice data coming from NSIDC-NASA Team algorithm (left) SAC-D data (right).
Comparison for a day.
Figura 13. Sea ice data coming from SAC-D for a month (left). Standard Deviation (right)
Using the Sea Ice Concentration products, generated by the CONAE, diverse applications
are being experienced at the Meteorology Department, in order to define the covered
area by marine ice, edges and mapping for specific dates and geographical area. Figure 14
shows the two areas where sea ice concentration derived from SAC-D can be obtained in
detail. Examples in Figures 15 and 16.
Figure 14. Areas A and B are the ones where detailed information is produced.
Figura 15.Example of sea ice concentration for Zone A. Latitude 75°S to 60°S. Longitud 75°W to
Figure 16. Example of sea ice concentration for Zone A. Latitude 85°S to 50°S. Longitud 90°W to
1.4.1. Daily Sea ice edge report in Spanish (text form and picture).
An Example of this kind of product is shown in Figure 17.
Figure 17. Example of sea ice edge available at the link:
Text form of the sea ice available at the link mentioned above. Example only in
Del 23 de septiembre al 03 de octubre de 2014
ZONA 1. Pasaje Drake.
Libre de hielo marino.
1.1 Atlántico Sur - Mar de Scotia.
B 17A 57-48 S 046-08W 19x6 MN
Actualización del 22 de septiembre de 2014
La anterior información se basa en imágenes de satélite de diferentes resoluciones y fechas, así
como en el análisis de extranjeros. Sintetizan las condiciones generales de hielo marino y
témpanos superiores a 10 MN para el período. Las condiciones descriptas pueden variar en
oportunidad de las observaciones visuales in situ y como función de clima imperante.
ZONA 2. Islas Orcadas del Sur y adyacencias.
Orcadas: El borde principal de hielo se encuentra a 200 MN al norte de las islas con 7-8/10
hielo del primer año con témpanos, tempanitos y gruñones a la deriva. Los campos de hielo
marino en esta zona están sujetos a variaciones de extensión, concentración y presión de
campos de hielo en función de los vientos predominantes.
Bahía Uruguay: 8/10 hielo joven con témpanos, tempanitos y gruñones. Bahía Scotia: 10/10
hielo del primer año con témpanos, tempanitos y gruñones.
ZONA 3. Mar de la Flota e islas Shetland del Sur.
Mar de la Flota: 6-8/10 hielo del primer año y hielo joven con témpanos, tempanitos y
gruñones a la deriva al norte de isla Elefante con orientación hacia isla 25 de Mayo. Islas
Shetland del Sur: Caleta Potter 8/10 hielo joven y algo de hielo nuevo con témpanos,
tempanitos y gruñones.
ZONA 4. Canales hasta Isla Belgrano.
Al Oeste de la Península 7-9/10 hielo del primer año y joven con hielo viejo y témpanos,
tempanitos y gruñones a la deriva. Hacia el sur de isla Belgrano 9-10/10 hielo del primer año y
joven con hielo viejo y témpanos, tempanitos y gruñones a la deriva.
ZONA 5. Bellingshausen y Bahía Margarita.
En el mar de Bellingshausen el campo de hielo está en 6000S/06248W siguiendo en
6100S/06600W 6154S/07018W 6136S/07330W 6300S/08030W 6318S/08336W hasta
6518S/09000W, con hielo del primer año, joven, nuevo y viejo con témpanos, tempanitos y
gruñones a la deriva.
En Bahía Margarita: 8/10 hielo fijo del primer año con témpanos, tempanitos y gruñones2 a la
ZONA 6. Estrecho Antarctic y Golfo Erebus y Terror.
Estrecho Antarctic: 8/10 hielo del priemr año y viejo con témpanos, tempanitos y gruñones a la
deriva. Bahía Esperanza: 8/10 hielo del primer año, joven y nuevo con témpanos, tempanitos y
gruñones a la deriva. Golfo Erebus y Terror: 9-10/10 de hielo viejo y del primer año con
témpanos, tempanitos y gruñones a la deriva. Los campos de hielo marino en esta zona están
sujetos a variaciones de extensión, concentración y presión de campos de hielo en función de
los vientos que predominen.
ZONA 7. Weddell general.
El pack de hielo se encuentra en 6054S/06000W siguiendo 6054S/05700W 5948S/05524W
6012S/05342W 5812S/04218W 5830S/04012W 5518S/02836W 5642S/02000W
5618S/01800W hasta 5448S/00000W, predominando 9-10/10 hielo viejo y del primer año con
témpanos, tempanitos y gruñones a la deriva.
ZONA 8. Weddell NW.
(Desde Isla Cerro Nevado hasta Península de Jason)
Hacia el Este: 10/10 hielo viejo con témpanos, tempanitos y gruñones a la deriva. Hacia el
Oeste 10/10 hielo viejo con témpanos, tempanitos y gruñones a la deriva. Península Jason:
10/10 hielo fijo del primer año y viejo con témpanos, tempanitos y gruñones a la deriva.
ZONA 9. Weddell Sur. (Base Halley hasta Isla Berkner)
Base Halley hielo del primer año con témpanos y tempanitos a la deriva. Desde glaciar Buenos
Aires hasta base Belgrano II 10/10 fijo hielo viejo en el sur mar de Weddell. Al norte de la
barrera de Filchner y al este de la lengua de témpanos, el campo de hielo marino es de hielo
fijo con 10/10 de hielo viejo. Al norte de la barrera de Filchner y al este de la lengua de
témpanos, el campo de hielo marino es de hielo fijo con 10/10 de hielo viejo. Al norte de la
barrera de Filchner y al este de la lengua de témpanos, el campo de hielo marino es de hielo
fijo con 10/10 de hielo viejo.
Posición del Borde de Hielo
Borde de hielo marino actualizado al 23 de septiembre de 2014 entre 131W - 00
6248S/13100W 6300S/12936W 6306S/12906W 6318S/12842W 6324S/12824W
6318S/12724W 6318S/12630W 6318S/12542W 6318S/12436W 6318S/12318W
6324S/12212W 6324S/12106W 6318S/11924W 6312S/11748W 6312S/11654W
6306S/11512W 6324S/11342W 6354S/11230W 6418S/11130W 6436S/11030W
6442S/10954W 6448S/10848W 6454S/10806W 6454S/10648W 6500S/10524W
6454S/10418W 6448S/10336W 6448S/10306W 6442S/10218W 6448S/10106W
6454S/10006W 6454S/09918W 6454S/09842W 6500S/09806W 6500S/09648W
6442S/09512W 6424S/09348W 6354S/09236W 6354S/09154W 6406S/09112W
6418S/09000W 6424S/08930W 6424S/08836W 6424S/08800W 6424S/08724W
6424S/08630W 6424S/08536W 6418S/08454W 6412S/08430W 6412S/08354W
6406S/08306W 6406S/08236W 6400S/08142W 6400S/08054W 6354S/08030W
6348S/08018W 6342S/08006W 6336S/07954W 6330S/07930W 6324S/07900W
6318S/07824W 6318S/07806W 6324S/07754W 6330S/07748W 6336S/07736W
6330S/07724W 6324S/07712W 6318S/07700W 6312S/07636W 6306S/07606W
6312S/07554W 6318S/07548W 6330S/07542W 6342S/07536W 6348S/07524W
6354S/07442W 6348S/07354W 6348S/07324W 6342S/07242W 6342S/07218W
6330S/07130W 6318S/07106W 6324S/07042W 6330S/07018W 6330S/07006W
6330S/06948W 6324S/06924W 6312S/06906W 6312S/06848W 6312S/06824W
6300S/06818W 6248S/06812W 6242S/06818W 6230S/06812W 6218S/06800W
6212S/06742W 6200S/06712W 6148S/06624W 6142S/06606W 6136S/06542W
6142S/06524W 6154S/06448W 6212S/06424W 6224S/06424W 6236S/06418W
6242S/06412W 6242S/06400W 6236S/06348W 6224S/06330W 6218S/06300W
6206S/06248W 6154S/06242W 6148S/06236W 6142S/06224W 6142S/06212W
6130S/06206W 6118S/06200W 6112S/06154W 6106S/06154W 6054S/06206W
6048S/06212W 6036S/06224W 6024S/06230W 6018S/06224W 6006S/06212W
6006S/06200W 6000S/06100W 6006S/06018W 6018S/06018W 6030S/06018W
6036S/06024W 6042S/06024W 6048S/06000W 6054S/05942W 6054S/05924W
6048S/05824W 6048S/05754W 6042S/05724W 6042S/05718W 6030S/05642W
6024S/05618W 6012S/05606W 6006S/05542W 5948S/05536W 5936S/05536W
5930S/05530W 5918S/05518W 5918S/05448W 5930S/05418W 5936S/05400W
5942S/05330W 5942S/05312W 5936S/05212W 5924S/05136W 5918S/05112W
5924S/05030W 5924S/04954W 5924S/04912W 5924S/04854W 5918S/04824W
5900S/04800W 5848S/04748W 5830S/04742W 5818S/04742W 5806S/04742W
5754S/04736W 5742S/04736W 5724S/04718W 5712S/04648W 5700S/04536W
5654S/04512W 5700S/04348W 5706S/04236W 5700S/03912W 5648S/03730W
5642S/03600W 5630S/03512W 5624S/03418W 5606S/03348W 5548S/03324W
5524S/03306W 5506S/03254W 5448S/03242W 5430S/03218W 5418S/03148W
5412S/03112W 5406S/03024W 5406S/02954W 5412S/02918W 5418S/02854W
5430S/02824W 5448S/02718W 5500S/02624W 5518S/02536W 5530S/02506W
5536S/02448W 5554S/02348W 5554S/02254W 5554S/02218W 5548S/02030W
5542S/01924W 5542S/01830W 5542S/01636W 5536S/01454W 5530S/01406W
5524S/01300W 5518S/01054W 5454S/00912W 5442S/00700W 5430S/00542W
5424S/00442W 5424S/00000W
1.4.2. Elaboration of Ice Egg Code according to WMO system for sea ice symbology
Daily data from land stations in Antarctica (Figure 18 and 19) and ships in the area
(example below in Spanish)
Figure 18. Map showing the position of the Argentine Antarctic Stations. (Source: IGN). Some of the
stations are in operation only in Summer-Autumn months and others are permanent locations.
Detailed of the permanent stations in figures 19 and 20.
Observaciones de estaciones en la Antártida (Example od Sea ice observations in Spanish)
18 de SEPTIEMBRE de 2014
1.4.3. Iceberg tracking
Iceberg tracking in areas of navigation
1.4.4. Support to Antarctic campaigns navigation
During spring-summer-autumn period, there are meteorologists on board the
ships and there are people sending information to them from the
Meteorological Department to help safety navigation.
There are two courses offered to the community at the School of Sea Sciences in
Buenos Aires in collaboration with the DIRECTION OF ANTARCTIC AFFAIRS, NATIONAL
BUREAU OF ANTARCTIC, the Foreign Ministry, the STEERING ANTARCTICA, the Naval
Hydrographic Service, and various destinations of the Argentine Navy. They are
taught in Spanish but with simultaneous translation to English if it is required:
Sea ice and Iceberg Observer
Antarctic Navigation
Argentina has several weather stations in Antarctica and others in mountains regions
where the SYNOP variables are measurement. The frequency of the data measurement
varies but most of them are hourly. Our National Meteorological Service (SMN) operates
these stations but Navy operates some of them at Antarctica. All these stations are at
GTS system. Argentine is a regional centre of data storage.
Snow is measured at all sites and sea ice in Antarctica. All are long-term sites.
List of stations in mountain regions (or close to the mountain) and Antarctic Stations that
are at GTS system. Detailed location of the station in Figures 19-24.
77°52′S 34°30′O-77.867, Base Belgrano II 89034
Altitude m
Base Esperanza
63°24′S 57°00′O-63.400, 57.000
Base Jubany
62°14′S 58°40′O-62.233, 58.667
Base Marambio
64°14′S 56°40′O-64.233, 56.667
Base Orcadas
60°45′S 44°10′O-60.750, 44.167
Base San Martín 89066
68°08′S 67°10′O-68.133, 67.167
28°36′S 65°50′O-28.600, 65.833
28°04′S 67°30′O-28.067, 67.500
Esquel Aero
42°56′S 71°10′O-42.933, 71.167
Jujuy Aero
24°23′S 65°10′O-24.383, 65.167
Jujuy U N
24°10′S 65°10′O-24.167, 65.167
La Quiaca Obs.
22°06′S 65°40′O-22.100, 65.667
Chamical Aero
30°22′S 66°20′O-30.367, 66.333
31°20′S 66°40′O-31.333, 66.667
Chilecito Aero
29°14′S 67°30′O-29.233, 67.500
La Rioja Aero
29°23′S 66°50′O-29.383, 66.833
35°30′S 69°40′O-35.500, 69.667
San Carlos
33°46′S 69°00′O-33.767, 69.000
San Martín
33°05′S 68°30′O-33.083, 68.500
San Rafael Aero
87509 34°35′S 68°20′O-34.583, -
Catamarca Catamarca Aero
La Rioja
Mendoza Malargüe Aero
32°36′S 69°20′O-32.600, 69.333
Chapelco Aero
40°05′S 71°10′O-40.083, 71.167
Río Negro Bariloche Aero
41°09′S 71°10′O-41.150, 71.167
El Bolsón Aero
41°58′S 71°30′O-41.967, 71.500
Salta Aero
24°51′S 65°30′O-24.850, 65.500
San Juan
30°14′S 68°50′O-30.233, 68.833
San Juan Aero
31°34′S 68°30′O-31.567, 68.500
El Calafate Aero 87904
50°16′S 72°00′O-50.267, 72.000
Perito Moreno
46°31′S 71°00′O-46.517, 71.000
Figure 19. Location of the Argentine Permanent Stations in Antarctica (north part of
the Peninsula) that are at GTS system.
Figure 20. Location of Belgrano II Base at Filchner Ice Shelf.
Figure 21. Location of the stations at mountain region at the northwest of Argentina.
The red ones are over 1000 m and the green one is over 3000 m.
Several Argentine Navy vessels go to the Northern part of the Antarctic Peninsula
every year from November to April every year (Antarctic Campaigns). Sea ice and
meteorological observations are registered on board. The ones included at the GTS are
ARA Canal de Beagle (support and logistics), ARA Puerto Deseado (oceanographic
survey ship) and, ARA Castillo (support, patrolling, rescue and, logistics).
The ARA Almirante Irizar (icebreaker) will be again in operation during 2014-15
Antarctic Campaign. This one will be able to go again to Belgrano II and San Martin
Antarctic Bases.
Figure 22. Location of the stations at mountain region at the central-west of Argentina.
The red ones are over 1000 m.
Figure 23. Location of the stations at mountain region at North Patagonia.
Figure 24. Location of the stations at mountain region at South Patagonia.
It would be helpful if you could also address the following questions:
1. How could CryoNet help meet your national, regional or global interests?
There are many areas where there are not stations from the SMN mostly at mountain
Antarctic stations are located at coastal areas, Antarctic Peninsula needs more
monitoring of its glaciers that are in retreat.
I think it could be important if those areas could be covered with automatic stations.
Sea ice in Antarctica seems to be growing in extent, but it is important to monitor if
this is a long way effect or if it is only a natural climate effect or something related
with global warning. Although sea ice data coming from satellite imagery are useful for
research and navigation, the Antarctic bases are mostly located in bays where the
resolution of satellite imagery is not enough. Therefore, the observations of sea ice
from the bases are something important for the safe navigation and operation at those
2. What could you or your organization contribute to the implementation of
If there are automatic stations planned to be installed in Antarctica, my Institution
could collaborate together with the Argentine Antarctic Institution and the National
Meteorological Service with the installation, data collection, and maintenance.
Sea Ice data are already sent to the Sea Ice Data Centres but not in real time.
3. What do you see as the benefits of CryoNet: (e.g. for operational and research
network operators, scientific and decision/policy making community, environmental
monitoring and modelling, scientists, satellite data providers, etc.)?
Although the cryosphere does not change at the same time scale as the atmosphere,
this CryoNet, if it could work the same way as the global meteorological network, will
be a great improve checking daily data, for monitoring, research, numerical modeling
and, for safety navigation in polar regions4. What do you see as existing gaps in cryospheric observations (e.g. thematic,
spatial, temporal, availability, exchange, data policy, etc.) and how might CryoNet
address these?
Mountain regions and glacier regions are not well monitoring in my country.
There are automatic stations managed by other institutions that are not at a net.
Data from different sources should be quality controlling.
5. Please prioritize CryoNet activities according your personal view (indicate
HIGH/MEDIUM/LOW for each):
I suppose you are asking about what is expected from CryoNet activities.
What I think it has to be the first, second or next tasks.
From my point of view, all activities seem to be important.
If not, my apologies.
Establishment of CryoNet network: HIGH
Standards, guidelines and training for observations: HIGH
Inter-comparison experiments (e.g. sensors, methods): HIGH
Cooperation with existing networks: HIGH
Data policy on archiving, accessibility and exchange: HIGH
Support national needs: HIGH
6. Please, share any other thoughts for participants to consider at the meeting.
I am expecting that this CryoNet could be used to improve the understanding of what
is going on with the Cryosphere and as a way of collaboration between the members
of different countries.
Data have to be checked and achieved somewhere where the community could use
them for research.
The sites location and the variables measured should be representative of the
components of the cryosphere.
The technical personnel should be well trained for operating stations and sites.
If there are sites that are not at national meteorological networks and do not send the
data via GTS, they should have a station logbook for the observations where they
could record everything about the site.
Report for the SouthAmerica CryoNet Workshop
WMO meeting 27-29 October 2014
Instituto Antártico Argentino – Dirección Nacional del Antártico
Departamento de Glaciología
Ing. Sebastián Marinsek
Jefe del Departamento de Glaciología
Breve descripción de programas y sitios de mediciones
Líneas de Investigación:
Balance de masa glaciar
Glaciología dinámica
Glaciología química (Paleoclimas con testigos de hielo)
Monitoreo de glaciares mediante sensores remotos
Imágenes satelitales – Procesamiento y desarrollo de aplicaciones
Balance de masa del glaciar Bahía del Diablo
Se desarrollan tareas todos los años para determinar el balance de masa neto anual del
glaciar. Es el único glaciar de Antártida que aporta datos detallados al Servicio de
Monitoreo Mundial de Glaciares (World Glacier Monitoring Service-WGMS),
auspiciado por la UNESCO, que recopila los datos de balance de masa en su “Boletín
de Balance de Masa de Glaciares” de una amplia diversidad de glaciares ubicados en
distintos puntos de la Tierra, lo que permite evaluar el impacto del cambio climático en
todo el planeta.
Se realizan estudios de la dinámica del glaciar mediante la determinación de las
velocidades de superficie del mismo y la determinación de los espesores del glaciar
obtenidos utilizando un radar de hielo. Los datos se enmarcan en un modelo teórico que
describe las deformaciones y el flujo del mismo.
Tanto el modelo, como los datos obtenidos mediante el trabajo de campo se
complementan con imágenes satelitales con el objetivo de trasladar los modelos a
glaciares inaccesibles por cuestiones logísticas o debido a características que
imposibilitan el tránsito sobre el mismo.
Glaciar Bahía del Diablo, Isla Vega
Monitoreo de glaciares de la Península Antártica
Debido a la extensión de los glaciares de la Península Antártica que fueron tributarios
de la barreda de hielo Larsen, el estudio de los mismos se realiza en base a vuelos de
reconocimiento y medición mediante sistemas GPS y mediante el análisis de distintas
imágenes satelitales.
Para mejorar las mediciones y estimaciones del comportamiento dinámico de los
glaciares y su balance de masa anual, se instaló un sistema automático para toma de
fotografías en las cercanías del frente del sistema de glaciares Dinsmoor-BombardierEdgeworth.
En la Isla Millerand, al oeste de la Península Antártica, se iniciaron tareas de monitoreo
y balance de masa en uno de los glaciares de la isla.
Sistema Automático de toma de fotografías. Frente del sistema de glaciares DinsmoorBombardier-Edgeworth (150 Km al oeste de Marambio)
Recolección de datos climáticos
Todos los datos y resultados de las mediciones sobre el balance de masa de los glaciares
y su comportamiento dinámico están necesariamente vinculados a las variables
climáticas de la región, y por supuesto su evolución en las últimas décadas.
Por este motivo, se instalaron estaciones meterológicas automáticas y
termoregistradores en sitios clave para complementar los datos registrados por las bases
antárticas permanentes. Una de las tareas que se llevan a cabo en cada campaña es la
recolección de los datos y el mantenimiento del equipo.
Estación meteorológica automática en las cercanías del glaciar Bahía del Diablo
Registrador de temperatura ubicado en la Base Matienzo
Coordenadas de sitios relevantes
Glaciar Bahía Diablo, Isla Vega (63° 49’S; 57° 20’O)
Base Matienzo (64º 58’ S; 60º 08’O)
Base Carlini (62° 14’ 20”S; 58° 40’O)
Glaciar Gourdon, Isla James Ross (64° 15’S; 57º 20’O)
Glaciar Boydell (64° 10’S; 59° 7’O)
Glaciares DBE (64° 22’S; 59° 48’O)
Glaciar Crane (65° 19’S; 62° 24’O)
Refugio Arcondo (66° 10’ 33”S; 61° 50’ 28”O)
Isla Merilland (68° 08’S; 67° 13’O)
Sería útil si Ud. pudiese asimismo responder las siguientes interrogantes:
1 - Cómo podría CryoNet ayudar a lograr sus intereses nacionales/regionales/globales?
La investigación de glaciares requiere de datos climáticos en las zonas cercanas a los
mismos. Algunos sitios carecen de estaciones meteorológicas cercanas, por lo cual la
instalación de estaciones meteorológicas automáticas complementaría las existentes y
mejoraría la distribución actual de datos disponibles. La renovación de los sensores ya
instalados también es necesaria debido a la degradación natural de los mismos y a su
vida útil.
También es necesario contar con una estación meteorológica portátil para utilizar como
estación de comparación y calibración de las estaciones y sensores permanentes. Esta
estación se instalaría temporalmente cada campaña antártica anual durante la revisita a
los sitios para recuperar los datos.
2 - Qué podría Ud. o su organización contribuir a la implementación de CryoNet?
Durante las campañas antárticas llevadas a cavo por el Departamento de Glaciología el
personal responsable de las tareas puede realizar la instalación de instrumental y la
recolección futura de los datos del mismo.
3 - Cuáles son los beneficios que esperaría de CryoNet: (por ejemplo para los
operadores, operadores de las redes de investigación, la comunidad científica,
tomadores de decisión, monitoreo ambiental y modelación, proveedores de datos
satelitales, etc.)?
CryoNet podría coordinar la realización de workshops regionales para el intercambio de
experiencias y la generación de acuerdos de colaboración entre las partes involucradas
4 - Cuáles serían a su juicio áreas faltantes en observaciones criosféricas (por ejemplo
vacíos temáticos, espaciales, temporales, disponibilidad de datos, intercambio de datos,
política de manejo de datos, etc.) y cómo podría CryoNet ayudar a solucionar esto?
En la Península Antártica los faltantes son de diversa índole debido a la gran extensión,
a las condiciones meteorológicas adversas y a las disponibilidades logísticas. Ya se
desde el punto de vista espacial como temporal, es necesario incrementar los
dispositivos de monitoreo a instalar, para tener datos que cubran más uniformemente la
región y para que las series temporales se inicien lo antes posible.
5 - Favor priorizar las actividades de CryoNet de acuerdo a su visión personal (indicar
ALTO/MEDIO/BAJO para cada punto):
Establecimiento de la red CryoNet: ALTO
Estándares, guías y entrenamiento para realizar observaciones: ALTO
Experimentos de inter-comparación (por ejemplo sensores, métodos) : ALTO
Cooperación con redes existentes: ALTO
Política de datos relativa a su archivo, accesibilidad e intercambio: ALTO
Apoyo a necesidades nacionales: ALTO
6 - Favor compartir cualquier otro planteamiento que Ud. tenga relativo para
CryoNet será de utilidad para mejorar e incrementar los conocimientos actuales de la
criósfera en la Península Antártica. Tanto el conocimiento del comportamiento
dinámico y el modelado numérico de los cuerpos glaciares pueden mejorarse y obtener
estimaciones de respuestas futuras de los mismos siguiendo los diferentes escenarios de
cambio climático establecidos para las próximas décadas.