February 6, 2015 BibTeX-File nhgbib [3].bib: References XX-7 [1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: IEEE Standard 802.16e. 78 [2] Constructive polynomial approximation in Sobolev spaces. 41:31–44, 1978. 92 [3] Information Technology Digital Compression and Coding of Continuous-Tone Still Images Requirements and Guidelines, ISO/IEC 10918-1, ITU T.81. 1992. XX-3 [4] IEEE Standard 802.11a-1999(2003): Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2003. XX-4 [5] IEEE Standard 802.11g-2003: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2003. 08 [6] 3GPP TS36.300: Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN): Overall Description. 2008. 09-2 [7] 3GPP Release 7 HSPA+ (Evolved HSPA) Network Migration Analysis. Jan. 2009. XX-6 [8] IEEE Standard 802.11n-2009: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2009. XX-5 [9] IEEE Standard 802.16-2009: Air Interface for Broadband Wireless Access Systems, 2009. ackosa11 [10] Asymptotic behavior of distributions and the short-time Fourier transform, volume XVIII, 2011. fapascso11 [11] Generic Zernike-based Surface representation of Measured Corneal Surface Data, Sensors and Actuators for Medical Systems and Medical Specific Instrumentation II, Poster Session I, Bari, Italy, 29-31 May, 2011, 2011. 1 12 [12] Overview of 3GPP Release 12 V0.0.3. 2012. aaki09 [13] D. Aalto and J. Kinnunen. Maximal functions in Sobolev spaces. In Sobolev Spaces in Mathematics. I, volume 8 of Int. Math. Ser. (N. Y.), pages 25–67. 2009. aachXX [14] R. M. Aarts and Cheapviagrasoftflavvoured67ifs. izqgoodCheapViagraSoftFlavouredelz. K-Theory, http://www.erexion.org/products/viagra–soft–flavoured.h. Vrrylpages abdo12-1 [15] E. Abakumov and E. Doubtsov. Reverse estimates in growth spaces. Math. Z., 271(1-2):399–413, 2012. abot11 [16] A. Abanin and o. others. Pre-dual of the function algebra A−∞ (D) and representation of functions in Dirichlet series. Complex Analysis and Operator Theory, 5(4):1073–1092, 2011. ab12-1 [17] A. Abbott. De-quantisation of the quantum Fourier transform. Appl. Math. Comput., 219(1):3–13, 2012. abbe10 [18] B. Abdous and A. Berlinet. Reproducing kernel Hilbert spaces and local polynomial estimation of smooth functionals. In Progress in analysis and its applications, pages 249–256. World Sci. Publ., Hackensack, 2010. abpi94 [19] S. Abdullah and S. Pilipovic. Bounded subsets in spaces of distributions of lp -growth. Hokkaido Math. J., 23(1):51–54, 1994. abneto04 [20] A. Abele, H. Neunzert, and R. Tobies. Traumjob Mathematik! Berufswege von Frauen und M¨annern in der Mathematik. Basel: Birkh¨auser, 2004. abst65 [21] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, New York, 1965. ab76 [22] J. Abreu. H-valued generalized functions and orthogonally scattered measures. Adv. Math., 19:382–412, 1976. abco86 [23] J. L. Abreu and A. Coria. A condition for a Banach space to be Hilbert. Res. program 18th Natl. Congr. Mex. Math. Soc., Proc., Merida/Mex. 1984, Aportaciones Mat., Comun. 1, 1-7 (1986)., 1986. 2 ab06 [24] L. D. Abreu. Completeness, special functions and uncertainty principles over q-linear grids. J. Phys. A, Math. Gen., 39(47):14567–14580, 2006. ab08 [25] L. D. Abreu. The reproducing kernel structure arising from a combination of continuous and discrete orthogonal polynomials into Fourier systems. Constr. Approx., 28(2):219–235, 2008. ab10-1 [26] L. D. Abreu. On the structure of Gabor and super Gabor spaces. Monatsh. Math., 161(3):237–253, 2010. ab10 [27] L. D. Abreu. Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions. Appl. Comput. Harmon. Anal., 29(3):287–302, 2010. ab11 [28] L. D. Abreu. Wavelet frames with Laguerre functions. Comptes Rendus Mathematique, 349:255 – 258, 2011. ab12 [29] L. D. Abreu. Super-wavelets versus Poly-Bergman spaces. Integr. Equ. Oper. Theory, 73(2):177–193, 2012. abba12 [30] L. D. Abreu and A. S. Bandeira. Landau’s necessary density conditions for the Hankel transform. J. Funct. Anal., 262(4):1845–1866, 2012. abciva12 [31] L. D. Abreu, O. Ciaurri, and J. L. Varona. Bilinear biorthogonal expansions and the Dunkl kernel on the real line. Exposition. Math., 30(1):32–48, 2012. abdo12 [32] L. D. Abreu and M. D¨orfler. An inverse problem for localization operators. Inverse Problems, 28(11):115001, 16, 2012. abfe14 [33] L. D. Abreu and H. G. Feichtinger. Function spaces of polyanalytic functions, pages 1–38. Birkhauser, 2014. abgi14 [34] L. D. Abreu and J. E. Gilbert. Wavelet-type frames for an interval. Exposition. Math., 32(3):274–283, 2014. abgr12 [35] L. D. Abreu and K. Gr¨ochenig. Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl. Anal., 91:1981–1997, 2012. 3 abgrro14 [36] L. D. Abreu, K. Gr¨ochenig, and J. L. Romero. On accumulated spectrograms. Trans. Amer. Math. Soc., To appear, 2014. abpe14 [37] L. D. Abreu and J. M. Pereira. Measures of localization and quantitative Nyquist densities. Appl. Comput. Harmon. Anal., accepted, 2014. ab11-1 [38] F. Abtahi. Lebesgue weighted Lp -algebra on locally compact groups. Acta Math. Hungar., 133(4):324–331, 2011. ab12-2 [39] F. Abtahi. Weighted Lp −spaces on locally compact groups. 2012. ab14 [40] F. Abtahi. Generalized biprojectivity and biflatness of abstract Segal algebras. Banach J. Math. Anal., 8(2):107 – 117, 2014. abamlore12 [41] F. Abtahi, H. Amini, H. Lotfi, and A. Rejali. An arbitrary intersection of Lp -spaces. Bull. Austral. Math. Soc., 85(3):433–445, 2012. abnare12 [42] F. Abtahi, I. Nasr, and A. Rejali. Bochner algebras and their compact multipliers. Math. Slovaca, 62(3):479–486, 2012. abnare10 [43] F. Abtahi, R. Nasr Isfahani, and A. Rejali. Weighted Lp -conjecture for locally compact groups. Period. Math. Hungar., 60(1):1–11, 2010. abto07 [44] W. Abu Shammala and A. Torchinsky. The Hardy-Lorentz spaces H p,q (Rn ). Studia Math., 182(3):283–294, 2007. ac04 [45] R. Aceska. Analytic wavelets and multiresolution analysis: a note on certain orthogonality conditions. Proceedings, Faculty of Mechanical Engineering, Skopje, 23(1):41–47, 2004. ac12 [46] R. Aceska. Multi-Wilson systems. Proc. the 8th Int. Symposium on Geometric Function Theory and Applications, 2012. acaldape13 [47] R. Aceska, A. Aldroubi, J. Davis, and A. Petrosyan. Dynamical Sampling in Shift-Invariant Spaces. AMS Contemporary Mathematics (CONM), 2013. acdi96 [48] R. Aceska and D. Dimitrovski. Improper integral Theodorescu. Annuaire, Facult´e des Sciences de l’Universit´e ’Sv. Kiril et Metodij’ L’Institute des Math´ematiques, 1996. 4 acfe12 [49] R. Aceska and H. G. Feichtinger. Reproducing kernels and variable bandwidth. J. Funct. Spaces Appl., (art. no. 469341), 2012. acok13 [50] R. Aceska and K. Okoudjou. Scaling the multi-Wilson frame. 2013. acta14 [51] R. Aceska and S. Tang. Dynamical Sampling in hybrid Shift Invariant Spaces. 2014. ac81 [52] A. D. Acosta. Inequalities for B-valued random vectors with applications to the strong law of large numbers. Ann. Probab., 9(1):157–161, 1981. ad14 [53] D. R. Adams. Mock Morrey spaces. 142(3):881–886, 2014. Proc. Amer. Math. Soc., adxi03 [54] D. R. Adams and J. Xiao. Strong type estimates for homogeneous Besov capacities. Math. Ann., 325(4):695–709, 2003. adxi04 [55] D. R. Adams and J. Xiao. Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J., 53(6):1629–1663, 2004. adxi11 [56] D. R. Adams and J. Xiao. Morrey potentials and harmonic maps. Comm. Math. Phys., 308(2):439–456, 2011. adxi12-1 [57] D. R. Adams and J. Xiao. Morrey Potentials for Mixed Laplace Systems. arxiv, 2012. adxi12 [58] D. R. Adams and J. Xiao. Morrey spaces in harmonic analysis. Arkiv f¨or Matematik, 50(2):201–230, 2012. ad08-1 [59] J. Adams. Guide to the Atlas software: computational representation theory of real reductive groups. Arthur, James (ed.) et al., Representation theory of real reductive Lie groups. AMS-IMS-SIAM joint summer research conference, Snowbird, UT, USA, June 4–8, 2006. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 472, 1-37 (200, 2008. adfo03-1 [60] R. A. Adams and J. Fournier. Sobolev spaces. 2nd ed. Pure and Applied Mathematics 140. New York, NY: Academic Press. xiii, 2003. 5 ad11 [61] B. Adcock. On the convergence of expansions in polyharmonic eigenfunctions. J. Approx. Theory, 163(11):1638–1674, 2011. adha11-2 [62] B. Adcock and A. C. Hansen. Reduced consistency sampling in Hilbert spaces. In Proceedings of the 9th International Conference on Sampling Theory and Applications (SampTA), 2011. adha11-1 [63] B. Adcock and A. C. Hansen. Sharp bounds, optimality and a geometric interpretation for generalised sampling in Hilbert spaces. preprint, 2011. adha12 [64] B. Adcock and A. C. Hansen. A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl., 18(4):685–716, 2012. adha12-1 [65] B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal., 32(3):357–388, 2012. adhahete11 [66] B. Adcock, A. C. Hansen, E. Herrholz, and G. Teschke. Generalized sampling, infinite-dimensional compressed sensing, and semi-random sampling for asymptotically incoherent dictionaries. preprint, 2011. adhapo12 [67] B. Adcock, A. C. Hansen, and C. Poon. Beyond consistent reconstructions: Optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. Technical report, 2012. adhaporo13 [68] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: A new theory for compressed sensing. arXiv, 2013. adhaporo13-1 [69] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing. preprint, 2013. adelemgrjapl12 [70] A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. D. Plumbley. Audio inpainting. Audio, Speech, and Language Processing, IEEE Transactions on, 20(3):922–932, 2012. ad04 [71] S. L. Adler. Quantum theory as an emergent phenomenon. Cambridge University Press, Cambridge, 2004. 6 ad94 [72] G. Adomian. Solving Frontier Problems of Physics: the Decomposition Method. Fundamental Theories of Physics. 60. Dordrecht: Kluwer Academic Publishers. xiii, 352 p., 1994. afbifi10 [73] M. Afonso, J. Bioucas Dias, and M. Figueiredo. Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process., 19(9):2345–2356, 2010. agergr97 [74] T. Agoh, P. Erdos, and A. Granville. Primes at a (somewhat lengthy) glance. Amer. Math. Monthly, 104(10):943–945, 1997. aganca14 [75] E. Agora, J. Antezana, and C. Cabrelli. Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups. arXiv, 2014. agna04 [76] M. Agranovsky and E. Narayanan. Lp -integrability, supports of Fourier transforms and uniqueness for convolution equations. J. Fourier Anal. Appl., 10(3):315–324, 2004. agervaze02 [77] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. IEEE Trans. Information Theory, 48(8):2201–2214, 2002. agor10 [78] M. I. Aguilar Canestro and S. Ortega. Boundedness of generalized Hardy operators on weighted amalgam spaces. Math. Inequal. Appl., 13(2):305–318, 2010. agor11 [79] M. I. Aguilar Canestro and P. Ortega Salvador. Boundedness of positive operators on weighted amalgams. J. Inequal. Appl., 13:12, 2011. ahbrel06 [80] M. Aharon, M. Elad, and A. Bruckstein. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311–4322, 2006. ahro05 [81] Y. Aharonov and D. Rohrlich. Quantum Paradoxes - Quantum Theory for The Perplexed. Wiley-VCH, 2005. ahyozh09 [82] P. Ahern, E. Youssfi, and K. Zhu. Compactness of Hankel operators on Hardy-Sobolev spaces of the polydisk. J. Operator Theory, 61(2):301– 312, 2009. armu05 [83] K. Ahlander and H. Munthe Kaas. Applications of the generalized Fourier transform in numerical linear algebra. Numer. Algorithms, 45(4):819–850, 2005. 7 ahwi02 [84] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels,. IEEE Trans. Inform. Theory, 48(3):569 –579, 2002. ah14 [85] A. Ahmed. A general class of weighted Banach function spaces. J. Anal. Numer. Theory, 2:25–30, 2014. ahrero12 [86] A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming. preprint, 2012. ahro13 [87] A. Ahmed and J. Romberg. Compressive multiplexing of correlated signals. preprint, 2013. ailaplve14 [88] A. Ai, A. Lapanowski, Y. Plan, and R. Vershynin. One-bit compressed sensing with non-Gaussian measurements. Linear Algebra and Appl., 441:222–239, 2014. ai13 [89] P. Aiena. Algebraically paranormal operators on Banach spaces. Banach J. Math. Anal., 7(2):136–145, 2013. aizi10 [90] M. Aigner and G. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, Fourth edition, 2010. aiergo80 [91] J. G. Aiken, J. A. Erdos, and J. A. Goldstein. On L¨owdin orthogonalization. International Journal of Quantum Chemistry, 18(4):1101– 1108, 1980. aich09 [92] N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009. aili09 [93] N. Ailon and E. Liberty. Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes. Discrete & Computational Geometry, 42(4):615–630, 2009. aili11 [94] N. Ailon and E. Liberty. Almost optimal unrestricted fast JohnsonLindenstrauss transform. In Symposium on Discrete Algorithms (SODA), 2011. ai85 [95] H. Aimar. Singular integrals and approximate identities on spaces of homogeneous type. Trans. Amer. Math. Soc., 292:135–153, 1985. 8 aibeia07 [96] H. Aimar, A. Bernardis, and B. Iaffei. Multiresolution approximations and unconditional bases on weighted Lebesgue spaces on spaces of homogeneous type. J. Approx. Theory, 148(1):12–34, 2007. aima07 [97] H. Airault and P. Malliavin. Invariant measures for OrnsteinUhlenbeck operators. In Mathematical Analysis of Random Phenomena. Proceedings of the International Conference, Hammamet, Tunisia, September 12–17, 2005, pages 23–29. Hackensack, NJ: World Scientific, 2007. ajengoguknlalyro12 [98] V. Ajdacic Gross, D. Knopfli, K. Landolt, M. Gostynski, S. Engelter, P. Lyrer, F. Gutzwiller, and W. Rossler. Death has a preference for birthdays-an analysis of death time series. Annals of Epidemiology, 22(8):603–606, 2012. akch02 [99] A. Akan and L. Chaparro. Discrete rotational Gabor transform. In Time-Frequency and Time-Scale Analysis, 1996., Proceedings of the IEEE-SP International Symposium on, pages 169–172, 2002. akayse05 [100] E. Akay, E. Sengul, and E. Ayanoglu. Performance Analysis of Beamforming for MIMO OFDM with BICM. volume 1, pages 613–617, May 2005. akbo02 [101] O. Akay and G. Boudreaux Bartels. Fractional convolution and correlation via operator methods and an application to detection of linear FM signals. IEEE Trans. Signal Process., 49(5):979–993, 2002. akekseta11 [102] A. Akbulut, I. Ekincioglu, A. Serbetci, and T. Tararykova. Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. Eurasian Math. J., 2(2):5–30, 2011. akgumu13 [103] A. Akbulut, V. Guliev, and S. Muradova. On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces. Eurasian Math. J., 4(1):7–20, 2013. akni99 [104] H. Akcay and B. Ninnes. Orthonormal basis functions for continuoustime systems and lp convergence. Mathematics of Control, Signals, and Systems (MCSS), 12:295–305, 1999. 9 akwa81 [105] C. Akemann and M. Walter. Unbounded negative definite functions. Canad. J. Math., 33(4):862–871, 1981. ak88 [106] N. Akhiezer. Lectures on integral transforms. Transl. from the Russian by H. H. McFaden. Translations of Mathematical Monographs, 70. American Mathematical Society (AMS), 1988. akgl93 [107] N. Akhiezer and I. Glazman. Theory of linear operators in Hilbert space. Transl. from the Russian and with a preface by Merlynd Nestell (Two volumes bound as one). Repr. of the 1961 and 1963 transl. New York, NY: Dover Publications, 1993. ak08 [108] G. Akishev. Approximation of function classes in Lorentz spaces with mixed norm. East J. Approx., 14(2):193–214, 2008. al05-1 [109] H. Al Qassem. Weighted Lp estimates for a rough maximal operator. Kyungpook Math. J., 45(2):255–272, 2005. almave12 [110] R. Alabern, J. Mateu, and J. Verdera. A new characterization of Sobolev spaces on Rn . Math. Ann., 354(2):589–626, 2012. le76-2 [111] L. Alan.J. On band limited stochastic processes. SIAM J. Appl. Math., 30(2):269–277, 1976. albadede11 [112] G. Alberti, L. Balletti, M. De, and V. De. Signal Analyses in 2D, Part I. Arxiv preprint arXiv:1109.6789, 2011. alevsk10 [113] S. A. Albeverio, S. Evdokimov, and M. Skopina. p-adic multiresolution analysis and wavelet frames. J. Fourier Anal. Appl., 16(5):693–714, 2010. algokh97 [114] S. A. Albeverio, E. Gordon, and A. Khrennikov. Finite dimensional approximations of p-adic pseudodifferential operators. Mat. Model., 9(10), 1997. algokh00 [115] S. A. Albeverio, E. Gordon, and A. Khrennikov. Finite-dimensional approximations of operators in the Hilbert spaces of functions on locally compact Abelian groups. Acta Appl. Math., 64(1):33–73, 2000. alhize92 [116] S. A. Albeverio, A. Hilbert, and E. Zehnder. Hamiltonian systems with a stochastic force:nonlinear versus linear, and a Girsanov formula. Stochastics and Stochastic Reports, 39(2-3):159–188, 1992. 10 alkhsh11 [117] S. A. Albeverio, A. Khrennikov, and V. Shelkovich. The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory. J. Math. Anal. Appl., 375(1):82–98, 2011. alkhsh10 [118] S. A. Albeverio, A. Y. Khrennikov, and V. M. Shelkovich. Theory of p-adic distributions. Linear and nonlinear models. London Mathematical Society Lecture Note Series 370. Cambridge University Press, 2010. almaru92 [119] S. A. Albeverio, Z. Ma, and M. R¨ockner. A Beurling-Deny type structure theorem for Dirichlet forms on general state spaces. Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), pages 115–123, 1992. alegse08 [120] B. Albrecht, M. Sergei, and A. Egor. Pushing the envelope of the test functions in the Szeg¨o and AvramParter theorems. Linear Algebra and its Applications, 429(1):346–366, 2008. alalbe96 [121] J. Alda, J. Alonso, and E. Bernabeu. Aberrated laser beams in terms of Zernike polynomials. In J. Alda, J. Alonso, E. Bernabeu, M. Morin, and A. Giesen, editors, Third International Workshop on Laser Beam and Optics Characterization, volume 2870 of Laser beam amplitude and phase, pages 52–61, Quebec City, Canada, 1996. SPIE. akalchdu10 [122] S. Aldirmaz, L. Durak Ata, A. Akan, and L. Chaparro. A SignalAdaptive Discrete Evolutionary Transform. In Proceedings of the European Signal Processing Conference, pages 1756–1760, 2010. alsa97 [123] R. Aldrovandi and L. Saeger. Projective Fourier duality and Weyl quantization. Internat. J. Theoret. Phys., 36(3):573–612, 1997. alpe11 [124] A. Aleksandrov and V. V. Peller. Trace formulae for perturbations of class sm . J. Spectr. Theory, 1(1):1–26, 2011. alglgo01 [125] M. Alekseev, L. Glebskii, and E. I. Gordon. On approximations of groups, group actions and Hopf algebras. J. Math. Sci., 107(5):4305– 4332, 2001. alco12 [126] A. Aleman and O. Constantin. The Bergman projection on vectorvalued L2 -spaces with operator-valued weights. J. Funct. Anal., 262(5):2359–2378, 2012. 11 alpe12 [127] A. Aleman and K.-M. Perfekt. Hankel forms and embedding theorems in weighted Dirichlet spaces. Internat. Math. Res. Notices, 2012(19):4435–4448, 2012. alpore13 [128] A. Aleman, S. Pott, and M. Reguera. Sarason Conjecture on the Bergman space. arXiv preprint arXiv:1304.1750, 2013. alrisu96 [129] A. Aleman, S. Richter, and C. Sundberg. Beurling’s theorem for the Bergman space. Acta Math., 177(2):275–310, 1996. alrisu02 [130] A. Aleman, S. Richter, and C. Sundberg. The majorization function and the index of invariant subspaces in the Bergman spaces. J. Anal. Math., 86:139–182, 2002. alarfami10 [131] S. Alesker, S. Artstein Avidan, D. Faifman, and V. Milman. A characterization of product preserving maps with applications to a characterization of the Fourier transform. Illinois J. Math., 54(3):1115–1132 (2012), 2010. alarmi09 [132] S. Alesker, S. Artstein Avidan, and V. Milman. A characterization of the Fourier transform and related topics. Alexandrov, Alexei (ed.) et al., Linear and complex analysis. Dedicated to V. P. Havin on the occasion of his 75th birthday. Providence, RI: American Mathematical Society (AMS). Translations. Series 2. American Mathematical Society 226; Advances in the Ma, 2009. albakomamethtrwa11 [133] T. Alexandrov, S. Meding, D. Trede, J. Kobarg, B. Balluff, A. Walch, H. Thiele, and P. Maass. Super-resolution segmentation of imaging mass spectrometry data: Solving the issue of low lateral resolution. Journal of Proteomics, 75(1):237 – 245, 2011. alkomapizh10 [134] V. Alexandrov, S. Piskunov, Y. Zhukovskii, E. Kotomin, and J. Maier. First-principles modeling of oxygen interaction with SrTiO3 (001) surface: Comparative density-functional LCAO and plane-wave study. Arxiv preprint arXiv:1005.4833, 2010. algrpo94 [135] W. Alford, A. Granville, and C. Pomerance. There are infinitely many Carmichael numbers. Ann. of Math. (2), 139(3):703–722, 1994. 12 alanbaga12 [136] S. Ali, J.-P. Antoine, F. Bagarello, and J.-P. Gazeau. Coherent states: a contemporary panorama. Journal of Physics A: Mathematical and Theoretical, 45(24):240301, 2012. alanga91-1 [137] S. Ali, J.-P. Antoine, and J.-P. Gazeau. Square integrability of group representations on homogeneous spaces II: Coherent and quasicoherent states. The case of the Poincare group. Ann. Inst. Henri Poincar´e, Phys. Th´eor., 55(4):857–890, 1991. alanga93-1 [138] S. Ali, J.-P. Antoine, and J.-P. Gazeau. Relativistic quantum frames. Annals of Physics, 222(1):38–88, 1993. albaga10 [139] S. Ali, F. Bagarello, and J.-P. Gazeau. Modified Landau levels, damped harmonic oscillator, and two-dimensional pseudo-bosons. Journal of mathematical physics, 51(12):123502, 2010. alem86 [140] S. T. Ali and G. G. Emch. Geometric quantization: modular reduction theory and coherent states. J. Math. Phys., 27(12):2936–2943, 1986. al11 [141] Y. Alkhutov. Elliptic problems with nonstandard conditions of growth: Zhikov’s approach. Complex Variables and Elliptic Equations, 56(7-9):559–571, 2011. alangipara11 [142] Y. Alkhutov, S. Antontsev, R. Gilbert, A. Pankov, and V. Radulescu. Preface. Complex Variables and Elliptic Equations, 56(7-9):543–544, 2011. aldr12 [143] A. Almeida and D. Drihem. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl., 394(2):781–795, 2012. alha10 [144] A. Almeida and P. H¨ast¨o. Besov spaces with variable smoothness and integrability. J. Funct. Anal., 258(5):1628–1655, 2010. alsa06 [145] A. Almeida and S. Samko. Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Funct. Spaces Appl., 4(2):113– 144, 2006. alsa07 [146] A. Almeida and S. Samko. Pointwise inequalities in variable Sobolev spaces and applications. Z. Anal. Anwend., 26(2):179–193, 2007. 13 alsa09 [147] A. Almeida and S. Samko. Embeddings of variable Hajlasz-Sobolev spaces into H¨older spaces of variable order. J. Math. Anal. Appl., 353(2):489–496, 2009. alhukhso06 [148] M. Almeida, J. Huguenin, R. Souto, and A. Khoury. Theoretical investigation of moire patterns in quantum images. J. Modern Opt., 53(5-6):777–785, 2006. al95-3 [149] B. Alpert. High-order quadratures for integral operators with singular kernels. J. Comput. Appl. Math., 60(3):367–378, 1995. albegivo02 [150] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi. Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys., 182(1):149–190, 2002. alch05 [151] B. Alpert and Y. Chen. A representation of acoustic waves in unbounded domains. Commun. Pure Appl. Anal., 58(10):1358–1374, 2005. al81 [152] J. Alvarez Alonso. The distribution function in the Morrey space. Proc. Amer. Math. Soc., 83(4):693–699, 1981. am89 [153] L. Ambrosio. A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B (7), 3(4):857–881, 1989. am95 [154] L. Ambrosio. A new proof of the SBV compactness theorem. Calc. Var. Partial Differential Equations, 3(1):127–137, 1995. amcoma97 [155] L. Ambrosio, A. Coscia, and G. Maso. Fine properties of functions with bounded deformation. Archive for Rational Mechanics and Analysis, 139(3):201–238, 1997. amdapa10 [156] L. Ambrosio, P. Da, and D. Pallara. BV functions in a Hilbert space with respect to a Gaussian measure. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem. (9) Mat. Appl., 21(4):405–414, 2010. amgh13 [157] L. Ambrosio and F. Ghiraldin. Compactness of special functions of bounded higher variation. Anal. Geom. Metr. Spaces, 1:1–30, 2013. amma14 [158] L. Ambrosio and S. Marino. Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal., 266(7):4150 – 4188, 2014. 14 amsc13 [159] L. Ambrosio and T. Schmidt. Compactness results for normal currents and the Plateau problem in dual Banach spaces. Proc. Lond. Math. Soc. (3), 106(5):1121–1142, 2013. amlomctr13 [160] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the edge: Phase transitions in convex programs with random data. Inform. Inference, 3(3):224–294, 2014. amhema10 [161] Y. Ameur, N. Makarov, and H. Hedenmalm. Berezin transform in polynomial Bergman spaces. Commun. Pure Appl. Anal., 63(12):1533–1584, 2010. amor12 [162] Y. Ameur and J. Ortega Cerd`a. BeurlingLandau densities of weighted Fekete sets and correlation kernel estimates. J. Funct. Anal., 263(7):1825 – 1861, 2012. am00 [163] I. Amidror. The Theory of the Moire Phenomenon. Computational Imaging and Vision 15. Dordrecht: Kluwer Academic Publishers, 2000. am07 [164] I. Amidror. The Theory of the Moir´e Phenomenon Vol. II: Aperiodic layers. Computational Imaging and Vision 34. Springer, 2007. am09-1 [165] I. Amidror. The theory of the Moire phenomenon. Volume I: Periodic layers. 2nd revised and updated ed. Computational Imaging and Vision 38. Springer, 2009. am13 [166] I. Amidror. Mastering the discrete Fourier transform in one, two or several dimensions. Pitfalls and artifacts. London: Springer, 2013. amhe09 [167] I. Amidror and R. Hersch. The role of Fourier theory and of modulation in the prediction of visible Moire effects. J. Modern Opt., 56(9):1103–1118, 2009. amhe10 [168] I. Amidror and R. Hersch. Mathematical Moire models and their limitations. J. Modern Opt., 57(1):23–36, 2010. anbrto09-1 [169] M. An, A. Brodzik, and R. Tolimieri. Ideal Sequence Design in Time-Frequency Space. Applied and Numerical Harmonic Analysis. Birkh¨auser Boston Inc., Boston, MA, 2009. 15 anbrto09 [170] M. An, A. Brodzik, and R. Tolimieri. Zak Transform. Ideal Sequence Design in Time-Frequency Space, pages 1–17, 2009. anca09 [171] M. Anastasio and C. Cabrelli. Sampling in a union of frame generated subspace. Sampl. Theory Signal Image Process., 8(3):261–286, September 2009. ancapa10 [172] M. Anastasio, C. Cabrelli, and V. Paternostro. Extra invariance of shift-invariant spaces on LCA groups. J. Math. Anal. Appl., 370(2):530–537, 2010. ancapa11 [173] M. Anastasio, C. Cabrelli, and V. Paternostro. Invariance of a shiftinvariant space in several variables. Complex Anal. Oper. Theory, 5(4):1031–1050, 2011. anchdugh09 [174] G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen. Holographic wavefront sensor. Opt. Eng., 48(8):085801, 2009. an04 [175] N. B. Andersen. Real Paley-Wiener theorems for the inverse Fourier transform on a Riemannian symmetric space. Pacific J. Math., 213(1):1–13, 2004. an12 [176] N. B. Andersen. On the Fourier transform of Schwartz functions on Riemannian symmetric spaces. Submitted on 15 Jun 2012, 2012. an93 [177] A. Anderson. Quantum canonical transformations and integrability. Beyond unitary transformations. Physics Letters B, 319(1-3):157–162, 1993. anbabidedogrhaso99 [178] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, A. Greenbaum, S. Hammarling, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, Third edition, 1999. anguze10 [179] G. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. anclpo74 [180] J. Anderson, J. Clunie, and C. Pommerenke. On Bloch functions and normal functions. J. Reine Angew. Math., 270:12–37, 1974. 16 anpa89 [181] J. Anderson and W. Paschke. The rotation algebra. Houston J. Math., 15(1):1–26, 1989. anta78 [182] J. Anderson and D. Taylor. A bandwidth-efficient class of signal-space codes. IEEE Trans. Information Theory, 24(6):703–712, 1978. ancade11 [183] F. Andersson, M. Carlsson, and H. de. Sparse approximation of functions using sums of exponentials and AAK theory. J. Approx. Theory, 163(2):213–248, 2011. ancate12 [184] F. Andersson, M. Carlsson, and L. Tenorio. On the Representation of Functions with Gaussian Wave Packets. J. Fourier Anal. Appl., 18:146–181, 2012. andewe12 [185] F. Andersson, M. V. de Hoop, and H. Wendt. Multiscale discrete approximation of Fourier integral operators. Multiscale Model. Simul., 10(1):111–145, 2012. an98-3 [186] M. Andersson. On the vector valued Hausdorff-Young inequality. Ark. Mat., 36(1):1–30, 1998. an00 [187] M. Andersson. An inverse problem connected to double orthogonality in Bergman spaces. Math. Proc. Cambridge Philos. Soc., 128(3):535– 538, 2000. anknsasm11 [188] M. Andersson, M. Sandborg, O. Smedby, and H. Knutsson. 4D Adaptive Filtering of CT-Heart. In Proceedings of the SSAB Symposium on Image Analysis, 2011, 2011. anrare11 [189] P. Andreani, E. Ramos, and R. Vio. Detection of new point sources in WMAP cosmic microwave background maps at high Galactic latitude A new technique to extract point sources from CMB maps. Astronomy & Astrophysics, 528(A75), January 2011. anbabeczok13 [190] T. Andrews, R. Balan, J. Benedetto, W. Czaja, and K. Okoudjou. Excursions in Harmonic Analysis Volume 1. The February Fourier Talks at the Norbert Wiener Center. Birkh¨auser, 2013. anbabeczok13-1 [191] T. Andrews, R. Balan, J. Benedetto, W. Czaja, and K. Okoudjou. Excursions in Harmonic Analysis Volume 2. The February Fourier Talks at the Norbert Wiener Center. Birkh¨auser, 2013. 17 anti11 [192] O. Andriy and P. Tibor. Average sampling restoration of harmonizable processes,. Communications in Statistics - Theory and Methods, 40:3587–3598, 2011. ananco08 [193] E. Andruchow, J. Antezana, and G. Corach. Sampling formulae and optimal factorizations of projections. Sampl. Theory Signal Image Process., 7(3):313–331, 2008. ancost01 [194] E. Andruchow, G. Corach, and D. Stojanoff. Projective space of a C ∗ module. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4(3):289– 307, 2001. anja78 [195] E. Angel and A. Jain. Restoration of images degraded by spatially varying pointspread functions by a conjugate gradient method. Applied Optics, 17(14):2186–2190, 1978. an04-1 [196] P. Aniello. A perturbative expansion of the evolution operator associated with time-dependent quantum Hamiltonians. 2004. ancalevi98-1 [197] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. Square-integrability of induced representations of semidirect products. Rev. Math. Phys., 10(3):301–313, 1998. ancalevi98 [198] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. Wavelet transforms and discrete frames associated to semidirect products. J. Math. Phys., 39(8):3965–3973, 1998. ancalevi99 [199] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. Frames from imprimitivity systems. J. Math. Phys., 40(10):5184–5202, 1999. ancalevi01 [200] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. On discrete frames associated with semidirect products. J. Fourier Anal. Appl., 7(2):199– 206, 2001. anmama08 [201] P. Aniello, V. Man’ko, and G. Marmo. Frame transforms, star products and quantum mechanics on phase space. J. Phys. A, Math. Theor., 41(28):40, 2008. anpi09 [202] J.-P. Anker and V. Pierfelice. Nonlinear Schr¨odinger equation on real hyperbolic spaces. 2009. 18 anelha11 [203] M. Annaby, H. Hassan, and O. El Haddad. A perturbed WhittakerKotel’nikov-Shannon sampling theorem. J. Math. Anal. Appl., 381(1):64–79, 2011. an98-1 [204] M. H. Annaby. One and multidimensional sampling theorems associated with Dirichlet problems. Math. Methods Appl. Sci., 21(4):361– 374, 1998. anas11 [205] M. H. Annaby and R. M. Asharabi. Truncation, amplitude, and jitter errors on R for sampling series derivatives. J. Approx. Theory, 163(3):336–362, March 2011. an70 [206] P. Anselone. Compactness properties of sets of operators and their adjoints. Math. Z., 113:233–236, 1970. an71 [207] P. Anselone. Collectively compact Operator approximation Theory and applications to integral Equations With An Appendix By Joel Davis. Prentice-Hall Series in Automatic Computation. Englewood-Cliffs, N. J.: Prentice-Hall, 1971. anbl98 [208] J. Ansorena and O. Blasco. Convolution multipliers on weighted Besov spaces. Bol. Soc. Mat. Mex., III. Ser., 4(1):47–68, 1998. anco06 [209] J. Antezana and G. Corach. Sampling theory, oblique projections and a question by Smale and Zhou. Appl. Comput. Harmon. Anal., 21(2):245–253, 2006. andapi06 [210] S. Anthoine, E. Pierpaoli, and I. Daubechies. Two approaches for the simultaneous separation and deblurring; application to astrophysical data. (Deux m´ethodes de d´econvolution et s´eparation simultan´ees; application `a la reconstruction des amas de galaxies.). Trait. Signal, 23(5-6):439–447, 2006. anba99 [211] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge, 1999. anba11 [212] J.-P. Antoine and P. Balazs. Frames and Semi-Frames. Journal of Physcis A: Mathematical and Theoretical, 44, 2011. anba12 [213] J.-P. Antoine and P. Balazs. Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim., 33(7-9):736–769, 2012. 19 anbrci12 [214] J.-P. Antoine, P. Brault, and M. CIRM. Wavelets and motion analysis. In SIGMA/CIRM Signal, Image, Geom’etrie, Mod’elisation et Approximation, 2012. antr10 [215] J.-P. Antoine and C. Trapani. The partial inner product space method: a quick overview. Adv. Math. Phys., Article ID 457635:37, 2010. antr11 [216] J.-P. Antoine and C. Trapani. Erratum to “the partial inner product space method: a quick overview”. Adv. Math. Phys., Article ID 272703:1, 2011. anva07 [217] J.-P. Antoine and P. Vandergheynst. Wavelets on the two-sphere and other conic sections. J. Fourier Anal. Appl., 13(4):369–386, 2007. anbu03 [218] H. Anton and R. Busby. Contemporary Linear Algebra. John Wiley & Sons Inc., 2003. anbu10 [219] N. Antonic and K. Burazin. Intrinsic boundary conditions for Friedrichs systems. Comm. Partial Differential Equations, 35(9):1690–1715, 2010. ansh11 [220] S. Antontsev and S. Shmarev. Elliptic equations with triple variable nonlinearity. Complex Variables and Elliptic Equations, 56(7-9):573– 597, 2011. anmi06 [221] P. Antsaklis and A. Michel. Linear Systems. Birkh¨auser Boston Inc., Boston, MA, 2006. anla13 [222] N. Anugu and J. Lancelot. Study of atmospheric turbulence with Shack Hartmann wavefront sensor. Journal of Optics, pages 1–13, 2013. ap06 [223] S. Aparicio Secanellas. Harmonic analysis on SO(n, C)/SO(n − 1, C), n ≥ 3. Acta Appl. Math., 90(1-2):3–17, 2006. ap76 [224] T. Apostol. Introduction to analytic number theory. Springer, 1976. ap05 [225] D. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group. J. Math. Phys., 46(5):052107, 2005. 20 ap09 [226] D. Appleby. SIC-POVMS and MUBS: geometrical relationships in prime dimension. In Foundations of probability and physics – 5. V¨axj¨o, Sweden, 24–27 August 2008. Proceedings of the international conference., pages 223–232. 2009. arma11 [227] P. Ara and M. Mathieu. When is the second local multiplier algebra of a C ∗ -algebra equal to the first? Bull. Lond. Math. Soc., 43(6):1167– 1180, 2011. arbamo09 [228] L. Arambasic, D. Bakic, and M. Moslehian. A characterization of Hilbert c∗ -modules over finite dimensional c∗ -algebras. Oper. Matrices, 3(2, article No. 14):235–240, 2009. arbara07 [229] L. Arambasic, D. Bakic, and R. Rajic. Dimension functions of orthonormal wavelets. J. Fourier Anal. Appl., 13(3):331–356, 2007. arbara10 [230] L. Arambasic, D. Bakic, and R. Rajic. Dimension functions, scaling sequences, and wavelet sets. Studia Math., 198(1):1–32, 2010. arbara10-1 [231] L. Arambasic, D. Bakic, and R. Rajic. Finite-dimensional Hilbert c∗ -modules. Banach J. Math. Anal., 4(2):147–157, 2010. arfi84 [232] J. Arazy and S. D. Fisher. Some aspects of the minimal, M¨obiusinvariant space of analytic functions on the unit disc. In Michael Cwikel and J. Peetre, editors, Interpolation spaces and allied topics in analysis (Proc. of the Conference held in Lund, Sweden, August 29 - September 1, 1983), volume 1070 of Lecture Notes in Math., pages 24–44. Springer, 1984. arfi85 [233] J. Arazy and S. D. Fisher. The uniqueness of the Dirichlet space among M¨obius-invariant Hilbert spaces. Illinois J. Math., 29(3):449– 462, 1985. arup12 [234] J. Arazy and H. Upmeier. Minimal and maximal invariant spaces of holomorphic functions on bounded symmetric domains. In A panorama of modern operator theory and related topics. The Israel Gohberg memorial volume, pages 19–49. 2012. arto14 [235] R. Arcangeli and J. J. Torrens. Sampling inequalities in Sobolev spaces. J. Approx. Theory, (0):–, 2014. 21 argi93 [236] M. Arcones and E. Gine. On decoupling, series expansions, and tail behavior of chaos processes. J. Theoret. Probab., 6(1):101–122, 1993. arli97 [237] N. Arcozzi and X. Li. Riesz transforms on spheres. Math. Res. Lett., 4(2-3):401–412, 1997. arrosawi11 [238] N. Arcozzi, R. Rochberg, E. T. Sawyer, and B. D. Wick. Distance functions for reproducing kernel Hilbert spaces. In Function spaces in modern analysis, volume 547 of Contemp. Math., pages 25–53. Amer. Math. Soc., Providence, RI, 2011. arrosawi11-2 [239] N. Arcozzi, R. Rochberg, E. T. Sawyer, and B. D. Wick. Function spaces related to the Dirichlet space. J. Lond. Math. Soc. (2), 83(1):1– 18, 2011. arrosawi11-1 [240] N. Arcozzi, R. Rochberg, E. T. Sawyer, and B. D. Wick. The Dirichlet space: a survey. New York J. Math., 17a:45–86, 2011. ardrvo88 [241] I. Y. Arefeva, B. G. Dragovic, and I. V. Volovich. On the adelic string amplitudes. Physics Letters B, 209(4):445 – 450, 1988. arghXX [242] A. Arefijamaal and A. Ghaani Farashahi. Zak transform for semidirect product of locally compact groups. Anal.Math.Phys., April. argh12 [243] A. Arefijamaal and S. Ghasemi. On characterization and stability of alternate dual of g-frames. Turk. J. Math., In Press:9, 2012. arta12 [244] A. Arefijamaal and N. Tavallaei. Continuous frame wavelets. Acta Math. Sci. Ser. B Engl. Ed., 32(2):807–812, 2012. ar12 [245] A. A. Arefijamaal. The continuous Zak transform and generalized Gabor frames. Mediterranean Journal of Mathematics, Online First:13, 2012. arbuhekast13 [246] T. Arens, R. Busam, F. Hettlich, C. Karpfinger, and H. Stachel. Grundwissen Mathematikstudium. Analysis und Lineare Algebra mit Querverbindungen. Heidelberg: Springer Spektrum, 2013. ar66 [247] G. Arfken. Mathematical methods for physicists. Academic Press, New York, 1966. 22 arla71 [248] L. Argabright and J. Lamadrid. Fourier transforms of unbounded measures. Bull. Amer. Math. Soc., 77:355–359, 1971. arla72 [249] L. N. Argabright and J. Lamadrid. Analyse harmonique des mesures non bornees sur les groupes abeliens localement compacts. Conf. harmonic Analysis, College Park, Maryland 1971, Lect. Notes Math. 266, 1-16 (1972)., 1972. ar11 [250] C. Arhancet. Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers. Int. Equ. Oper. Theory, 70(4):485–510, 2011. ar95 [251] J. Arhippainen. On the ideal structure of algebras of star-algebra valued functions. Proc. Amer. Math. Soc., 123(2):381–391, 1995. arco13 [252] M. Arias and C. Conde. Generalized inverses and sampling problems. J. Math. Anal. Appl., 398(2):744 – 751, 2013. arpa08 [253] M. Arias and M. Pacheco. Bessel fusion multipliers. J. Math. Anal. Appl., 348(2):581–588, 2008. arco76 [254] M. Arik and D. Coon. Hilbert spaces of analytic functions and generalized coherent states. J. Mathematical Phys., 17(4):524–527, 1976. armuva96 [255] M. Arioli, H. Munthe Kaas, and L. Valdettaro. Componentwise error analysis for FFTs with applications to fast Helmholtz solvers. Numer. Algorithms, 12(1-2):65–88, 1996. argapr06 [256] S. Arivazhagan, L. Ganesan, and S. Priyal. Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognition Lett., 27(16):1976 – 1982, 2006. arbets11 [257] Y. Arlinskii, S. Belyi, and E. Tsekanovskii. Geometry of Rigged Hilbert Spaces,. Operator Theory: Advances and Applications. Springer Basel, 2011. arbe14 [258] Y. Arlinskiui and S. Belyi. Non-negative Self-adjoint Extensions in Rigged Hilbert Space. In Y. Arlinskiui, S. Belyi, M. Cepedello Boiso, H. Hedenmalm, M. A. Kaashoek, A. Montes Rodr’iguez, and S. Treil, editors, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, volume 236 of Operator Theory: Advances and Applications, pages 11–41. Springer Basel, 2014. 23 arth10 [259] M. Arnaudon and A. Thalmaier. The differentiation of hypoelliptic diffusion semigroups. Illinois J. Math., 54(4):1285–1311 (2012), 2010. arheju04 [260] S. Aromaa, P. Henttu, and M. Juntti. Transform-selective interference suppression algorithm for spread-spectrum communications. IEEE Signal Processing Letters, 12(1):49–51, 2004. arga65 [261] N. Aronszajn and E. Gagliardo. Interpolation spaces and interpolation methods. Ann. Mat. Pura Appl. (4), 68(1):51–117, 1965. arre07 [262] J. Arpe and R. Reischuk. When does greedy learning of relevant attributes succeed? A Fourier-based characterization. In Computing and combinatorics. 13th annual international conference, COCOON 2007, Banff, Canada, July 16–19, 2007. Proceedings., pages 296–306. 2007. arbl97 [263] J. L. Arregui and O. Blasco. On the Bloch space and convolution of functions in the Lp -valued case. Collectanea Mathematica, 48(46):363–373, 1997. arbl99 [264] J. L. Arregui and O. Blasco. Convolution of three functions by means of bilinear maps and applications. Illinois Journal of Mathematics, 43(2):264–280, 1999. arhuuz58 [265] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in Linear and Nonlinear Programming. : Stanford University Press. 229 p., 1958. arma12 [266] C. Arteaga and I. Marrero. A scheme for interpolation by Hankel translates of a basis function. J. Approx. Theory, 2012. arma13 [267] C. Arteaga and I. Marrero. Density in spaces of interpolation by Hankel translates of a basis function. J. Funct. Spaces Appl., pages Art. ID 813502, 9, 2013. arma14 [268] C. Arteaga and I. Marrero. Direct form seminorms arising in the theory of interpolation by Hankel translates of a basis function. Adv. Comput. Math., 40(1):167–183, 2014. arblhu87 [269] K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two 3-D point sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-9(5):698–700, 1987. 24 ar67-1 [270] W. Arveson. Operator algebras and measure preserving automorphisms. Acta Math., 118:95–109, 1967. ar87 [271] W. Arveson. Nonlinear states on C ∗ -algebras. In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), volume 62 of Contemp. Math., pages 283–343. Amer. Math. Soc., Providence, RI, 1987. ar90 [272] W. Arveson. Continuous analogues of Fock space. II. The spectral c∗ -algebra. J. Funct. Anal., 90(1):138–205, 1990. ar02-1 [273] W. Arveson. A Short Course on Spectral Theory. New York, NY: Springer, 2002. asfu78 [274] K. Asada and D. Fujiwara. On some oscillatory integral transformations in l2 (r2 ). Japan. J. Math. (N.S.), 4:299–361, 1978. as76-1 [275] T. Asai. The conjugacy classes in the unitary, symplectic and orthogonal groups over an algebraic number field. J. Math. Kyoto Univ., 16:325–350, 1976. asfeka14 [276] G. Ascensi, H. G. Feichtinger, and N. Kaiblinger. Dilation of the Weyl symbol and Balian-Low theorem. Trans. Amer. Math. Soc., 366(7):3865–3880, 2014. ascekr12 [277] I. Asekritova, J. Cerda, and N. Y. Kruglyak. The Riesz-Herz equivalence for capacitary maximal functions. Rev. Mat. Complut., 25(1):43– 59, 2012. askr13 [278] I. Asekritova and N. Y. Kruglyak. Necessary and sufficient conditions for invertibility of operators in spaces of real interpolation. J. Funct. Anal., 264(1):207–245, 2013. as76 [279] J. Ash. Studies In Harmonic analysis. MAA Studies in Mathematics, 13. Washington, 1976. astitu10 [280] J. Ash, S. Tikhonov, and J. Tung. Wiener’s positive Fourier coefficients theorem in variants of lp spaces. Michigan Math. J., 59(1):143– 152, 2010. aschlu10 [281] A. Ashraf, S. Lucey, and T. Chen. Reinterpreting the application of Gabor filters as a manipulation of the margin in linear support 25 vector machines. IEEE transactions on pattern analysis and machine intelligence, 32(7):1335–1341, 2010. aslemamoth96 [282] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, and T. Thiemann. Coherent state transforms for spaces of connections. J. Funct. Anal., 135(2):519–551, 1996. as11 [283] R. Ashurov. Convergence of the continuous wavelet transforms on the entire Lebesgue set of Lp -functions. Int. J. Wavelets Multiresolut. Inf. Process., 9(4):675–683, 2011. as12 [284] R. Ashurov. On the almost-everywhere convergence of the continuous wavelet transforms. Proc. Roy. Soc. Edinburgh Sect. A, 142(6):1121– 1129, 2012. aswa65 [285] R. Askey and S. Wainger. Mean convergence of expansions in Laguerre und Hermite series. Amer. J. Math., 87(3):695–708, 1965. asinmo10 [286] N. E. Askour, A. Intissar, and Z. Mouayn. A formula representing Magnetic Berezin Transforms as functions of the Laplacian on Cn. Mathematical Physics-Submitted on 17 Apr 2010, page 9, 2010. asje05 [287] M. Assal and M. Jelassi. Generalized Sobolev type spaces associated with the spherical mean operators. Math. Sci. Res. J., 9(6):151–160, 2005. abasmarati10 [288] D. Assefa, L. Mansinha, K. Tiampo, H. Rasmussen, and K. Abdella. Local quaternion Fourier transform and color image texture analysis. Signal Process., 90(6):1825–1835, 2010. ascltourve13 [289] K. Astala, A. Clop, X. Tolsa, I. Uriarte Tuero, and J. Verdera. Quasiconformal distortion of Riesz capacities and Hausdorff measures in the plane. Amer. J. Math., 135(1):17–52, 2013. as98 [290] S. Astashkin. Tensor product in symmetric function spaces. Arxiv preprint math/9812155, 1998. asma13 [291] S. Astashkin and L. Maligranda. Interpolation of Cesaro sequence and function spaces. Studia Math., 215(1):39–69, 2013. 26 asblri07 [292] F. Astengo, B. Blasio, and F. Ricci. Gelfand transforms of polyradial Schwartz functions on the Heisenberg group. J. Funct. Anal., 251(2):772–791, 2007. asdi10 [293] F. Astengo and B. Di Blasio. Huygens’ principle and a Paley-Wiener type theorem on Damek-Ricci spaces. Ann. Math. Blaise Pascal, 17(2):327–340, 2010. atviwo99 [294] N. Atakishiyev, L. Vicent, and K. Wolf. Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math., 107(1):73–95, 1999,. atpapepu11 [295] A. Athanassoulis, T. Paul, F. Pezzotti, and M. Pulvirenti. Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem. (9) Mat. Appl., 22(4):525–552, 2011. at83-1 [296] M. Atiyah. Angular momentum, convex polyhedra and algebraic geometry. Proc. Edinburgh Math. Soc. (2), 26(2):121–133, 1983. frglgrhilamaruot94 [297] M. Atiyah, A. Borel, G. Chaitin, D. Friedan, J. Glimm, J. Gray, M. Hirsch, S. Lane, B. Mandelbrot, D. Ruelle, and o. others. Responses to Theoretical Mathematics: Toward a cultural synthesis of mathematics and theoretical physics by A. Jaffe and F. Quinn. Bulletin of the American Mathematical Society, 30(2):178–207, 1994. atia03 [298] S. Atiyah and D. Iagolnitzer. Fields MedallistsLectures. World Scientific Publishing, 2nd edition, 2003. atso10 [299] C. Atkinson and J. Soria. Algebraic reconstruction techniques for tomographic particle image velocimetry. In 16th Australasian Fluid Mechanics Conference (AFMC), pages 191–198, 2010. atha12 [300] K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, volume 2044 of Lecture Notes in Mathematics. Springer, Heidelberg, 2012. at08-1 [301] N. Atreas. A Walsh type multiresolution analysis. In R. Stankovic, editor, Proceedings of the workshop: Walsh and dyadic analysis, pages 177–183, Nis, Serbia, 2008. 27 at09 [302] N. Atreas. Detecting hidden periodicities on symbolic sequences. J. Interdiscip. Math., 12(5):639–646, 2009. atka99 [303] N. Atreas and C. Karanikas. Gibbs phenomenon on sampling series based on Shannon’s and Meyer’s wavelet analysis. J. Fourier Anal. Appl., 5(6):575–588, 1999. atka00 [304] N. Atreas and C. Karanikas. Truncation error on wavelet sampling expansions. J. Comput. Anal. Appl., 2(1):89–102, 2000. atka05 [305] N. Atreas and C. Karanikas. Discrete sampling formulas on spaces of pm -periodic sequences for computational applications on edge detection. Numer. Funct. Anal. Optim., 26(3):285–301, 2005. atka07-1 [306] N. Atreas and C. Karanikas. A fast pattern matching algorithm based on prime numbers and hashing approximation. In R. W. Ognyan Kounchev, editor, NATO science for peace and security series - D: Information and communication security, Vol.12: Scientific support for the decision making in the security sector, pages 118–125. IOS Press, 2007. atka07 [307] N. Atreas and C. Karanikas. Multiscale Haar orthonormal matrices with the corresponding Riesz products and a characterization of Cantor-type languages. J. Fourier Anal. Appl., 13(2):197–210, 2007. atka08-2 [308] N. Atreas and C. Karanikas. Haar-type orthonormal systems, data presentation as Riesz products and a recognition on symbolic sequences. In Frames and operator theory in analysis and signal processing, volume 451 of Contemp. Math., pages 1–9. Amer. Math. Soc., Providence, RI, 2008. atmest12 [309] N. Atreas, A. Melas, and T. Stavropoulos. Affine dual frames and extension principles. Applied Comput. Harmon. Anal., preprint submitted:24, 2012. atpo08 [310] N. Atreas and P. Polychronidou. A class of sparse invertible matrices and their use for nonlinear prediction of nearly periodic time series with fixed period. Numer. Funct. Anal. Optim., 29(1-2):66–87, 2008. at02 [311] N. D. Atreas. New bounds for truncation-type errors on regular sampling expansions. Numer. Funct. Anal. Optim., 23(7-8):695–704, 2002. 28 at03 [312] N. D. Atreas. Wavelet decomposition and sampling for p-adic multiresolution analysis. In B. D. Bojanov, editor, Constructive theory of functions. Proceedings of the international conference, Varna, Bulgaria, June 19-23, 2002, pages 198–204. DARBA, Sofia, 2003. at07-1 [313] N. D. Atreas. On a class of multiscale transforms on L2[0,1) and their corresponding sampling theorem. In Nikolaos D. Atreas and Costas Karanikas, editors, Proceedings of the conference SampTA07, pages 19–22, Thessaloniki, Greece, june 1 - 5, 2007, 2007. at11 [314] N. D. Atreas. Perturbed sampling formulas and local reconstruction in shift invariant spaces. J. Math. Anal. Appl., 377(2):841–852, 2011. at12 [315] N. D. Atreas. On a class of non-uniform average sampling expansions and partial reconstruction in subspaces of l2 ( ). Adv. Comput. Math., 36(1):21–38, 2012. atbaka02 [316] N. D. Atreas, N. Bagis, and C. Karanikas. The information loss error and the jitter error for regular sampling expansions. Sampl. Theory Signal Image Process., 1(3):261–276, 2002. atbi12 [317] N. D. Atreas and A. Bisbas. Generalized Riesz products produced from orthonormal transforms. Colloq. Math., 126(2):141–154, 2012. atka11 [318] N. D. Atreas and C. Karanikas. Boolean invertible matrices identified from two permutations and their corresponding Haar-type matrices. Linear Algebra Appl., 435(1):95–105, 2011. atka11-1 [319] N. D. Atreas and C. Karanikas. Reducing Gibbs ripples for some wavelet sampling series. Chapter 11, 2011. atka12 [320] N. D. Atreas and C. Karanikas. Discrete transforms produced from two natural numbers and applications. In R. Moreno D´ıaz and Pichler, editors, Computer aided systems theory EUROCAST 2011, Lecture notes in computer science Vol. 6928, pages 304–310. Springer Berlin Heidelberg, 2012. atkapo04 [321] N. D. Atreas, C. Karanikas, and P. Polychronidou. Signal analysis on strings for immune-type pattern recognition. Comparative and Functional Genomics, 5(1):69–74, 2004. 29 atkapo08 [322] N. D. Atreas, C. Karanikas, and P. Polychronidou. A class of sparse unimodular matrices generating multiresolution and sampling analysis for data of any length. SIAM J. Matrix Anal. Appl., 30(1):312–323, 2008. atkata03 [323] N. D. Atreas, C. Karanikas, and A. O. Tarakanov. Signal processing by an immune type tree transform. In J. Timmis, Peter J. Bentley, and Emma Hart, editors, Artificial immune systems, volume 2787 Atreas, Nikolaos, D.;Karanikas, Costas;Tarakanov, of Lecture Notes in Computer Science, pages 111–119. Springer Berlin Heidelberg, 2003. at80 [324] A. Atzmon. On the union of sets of synthesis and Ditkin’s condition in regular Banach algebras. Bull. Amer. Math. Soc. (N.S.), 2:317–320, 1980. au68 [325] J.-P. Aubin. Evaluations des erreurs de troncature des approximations des espaces de Sobolev. J. Math. Anal. Appl., 21:356–368, 1968. au68-1 [326] J.-P. Aubin. Interpolation et approximation optimales et “spline functions”. J. Math. Anal. Appl., 24:1–24, 1968. au00 [327] J.-P. Aubin. Applied Functional Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York, Second edition, 2000. aufl95 [328] F. Auger and P. Flandrin. Improving the readability of time-frequency and time-scale representations by the reassignment method. Signal Processing, IEEE Transactions on, title=Improving the readability of time-frequency and time-scale representations by the reassignment method, 43(5):1068 –1089,, may 1995. au72 [329] D. Aumuraz. Crit`eres de compacite etroite sur un groupe abelien localement compact. Bull. Sci. Math. (2), 96:263–271, 1972. auco05 [330] P. Auscher and T. Coulhon. Riesz transform on manifolds and Poincare inequalities. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 4(3), 2005. auholalemctc01 [331] P. Auscher, S. Hofmann, M. Lacey, J. Lewis, A. McIntosh, and P. Tchamitchian. The solution of Kato’s conjectures. C. R. Acad. Sci., Paris, S´er. I, Math., 332(7):601–606, 2001. 30 auhy13 [332] P. Auscher and T. Hyt¨onen. Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal., 34(2):266–296, 2013. aukrmopo12 [333] P. Auscher, C. Kriegler, S. Monniaux, and P. Portal. Singular integral operators on tent spaces. J. Evol. Equ., 12(4):741–765, 2012. aurutc05 [334] P. Auscher, E. Russ, and P. Tchamitchian. Hardy Sobolev spaces on strongly Lipschitz domains of Rn . J. Funct. Anal., 218(1):54–109, 2005. aupu11 [335] G. Autuori and P. Pucci. Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces. Complex Variables and Elliptic Equations, 56(7-9):715–753, 2011. avkato14 [336] S. H. Avazzadeh, R. Kamyabi Gol, and R. Raisi Tousi. Continuous frames and G-frames. Bull. Iranian Math. Soc., 40(4):1047–1055, 2014. avmewe12 [337] M. Avdispahic, N. Memic, and F. Weisz. Maximal functions, Hardy spaces and Fourier multiplier theorems on unbounded Vilenkin groups. J. Math. Anal. Appl., 390(1):68–73, 2012. av74 [338] S. Avdonin. On the question of Riesz bases of exponential functions in L2 . Vestnik Leningrad. Univ. No. 13 Mat. Meh. Astronom., (Vyp. 3):5–12, 154, 1974. avbumo07 [339] S. Avdonin, A. Bulanova, and W. Moran. Construction of sampling and interpolating sequences for multi-band signals. The two-band case. Int. J. Appl. Math. Comput. Sci., 17(2):143–156, 2007. avmo99 [340] S. Avdonin and W. Moran. Sampling and interpolation of functions with multi-band spectra and controllability problems. In Optimal control of partial differential equations. Proceedings of the IFIP WG 7. 2 international conference, Chemnitz, Germany, April 20–25, 1998, pages 43–51. 1999. avmo01 [341] S. Avdonin and W. Moran. Ingham-type inequalities and Riesz bases of divided differences. Int. Journ. Applied Math. Comp. Sci.,, 11:803– 820, 2001. 31 avcodoissh08 [342] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and Y. Shkolnisky. A framework for discrete integral transformations. I: The pseudopolar Fourier transform. SIAM J. Sci. Comput., 30(2):764–784, 2008. avcodoissesh08 [343] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, Y. Shkolnisky, and I. Sedelnikov. A framework for discrete integral transformations: II. The 2D discrete Radon transform. SIAM J. Sci. Comput., 30(2):785–803, 2008. avho05 [344] R. Averkamp and C. Houdre. Wavelet thresholding for nonnecessarily Gaussian noise: functionality. Ann. Statist., 33(5):2164–2193, 2005. ax88 [345] S. Axler. Bergman spaces and their operators. In Surveys of some recent results in operator theory, Vol. I, volume 171 of Pitman Res. Notes Math. Ser., pages 1–50. 1988. axbo88 [346] S. Axler and P. Bourdon. Finite-codimensional invariant subspaces of Bergman spaces. Trans. Amer. Math. Soc., 306(2):805–817, 1988. shzenv00 [347] S. Axler, Z. Cuckovi, and N. V. Rao. Commutants of analytic Toeplitz operators on the Bergman space. Proc. Amer. Math. Soc., 128(7):1951–1953, 2000. ay12 [348] I. Aydin. Weighted variable Sobolev spaces and capacity. J. Funct. Spaces, 2012. azfasc05 [349] A. Azzalini, M. Farge, and K. Schneider. Nonlinear wavelet thresholding: a recursive method to determine the optimal denoising threshold. Appl. Comput. Harmon. Anal., 18(2):177–185, 2005. azdato14 [350] J. Azzam, G. David, and T. Toro. Wasserstein Distance and the Rectifiability of Doubling Measures: Part I. arXiv preprint arXiv:1408.6645, 2014. bafrgr07 [351] M. Baake, D. Frettl¨oh, and U. Grimm. A radial analogue of Poisson’s summation formula with applications to powder diffraction and pinwheel patterns. J. Geom. Phys., 57(5):1331–1343, 2007. bamo00 [352] M. Baake and R. Moody. Self-similar measures for quasicrystals. In Directions in mathematical quasicrystals, volume 13 of CRM Monogr. Ser., pages 1–42. Amer. Math. Soc., Providence, 2000. 32 baberiso14 [353] F. Baaske, S. Bernstein, H. Ridder, and F. Sommen. On solutions of a discretized heat equation in discrete Clifford analysis. J. Difference Equ. Appl., 20(2):271–295, 2014. ba13-1 [354] D. Babot. Heisenberg uniqueness pairs in the plane. Three parallel lines. Proc. Amer. Math. Soc., 141(11):3899–3904, 2013. bagu02-1 [355] I. Babuska and B. Guo. Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces. II. Optimal rate of convergence of the p-version finite element solutions. Math. Models Methods Appl. Sci., 12(5):689– 719, 2002. bame97-1 [356] I. Babuska and J. Melenk. The partition of unity method. Int. J. Numer. Methods Eng., 40(4):727–758, 1997. bajemaob12 [357] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–106, 2012. bagi68 [358] G. Backus and F. Gilbert. The resolving power of gross Earth data. Geophys. J. R. Astron. Soc., 16:169–205, 1968. bamapa93 [359] E. Bacry, S. Mallat, and G. Papanicolaou. A wavelet space-time adaptive scheme for partial differential equations. In Progress in wavelet analysis and applications (Toulouse, 1992), pages 677–682. Fronti`eres, Gif-sur-Yvette, 1993. arbamu93 [360] E. Bacry, J. Muzy, and A. Arn’eodo. Singularity spectrum of fractal signals from wavelet analysis: Exact results. Journal of Statistical Physics, 70(3-4):635–674, 1993. baca81 [361] H. Bacry and M. Cadilhac. Metaplectic group and Fourier optics. Physical Review A, 23(5):2533, 1981. babe10 [362] N. Badr and F. Bernicot. Abstract Hardy-Sobolev spaces and interpolation. J. Funct. Anal., 259(5):1169–1208, 2010. baberu12 [363] N. Badr, F. Bernicot, and E. Russ. Algebra properties for Sobolev spaces – applications to semilinear PDEs on manifolds. J. Anal. Math., 118(2):509–544, 2012. 33 bagu10 [364] G. Badrinath and P. Gupta. Stockwell transform based palm-print recognition. Applied Soft Computing, In Press, Corrected Proof:–, 2010. bada10 [365] K. Bagadi and S. Das. MIMO-OFDM channel estimation using pilot carriers. Int. J. Comp. Appl., 2:81–88, May 2010. ba10-6 [366] F. Bagarello. Examples of Pseudo-bosons in quantum mechanics. Physics Letters A, 374(37):3823–3827, 2010. ba10-7 [367] F. Bagarello. Mathematical aspects of intertwining operators: the role of Riesz bases. Journal of Physics A: Mathematical and Theoretical, 43(17):175203, 2010. ba11-3 [368] F. Bagarello. Pseudo-bosons, so far. Rep. Math. Phys., 68(2):175–210, 2011. batr96 [369] F. Bagarello and C. Trapani. Lp -spaces as quasi ∗ -algebras. J. Math. Anal. Appl., 197(3):810–824, 1996. bazn11 [370] F. Bagarello and M. Znojil. Non linear pseudo-bosons versus hidden Hermiticity. arXiv preprint arXiv:1109.0605, 2011. ba79-4 [371] R. Bagby. Riesz potentials and Fourier multipliers. Harmonic analysis in Euclidean spaces, Part 1, Williamstown/ Massachusetts 1978, Proc. Symp. Pure Math., Vol. 35, 115-119 (1979)., 1979. bami01 [372] B. Bagchi and G. Misra. Homogeneous operators and projective representations of the M¨obius group: A survey. Proc. Indian Acad. Sci., Math. Sci., 111(4):415–437, 2001. ba63 [373] R. Bagley. Mathematical Notes: Compactness in Function Spaces. Amer. Math. Monthly, 70(3):286–288, 1963. bata10 [374] B. Bah and J. Tanner. Improved bounds on restricted isometry constants for Gaussian matrices. SIAM J. Matrix Anal. Appl., 31(5):2882–2898, 2010. bafega12 [375] H. Bahouri, C. Fermanian Kammerer, and I. Gallagher. Phase-space Analysis and Pseudodifferential Calculus on the Heisenberg Group. Asterisque 342. Paris: Societe Mathematique de France (SMF). vi, 128 p., 2012. 34 bamama11 [376] H. Bahouri, M. Majdoub, and N. Masmoudi. On the lack of compactness in the 2D critical Sobolev embedding. J. Funct. Anal., 260(1):208–252, 2011. bamama12 [377] H. Bahouri, M. Majdoub, and N. Masmoudi. Lack of compactness in the 2D critical Sobolev embedding, the general case. C. R., Math., Acad. Sci. Paris, 350(3-4):177–181, 2012. basi10 [378] Z. Bai and J. Silverstein. Spectral analysis of large dimensional random matrices. Springer Series in Statistics. Springer, New York, Second edition, 2010. ba10-5 [379] B. Bailey. Sampling and recovery of multidimensional bandlimited functions via frames. J. Math. Anal. Appl., 367(2):374–388, 2010. bama14 [380] B. Bailey and W. Madych. Functions of exponential type and the cardinal series. J. Approx. Theory, 181:54 – 72, 2014. ba12 [381] B. A. Bailey. Multivariate polynomial interpolation and sampling in Paley-Wiener spaces. J. Approx. Theory, 164(4):460–487, 2012. babocagilumo07 [382] D. Bailey, J. M. Borwein, N. Calkin, R. Girgensohn, D. Luke, and V. Moll. Experimental mathematics in action. A K Peters Ltd., Wellesley, MA, 2007. basw91 [383] D. Bailey and P. Swarztrauber. The fractional Fourier transform and applications. SIAM Rev., 33(3):389–404, 1991. basw94 [384] D. Bailey and P. Swarztrauber. A fast method for the numerical evaluation of continuous Fourier and Laplace transforms. SIAM J. Sci. Comput., 15(5):1105–1110, 1994. banosa08 [385] W. Bajwa, A. Sayeed, and R. Nowak. Learning sparse doubly-selective channels. Monticello, IL, Sep. 2008. ba05-5 [386] D. Bakic. On admissible generalized multiresolution analyses. Grazer Math. Ber., 348:15–30, 2005. ba06-3 [387] D. Bakic. Semi-orthogonal Parseval frame wavelets and generalized multiresolution analyses. 21(3):281–304, 2006. 35 bakrwi05 [388] D. Bakic, I. Krishtal, and E. Wilson. Parseval frame wavelets with (2) en -dilations. Appl. Comput. Harmon. Anal., 19(3):386–431, 2005. bachkrro14 [389] R. Balan, J. G. Christensen, I. Krishtal, K. Okoudjou, and J. L. Romero. Multi-window Gabor frames in amalgam spaces. Math. Res. Lett., 21(1):55–69, 2014. bakr10 [390] R. Balan and I. Krishtal. An almost periodic noncommutative Wiener’s Lemma. J. Math. Anal. Appl., 370(2):339–349, 2010. bama03 [391] E. Balanzario and E. Marmolejo Olea. Ingham Tauberian theorem with an estimate for the error term. Int. J. Math. Math. Sci., (64):4025–4031, 2003. bara05 [392] R. Balasubramanian and R. Radha. Hardy-type inequalities for Hermite expansions. JIPAM, J. Inequal. Pure Appl. Math., 6(1):Paper No. 12, 4 p, 2005. ba06-4 [393] P. Balazs. Frames and finite dimensionality: Frame transformation, classification and algorithms. 2006. babajaso11 [394] P. Balazs, D. Bayer, F. Jaillet, and P. Sondergaard. The phase derivative around zeros of the short-time Fourier transform. preprint, page 22, 2011. babara12 [395] P. Balazs, D. Bayer, and A. Rahimi. Multipliers for continuous frames in Hilbert spaces. J. Phys. A, Special issue: Coherent states(45):244023, 2012. bacahemo11 [396] P. Balazs, C. Cabrelli, S. B. Heineken, and U. Molter. Frames by multiplication. Current Development in Theory and Applications of Wavelets, 5(2-3):165–186, 2011. badohojave11 [397] P. Balazs, M. D¨orfler, F. Jaillet, N. Holighaus, and G. A. Velasco. Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math., 236(6):1481–1496, 2011. badokoto13 [398] P. Balazs, M. D¨orfler, M. Kowalski, and B. Torr´esani. Adapted and adaptive linear time-frequency representations: a synthesis point of view. IEEE Signal Processing Magazine, 30(6):20–31, 2013. 36 bast15 [399] P. Balazs and D. Stoeva. Representation of the inverse of a frame multiplier. J. Math. Anal. Appl., 422(2):981 – 994, 2015. baho70 [400] R. Balbes and A. Horn. Injective and projective Heyting algebras. Trans. Amer. Math. Soc., 148:549–559, 1970. bakemapi09-1 [401] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard. Adaptive density estimation for directional data using needlets. Ann. Statist., 37(6A):3362–3395, 2009. bakemapi09-2 [402] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard. Asymptotics for spherical needlets. Ann. Statist., 37(3):1150–1171, 2009. bakemapi09 [403] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard. Subsampling needlet coefficients on the sphere. Bernoulli, 15(2):438–463, 2009. bafrgi11 [404] M. Baldiotti, R. Fresneda, and D. Gitman. Quantization of the damped harmonic oscillator revisited. Phys. Lett. A, 375(15):1630– 1636, 2011. ba91-1 [405] M. Balk. Polyanalytic functions and their generalizations [ MR1155418 (93f:30050)]. In Complex analysis I: Entire and meromorphic functions, polyanalytic functions and their generalizations. Transl. from the Russian by V. I. Rublinetskij and V. A. Tkachenko, volume 85 of Encyclopaedia Math. Sci., pages 195–253. Berlin: Springer, 1991. bahiza10 [406] T. Banakh, J. Higes, and I. Zarichnyi. The coarse classification of countable abelian groups. Trans. Amer. Math. Soc, 362:4755–4780, 2010. bawe92 [407] T. Banchoff and J. Wermer. Undergraduate Texts in Mathematics. Springer New York, second edition edition, 1992. badomisa12 [408] A. Bandeira, E. Dobriban, D. Mixon, and W. Sawin. Certifying the restricted isometry property is hard. preprint, 2012. ba95-1 [409] H. Bang. Functions with bounded spectrum. Trans. Amer. Math. Soc., 347(3):1067–1080, 1995. 37 ba97-6 [410] H. Bang. Spectrum of functions in Orlicz spaces. J. Math. Sci., Tokyo, 4(2):341–349, 1997. bagrst14 [411] S. Bannert, K. Gr¨ochenig, and J. St¨ockler. Discretized Gabor frames of totally positive functions. IEEE Trans. Information Theory, 60(1):159–169, 2014. bagipf07 [412] C. B¨ar, N. Ginoux, and F. Pf¨affle. Wave Equations on Lorentzian Manifolds and Quantization. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Z¨ urich, 2007. bakiso07 [413] L. Bar, N. Sochen, and N. Kiryati. Restoration of images with piecewise space-variant blur. In Scale Space and Variational Methods in Computer Vision, pages 533–544. Springer, 2007. baboscstwi09 [414] S. Bar lev, O. Boxma, W. Stadje, F. Schouten, and C. Wiesmeyr. Two-stage queueing network models for quality control and testing. European Journal of Operational Research, 198:859–866, 2009. bast07 [415] R. G. Baraniuk and P. Steeghs. Compressive radar imaging. pages 128–133, April 2007. bady11 [416] A. Baranov and K. Dyakonov. The Feichtinger conjecture for reproducing kernels in model subspaces. J. Geom. Anal., 21(2):276–287, 2011. ba11-4 [417] D. Barbieri. Approximations of Sobolev norms in Carnot groups. Commun. Contemp. Math., 13(5):765–794, 2011. bahepa14 [418] D. Barbieri, E. Hernandez, and V. Paternostro. The Zak transform and the structure of spaces invariant by the action of an LCA group. arXiv, 2014. bamevi08-1 [419] J. Bardsley, J. Merikoski, and R. Vio. The stabilizing properties of nonnegativity constraints in least-squares image reconstruction. Int. J. Pure Appl. Math., 43(1):95–109, 2008. babugikl40 [420] V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder. Some formal properties of the density matrix. 1940. bamo60 [421] V. Bargmann and M. Moshinsky. Group theory of harmonic oscillators::(I). The Collective Modes. Nuclear physics, 18:697–712, 1960. 38 bakome10 [422] A. Barhoumi, V. Komornik, and M. Mehrenberger. A vectorial Ingham-Beurling type theorem. Ann. Univ. Sci. Budapest. E¨otv¨os Sect. Math., 53:17–32, 2010. balemo03 [423] I. Barhumi, G. Leus, and M. Moonen. Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Trans. Signal Process., 51:1615–1624, Jun. 2003. bade90 [424] J. Barlow and J. Demmel. Computing Accurate Eigensystems of Scaled Diagonally Dominant Matrices. SIAM J. Numer. Anal., 27(3):762–791, 1990. base10 [425] J. Barral and S. Seuret. Recent developments in fractals and related fields. Applied and Numerical Harmonic Analysis. Boston, MA: Birkh¨auser, Based on the international conference on fractals and related fields, Monastir, Tunisia, September 2007 held in honor of Jacques Peyriere, 2010. bagima99 [426] E. Barrio, E. Gine, and C. Matran. 27(2):pp. 1009–1071, 1999. The Annals of Probability, babe11 [427] B. Barrios and J. J. Betancor. Characterizations of anisotropic Besov spaces. Math. Nachr., 284(14-15):1796–1819, 2011. babe12 [428] B. Barrios and J. J. Betancor. Anisotropic weak Hardy spaces and wavelets. J. Funct. Spaces Appl., 2012:17, 2012. bakuoz97 [429] B. Barshan, M. Kutay, and H. Ozaktas. Optimal filtering with linear canonical transformations. Optics Communications, 135(1-3):32–36, 1997. ba11-1 [430] S. Bartels. Total variation minimization with finite elements: convergence and iterative solution. preprint, 2011. ba12-4 [431] S. Bartels. Total variation minimization with finite elements: Convergence and iterative solution. SIAM Journal on Numerical Analysis, 50:1162–1180, 2012. ba08-5 [432] L. Bartholdi. On amenability of group algebras. I. Israel J. Math., 168:153–165, 2008. 39 babo10 [433] L. Bartholdi and O. Bogopolski. On abstract commensurators of groups. J. Group Theory, 13(6):903–922, 2010. bapo09 [434] L. Bartholdi and F. Pochon. On growth and torsion of groups. Groups Geom. Dyn., 3(4):525–539, 2009. bakapeso06 [435] S. Barza, A. Kaminska, L.-E. Persson, and J. Soria. Mixed norm and multidimensional Lorentz spaces. Positivity, 10(3):539–554, 2006. basi14 [436] S. Barza and P. Silvestre. Functions of bounded second p-variation. Rev. Mat. Complut., 27(1):69–91, 2014. ba78-1 [437] A. Baskakov. Spectral criteria for almost periodicity of solutions of functional equations. Mathematical Notes, 24(2):606–612, 1978. ba83-1 [438] A. Baskakov. Spectral synthesis in Banach modules over commutative Banach algebras. Math. Notes, 34:776–782, 1983. baka12 [439] A. Baskakov and N. Kaluzhina. Beurling’s Theorem for Functions with Essential Spectrum from Homogeneous Spaces and Stabilization of Solutions of Parabolic Equations. Matematicheskie Zametki, 92(5):643–661, 2012. bakr05 [440] A. Baskakov and I. Krishtal. Harmonic analysis of causal operators and their spectral properties. Izv. Ross. Akad. Nauk Ser. Mat., 69(3):3–54, 2005. bakr14 [441] A. Baskakov and I. Krishtal. Memory estimation of inverse operators. J. Funct. Anal., 267(8):2551 – 2605, 2014. bagr12 [442] R. F. Bass and K. Gr¨ochenig. Relevant sampling of band-limited functions. Illinois J. Math., 57(1):43–58, 2013. bape13 [443] F. Bassetti and E. Perversi. Speed of convergence to equilibrium in Wasserstein metrics for Kac-like kinetic equations. Electron. J. Probab., 18:no. 6, 35, 2013. bahust91 [444] J. Bastero, H. Hudzik, and A. Steinberg. On smallest and largest spaces among rearrangement-invariant p-Banach function spaces (0 < p < 1). Indag. Math., New Ser., 2(3):283–288, 1991. 40 bamiru03 [445] J. Bastero, M. Milman, and B. Ruiz. A note on L(∞, q) spaces and Sobolev embeddings. Indiana Univ. Math. J., 52(5):1215–1230, 2003. alba02 [446] M. J. Bastiaans and T. Alieva. Wigner distribution moments in fractional Fourier transform systems. J. Opt. Soc. Amer. A, 19(9):1763– 1773, 2002. bawo03 [447] M. J. Bastiaans and K. Wolf. Phase reconstruction from intensity measurements in linear systems. JOSA A, 20(6):1046–1049, 2003. babo98 [448] F. Bastin and C. Boigelot. Biorthogonal wavelets in H m (R). J. Fourier Anal. Appl., 4(6):749–768, 1998. bala94 [449] F. Bastin and P. Laubin. On the functional characterization of the analytic wave front set of an hyperfunction. Math. Nachr., 166:263– 271, 1994. ba13 [450] J. Basto Goncalves. Symplectic rigidity and flexibility of ellipsoids. Indagationes Mathematicae, 24(1):264 – 278, 2013. badipr10 [451] C. Bastos, N. Dias, and J. Prata. Wigner measures in noncommutative quantum mechanics. Comm. Math. Phys., 299(3):709–740, 2010. ba10-4 [452] D. Basu. Introduction To Classical And Modern Analysis And Their Application To Group Representation theory. Hackensack, NJ: World Scientific. 400 p., 2010. ba11 [453] D. Basu. Introduction to Classical and Modern Analysis and Their Application to Group Representation Theory. World Scientific, 2011. ba12-3 [454] D. Batenkov. Complete algebraic reconstruction of piecewise-smooth functions from Fourier data. preprint:12, 2012. bayo12 [455] D. Batenkov and Y. Yomdin. Algebraic Fourier reconstruction of piecewise smooth functions. Math. Commun., 81(277):277–318, 2012. bayo13 [456] D. Batenkov and Y. Yomdin. Geometry and singularities of the Prony mapping. preprint:26, 2013. bahamu13 [457] C. Batty, M. Haase, and J. Mubeen. The holomorphic functional calculus approach to operator semigroups. Acta Math. Sci., 79(12):289–323, 2013. 41 babogamu14 [458] F. Baudoin, M. Bonnefont, N. Garofalo, and I. Munive. Volume and distance comparison theorems for sub-Riemannian manifolds. J. Funct. Anal., 267(7):2005–2027, 2014. baki14 [459] F. Baudoin and B. Kim. Sobolev, Poincar´e, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality. Rev. Mat. Iberoam., 30(1):109–131, 2014. ba04-1 [460] W. Bauer. Hilbert-Schmidt Hankel operators on the Segal-Bargmann space. Proc. Amer. Math. Soc., 132(10):2989–2996 (electronic), 2004. bafu08-1 [461] W. Bauer and K. Furutani. Compact operators and the pluriharmonic Berezin transform. Int. J. Math., 19(6):645–669, 2008. bais12 [462] W. Bauer and H. Issa. Commuting Toeplitz operators with quasihomogeneous symbols on the Segal-Bargmann space. J. Math. Anal. Appl., 386(1):213–235, 2012. bale11 [463] W. Bauer and T. Le. Algebraic properties and the finite rank problem for Toeplitz operators on the Segal-Bargmann space. J. Funct. Anal., 261(9):2617–2640, 2011. bale11-1 [464] W. Bauer and Y. Lee. Commuting Toeplitz operators on the SegalBargmann space. J. Funct. Anal., 260(2):460–489, 2011. ba09-5 [465] H. Baum. Eichfeldtheorie: Eine Einf¨ uhrung in Die Differentialgeometrie auf Faserb¨ undeln. Springer-Lehrbuch Masterclass. Springer, 2009. ba12-2 [466] C. Baumgarten. A geometrical method of decoupling. Submitted on 4 Jan 2012, 2012. ba12-1 [467] C. Baumgarten. A symplectic method to generate multivariate normal distributions. Submitted on 16 May 2012, 2012. bari00 [468] F. Baur and W. Ricker. The Weyl calculus and a Cayley-Hamilton theorem for pairs of selfadjoint matrices. Linear Algebra Appl., 319(13):103–116, 2000. 42 baco11 [469] H. Bauschke and P. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Math´ematiques de la SMC. Springer, New York, 2011. bahi64 [470] G. Baxter and I. Hirschman. An explicit inversion formula for finitesection Wiener-Hopf operators. Bull. Amer. Math. Soc., 70:820–823, 1964. ba99-5 [471] R. Baxter. SAR image compression with the Gabor transform. Geoscience and Remote Sensing, IEEE Transactions on, 37(1):574–588, 1999. ba11-2 [472] F. Bayart. Composition operators on the polydisk induced by affine maps. J. Funct. Anal., 260(7):1969–2003, 2011. ba10-3 [473] D. Bayer. Bilinear Time-Frequency Distributions and Pseudodifferential Operators. PhD thesis, 2010. base09-1 [474] I. Bayram and I. Selesnick. On the frame bounds of iterated filter banks. Appl. Comput. Harmon. Anal., 27(2):255–262, 2009. bewo10-1 [475] R. Beals and R. Wong. Special Functions - A Graduate Text. Cambridge University Press, 2010. be79-2 [476] H. Bear. Approximate identities and pointwise convergence. Pacific J. Math., 81:17–27, 1979. be95-5 [477] A. Beardon. Graduate Texts in Mathematics - The Geometry of Discrete Groups. Springer, 1995. be95-4 [478] A. Beardon. The Geometry of Discrete Groups. 91. Springer-Verlag, New York, 1995. bede73 [479] A. Beavers and E. Denman. A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues. Numer. Math., 21:389–396, 1973. beda14 [480] N. Bebiano and J. da Providencia. Krein space numerical ranges: compressions and dilations. Ann. Funct. Anal., 5(1):36–50, 2014. 43 becaro13 [481] C. Beccari, G. Casciola, and L. Romani. Construction and characterization of non-uniform local interpolating polynomial splines. J. Comput. Appl. Math., 240(0):5 – 19, 2013. be11 [482] M. Beceanu. New estimates for a time-dependent Schr¨odinger equation. Duke Math. J., 159(3):417–477, 2011. be09-2 [483] I. Bechar. A Bernstein-type inequality for stochastic processes of quadratic forms of Gaussian variables. preprint, 2009. be09-3 [484] P. Bechler. Wavelet approximation of distributions with bounded variation derivatives. J. Fourier Anal. Appl., 15(1):31–57, 2009. beel13 [485] A. Beck and Y. Eldar. Sparsity constrained nonlinear optimization: Optimality conditions and algorithms. SIAM J. Optim., 23(3):1480– 1509, 2013. bete09 [486] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183– 202, 2009. bete09-1 [487] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process., 18(11):2419–2434, 2009. bero07 [488] M. Beck and S. Robins. Computing The Continous Discretely. 2007. beboca11 [489] S. Becker, J. Bobin, and E. J. Candes. NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci., 4(1):1– 39, 2011. beco09 [490] E. B´edos and R. Conti. On twisted Fourier analysis and convergence of Fourier series on discrete groups. J. Fourier Anal. Appl., 15(3):336– 365, 2009. beco11 [491] E. B’edos and R. Conti. On discrete twisted C*-dynamical systems, Hilbert C*-modules and regularity. arXiv preprint arXiv:1104.1731, 2011. be02-1 ¯ C). [492] H. Begehr. Orthogonal decompositions of the function space L2 (D; J. Reine Angew. Math., 549:191–219, 2002. 44 beboperi01 [493] D. Bekoll´e, A. Bonami, M. Peloso, and F. Ricci. Boundedness of Bergman projections on tube domains over light cones. Math. Z., 237(1):31–59, 2001. bena07 [494] D. Bekoll´e and C. Nana. Lp -boundedness of Bergman projections in the tube domain over Vinberg’s cone. J. Lie Theory, 17(1):115–144, 2007. beli06 [495] E. S. Belinsky and W. Linde. Compactness properties of certain integral operators related to fractional integration. Math. Z., 252(3):669– 686, 2006. bedr01 [496] G. Bell and A. Dranishnikov. On asymptotic dimension of groups. Algebr. Geom. Topol, 1:57–71, 2001. be11-2 [497] G. Bellomonte. Rigged Hilbert spaces and contractive families of Hilbert spaces. Monatsh. Math., 164(3):271285, 2011. beditr13 [498] G. Bellomonte, B. Di, and C. Trapani. Operators in Rigged Hilbert spaces: some spectral properties. ArXiv e-prints, September 2013. bemese10 [499] Y. Belov, T. Mengestie, and K. Seip. Unitary discrete Hilbert transforms. J. Anal. Math., 112:383–393, 2010. bemese11 [500] Y. Belov, T. Mengestie, and K. Seip. Discrete Hilbert transforms on sparse sequences. Proc. Lond. Math. Soc. (3), 103(1):73–105, 2011. bega10 [501] D. Beltita and J. E. Gale. Universal objects in categories of reproducing kernels. Revista Matem’atica Iberoamericana, 27(1):123–179, 2010. bebe09 [502] I. Beltita and D. Beltita. A survey on Weyl calculus for representations of nilpotent Lie groups. Arxiv preprint arXiv:0910.1994, 2009. bebe09-1 [503] I. Beltita and D. Beltita. Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups. Ann. Global Anal. Geom., 36(3):293–322, 2009. bebe10 [504] I. Beltita and D. Beltita. Uncertainty principles for magnetic structures on certain coadjoint orbits. J. Fourier Anal. Appl., 60(1):81–95, 2010. 45 bebe11-1 [505] I. Beltita and D. Beltita. Continuity of magnetic Weyl calculus. J. Funct. Anal., 260(7):1944–1968, 2011. bebe11 [506] I. Beltita and D. Beltita. Modulation spaces of symbols for representations of nilpotent Lie groups. J. Fourier Anal. Appl., 17(2):290–319, 2011. bebe12 [507] I. Beltita and D. Beltita. Algebras of symbols associated with the Weyl calculus for Lie group representations. Monatsh. Math., 167:13– 33, 2012. begr13 [508] A. V. Belykh and A. V. Greshnov. Carnot-Caratheodory homogeneous cone condition and Carnot-Caratheodory balls in Heisenberg groups. J. Math. Sci. (N. Y.), 195(6):779–790, 2013. bebl11 [509] H. Ben and L. Blanc F´eraud. Restoration mehod for spatially variant blurred images. Technical report, INRIA, June 2011. begh13 [510] M. Ben and B. Ghribi. Weinstein-Sobolev spaces of exponential type and applications. Acta Math. Sin. (Engl. Ser.), 29(3):591–608, 2013. bera93-3 [511] J. Ben Arie and K. Rao. Image expansion by non-orthogonal basis functions extended for optimal multiple template matching. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on, volume 5, pages 145–148, 1993. bebr00 [512] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000. bedefe14 [513] T. Bendory, S. Dekel, and A. Feuer. Exact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials. J. Approx. Theory, 182:7–17, 2014. anbe11 [514] J. Benedetto and T. D. Andrews. Intrinsic wavelet and frame applications. In Proc. SPIE, Wavelet pioneer award; Independent component analyses, wavelets, neural networks, biosystems, and nanoengineering IX, volume 8058, pages 805802–805802–13. SPIE, 2011. bebewo12 [515] J. Benedetto, R. Benedetto, and J. Woodworth. Optimal ambiguity functions and Weils exponential sum bound. J. Fourier Anal. Appl., 18(3):471–487, 2012. 46 behe92 [516] J. Benedetto and H. Heinig. Fourier transform inequalities with measure weights. Adv. Math., 96(2):194–225, 1992. bemanato10 [517] A. Benyi, D. Maldonado, V. Naibo, and R. H. Torres. On the H¨ormander classes of bilinear pseudodifferential operators. Integr. Equ. Oper. Theory, 67(3):341–364, 2010. beoh11 [518] A. Benyi and T. Oh. Modulation spaces, Wiener amalgam spaces, and Brownian motions. Adv. Math., 228(5):2943 – 2981, 2011. bedenathtovi09 [519] . B´enyi, C. Demeter, A. Nahmod, C. Thiele, R. Torres, and P. Villarroya. Modulation invariant bilinear t(1) theorem. J. Anal. Math., 109:279–352, 2009. bera07 [520] M. Benzi and N. Razouk. On the Iwasawa decomposition of a symplectic matrix. Appl. Math. Lett., 20(3):260–265, 2007. be86-2 [521] Y. Berezanskii. Selfadjoint operators in spaces of functions of infinitely many variables, volume 63 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1986. be63-2 [522] F. A. Berezin. Canonical transformations in representations of second quantization. Dokl. Akad. Nauk SSSR, 150:959–962, 1963. be75-2 [523] F. A. Berezin. General concept of quantization. Communications in Mathematical Physics, 40(2):153–174, 1975. bemi99 [524] A. Berg and W. Mikhael. A survey of mixed transform techniques for speech and image coding. In Circuits and Systems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE International Symposium on, volume 4, pages 106 –109, Orlando, FL, USA, jul 1999. be00-3 [525] M. Berg. The Fourier-analytic Proof of Quadratic Reciprocity. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, 2000. be00-2 [526] A. Berge. Symplectic lattices. In Quadratic forms and their applications: proceedings of the Conference on Quadratic Forms and Their Applications, July 5-9, 1999, University College Dublin, volume 272, page 9, 2000. 47 behuwazh10 [527] C. Berger, Z. Wang, J. Huang, and S. Zhou. Application of Compressive Sensing to Sparse Channel Estimation. IEEE Comm. Mag., 48:164–174, Nov. 2010. beprwizh10 [528] C. Berger, S. Zhou, J. Preisig, and P. Willett. Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing. IEEE Trans. Signal Process., 58:1708–1721, Mar. 2010. beco87 [529] C. A. Berger and L. A. Coburn. Toeplitz operators on the SegalBargmann space. Trans. Amer. Math. Soc., 301(2):813–829, 1987. begrma14 [530] P. Berger, K. Gr¨ochenig, and G. Matz. Sampling and reconstruction in different subspaces using oblique projections. 2014. be71-3 [531] T. Berger. Rate distorsion theory. A mathematical basis for data compression. Prentice-Hall series in information and system sciences. Eaglewood Cliffs: Prentice-Hall, Inc. xiii, 311 p. (1971)., 1971. be13 [532] R. Bergmann. Translationsinvariante R¨aume multivariater anisotroper Funktionen auf dem Torus. PhD thesis, 2013. beho12 [533] S. Berhanu and J. Hounie. A class of FBI transforms. Comm. Partial Differential Equations, 37(1-3):38–57, 2012. beinru08 [534] R. Berinde, P. Indyk, and M. Ruzic. Practical near-optimal sparse recovery in the L1 norm. In Proc. Allerton, 2008. beno94 [535] M. Z. Berkolaiko and I. Y. Novikov. Unconditional bases in spaces of functions of anisotropic smoothness. Proc. Steklov Inst. Math., 204(3):27–41, 1994. begeve92 [536] N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Berlin etc.: Springer-Verlag, 1992. beor95 [537] B. Berndtsson and J. Ortega. On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math., 464:109– 128, 1995. befr14 [538] F. Bernicot and D. Frey. Pseudodifferential operators associated with a semigroup of operators. J. Fourier Anal. Appl., 20(1):91–118, 2014. 48 bemamona14 [539] F. Bernicot, D. Maldonado, K. Moen, and V. Naibo. Bilinear Sobolev-Poincar´e inequalities and Leibniz-type rules. J. Geom. Anal., 24(2):1144–1180, 2014. besh11 [540] F. Bernicot and S. Shrivastava. Boundedness of smooth bilinear square functions and applications to some bilinear pseudo-differential operators. Indiana Univ. Math. J., 60(1):233–268, 2011. bezh08 [541] F. Bernicot and J. Zhao. New abstract Hardy spaces. J. Funct. Anal., 255(7):1761–1796, 2008. beta96 [542] D. Bernier and K. F. Taylor. Wavelets from square-integrable representations. SIAM J. Math. Anal., 27(2):594–608, 1996. be87-1 [543] J. Bernstein. Method and apparatus for multi-dimensional signal processing using a Short-Space Fourier transform, Oct 1987. be24 [544] S. Bernstein. Sur une modification de l’in´equalit´e de Tchebichef. Annals Science Insitute Sav. Ukraine, Sect. Math. I, 1924. be27 [545] S. Bernstein. Theory of Probability. Moscow, 1927. be98-3 [546] S. Bernstein. A Paley-Wiener theorem and Wiener-Hopf-type integral equations in Clifford analysis. Adv. Appl. Clifford Algebr., 8(1):31–46, 1998. beeb10 [547] S. Bernstein and S. Ebert. Wavelets on S3 and SO(3)Their construction, relation to each other and Radon transform of wavelets on SO(3). Mathematical Methods in the Applied Sciences, 33(16):1895– 1909, 2010. beebpe13 [548] S. Bernstein, S. Ebert, and I. Z. Pesenson. Generalized splines for Radon transform on compact Lie groups with applications to crystallography. J. Fourier Anal. Appl., 19(1):140–166, 2013. bets97 [549] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, 1997. be92 [550] M. Besbes. Points fixes dans les espaces des op´erateurs nucl´eaires. Bull. Austral. Math. Soc., 46(2):287–294, 1992. 49 be64-2 [551] O. V. Besov. Investigation of a family of function spaces in connection with theorems of imbedding and extension. Am. Math. Soc., Transl., II. Ser., 40:85–126, 1964. be03-6 [552] O. V. Besov. Equivalent normings of spaces of functions of variable smoothness. Proceedings of the Steklov Institute of MathematicsInterperiodica Translation, 243:80–88, 2003. be05-3 [553] O. V. Besov. Interpolation, embedding, and extension of spaces of functions of variable smoothness. Proceedings of the Steklov Institute of Mathematics-Interperiodica Translation, 248:47–58, 2005. be09-1 [554] O. V. Besov. Weighted function spaces with constant and variable smoothness. Begehr, H. G. W. (ed.) et al., More progresses in analysis. Proceedings of the 5th international ISAAC congress, Catania, Italy, July 25–30, 2005. Hackensack, NJ: World Scientific. 55-66 (2009)., 2009. bede91 [555] D. Bessis and S. Demko. Stable recovery of fractal measures by polynomial sampling. Physica D, 47(3):427–438, 1991. befarosato08 [556] J. Betancor, J. Farina, L. Rodriguez Mesa, A. Sanabria, and J.-L. Torrea. Transference between Laguerre and Hermite settings. J. Funct. Anal., 254(3):826–850, 2008. beda10 [557] J. J. Betancor and W. Damian. Anisotropic local Hardy spaces. J. Fourier Anal. Appl., 16(5):658–675, 2010. bedzga10 [558] J. J. Betancor, J. Dziubanski, and G. Garrigos. Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions. Tohoku Math. J., 62(2):215–231, 2010. befamaro08 [559] J. J. Betancor, J. Farina, T. Martinez, and L. Rodriguez Mesa. Higher order Riesz transforms associated with Bessel operators. Ark. Mat., 46(2):219–250, 2008. best01 [560] J. J. Betancor and K. Stempak. Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform. Tohoku Math. J., 53(1):109–129, 2001. 50 bebebo10 [561] N. Bettaibi, R. Bettaieb, and S. Bouaziz. Wavelet transform associated with the q-Dunkl operator. Tamsui Oxf. J. Math. Sci., 26(1):77– 101, 2010. bego11 [562] A. Bettayeb and T. Goodman. Some properties of multi-box splines. J. Approx. Theory, 163(2):197–212, February 2011. bedede02 [563] R. Beukema, M. De, and G. De. A Gelfand triple approach to Wigner and Husimi representations. Eindhoven University of Technology, Department of Mathematics and Computing Science, 2002. bero04 [564] A. Beutelspacher and U. Rosenbaum. Projective Geometry from Foundations to Applications (Projektive Geometrie von den Grundlagen bis zu den Anwendungen) 2nd Revised and Expanded ed. Vieweg Studium 41, Aufbaukurs Mathematik. Braunschweig: Vieweg. x, 2004. bero76 [565] F. Beutler and W. Root. The operator pseudoinverse in control and systems identification. Gen. Inverses Appl., Proc. adv. Semin., Madison 1973, 397-494 (1976)., 1976. be11-1 [566] N. Bey. Multi-Resolution Fourier Analysis Part I: Fundamentals. International Journal of Communications, Network and System Sciences, 4(6):364–371, 2011. be12-1 [567] N. Bey. Multi-resolution Fourier analysis: extraction and missing signal recovery of short buried signals in noise. Signal, Image and Video Processing, pages 1–13, 2012. be12 [568] N. Bey. Multi-Resolution Fourier Analysis Part II: Missing Signal Recovery and Observation Results. International Journal of Communications, Network and System Sciences, 5(1):28–36, 2012. be92-1 [569] G. Beylkin. On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal., 29(6):1716–1740, 1992. becoro92 [570] G. Beylkin, R. Coifman, and V. Rokhlin. Wavelets in numerical analysis. In Wavelets and their applications, pages 181–210. 1992. bemo09 [571] G. Beylkin and L. Monzon. Nonlinear inversion of a band-limited Fourier transform. Appl. Comput. Harmon. Anal., 27(3):351–366, 2009. 51 bemo10 [572] G. Beylkin and L. Monz´on. Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal., 28(2):131–149, 2010. be03-5 [573] S. Bezdidko. Study of the properties of Zernike’s orthogonal polynomials. In S. N. Bezdidko, J. M. Sasian, R. J. Koshel, and P. K. Manhart, editors, Proc. SPIE, Novel Optical Systems Design and Optimization VI, volume 5174 of Poster Session, pages 227–234, San Diego, CA, USA, 2003. SPIE. bhda84 [574] R. Bhatia and C. Davis. A bound for the spectral variation of a unitary operator. Linear Multilinear Algebra, 15:71–76, 1984. bhdamc83 [575] R. Bhatia, C. Davis, and A. McIntosh. Perturbation of spectral subspaces and solution of linear operator equations. Linear Algebra Appl., 52-53:45–67, 1983. bhda13 [576] S. Bhatt and P. Dabhi. Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism. Bull. Austral. Math. Soc., 87:195–206, 2013. bhdade14 [577] S. Bhatt, P. Dabhi, and H. Dedania. The multiplier algebra of a Beurling algebra. Bull. Austral. Math. Soc., 90(1):113–120, 2014. bh77 [578] R. Bhattacharya. Refinements of the multidimensional central limit theorem and applications. Ann. Probab., 5:1–27, 1977. bhwu97-1 [579] G. Bhowmik and J. Wu. On the asymptotic behaviour of the number of subgroups of finite abelian groups. Arch. Math. (Basel), 69(2):95– 104, 1997. bhmaXX [580] T. Bhuyain and M. Marcolli. The Ricci Flow on Noncommutative Two-Tori. Letters in Mathematical Physics, pages 1–22. bile08-1 [581] P. Bickel and E. Levina. Covariance regularization by thresholding. Ann. Statist., 36(6):2577–2604, 2008. bile08 [582] P. Bickel and E. Levina. Regularized estimation of large covariance matrices. Ann. Statist., 36:199–227, 2008. birits09 [583] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of lasso and Dantzig selector. Ann. Statist., 37(4):1705–1732, 2009. 52 biscso11 [584] H. Bie, N. Schepper, and F. Sommen. The class of Clifford-Fourier transforms. J. Fourier Anal. Appl., 17(6):1198–1231, 2011. anbisc09 [585] M. Bieri, R. Andreev, and C. Schwab. Sparse tensor discretization of elliptic sPDEs. SIAM J. Sci. Comput., 31:4281–4304, 2009. biri08 [586] H. Bierme and F. Richard. Estimation of anisotropic Gaussian fields through Radon transform. ESAIM, Probab. Stat., 12:30–50, 2008. bibowe13 [587] J. Bigot, C. Boyer, and P. Weiss. An analysis of block sampling strategies in compressed sensing. arXiv, 2013. bi94 [588] J. Bigun. Speed, frequency, and orientation tuned 3-D Gabor filter banks and their design. In Pattern Recognition, Conference C: Signal Processing, Proceedings of the 12th IAPR International Conference on, volume 3, pages 184–187, Jerusalem, 1994. IEEE. bibova97 [589] A. Bijaoui, Y. Bobichon, and B. Vandame. Multiscale image fusion in Astronomy. Vistas in Astronomy, 41(3):365–372, 1997. bi96 [590] C. Binder. Edmund Hlawka zum 80. Geburtstag. Befragt von Christa Binder (Edmund Hlawka on the occasion of his 80th birthday. An interview with Christa Binder). NTM Zeitschrift f¨ ur Geschichte der Wissenschaften, Technik und Medizin, 4(1):201–213, 1996. bicodadepewo10 [591] P. Binev, A. Cohen, W. Dahmen, R. A. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. preprint, 2010. bi07-3 [592] N. Bingham. Regular variation and probability: The early years. J. Comput. Appl. Math., 200(1):357–363, 2007. bigote87 [593] N. Bingham, C. Goldie, and J. Teugels. Regular variation. Encyclopedia of Mathematics and its applications, Vol. 27. Cambridge etc.: Cambridge University Press. XIX, 1987. bios09 [594] N. Bingham and A. Ostaszewski. Infinite combinatorics and the foundations of regular variation. J. Math. Anal. Appl., 360(2):518–529, 2009. bite79 [595] N. Bingham and J. Teugels. Tauberian theorems and regular variation. Nieuw Arch. Wisk. (3), 27:153–186, 1979. 53 bidehi13 [596] E. Binz, M. De Gosson, and B. Hiley. Clifford algebras in symplectic geometry and quantum mechanics. Found. Phys., 43(4):424–439, 2013. bipo08 [597] E. Binz and S. Pods. The Geometry of Heisenberg Groups. American Mathematical Society, 2008. bimara03 [598] E. Birgin, J. Martinez, and M. Raydan. Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal., 23(4):539– 559, 2003. biso87 [599] M. S. Birman and M. Solomyak. Spectral-theory of self-adjoint operators in Hilbert space. Transl. from the Russian. Mathematics and its Applications (Soviet Series) 5. D. Reidel Publishing Co.. A member of the Kluwer Academic Publishers, 1987. bikashya12 [600] S. Bishnoi, S. Sharma, N. Katyal, and R. Yadav. A Conceptual Study of OFDM Transmission Techniques Based on Algorithms Developed Through UML. IJCA Proc. Nat. Workshop-Cum-Conf. Recent Trends Math. Comp., (3), May 2012. bjsi12 [601] I. Bjelakovic and R. Siegmund Schultze. Quantum Stein’s lemma revisited, inequalities for quantum entropies, and a concavity theorem of Lieb. preprint, 2012. bjbj11 [602] A. Bj¨orn and J. Bj¨orn. Nonlinear potential theory on metric spaces. Z¨ urich: European Mathematical Society (EMS), 2011. bl03 [603] R. Blahut. Algebraic Codes for Data Transmission. Cambridge Univ. Press, Cambridge, U.K., 2003. bl10 [604] D. Blair. Riemannian Geometry of Contact and Symplectic Manifolds, volume 203 of Progress in Mathematics. Birkh¨auser Boston Inc., Boston, MA, Second edition, 2010. blcata11 [605] J. Blanchard, C. Cartis, and J. Tanner. Compressed sensing: how sharp is the restricted isometry property? SIAM Rev., 53(1):105–125, 2011. blth10 [606] J. Blanchard and A. Thompson. On support sizes of restricted isometry constants. Appl. Comput. Harmon. Anal., 29(3):382–390, 2010. 54 bl13 [607] K. Blanchfield. Orbits of mutually unbiased bases. arXiv preprint arXiv:1310.4684, 2013. blcamu11 [608] S. Blanes, F. Casas, and A. Murua. Error analysis of splitting methods for the time dependent Schr¨odinger equation. SIAM J. Sci. Comput., 33(4):1525–1548, 2011. bl88 [609] O. Blasco. Convolution of operators and applications. Math. Z., 199(1):109–114, 1988. bl00 [610] O. Blasco. Bilinear maps and convolutions. Research and Expositions in Math, 24:157–167, 2000. bl01 [611] O. Blasco. Remarks on p-summing multipliers. In Recent progress in functional analysis (Valencia, 2000), volume 189 of North-Holland Math. Stud., pages 239–254. 2001. bl05 [612] O. Blasco. Bilinear multipliers and transference. Int. J. Math. Math. Sci., (4):545–554, 2005. bl05-1 [613] O. Blasco. Introduction to vector valued Bergman spaces. 2005. bl07-1 [614] O. Blasco. Dyadic BMO, paraproducts and Haar multipliers. In Interpolation theory and applications, volume 445 of Contemp. Math., pages 11–18. 2007. bl09-3 [615] O. Blasco. Notes on the spaces of bilinear multipliers. Rev. Un. Mat. Argentina, 50(2):23–37, 2009. arbl02 [616] O. Blasco and J. Arregui. Multipliers on vector valued Bergman spaces. Canad. J. Math., 54(6):1165–1186, 2002. blca09 [617] O. Blasco and J. Calabuig. Fourier analysis with respect to bilinear maps. Acta Math. Sin. (Engl. Ser.), 25(4):519–530, 2009. blcagi05 [618] O. Blasco, M. Carro, and T. Gillespie. Bilinear Hilbert transform on measure spaces. J. Funct. Anal., 11(4):459–470, 2005. blfosc07 [619] O. Blasco, J. Fourie, and I. Schoeman. On operator valued sequences of multipliers and r-boundedness. J. Math. Anal. Appl., 328(1):7–23, 2007. 55 blvi03 [620] O. Blasco and F. Villarroya. Transference of bilinear multiplier operators on Lorentz spaces. Illinois J. Math., 47(4):1327–1343, 2003. blvi13 [621] O. Blasco and P. Villarroya. Transference of vector-valued multipliers on weighted lp -spaces. Canad. J. Math., 65(3):510–543, 2013. bl04 [622] D. P. Blecher. Are operator algebras Banach algebras? Lau, Anthony To-Ming (ed.) et al., Banach algebras and their applications. Proceedings of the 16th international conference, University of Alberta, Edmonton, Canada, July 27–August 9, 2003. Providence, RI: American Mathematical Society (AMS). Contemporar, 2004. bl04-1 [623] D. P. Blecher. One-sided ideals and approximate identities in operator algebras. J. Aust. Math. Soc., 76(3):425–448, 2004. blka08 [624] D. P. Blecher and U. Kashyap. Morita equivalence of dual operator algebras. J. Pure Appl. Algebra, 212(11):2401–2412, 2008. blle04 [625] D. P. Blecher and M. Le. Operator Algebras and their Modules An operator Space Approach. Claderon Press, 2004. blma05 [626] D. P. Blecher and B. Magajna. Duality and operator algebras. II: Operator algebras as Banach algebras. J. Funct. Anal., 226(2):485– 493, 2005. blfo89 [627] R. Blei and J. Fournier. Mixed-norm conditions and Lorentz norms. Commutative harmonic analysis, Proc. SLU-GTE Conf., Canton/NY 1987, Contemp. Math. 91, 57-78 (1989)., 1989. blmi13 [628] T. Blendek and J. Michalicek. l1 -Norm estimates of character sums defined by a Sidon set in the dual of a compact Kac algebra. J. Operator Theory, 70(2):375–399, 2013. blhets10 [629] V. Blondel, J. Hendrickx, and J. Tsitsiklis. Continuous-time averagepreserving opinion dynamics with opinion-dependent communications. SIAM J. Control Optim., 48(8):5214–5240, 2010. blthun01 [630] T. Blu, P. Th´evenaz, and M. Unser. MOMS: Maximal-order interpolation of minimal support. IEEE Trans. Image Process., 10(7):1069 – 1080, July 2001. 56 bllapoy10 ¨ Yilmaz. Erratum to: Sobolev [631] J. Blum, M. Lammers, A. Powell, and O. duals in frame theory and sigma-delta quantization [MR2643587]. J. Fourier Anal. Appl., 16(3):382, 2010. blnawezi07 [632] M. Blume, D. Zikic, W. Wein, and N. Navab. A new and general method for blind shift-variant deconvolution of biomedical images. In Medical Image Computing and Computer-Assisted Intervention– MICCAI 2007, pages 743–750. Springer, 2007. blda04 [633] T. Blumensath and M. Davies. On shift-invariant sparse coding. Independent Component Analysis and Blind Signal Separation, pages 1205–1212, 2004. blda05 [634] T. Blumensath and M. Davies. A fast importance sampling algorithm for unsupervised learning of over-complete dictionaries. In Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE International Conference on, volume 5, pages v–213, 2005. blda06 [635] T. Blumensath and M. Davies. Sparse and shift-invariant representations of music. IEEE Transactions on Audio, Speech and Language Processing, 14(1):50–57, 2006. blda07 [636] T. Blumensath and M. Davies. Compressed sensing and source separation. Independent Component Analysis and Signal Separation, pages 341–348, 2007. blda08-1 [637] T. Blumensath and M. Davies. Gradient pursuits. IEEE Trans. Signal Process., 56:2370–2382, Jun. 2008. blda08 [638] T. Blumensath and M. Davies. Iterative thresholding for sparse approximations. J. Fourier Anal. Appl., 14:629–654, 2008. blda09-1 [639] T. Blumensath and M. Davies. Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Information Theory, 55(4):1872–1882, 2009. blda10 [640] T. Blumensath and M. Davies. Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Topics Sig. Process., 4(2):298–309, april , 2010. 57 bosm38 [641] R. Boas and F. Smithies. On the characterization of a distribution function by its Fourier transform. Amer. J. Math., 60:523–531, 1938. abbeboli05 [642] B. Boashash, A. Belouchrani, K. Abed Meraim, and N. Linh Trung. Time-Frequency Signal Processing for Wireless Communication. CRC Press, 2005. bofr92 [643] B. Boashash and G. Frazer. Time-varying higher-order spectra, generalised Wigner-Ville distribution and the analysis of underwater acoustic data. In icassp, pages 193–196, 1992. bomot09 [644] H. Boche, U. M¨onich, and o. others. The Class of Bandlimited Functions with Unstable Reconstruction under Thresholding. In SAMPTA’09, International Conference on Sampling Theory and Applications, 2009. bomo11 [645] H. Boche and U. J. M¨onich. Sampling of deterministic signals and systems. IEEE Trans. Signal Process., 59(5):2101–2111, 2011. bo04-4 [646] B. Bodmann. A lower bound for the Wehrl entropy of quantum spin with sharp high-spin asymptotics. Comm. Math. Phys., 250(2):287– 300, 2004. bokuzh15 [647] B. Bodmann, G. Kutyniok, and X. Zhuang. Gabor shearlets. Appl. Comput. Harmon. Anal., 38(1):87–114, 2015. bocaku11 [648] B. G. Bodmann, P. Casazza, and G. Kutyniok. A quantitative notion of redundancy for finite frames. Appl. Comput. Harmon. Anal., 30(3):348–362, 2011. bocrkulimaszte93 [649] M. Bodruzzaman, X. Li, K. Kuah, L. Crowder, M. Malkani, H. H. Szu, and B. Telfer. Speaker recognition using neural network and adaptive wavelet transform. In M. Bodruzzaman, X. Li, K. E. Kuah, L. Crowder, M. Malkani, H. H. Szu, B. A. Telfer, F. O. Huck, and R. D. Juday, editors, Proc. SPIE, Visual Information Processing II, Wavelet Transform, volume 1961, pages 391–400, Orlando, FL, USA, Friday 16 April 1993, 1993. SPIE. bogrra04 [650] A. Boettcher, S. M. Grudsky, and d. Ramirez. Approximating inverses of Toeplitz matrices by circulant matrices. Methods Appl. Anal., 11(2):211–220, 2004. 58 bobumo08 [651] A. Boggess, B. Bunch, and C. Moore. Fourier series and the Lubkin W-transform. Numer. Algorithms, 47(2):133–142, 2008. bora09 [652] A. Boggess and A. Raich. A simplified calculation for the fundamental solution to the heat equation on the Heisenberg group. Proc. Amer. Math. Soc., 137(3):937–944, 2009. bocaol11 [653] P. Boggiatto, E. Carypis, and A. Oliaro. Wigner representations associated with linear transformations of the time-frequency plane. In Pseudo-differential operators: analysis, applications and computations. Selected papers based on lectures presented at the meeting of the ISAAC Group in Pseudo-Differential Operators (IGPDO), London, UK, July 13–18, 2009, pages 275–288. 2011. bocaol13 [654] P. Boggiatto, E. Carypis, and A. Oliaro. Windowed-Wigner representations in the Cohen class and uncertainty principles. J. Geom. Anal., 23(4):1753–1779, 2013. boco02 [655] P. Boggiatto and E. Cordero. Anti-Wick quantization with symbols in Lp spaces. Proc. Amer. Math. Soc., 130(9):2679–2685 (electronic), 2002. bodool13 [656] P. Boggiatto, G. Donno, and A. Oliaro. Hudson’s theorem for τ Wigner transforms. Bull. Lond. Math. Soc., 45(6):1131–1147, 2013. bofega11 [657] P. Boggiatto, C. Fernandez, and A. Galbis. Supports of representations in the Cohen class. J. Fourier Anal. Appl., 17(6):1180–1197, 2011. bo74 [658] A. Bohm. Rigged Hilbert space and quantum mechanics. Technical report, Texas Univ., Austin (USA). Center for Particle Theory, 1974. bo25 [659] H. Bohr. Zur Theorie der Fastperiodischen Funktionen. Acta Mathematica, 46:101–214,, 1925. bo84-1 [660] J. Boidol. Group algebras with a unique C ∗ -norm. J. Funct. Anal., 56(2):220–232, 1984. atbo97 [661] J. Bokor and M. Athans. Frequency domain identification of the MIT interferometer tested in generalized orthogonal basis. In Proc. of the 11th IFAC Simposium on system identificacion, volume 4, pages 1735–1739, Kiayushu, Japan, 1997. 59 bo08-4 [662] F. Bolley. Separability and completeness for the Wasserstein distance. Donati-Martin, Catherine (ed.) et al., S´eminaire de probabilit´es XLI. Some papers are selected contributions of the seminars in Nancy 2005 and Luminy 2006. Berlin: Springer. Lecture Notes in Mathematics 1934, 371-377 (2008)., 2008. boca14 [663] F. Bolley and J. Carrillo. Nonlinear Diffusion: Geodesic convexity is equivalent to Wasserstein contraction. Comm. Partial Differential Equations, 39(10):1860–1869, 2014. bota87 [664] E. Bombieri and J. Taylor. Quasicrystals, tilings, and algebraic number theory: some preliminary connections. In The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985), volume 64 of Contemp. Math., pages 241–264. Amer. Math. Soc., Providence, 1987. boenyo14 [665] H. Bommier - Hato, M. Englis, and E.-H. Youssfi. Dixmier classes on generalized Segal Bargmann Fock spaces. J. Funct. Anal., 266(4):2096 – 2124, 2014. boenyo12 [666] H. Bommier Hato, M. Englis, and E. Youssfi. Bergman-type projections in generalized Fock spaces. J. Math. Anal. Appl., 389(2):1086– 1104, 2012. boyo07 [667] H. Bommier Hato and E. Youssfi. Hankel operators on weighted Fock spaces. Integr. Equ. Oper. Theory, 59(1):1–17, 2007. bodepr99 [668] J. Bona, F. Demengel, and K. Promislow. Fourier splitting and dissipation of nonlinear dispersive waves. Proc. Roy. Soc. Edinburgh Sect. A, 129(3):477–502, 1999. bofe10 [669] A. Bonami and J. Feuto. Products of functions in Hardy and Lipschitz or BMO spaces. Cabrelli, Carlos (ed.) et al., Recent developments in real and harmonic analysis. In honor of Carlos Segovia. Boston, MA: Birkh¨auser. Applied and Numerical Harmonic Analysis, 57-71 (2010)., 2010. boka10 [670] A. Bonami and A. Karoui. Uniform estimates of the prolate spheroidal wave functions and spectral approximation in Sobolev spaces, 2010. 60 boka14-1 [671] A. Bonami and A. Karoui. Spectral decay of the sinc kernel operator and approximations by Prolate Spheroidal Wave Functions. 2014. boka14 [672] A. Bonami and A. Karoui. Uniform bounds of prolate spheroidal wave functions and eigenvalues decay. C. R. Math. Acad. Sci. Paris, 352(3):229–234, 2014. bopo87 [673] A. Bonami and S. Poornima. Nonmultipliers of the Sobolev spaces W k,1 (Rn ). J. Funct. Anal., 71:175–181, 1987. bota09 [674] J. Bonet and J. Taskinen. Toeplitz operators on the space of analytic functions with logarithmic growth. J. Math. Anal. Appl., 353(1):428– 435, 2009. bocopr13 [675] S. Bonettini, A. Cornelio, and M. Prato. A new semiblind deconvolution approach for Fourier-based image restoration: an application in astronomy. SIAM Journal on Imaging Sciences, 6(3):1736–1757, 2013. bopr13 [676] S. Bonettini and M. Prato. A scaled gradient projection method for the X-ray imaging of solar flares. arXiv, 2013. bolaug07 [677] A. Bonfigliolo, E. Lanconelli, and F. Uguzzoni. Stratified Lie Groups and Potential Theory for their Sub-Laplacians. Springer Berlin / Heidelberg, 2007. bo11 [678] B. Bongioanni. Sobolev spaces diversification. Rev. Union Mat. Argent., 52(2):23–34, 2011. bohasa11 [679] B. Bongioanni, E. Harboure, and O. Salinas. Classes of weights related to Schr¨odinger operators. J. Math. Anal. Appl., 373(2):563–579, 2011. boro11 [680] B. Bongioanni and K. Rogers. Regularity of the Schr¨odinger equation for the harmonic oscillator. Ark. Mat., 49(2):217–238, 2011. bonoXX [681] R. Bonner and R. Nossal. 2. Principles of Laser-Doppler Flowmetry. Laser-Doppler blood flowmetry, pages 17–45. bo81 [682] J.-M. Bony. Calcul symbolique et propagation des singularites pour les equations aux derivees partielles non lineaires(Symbolic calculus and propagation of singularities for nonlinear partial differential equations). Ann. Sci. cole Norm. Sup. (4), 14(2):209–246, 1981. 61 bo10-3 [683] L. Books. Multivariate Interpolation: Non-Uniform Rational BSpline, Bezier Triangle, Bezier Surface, Kriging, Microsphere Projection. Books LLC, 2010. bosa07 [684] B. Booton and Y. Sagher. Norm inequalities for certain classes of functions and their Fourier transforms. J. Math. Anal. Appl., 335(2):1416– 1433, 2007. boha99 [685] D. Borah and B. Hart. Frequency-selective fading channel estimation with a polynomial time-varying channel model. IEEE Trans. Comm., 47:862–873, Jun. 1999. bo09 [686] M. Bordeaux. Loi de Weyl presque sure pour un systeme differentiel en dimension 1. In Annales Henri Poincare, pages 1–32, 2009. bo74-2 [687] C. Borell. Convex measures on locally convex spaces. Ark. Mat., 12:239–252, 1974. bo96-3 [688] A. Borichev. Beurling algebras and the generalized Fourier transform. Proc. Lond. Math. Soc., III. Ser., 73(2):431–480, 1996. bochto07 [689] A. Borichev, R. Chill, and Y. Tomilov. Uniqueness theorems for (sub)harmonic functions with applications to operator theory. Proc. Lond. Math. Soc. (3), 95(3):687–708, 2007. bohe93 [690] A. Borichev and H. Hedenmalm. Approximation in a class of Banach algebras of quasianalytically smooth analytic functions. J. Funct. Anal., 115(2):359–390, 1993. bohe95-1 [691] A. Borichev and H. Hedenmalm. Completeness of translates in weighted spaces on the half-line. Acta Math., 174(1):1–84, 1995. bohe97 [692] A. Borichev and H. Hedenmalm. Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces. J. Amer. Math. Soc., 10(4):761–796, 1997. bohevo04 [693] A. Borichev, H. Hedenmalm, and A. Volberg. Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index. J. Funct. Anal., 207(1):111–160, 2004. bohe95 [694] A. Borichev and P. Hedenmalm. Cyclicity in Bergman-type spaces. Internat. Math. Res. Notices, (5):253–262, 1995. 62 boly07 [695] A. Borichev and Y. Lyubarskii. Uniqueness theorems for Korenblum type spaces. J. Anal. Math., 103:307–329, 2007. bolymath09 [696] A. Borichev, Y. Lyubarskii, E. Malinnikova, and P. Thomas. Radial growth of functions in the Korenblum space. Algebra i Analiz, 21(6):47–65, 2009. bomonise10 [697] A. Borichev, R. Mortini, N. Nikolski, and K. Seip. Operator theory and harmonic analysis. Abstracts from the workshop held October 31st-November 6th, 2010. Oberwolfach Rep., 7(4):2813–2875, 2010. boso11 [698] A. Borichev and M. Sodin. Weighted exponential approximation and non-classical orthogonal spectral measures. Adv. Math., 226(3):2503– 2545, 2011. borost99 [699] S. Borman, M. Robertson, and R. Stevenson. Block-matching subpixel motion estimation from noisy, under-sampled frames: An empirical performance evaluation. In S. Borman, M. A. Robertson, R. L. Stevenson, K. Aizawa, R. L. Stevenson, and Y.-Q. Zhang, editors, Visual Communications and Image Processing ’99, Motion estimation, volume 3653 (from 1998) of Proceedings of the SPIE, pages 1442–1451, San Jose, CA, USA, jan 1999. bost98-1 [700] S. Borman and R. Stevenson. Spatial resolution enhancement of lowresolution image sequences: A comprehensive review with directions for future research. Technical report, Department of electrical engineering, University of Notre Dame, Notre Dame, Indiana, USA, jul, 1998. bost98 [701] S. Borman and R. Stevenson. Super-resolution from image sequencesa review. In Circuits and Systems, 1998. Proceedings. 1998 Midwest Symposium on, pages 374 –378, Notre Dame, IN , USA, aug 1998. bost99-1 [702] S. Borman and R. Stevenson. Simultaneous multi-frame MAP superresolution video enhancement using spatio-temporal priors. In Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on, volume 3, pages 469 –473, 1999. bost03 [703] S. Borman and R. Stevenson. Image resampling and constraint formulation for multi-frame super-resolution restoration. In S. Borman, 63 R. L. Stevenson, C. A. Bouman, and R. L. Stevenson, editors, Computational Imaging, Image rendering and processing II, volume 5016 of Proceedings of the SPIE, pages 208–219, Santa Clara, CA, USA, jan 2003. bost04 [704] S. Borman and R. Stevenson. Linear models for multi-frame superresolution restoration under non-affine registration and spatially varying PSF. In S. Borman, R. L. Stevenson, C. A. Bouman, and E. L. Miller, editors, Computational imaging II, Registration and mosaicing, volume 5299 of Proceedings of the SPIE, pages 234–245, San Jose, CA, USA, jan 2004. bowo99 [705] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. CUP Archive, 1999. bowa09 [706] S. Borodachov and Y. Wang. Lattice quantization error for redundant representations. Appl. Comput. Harmon. Anal., 27(3):334 – 341, 2009. babo04 [707] J. Borwein and D. Bailey. Mathematics by Experiment. A K Peters Ltd., Natick, MA, 2004. babo08 [708] J. Borwein and D. Bailey. Mathematics by experiment. A K Peters Ltd., Wellesley, MA, Second edition, 2008. babogi04 [709] J. Borwein, D. Bailey, and R. Girgensohn. Experimentation in mathematics. A K Peters Ltd., Natick, MA, 2004. boboXX [710] J. Borwein and P. Borwein. Experimental and Computational Mathematics: Selected Writings. ? bode09 [711] J. Borwein and K. Devlin. The computer as crucible. An introduction to experimental mathematics. A K Peters Ltd., Wellesley, MA, 2009. bode11 [712] J. Borwein and K. Devlin. Experimental mathematics. An exampleoriented introduction. Heidelberg: Spektrum Akademischer Verlag(Springer), 2011. boglmcwazu13 [713] J. Borwein, M. Glasser, R. McPhedran, J. Wan, and I. Zucker. Lattice Sums Then and Now. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2013. 64 bororo08 [714] J. M. Borwein, E. Rocha, and J. Rodrigues. Communicating mathematics in the digital era (CMDE 2006). A K Peters Ltd., Wellesley, MA, 2008. bosa89 [715] L. Bos and K. Salkauskas. Moving least-squares are Backus-Gilbert optimal. J. Approx. Theory, 59(3):267–275, 1989. bo08-5 [716] S. Bosch. Linear Algebra (Lineare Algebra) 4th revised Ed. SpringerLehrbuch. Berlin: Springer. x, 297 p. EUR 26.95 and SFR 44.00, 2008. bo90-2 [717] J. Bost. Principe d’Oka, K-th´eorie et syst`emes dynamiques non commutatifs. Invent. Math., 101(1):261–333, 1990. bogr10 [718] A. B¨ottcher and S. Grudsky. Variable-coefficient Toeplitz matrices with symbols beyond the Wiener algebra. In Numerical methods for structured matrices and applications. The Georg Heinig memorial volume, pages 191–202. Basel: Birkh¨auser, 2010. bogr03 [719] A. B¨ottcher and S. M. Grudsky. Fej´er means and norms of large Toeplitz matrices. Acta Math. Sci., 69(3-4):889–900, 2003. boma11-1 [720] P. Bouboulis and M. Mavroforakis. Reproducing kernel Hilbert spaces and fractal interpolation. J. Comput. Appl. Math., 235(12):3425–3434, 2011. bo73 [721] R. Bouldin. The pseudo-inverse of a product. SIAM J. Appl. Math., 24:489–495, 1973. bohi91 [722] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. de Gruyter Studies in Mathematics. 14. Berlin etc.: de Gruyter. x, 325 p., 1991. bo88-1 [723] G. Bourdaud. Realisations des espaces de Besov homogenes. (Realization of homogeneous Besov spaces). Ark. Mat., 26(1):41–54, 1988. bo13 [724] G. Bourdaud. Realizations of homogeneous Besov and LizorkinTriebel spaces. Math. Nachr., 286(5-6):476–491, 2013. bola08 [725] G. Bourdaud and d. Lanza. Regularity of the symbolic calculus in Besov algebras. Studia Math., 184(3):271–298, 2008. 65 bomosi06 [726] G. Bourdaud, M. Moussai, and W. Sickel. An optimal symbolic calculus on Besov algebras. Ann. Inst. Henri Poincar´e, Anal. Non Lin´eaire, 23(6):949–956, 2006. bomosi08 [727] G. Bourdaud, M. Moussai, and W. Sickel. Towards sharp superposition theorems in Besov and Lizorkin-Triebel spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 68(10):2889–2912, 2008. bosi99 [728] G. Bourdaud and W. Sickel. Changes of variable in Besov spaces. Math. Nachr., 198:19–39, 1999. bopura11 [729] M.-M. Boureanu, P. Pucci, and V. Radulescu. Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent. Complex Variables and Elliptic Equations, 56(7-9):755–767, 2011. bo88 [730] J. Bourgain. A remark on the uncertainty principle for Hilbertian basis. J. Funct. Anal., 79(1):136–143, 1988. bodifokoku11-1 [731] J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova. Breaking the k 2 -barrier for explicit RIP matrices. In STOC’11, pages 637–644, 2011. bodifokoku11 [732] J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova. Explicit constructions of RIP matrices and related problems. Duke Math. J., 159(1):145–185, 2011. bofokosh10 [733] J. Bourgain, K. Ford, S. Konyagin, and I. Shparlinski. On the divisibility of Fermat quotients. Michigan Math. J., 59(2):313–328, 2010. bogu11 [734] J. Bourgain and L. Guth. Bounds on oscillatory integral operators. C. R., Math., Acad. Sci. Paris, 349(3-4):137–141, 2011. botz89 [735] J. Bourgain and L. Tzafriri. Restricted invertibility of matrices and applications. Analysis at Urbana. Vol. II: Analysis in abstract spaces, Proc. Spec. Year Mod. Anal., Urbana/Ill. 1986-87, Lond. Math. Soc. Lect. Note Ser. 138, 61-107 (1989)., 1989. botz91 [736] J. Bourgain and L. Tzafriri. On a problem of Kadison and Singer. J. Reine Angew. Math., 420:1–43, 1991. 66 boma11 [737] H. Bourles and B. Marinescu. Linear Time-varying Systems Algebraicanalytic Approach. Lecture Notes in Control and Information Sciences 410. Berlin: Springer. xxv, 635 p., 2011. bo02-1 [738] O. Bousquet. A Bennett concentration inequality and its application to suprema of empirical processes. C. R., Math., Acad. Sci. Paris, 334(6):495–500, 2002. bo74-1 [739] d. Boutet. Hypoelliptic operators with double characteristics and related pseudodifferential operators. Commun. Pure Appl. Anal., 27:585–639, 1974. bo47-1 [740] C. Bouwkamp. On spheroidal wave functions of order zero. J. Math. Phys. Mass. Inst. Tech., 26:79–92, 1947. bofighne12 [741] F. Bouzeffour, A. Nemri, A. Fitouhi, and S. Ghazouani. On harmonic analysis related with the generalized Dunkl operator. Integral Transforms Spec. Funct., 23(8):609–625, 2012. boma04 [742] V. Bove and J. Mallett. Collaborative Knowledge Building by Smart Sensors. BT Technology Journal, 22:45–51, 2004. boemgore92 [743] A. Bovik, N. Gopal, T. Emmoth, and A. Restrepo. Localized measurement of emergent image frequencies by Gabor wavelets. IEEE Trans. Information Theory, 38(2):691–712, 1992. bore11 [744] J. Bowley and L. Rebollo Neira. Sparsity and “Something else’: an approach to encrypted image folding. IEEE Signal Process. Letters, 18(3):189–192, 2011. bo01-7 [745] M. Bownik. The construction of r-regular wavelets for arbitrary dilations. J. Fourier Anal. Appl., 7(5):489–506, 2001. bochhuyu12 [746] M. Bownik, O. Christensen, X. Huang, and B. Yu. Extension of shiftinvariant systems in L2 (R) to frames. Numer. Funct. Anal. Optim., 33(7-9):833–846, 2012. boja13 [747] M. Bownik and J. Jasper. Constructive proof of the Carpenters Theorem. Canad. Math. Bull., 57(3):463–476, 2013. bole07 [748] M. Bownik and J. Lemvig. The canonical and alternate duals of a wavelet frame. Appl. Comput. Harmon. Anal., 23(2):263–272, 2007. 67 bole11 [749] M. Bownik and J. Lemvig. Affine and quasi-affine frames for rational dilations. Trans. Amer. Math. Soc., 363(4):1887–1924, 2011. boro14 [750] M. Bownik and K. Ross. The structure of translation-invariant spaces on locally compact abelian groups. preprint, 2014. bosp02 [751] M. Bownik and D. Speegle. Meyer type wavelet bases in R2 . J. Approx. Theory, 116(1):49–75, 2002. bosp13 [752] M. Bownik and D. Speegle. Linear independence of time-frequency translates of functions with faster than exponential decay. Bull. Lond. Math. Soc., 45(3):554–566, 2013. bo67-4 [753] D. Boyd. The Hilbert transform on rearrangement-invariant spaces. Canad. J. Math., 19:599–616, 1967. bo92-1 [754] J. Boyd. A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid. J. Comput. Phys., 103(2):243–257, 1992. bo92-2 [755] J. Boyd. Multipole expansions and pseudospectral cardinal functions: A new generalization of the fast Fourier transform. J. Comput. Phys., 103(1):184–186, 1992. bo01-6 [756] J. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Inc., 2nd (revised) edition, 2001. bo05-3 [757] J. Boyd. Algorithm 840: Computation of Grid Points, Quadrature Weights and Derivatives for Spectral Element Methods Using Prolate Spheroidal Wave Functions — Prolate Elements. ACM Transactions on Mathematical Software, 31(1):149–165, mar 2005. bibowe14 [758] C. Boyer, P. Weiss, and J. Bigot. An algorithm for variable density sampling with block-constrained acquisition. SIAM J. Imaging Sci., 7(2):1080–1107, 2014. bosk10 [759] H. Boylan and N.-P. Skoruppa. Explicit formulas for Hecke Gauss sums in quadratic number fields. Abh. Math. Semin. Univ. Hamb., 80(2):213–226, 2010. 68 bohi14 [760] M. Bozejko and T. Hirai. GELFAND–RAIKOV REPRESENTATIONS OF COXETER GROUPS ASSOCIATED WITH POSITIVE DEFINITE NORM FUNCTIONS. Prob. Math. Stat, 34, 2014. bodyro11 [761] M. Bozzini, N. Dyn, and M. Rossini. Construction of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines. J. Comput. Appl. Math., 236(4):557 – 564, 2011. bolero10 [762] M. Bozzini, L. Lenarduzzi, and M. Rossini. Polyharmonic splines: an approximation method for noisy scattered data of extra-large size. Appl. Math. Comput., 216(1):317–331, 2010. bolerosc04 [763] M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback. Interpolation by basis functions of different scales and shapes. Calcolo, 41(2):77–87, 2004. boro02 [764] M. Bozzini and M. Rossini. Testing methods for 3D scattered data interpolation. In M. Gasca, editor, Proc. of the 6th international workshop, MAIA 2001. Multivariate approximation and interpolation with applications, volume 20, pages 111–135, Almu´ecar, Spain, September 10-14, 2001, 2002. Academia de Ciencias Exactas, Fisicas. boro14-1 [765] M. Bozzini and M. Rossini. Properties of generators of quasiinterpolation operators of high approximation orders in spaces of polyharmonic splines. J. Comput. Appl. Math., (0):–, 2014. br83-1 [766] R. Bracewell. Discrete Hartley transform. 73(12):1832–1835, 1983. br03-3 [767] J. Bracic. Simple multipliers on Banach modules. Glasgow Mathematical Journal, 45(2):309–322, 2003. brdowo99 [768] A. Bracken, H. Doebner, and J. Wood. Bounds on integrals of the Wigner function. Physical Review Letters, 83(19):3758–3761, 1999. brelwo03 [769] A. Bracken, D. Ellinas, and J. Wood. Group theory and quasiprobability integrals of Wigner functions. Journal of Physics A: Mathematical and General, 36:L297, 2003. 69 J. Opt. Soc. Am., brelwo04 [770] A. Bracken, D. Ellinas, and J. Wood. Non-positivity of the Wigner function and bounds on associated integrals. Acta Physica Hungarica B) Quantum Electronics, 20(1):121–124, 2004. brwa10 [771] A. Bracken and P. Watson. The quantum state vector in phase space and Gabor’s windowed Fourier transform. Journal of Physics A: Mathematical and Theoretical, 43:395304, 2010. brscso10 [772] F. Brackx, N. Schepper, and F. Sommen. The Clifford-Fourier integral kernel in even dimensional Euclidean space. J. Math. Anal. Appl., 365(2):718–728, 2010. br45 [773] J. Braconnier. Groupes d’automorphismes d’un groupe localement compact. C. R. Math. Acad. Sci. Paris, 220:382–384, 1945. brsa09 [774] R. Bradley and C. Sandifer. Cauchys Cours danalyse. Springer, 2009. brravl09 [775] M. Brady, S. Raben, and P. Vlachos. Methods for Digital Particle Image Sizing (DPIS): Comparisons and improvements. Flow Measurement and Instrumentation, 20(6):207–219, 2009. br95 [776] J. Bramble. Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory. Math. Commun., 64(212):1359–1365, 1995. brhi70 [777] J. Bramble and S. Hilbert. Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal., 7:112–124, 1970. brpava00 [778] J. Bramble, J. Pasciak, and P. Vassilevski. Computational scales of Sobolev norms with application to preconditioning. Math. Commun., 69(230):463–480, 2000. brwh71 [779] J. Brault and O. White. The analysis and restoration of astronomical data via the fast Fourier transform. Astronomy and Astrophysics, 13:169, jul 1971. anbr13 [780] P. Brault and J.-P. Antoine. A spatio-temporal Gaussian-Conical wavelet with high aperture selectivity for motion and speed analysis. Appl. Comput. Harmon. Anal., 34(1):148–161, 2013. 70 br10-1 [781] A. Braverman. Pursuing the double affine Grassmannian, I: Transversal slices via instantons on A k-Singularities. Duke Math. J., 152(2):175–206, 2010. brfi12 [782] A. Braverman and M. Finkelberg. Pursuing the double affine Grassmannian II: Convolution. Adv. Math., 230(1):414 – 432, 2012. bros10 [783] V. Braverman and R. Ostrovsky. Effective computations on sliding windows. SIAM J. Comput., 39(6):2113–2131, 2010. brosza12 [784] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from sliding windows. J. Comput. Syst. Sci., 78(1):260–272, 2012. brlo08 [785] K. Bredies and D. Lorenz. Linear convergence of iterative softthresholding. J. Fourier Anal. Appl., 14(5-6):813–837, 2008. brfr93 [786] L. Brekke and P. G. O. Freund. p-adic numbers in physics. Phys. Rep., 233(1):1–66, 1993. br13 [787] A. Bressan. Lecture Notes on Functional Analysis. With Applications to Linear Partial Differential Equations. Providence, RI: American Mathematical Society (AMS), 2013. brwa80 [788] H. Brezis and S. Wainger. A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations, 5:773–789, 1980. br83-2 [789] E. Brieskorn. Lineare Algebra und Analytische Geometrie I Noten Zu Einer Vorlesung mit Historischen Anmerkungen von Erhard Scholz. Braunschweig - Wiesbaden: Friedr. Vieweg & Sohn. VIII, 636 S., 1983. br85-1 [790] E. Brieskorn. Lineare Algebra und Analytische Geometrie II. Friedr. Vieweg & Sohn, Braunschweig, 1985. brmimimi13 [791] D. Brigham, D. Mitrea, I. Mitrea, and M. Mitrea. Triebel-Lizorkin sequence spaces are genuine mixed-norm spaces. Math. Nachr., 286(56):503–517, 2013. br12 brgr10 [792] R. Brigola. Fourier-Analysis und Distributionen. tredition, 2012. [793] D. Brody and E. Graefe. Coherent states and rational surfaces. Journal of Physics A: Mathematical and Theoretical, 43:255205, 2010. 71 brni04 [794] J. Brodzki and G. Niblo. Rapid decay and metric approximation property. Arxiv preprint math/0403423, 2004. brni06 [795] J. Brodzki and G. Niblo. Approximation properties for discrete groups. C*-algebras and Elliptic Theory, pages 23–35, 2006. brniwr07 [796] J. Brodzki, G. Niblo, and N. Wright. Property A, partial translation structures, and uniform embeddings in groups. Journal of the London Mathematical Society, 76(2):479–497, 2007. brke11 [797] M. Brokate and G. Kersting. Measure and Integral (Mass und Integral). Mathematik Kompakt. Basel: Birkh¨auser. vi, 158 p. EUR 18.90, 2011. brdi82 [798] J. Brooks and N. Dinculeanu. On weak compactness in the space of Pettis integrable functions. Adv. Math., 45:255–258, 1982. br88-2 [799] G. Brosamler. An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc., 104(3):561–574, 1988. brda05 [800] G. Brown and F. Dai. Approximation of smooth functions on compact two-point homogeneous spaces. J. Funct. Anal., 220(2):401–423, 2005. br69-1 [801] J. J. L. Brown. Truncation error for band-limited random processes. Information science, 1(3):261–271, 1969. brcadajopl84 [802] R. Brualdi, D. Carlson, B. Datta, C. Johnson, R. Plemmons, and R. J. Plemmons. Contemporary Mathematics - Linear Algebra and Its Role in Systems Theory. Volume 47 edition, 1984. brki11 [803] A. Brudnyi and D. Kinzebulatov. Holomorphic almost periodic functions on coverings of complex manifolds. New York J. Math, 17:267– 300, 2011. br76 [804] J. Brudnyi. Piecewise polynomial approximation, embedding theorem and rational approximation. In Approximation Theory (Proceedings of an International Colloquium Held at Bonn, Germany, June 811, 1976), volume 556 of Lecture Notes in Mathematics, pages 73–98. Springer, 1976. brkr81 [805] J. Brudnyi and N. Y. Kruglyak. Functors of real interpolation. Dokl. Akad. Nauk SSSR, 256(1):14–17, 1981. 72 brma12 [806] L. Brugnano and F. Mazzia. 40 years of numerical analysis: Is the discrete world an approximation of the continuous one or is it the other way around? J. Comput. Appl. Math., 236(16):3855 – 3856, 2012. brcu13 [807] J. Bruna and J. Cufi. Complex Analysis. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Z¨ urich, 2013. brst12 [808] J. Brundan and C. Stroppel. Highest weight categories arising from Khovanov’s diagram algebra. IV: The general linear supergroup. J. Eur. Math. Soc. (JEMS), 14(2):373–419, 2012. brisno11 [809] H. Brunner, A. Iserles, and S. Norsett. The computation of the spectra of highly oscillatory Fredholm integral operators. J. Integral Equations Appl., 23(4):467–519, 2011. brle06-1 [810] K. Bryan and T. Leise. The $25,000,000,000 eigenvector: The linear algebra behind google. SIAM Rev., 48(3):569–581, 2006. buch02 [811] S. Bu and R. Chill. Banach spaces with the Riemann-Lebesgue or the analytic Riemann-Lebesgue property. Bull. London Math. Soc., 34(5):569–581, 2002. busa06-1 [812] S. Bu and E. Saksman. The complete continuity property in Banach spaces. Rocky Mountain J. Math., 36(5):1427–1435, 2006. bucomo05 [813] A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation, 4(2):490–530, 2005. buwa07-1 [814] J. Buck and S. Walters. Connes-Chern characters of hexic and cubic modules. J. Operator Theory, 57(1):35–65, 2007. buwa07 [815] J. Buck and S. Walters. Non commutative spheres associated with the hexic transform and their k-theory. J. Operator Theory, 58(2):441– 462, 2007. bukovu99 [816] S. Buckley, P. Koskela, and D. Vukotic. Fractional integration, differentiation, and weighted Bergman spaces. Math. Proc. Cambridge Philos. Soc., 126(2):369–385, 1999. 73 buva11 [817] P. B¨ uhlmann and d. van. Statistics for High-dimensional Data. Springer Series in Statistics. Springer, Heidelberg, 2011. bu12-1 [818] H. Bui. Linear Dependencies in Weyl-Heisenberg Orbits. preprint arXiv:1211.0215, 2012. arXiv bu82 [819] H.-Q. Bui. Weighted Besov and Triebel spaces: Interpolation by the real method. Hiroshima Math. J., 12:581–605, 1982. bu84 [820] H.-Q. Bui. Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J. Funct. Anal., 55(1):39–62, January 1984. bu94-2 [821] H.-Q. Bui. Remark on the characterization of weighted Besov spaces via temperatures. Hiroshima Math. J., 24(3):647–655, 1994. bu94-3 [822] H.-Q. Bui. Weighted Young’s inequality and convolution theorems on weighted Besov spaces. Math. Nachr., 170:25–37, 1994. bu97 [823] H.-Q. Bui. Bernstein’s theorem on weighted Besov spaces. Forum Math., 9(6):739–750, 1997. bula11 [824] H.-Q. Bui and R. Laugesen. Frequency-scale frames and the solution of the Mexican hat problem. Constr. Approx., 33(2):163–189, 2011. bula11-1 [825] H.-Q. Bui and R. Laugesen. Wavelets in Littlewood-Paley space, and Mexican hat completeness. Appl. Comput. Harmon. Anal., 30(2):204– 213, 2011. bula12 [826] H.-Q. Bui and R. Laugesen. Explicit interpolation bounds between Hardy space and L2 ., 2012. bula12-1 [827] H.-Q. Bui and R. Laugesen. Uniqueness for the continuous wavelet transform. Far East J. Appl. Math., 65(1):1–11, 2012. bula12-2 [828] H.-Q. Bui and R. Laugesen. Wavelet frame bijectivity on Lebesgue and Hardy spaces. arXiv preprint arXiv:1206.2390, 2012. bupa11 [829] H.-Q. Bui and M. Paluszynski. On the phi and psi transforms of Frazier and Jawerth. Math. Nachr., 2011. bupata97 [830] H.-Q. Bui, M. Paluszynski, and M. H. Taibleson. Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case q < 1. 3(Special Issue):837–846, 1997. 74 budedesc14 [831] R. Bujack, B. De, S. De, and G. Scheuermann. Convolution products for hypercomplex Fourier transforms. J. Math. Imaging Vision, 48(3):606–624, 2014. bubu06 [832] A. Bukhgeim and A. Bukhgeim. Inversion of the Radon transform, based on the theory of a-analytic functions, with application to 3D inverse kinematic problem with local data. J. Inverse Ill-Posed Probl., 14(3):219–234, 2006. buca03 [833] A. Bultheel and P. Carrette. Algebraic and spectral properties of general Toeplitz matrices. SIAM J. Control Optimization, 41(5):1413– 1439, 2003. bugo99 [834] A. Bultheel and P. Gonzalez Vera. Wavelets by orthogonal rational kernels. In Continued fractions: from analytic number theory to constructive approximation (A volume in honor of L. J. Lange. Proceedings of the conference, University of Missouri-Columbia, Columbia, MO, USA, May 20-23, 1998.), volume 236 of Contemp. Math., pages 101–126. American Mathematical Society, 1999. bugohenj99 [835] A. Bultheel, P. Gonzalez Vera, E. Hendriksen, and O. Njastad. Orthogonal Rational Functions, volume 5 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 1999. buma06 [836] A. Bultheel and H. Martinez Sulbaran. Recent developments in the theory of the fractional Fourier and linear canonical transforms. Bulletin of the Belgian mathematical Society-Simon Stevin, 2006. bupe77 [837] G. Burdet and M. Perrin. Weyl quantization and metaplectic representation. Lett. Math. Phys., 2(2):93–99, 1977/78. bu93-1 [838] V. Burenkov. Fourier multipliers in weighted lp -spaces with exponential weights. In Proceedings of the 4th Finnish-Polish summer school in complex analysis, 1992, volume 55 of Report, pages 5–12, Jyv¨askyl¨a, Finland, 1993. Univ. Jyv¨askyl¨a. bu12-2 [839] V. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I. Eurasian Math. J., 3(3):11–32, 2012. 75 bu13 [840] V. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II. Eurasian Math. J., 4(1):21–45, 2013. budanu13 [841] V. Burenkov, D. Darbayeva, and E. Nursultanov. Description of interpolation spaces for general local Morrey-type spaces. Eurasian Math. J., 4(1):46–53, 2013. buevgo97 [842] V. Burenkov, W. Evans, and M. Goldman. On weighted Hardy and Poincar´e-type inequalities for differences. J. Inequal. Appl., 1(1):1–10, 1997. buga06 [843] V. Burenkov and A. Garcia. Estimates of regularized solutions of integral equations of the first kind in anisotropic spaces with fractional orders of smoothness. Inverse Problems, 22(5):1739–1759, 2006. bugogumu10 [844] V. Burenkov, A. Gogatishvili, V. S. Guliyev, and R. Mustafayev. Boundedness of the fractional maximal operator in local Morrey-type spaces. Complex Var. Elliptic Equ., 55(8-10):739–758, 2010. bugo81 [845] V. Burenkov and M. Gol’dman. On extension of Lp −functions. Proc. Steklov Inst. Math., 150:33–53, 1981. bugo84 [846] V. Burenkov and M. Gol’dman. On the interconnection of norms of operators in periodic and nonperiodic function spaces. Proc. Steklov Inst. Math., 161:53–112, 1984. bugo14 [847] V. Burenkov and M. Goldman. Necessary and sufficient conditions for the boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces. Math. Inequal. Appl., 17(2):401–418, 2014. buguseta10 [848] V. Burenkov, V. S. Guliyev, A. Serbetci, and T. V. Tararykova. Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces. Eurasian Math. J., 1(1):32–53, 2010. bujata11 [849] V. Burenkov, P. Jain, and T. Tararykova. On boundedness of the Hardy operator in Morrey-type spaces. Eurasian Math. J., 2(1):52– 80, 2011. 76 bunu10 [850] V. Burenkov and E. Nursultanov. Description of interpolation spaces for local Morrey-type spaces. Tr. Mat. Inst. Steklova, 269(Teoriya Funktsii i Differentsialnye Uravneniya):52–62, 2010. buoi13 [851] V. Burenkov and R. Oinarov. Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space. Math. Inequal. Appl., 16(1):1–19, 2013. bugugu07 [852] V. I. Burenkov, H. V. Guliyev, and V. S. Guliyev. Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces. J. Comput. Appl. Math., 208:280–301, 2007. bugu09 [853] V. I. Burenkov and V. S. Guliyev. Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces. Potential Analysis, 30:211–249, 2009. bulatats10 [854] M. Burger, Y. Landa, N. Tanushev, and R. Tsai. Discovering a point source in unknown environments. Chirikjian, Gregory S. (ed.) et al., Algorithmic foundations of robotics VIII. Selected contributions of the eighth international workshop on the algorithmic foundations of robotics (WAFR 2008), Guanajuato, M´exico, December 7–9, 2008. Berlin: Springer., 2010. bebumoos11 [855] M. Burger, M. Moeller, M. Benning, and S. Osher. An adaptive inverse scale space method for compressed sensing. Technical Report 11-08, UCLA, 2011. budywazw11 [856] N. Burq, S. Dyatlov, R. Ward, and M. Zworski. Weighted eigenfunction estimates with applications to compressed sensing. Arxiv preprint arXiv:1111.2383, 2011. bupa85 [857] C. Burrus and T. Parks. DFT/FFT and Convolution Algorithms Theory and implementation. Texas Instruments Inc., 1985. bu11 [858] D. Burton. Elementary Number Theory. McGraw-Hill Education, 2011. bupe07 [859] P. Busch and D. Pearson. Universal joint-measurement uncertainty relation for error bars. J. Math. Phys., 48(8):082103, 10, 2007. 77 bu12 [860] J. Bustamante. Algebraic Approximation. A Guide to Past and Current Solutions. Frontiers in Mathematics. Basel: Birkh¨auser. viii, 205 p., 2012. asbu12 [861] A. Butaev and R. Ashurov. On some class of nonseparable continuous wavelet transforms. Appl. Anal., 91(12):2257–2265, 2012. bu94-1 [862] L. Butler. Subgroup lattices and symmetric functions. Mem. Amer. Math. Soc., 539:160 p., 1994. budofehilasest11 [863] P. Butzer, M. Dodson, P. Ferreira, J. Higgins, O. Lange, P. Seidler, and R. L. Stens. Multiplex signal transmission and the development of sampling techniques: the work of Herbert Raabe in contrast to that of Claude Shannon. Appl. Anal., 90(3-4):643–688, 2011. bufehiscst11 [864] P. Butzer, P. Ferreira, J. Higgins, G. Schmeisser, and R. L. Stens. The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals – their interconnections. Appl. Anal., 90(3-4):431–461, 2011. bufescst11 [865] P. Butzer, P. Ferreira, G. Schmeisser, and R. L. Stens. The summation formulae of Euler-Maclaurin, Abel-Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis. Result. Math., 59(3-4):359–400, 2011. bunetr74 [866] P. Butzer, R. Nessel, and W. Trebels. On radial Mpq -Fourier multipliers. Math. Struct., comput. Math., math. Modelling (to appear), 1974. buscst14 [867] P. Butzer, G. Schmeisser, and R. L. Stens. The classical and approximate sampling theorems and their equivalence for entire functions of exponential type. J. Approx. Theory, 179(0):94 – 111, 2014. bust08 [868] P. Butzer and R. L. Stens. Reconstruction of signals in Lp (R)-space by generalized sampling series based on linear combinations of B-splines. Integral Transforms Spec. Funct., 19(1):35–58, 2008. busc84 [869] P. L. Butzer and D. Schulz. Limit theorems with O-rates for random sums of dependent Banach-valued random variables. Math. Nachr., 119:59–75, 1984. 78 busc07 [870] S. Buyalo and V. Schroeder. Elements of asymptotic geometry. EMS monographs in mathematics. European Mathematical Society, 2007. buniro10 [871] E. Buzano, F. Nicola, and L. Rodino. Global Pseudo-Differential Calculus on Euclidean Spaces. Springer Verlag, 2010. byxu08 [872] R. Byers and H. Xu. A new scaling for Newton’s iteration for the polar decomposition and its backward stability. SIAM J. Matrix Anal. Appl., 30(2):822–843, 2008. ca04-3 [873] A. Cabello. Bibliographic guide to the foundations of quantum mechanics and quantum information. Arxiv preprint quant-ph/0012089, 2004. camoro13 [874] C. Cabrelli, U. Molter, and J. L. Romero. Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces. Adv. Math., 232(1):98–120, 2013. camopa13 [875] C. Cabrelli, C. Mosquera, and V. Paternostro. Linear combinations of frame generators in systems of translates. J. Math. Anal. Appl., (0):–, 2013. cach10 [876] N. Cadigan and J. Chen. Kernel regression estimators for nonparametric model calibration in survey sampling. J. Stat. Theory Pract., 4(1):1–25, 2010. cagoop08 [877] A. Caetano, A. Gogatishvili, and B. Opic. Sharp embeddings of Besov spaces involving only logarithmic smoothness. J. Approx. Theory, 152(2):188–214, 2008. ca11-1 [878] A. M. Caetano. On the type of convergence in atomic representations. Complex Var. Elliptic Equ., 56(10-11):875–883, 2011. cafa06 [879] A. M. Caetano and W. Farkas. Local growth envelopes of Besov spaces of generalized smoothness. Z. Anal. Anwend., 25(3):265–298, 2006. cagoop11 [880] A. M. Caetano, A. Gogatishvili, and B. Opic. Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness. J. Approx. Theory, 163(10):1373–1399, 2011. cadamawa11 [881] E. Cagnache, F. D’Andrea, P. Martinetti, and J. Wallet. The Spectral distance in the Moyal plane. Journal of Geometry and Physics, 2011. 79 cacaehli13 [882] J. Cahill, P. Casazza, M. Ehler, and S. Li. Tight and random nonorthogonal fusion frames. arXiv preprint arXiv:1309.0532, 2013. cacaku13 [883] J. Cahill, P. Casazza, and G. Kutyniok. Operators and frames. J. Operator Theory, 70(1):145–164, 2013. cacali12 [884] J. Cahill, P. Casazza, and S. Li. Non-orthogonal fusion frames and the sparsity of fusion frame operators. J. Fourier Anal. Appl., 18(2):287– 308, 2012. cali11 [885] J. Cahill and S. Li. Dimension invariance of finite frames of translates and Gabor frames. Adv. Comput. Math., Online first:1–16. cata87 [886] J. Cahn and J. Taylor. An introduction to quasicrystals. In The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985), volume 64 of Contemp. Math., pages 265–286. Amer. Math. Soc., Providence, 1987. cash10 [887] J. Cai and Z. Shen. Framelet based deconvolution. J. Comput. Math., 28(3):289–308, 2010. cadoossh12 [888] J.-F. Cai, B. Dong, S. Osher, and Z. Shen. Image restoration: Total variation, wavelet frames, and beyond. J. Amer. Math. Soc., 25(4):1033–1089, 2012. cashye11 [889] J.-F. Cai, Z. Shen, and G.-B. Ye. Approximation of frame based missing data recovery. Appl. Comput. Harmon. Anal., 31(2):185–204, 2011. carezh13 [890] T. Cai, Z. Ren, and H. Zhou. Optimal rates of convergence for estimating Toeplitz covariance matrices. Probab. Theory Relat. Fields, 156:101–143, 2013. cawaxu10-1 [891] T. Cai, L. Wang, and G. Xu. New bounds for restricted isometry constants. IEEE Trans. Inform. Theory, 56(9):4388 –4394, 2010. cazh14 [892] T. Cai and A. Zhang. Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices,. IEEE Trans. Inform. Theory, 60(1):122–132, Jan, 2014. cali02 [893] Y. Cai and Q. Lin. Decentered elliptical Gaussian beam. Appl. Opt, 41(21):4336–4340, Jul 2002. 80 cacomo11 [894] F. Cakoni, D. Colton, and P. Monk. The linear sampling method in inverse electromagnetic scattering, volume 80 of CBMS-NSF Regional Conference Series in Applied Mathematics 80. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. cafegamiza11 [895] A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mic’o. Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor. JOSA A, 28(11):2346–2358, 2011. caganasa13 [896] J. Calabuig, F. Galaz Fontes, E. Navarrete, and E. S´anchez P´erez. Fourier transform and convolutions on Lp of a vector measure on a compact Hausdorff abelian group. J. Fourier Anal. Appl., 19(2):312– 332, 2013. cacahekupeXX [897] R. Calderbank, P. Casazza, A. Heinecke, G. Kutyniok, and A. Pezeshki. Sparse fusion frames: existence and construction. Adv. Comput. Math., pages 1–31. cazy52 [898] A. Calder´on and A. Zygmund. On the existence of certain singular integrals. Acta Math., 88:85–139, 1952. ca66-2 [899] A. P. Calderon. Spaces between L1 and L∞ and the theorem of Marcinkiewicz. Studia Math., 26:273–299, 1966. ca76-1 [900] A. P. Calderon. Inequalities for the maximal function relative to a metric. Studia Math., 57:297–306, 1976. caguro14 [901] M. Calixto, J. Guerrero, and D. Rosca. Wavelet transform on the torus: A group theoretical approach. Appl. Comput. Harmon. Anal., (0):–, 2014. cagusa11 [902] M. Calixto, J. Guerrero, and J. C. Sanchez Monreal. Sampling theorem and discrete Fourier transform on the hyperboloid. J. Fourier Anal. Appl., 17(2):240–264, 2011. ca04-4 [903] G. Calugareanu. The total number of subgroups of a finite abelian group. Scientiae Mathematicae japonicae, 60(1):157–167, 2004. ca04-5 [904] G. Calugareanu. The total number of subgroups of a finite Abelian group. Scientiae Mathematicae Japonicae, 60(1):157–168, 2004. 81 cama83 [905] S. Cambanis and E. Masry. Sampling designs for the detection of signals in noise. IEEE Trans. Inform. Theory, 29:83–104, 1983. ca63-4 [906] S. Campanato. Proprieta di H¨olderianita di alcune classi di funzioni. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 17:175–188, 1963. ca63-3 [907] S. Campanato. Proprieta di inclusione per spazi di Morrey. Ric. Mat., 12:67–86, 1963. ca64-2 [908] S. Campanato. Proprieta di una famiglia di spazi funzionali. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 18:137–160, 1964. ca07-1 [909] C. Candan. On higher order approximations for Hermite-Gaussian functions and discrete fractional Fourier transforms. IEEE Signal Processing Letters, 14(10):699 –702, oct. 2007. cakuoz02 [910] C. Candan, M. Kutay, and H. Ozaktas. The discrete fractional Fourier transform. IEEE Trans. Signal Process., 48(5):1329–1337, 2002. caoz03 [911] C. Candan and H. M. Ozaktas. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process., 83(11):2455–2457, 2003. cala92 [912] J. Candeal Haro and H. Lai. Multipliers in continuous vector-valued function spaces. Bull. Austral. Math. Soc., 46(2):199–204, 1992. cala95 [913] J. Candeal Haro and H. Lai. Multipliers in vector-valued function spaces under convolution. Acta Math. Hungar., 67(3):175–192, 1995. ca04-6 [914] E. CANDES. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure Appl. Math., 57(2):219–266, 2004. caelstvoXX [915] E. Cand`es, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. SIAM J. Imag. Sciences, to appear. cafe13 [916] E. Candes and C. Fernandez Granda. Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics, preprint:48, 2013. 82 cali13 [917] E. Cand`es and X. Li. Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput. Math., pages 1–10, 2013. caliXX [918] E. Cand`es and X. Li. Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput. Math., to appear. caliso13 [919] E. Cand`es, X. Li, and M. Soltanolkotabi. Phase retrieval from masked Fourier transforms. preprint, 2013. caliso14 [920] E. Candes, X. Li, and M. Soltanolkotabi. Phase Retrieval via Wirtinger Flow: Theory and Algorithms. ArXiv e-prints, jul 2014. castvoXX [921] E. Cand`es, T. Strohmer, and V. Voroninski. PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. Comm. Pure Appl. Math., 66:1241–1274, 2013. cata07 [922] E. Candes and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist., 35(6):2313–2351, 2007. caelnera11 [923] E. J. Cand`es, Y. C. Eldar, D. Needell, and P. Randall. Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal., 31(1):59 – 73, 2011. capl09 [924] E. J. Cand`es and Y. Plan. Near-ideal model selection by tion. Ann. Statist., 37(5A):2145–2177, 2009. 1 minimiza- capl11-1 [925] E. J. Cand`es and Y. Plan. A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Information Theory, 57(11):7235 – 7254, November 2011. casl95 [926] M. Cannon and J.-J. Slotine. Space-frequency localized basis function networks for nonlinear system estimation and control. Neurocomputing, 9(3):293–342, 1995. cahuquza06 [927] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral Methods Fundamentals in Single Domains. Scientific Computation. Berlin: Springer. xxiii, 563 p. EUR 85.55, 2006. cahe14 [928] G. Cao and L. He. Fredholmness of multipliers on HardySobolev spaces. J. Math. Anal. Appl., 418(1):1 – 10, 2014. 83 cachjili08 [929] H.-X. Cao, L. Li, Q.-J. Chen, and G.-X. Ji. (p, Y )-operator frames for a Banach space. J. Math. Anal. Appl., 347(2):583–591, 2008. cako99 [930] M. Capinski and P. Kopp. Measure, Integral and Probability. Berlin: Springer, 1999. cadaga97 [931] L. Capogna, D. Danielli, and N. Garofalo. Subelliptic mollifiers and a basic pointwise estimate of Poincar´e type. Math. Z., 226(1):147–154, 1997. cadapaty07 [932] L. Capogna, D. Danielli, S. Pauls, and J. Tyson. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, volume 259 of Progress in Mathematics. Birkh¨auser Verlag, Basel, 2007. caga98 [933] L. Capogna and N. Garofalo. Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for CarnotCarath´eodory metrics. J. Fourier Anal. Appl., 4(4-5):403–432, 1998. cagrro06 [934] M. Cappiello, T. Gramchev, and L. Rodino. Super-exponential decay and holomorphic extensions for semilinear equations with polynomial coefficients. J. Funct. Anal., 237(2):634–654, 2006. cagrro07 [935] M. Cappiello, T. Gramchev, and L. Rodino. Exponential decay and regularity for SG-elliptic operators with polynomial coefficients. In Hyperbolic problems and regularity questions, Trends Math., pages 49–58. 2007. cagrro09 [936] M. Cappiello, T. Gramchev, and L. Rodino. Decay and regularity for harmonic oscillator-type equations. Integral Transforms Spec. Funct., 20(3-4):283–290, 2009. cagrro10-1 [937] M. Cappiello, T. Gramchev, and L. Rodino. Entire extensions and exponential decay for semilinear elliptic equations. J. Anal. Math., 111:339–367, 2010. cagrro10 [938] M. Cappiello, T. Gramchev, and L. Rodino. Sub-exponential decay and uniform holomorphic extensions for semilinear pseudodifferential equations. Comm. Partial Differential Equations, 35(5):846–877, 2010. 84 cani12 [939] M. Cappiello and F. Nicola. Regularity and decay of solutions of nonlinear harmonic oscillators. Adv. Math., 229(2):1266–1299, 2012. brca03-1 [940] C. Capus and K. Brown. Fractional Fourier transform of the Gaussian and fractional domain signal support. In Vision, Image and Signal Processing, IEE Proceedings-, volume 150, pages 99–106, 2003. brca03 [941] C. Capus and K. Brown. Short-time fractional Fourier methods for the time-frequency representation of chirp signals. J. Acoust. Soc. Amer., 113:3253, 2003. calasc11 [942] D. Carando, S. Lassalle, and P. Schmidberg. The reconstruction formula for Banach frames and duality. J. Approx. Theory, 163(5):640 – 651, 2011. ca56 [943] C. Caratheodory. Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung Bd I: Theorie Der Partiellen Differentialgleichungen Erster Ordnung. Leipzig: B. G. Teubner Verlagsgesellschaft XI, 171 S., 1956. caerkrla00 [944] G. Cariolaro, T. Erseghe, P. Kraniauskas, and N. Laurenti. Multiplicity of fractional Fourier transforms and their relationships. IEEE Transactions on Signal Processing, 48(1):227–241, 2000. caerkrla02 [945] G. Cariolaro, T. Erseghe, P. Kraniauskas, and N. Laurenti. A unified framework for the fractional Fourier transform. IEEE Trans. Signal Process., 46(12):3206–3219, 2002. ca23 [946] T. Carleman. A theorem concerning Fourier series. Proc. Lond. Math. Soc. (2), 21:483–492, 1923. ca44 [947] T. Carleman. L’int´egrale de Fourier et questions qui s’y rattachent. (Publ. Sci. Inst. Mittag-Leffler. 1) Uppsala. 119 p. (1944)., 1944. ca91-1 [948] E. Carlen. Some integral identities and inequalities for entire functions and their application to the coherent state transform. J. Funct. Anal., 97(1):231–249, 1991. ca10 [949] E. Carlen. Trace inequalities and quantum entropy: an introductory course. In Entropy and the quantum, volume 529 of Contemp. Math., pages 73–140. Amer. Math. Soc., Providence, RI, 2010. 85 cali08 [950] E. Carlen and E. Lieb. Brascamp–Lieb inequalities for noncommutative integration. Doc. Math., J. DMV, 13:553–584, 2008. ca58 [951] L. Carleson. An interpolation problem for bounded analytic functions. Amer. J. Math., 80:921–930, 1958. ca62 [952] L. Carleson. Interpolations by bounded analytic functions and the corona problem. Ann. of Math. (2), 76(3):547–559, 1962. ca65-1 [953] L. Carleson. Maximal functions and capacities. Ann. Inst. Fourier (Grenoble), 15(fasc. 1):59–64, 1965. ca09-3 [954] G. Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009. cacegu12 [955] A. Carmi, Y. Censor, and P. Gurfil. Convex feasibility modeling and projection methods for sparse signal recovery. J. Comput. Appl. Math., In Press:26, 2012. ca94-3 [956] M. Carmo. Differential Forms and Applications. Universitext (1979). Springer-Verlag, 1994. ca11-2 [957] G. Carneiro. Graph-based methods for the automatic annotation and retrieval of art prints. In ICMR ’11, Proc. of the 1st ACM International Conference on Multimedia Retrieval, volume Article No.32, page 8, Trento, Italy, April 17-20, 2011. ACM (Association for Computing Machinery) New York, NY. cadi86 [958] N. Carothers and S. Dilworth. Geometry of Lorentz spaces via interpolation. In On non-norm-attaining functionals and the equivalence of the weak∗ - KMP with the RNP, pages 107–133. 1986. cafazo08 [959] I. Carrizo, S. Favier, and F. Z´o. Extension of the best approximation operator in Orlicz spaces. 2008. cafaz11 [960] I. Carrizo, S. Favier, and F. Z’o. A characterization of the extended best φ-approximation operator. Numer. Funct. Anal. Optim., 32(3):254–266, 2011. caro10 [961] M. Carro and S. Rodriguez. New results on restriction of Fourier multipliers. Math. Z., 265(2):417–435, 2010. 86 caro12 [962] M. J. Carro and S. Rodriguez Lopez. On restriction of maximal multipliers in weighted settings. Trans. Amer. Math. Soc., 364(5):2241– 2260, 2012. cawe13 [963] B. Carswell and R. Weir. Weighted reproducing kernels and the Bergman space. J. Math. Anal. Appl., 399(2):617 – 624, 2013. cago47 [964] H. Cartan and R. Godement. Theorie de la dualite et analyse harmonique dans les groupes abeliens localement compacts. Ann. Sci. Ec. Norm. Super., III. Ser., 64:79–99, 1947. ca64-3 [965] P. Cartier. Processus al´eatoires g´en´eralis´es. In S´eminaire Bourbaki, 16e ann´ee: 1963/64, Fasc. 3, Expos´e 272, page 10. Secr´etariat math´ematique, Paris, 1964. ca64-1 ¨ [966] P. Cartier. Uber einige Integralformeln in der Theorie der quadratischen Formen. Math. Z., 84:93–100, 1964. ca66-3 [967] P. Cartier. Th´eorie analytique des formes quadratiques. I: Suites quasi- p´eriodiques. S´emin. Bourbaki 1965/66, No.309, 12 p. (1966)., 1966. ca95-1 [968] P. Cartier. Processus aleatoires generalises [ MR0175170 (30 #5355)]. In S´eminaire Bourbaki, Vol. 8, pages Exp. No. 272, 425–434. Soc. Math. France, Paris, 1995. ca99-2 [969] P. Cartier. Abschied von einem Freund: Andr´e Weil (1906–1998). Mitt. Dtsch. Math.-Ver., (3):7–12, 1999. ca99-1 [970] P. Cartier. Andr´e Weil (1906–1998): Adieu `a un ami. Gaz. Math., (80, suppl.):13–35, 1999. ca00-1 [971] P. Cartier. My Andr´e Weil. Lett. Mat. Pristem, (36):43–58, 2000. caheho94 [972] C. Carton Lebrun, H. P. Heinig, and S. C. Hofmann. Integral operators on weighted amalgams. Studia Math., 109(2):133–157, 1994. ca05-1 [973] A. Carvalho. Box dimension, oscillation and smoothness in function spaces. J. Funct. Spaces Appl., 3(3):287–320, 2005. ca01-3 [974] P. Casazza. Approximation properties. Handbook of the geometry of Banach spaces, 1:271–316, 2001. 87 cach08 [975] P. Casazza and O. Christensen. The reconstruction property in Banach spaces and a perturbation theorem. Canad. Math. Bull., 51:348– 358, 2008. cafimi12 [976] P. Casazza, M. Fickus, and D. Mixon. Auto-tuning unit norm frames. Appl. Comput. Harmon. Anal., 32(1):1–15, 2012. cafimiwazh11 [977] P. Casazza, M. Fickus, D. Mixon, Y. Wang, and Z. Zhou. Constructing tight fusion frames. Appl. Comput. Harmon. Anal., 30(2):175–187, 2011. cahekrku10 [978] P. Casazza, A. Heinecke, F. Krahmer, and G. Kutyniok. Optimally Sparse Frames. Arxiv preprint arXiv:1009.3663, 2010. cahekuXX [979] P. Casazza, A. Heinecke, and G. Kutyniok. Optimally sparse fusion frames: Existence and construction. Submitted 2010, page 4. caka96 [980] P. Casazza and N. Kalton. Unconditional bases and unconditional finite-dimensional decompositions in Banach spaces. Isr. J. Math., 95:349–373, 1996. caku12 [981] P. Casazza and G. Kutyniok. Finite frames. Springer, 2012. caku13 [982] P. Casazza and G. Kutyniok. Finite Frames. Theory and Applications. Applied and Numerical Harmonic Analysis. Boston, MA: Birkh¨auser. xvi, 2013. cakuph13 [983] P. Casazza, G. Kutyniok, and F. Philipp. Introduction to finite frame theory. In Finite frames. Theory and applications., pages 1– 53. Boston, MA: Birkh¨auser, 2013. capfXX [984] P. Casazza and G. E. Pfander. Analyzing the algorithm for proving the restricted invertibility theorem. capf12 [985] P. Casazza and G. E. Pfander. Infinite dimensional restricted invertibility. J. Funct. Anal., 263(12):3784–3803, 2012. catr09 [986] P. Casazza and J. C. Tremain. Revisiting the Bourgain-Tzafriri restricted invertibility theorem. Oper. Matrices, 3(1):97–110, 2009. 88 cakuliro07 [987] P. G. Casazza, G. Kutyniok, S. Li, and C. J. Rozell. Modeling sensor networks with fusion frames. In Wavelets Xll, Special Session on Finite-Dimensional Frames, Time-Frequency Analysis, and Applications, volume 6701, page 11, San Diego, CA, USA, 2007. ca85-1 [988] P. Cassereau. A new class of optimal unitary transforms for image processing. PhD thesis, Massachusetts Institute of Technology, 1985. cadest89 [989] P. Cassereau, D. Staelin, and J. De. Encoding of images based on a lapped orthogonal transform. Communications, IEEE Transactions on, 37(2):189–193, 1989. cahehe11 [990] J. Castaneda, R. Heusdens, and R. Hendriks. A Generalized Poisson Summation Formula and its Application to Fast Linear Convolution. IEEE Signal Processing Letters, 18(9):501 –504, sept 2011. carisaze13 [991] M. Castillo, S. Rivas, M. Sanoja, and I. Zea. Functions of bounded κϕ-variation in the sense of Riesz-Korenblum. J. Funct. Spaces Appl., 2013:12, 2013. casz14 [992] A. Castro and T. Szarek. On fundamental harmonic analysis operators in certain Dunkl and Bessel settings. J. Math. Anal. Appl., 412(2):943 – 963, 2014. casatu12 [993] L. Castro, S. Saitoh, and N. Tuan. Convolutions, integral transforms and integral equations by means of the theory of reproducing kernels. Opusc. Math., 32(4):633–646, 2012. cage07 [994] D. Cates and A. Gelb. Detecting derivative discontinuity locations in piecewise continuous functions from Fourier spectral data. Numer. Algorithms, 46(1):59–84, 2007. cawi10 [995] A. Catherall and D. Williams. High resolution spectrograms using a component optimized short-term fractional Fourier transform. Signal Process., 90(5):1591–1596, 2010. casz92 [996] H. Caulfield and H. H. Szu. Parallel discrete and continuous wavelet transforms. Opt. Eng., 31(9):1835–1839, September 1992. ca14 [997] F. Cavalletti. Decomposition of geodesics in the Wasserstein space and the globalization problem. Geom. Funct. Anal., 24(2):493–551, 2014. 89 cesa08 [998] T. Ceccherini Silberstein and A. Samet Vaillant. Gromov’s translation algebras, growth and amenability of operator algebras. Exposition. Math., 26(2):141–162, 2008. cefi74 [999] C. Cecchini and A. Fig`a Talamanca. Projections of uniqueness for Lp (G). Pacific J. Math., 51:37–47, 1974. ce98 [1000] B. Cengiz. The dual of the Bochner space Lp (µ, E) for arbitrary µ. Turkish J. Math., 22(3):343–348, 1998. ce99 [1001] B. Cengiz. The isometries of the Bochner space Lp (µ, H). Turkish J. Math., 23(3):389–399, 1999. ce07 [1002] J. Cerda. Lorentz capacity spaces. In Interpolation theory and applications. A conference in honor of Michael Cwikel on the occasion of his 59th birthday, March 29–31, 2006 and AMS special session on interpolation theory and applications, AMS sectional meeting, Miami, FL, USA, April 1–2, 20, pages 45–59. 2007. ce10 [1003] J. Cerda. Linear Functional Analysis. Graduate Studies in Mathematics 116. Providence, RI: American Mathematical Society (AMS) and Madrid: Real Sociedad Matem’atica Espa nola. xiii, 330 p., 2010. cekrma99 [1004] J. Cerd‘a, J. Martin, and N. Y. Kruglyak. Commutators for approximation spaces and Marcinkiewicz-type multipliers. J. Approx. Theory, 100(2):251–265, art. no. jath.1999.3349, 1999. cemasi11 [1005] J. Cerda, J. Martin, and P. Silvestre. Capacitary function spaces. Collect. Math., 62(1):95–118, 2011. cesu83 [1006] J. Cerda and J. Sueiro. Approximate identities and convergence at Lebesgue points. Rend. Circ. Mat. Palermo (2), 32:5–12, 1983. cechka12 [1007] P. Cerejeiras, Q. Chen, and U. Kaehler. Bedrosian identity in Blaschke product case. Complex Anal. Oper. Theory, 6(1):275–300, 2012. cefekate11 [1008] P. Cerejeiras, M. Ferreira, U. K¨ahler, and G. Teschke. Inversion of the noisy Radon transform on SO(3) by Gabor frames and sparse recovery principles. Appl. Comput. Harmon. Anal., 31(3):325–345, 2011. 90 cefekavi06 [1009] P. Cerejeiras, M. Ferreira, U. K¨ahler, and N. Vieira. Monogenic frames for an integral transform on the unit sphere. Complex Var. Elliptic Equ., 51(1):51–61, 2006. cechmc09 [1010] V. Cevher, R. Chellappa, and J. McClellan. Vehicle speed estimation using acoustic wave patterns. IEEE Trans. Signal Process., 57(1):30– 47, 2009. blchli13 [1011] N. Chacko, M. Liebling, and T. Blu. Discretization of continuous convolution operators for accurate modeling of wave propagation in digital holography. JOSA A, 30(10):2012–2020, 2013. chgulepaXX [1012] D. Chafai, O. Gu´edon, G. Lecu´e, and A. Pajor. Interactions between Compressed Sensing, Random Matrices and high Dimensional Geometry. to appear. ch09-2 [1013] N. Chakrabarti. A representation of non-uniformly sampled deterministic and random signals and their reconstruction using sample values and derivatives. Arxiv preprint arXiv:0905.0397, 2009. chfrti11 [1014] I. Chalendar, E. Fricain, and D. Timotin. A short note on the Feichtinger conjecture. Submitted on 17 Jun 2011, page 8, 2011. cachcrnopo10 [1015] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock. An introduction to total variation for image analysis. In Theoretical foundations and numerical methods for sparse recovery, volume 9 of Radon Ser. Comput. Appl. Math., pages 263–340. Walter de Gruyter, Berlin, 2010. chpo11 [1016] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision, 40:120–145, 2011. ch11 [1017] D. Chamorro. Improved Sobolev inequalities and Muckenhoupt weights on stratified Lie groups. J. Math. Anal. Appl., 377(2):695–709, 2011. chyuzh12 [1018] R. Chan, X. Yuan, and W. Zhang. Point-spread function reconstruction in ground-based astronomy by supsupsup model. JOSA A, 29(11):2263–2271, 2012. 91 chhupuzh09 [1019] T.-M. Chan, J. Zhang, J. Pu, and H. Huang. Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recognition Lett., 30(5):494 – 502, April 2009. chparewi10 [1020] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky. The convex geometry of linear inverse problems. Found. Comput. Math., 12(6):805–849, 2012. ch71-1 [1021] R. Chaney. Note on Fourier series on the p-adic integers. Duke Math. J., 38:387–393, 1971. ch71 [1022] R. Chaney. Note on Fourier-Stieltjes transforms of continuous and absolutely continuous measures. Pr. Mat., 15:147–149, 1971. chmaya99 [1023] E.-C. Chang, S. Mallat, and C. Yap. Wavelet Foveation. Appl. Comput. Harmon. Anal., 9:312–335, 1999. chchkisoyo08 [1024] K. Chang, D. Cho, B. Kim, T. Song, and I. Yoo. Sequential FourierFeynman transform, convolution and first variation. Trans. Amer. Math. Soc., 360(4):1819–1838, 2008. chkisoyo10 [1025] K. Chang, B. Kim, T. Song, and I. Yoo. Fourier-Feynman transforms, convolutions and first variations on the space of abstract Wiener space valued continuous functions. Rocky Mountain J. Math., 40(3):789– 812, 2010. chlishwe06 [1026] L. Chang, Z. Wei, W. Shen, and Z. Lin. Wavefront fitting of interferogram with Zernike polynomials based on SVD. In L. Chang, Z. Wei, W. Shen, Z. Lin, X. Hou, J. Yuan, J. C. Wyant, H. Wang, and S. Han, editors, Proc. SPIE, 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, volume 6150 of Session 3-3, page 61500G(6). SPIE, 2006. ch66 [1027] R. Chang. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell System Tech. J., 45:1775–1796, Dec. 1966. ch11-1 [1028] S. Chang. Conditional generalized Fourier-Feynman transform of functionals in a Fresnel type class. Commun. Korean Math. Soc., 26(2):273–289, 2011. 92 chch09 [1029] S. Chang and J. Choi. Transforms and convolutions on function space. Commun. Korean Math. Soc., 24(3):397–413, 2009. chchle09 [1030] S. Chang, J. Choi, and S. Lee. A Fresnel type class on function space. J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math., 16(1):107–119, 2009. chpask00 [1031] S. Chang, C. Park, and D. Skoug. Translation theorems for FourierFeynman transforms and conditional Fourier-Feynman transforms. Rocky Mountain J. Math., 30(2):477–496, 2000. chwh85 [1032] S. Chanillo and R. Wheeden. Weighted Poincar´e and Sobolev inequalities and estimates for weighted Peano maximal functions. Amer. J. Math., 107(5):1191–1226, 1985. chfokh10 [1033] V. Chari, G. Fourier, and T. Khandai. A categorical approach to Weyl modules. Transform. Groups, 15(3):517–549, 2010. chchhe10 [1034] M. Charina, C. Chui, and W. He. Tight frames of compactly supported multivariate multi-wavelets. J. Comput. Appl. Math., 233(8):2044–2061, 2010. chst08-1 [1035] M. Charina and J. St¨ockler. Tight wavelet frames for irregular multiresolution analysis. Appl. Comput. Harmon. Anal., 25(1):98–113, 2008. chchmuse09 [1036] P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman. Application of Papoulis–Gerchberg method in image super-resolution and inpainting. The Computer Journal, 52(1):80–89, 2009. chun09 [1037] K. Chaudhury and M. Unser. Construction of Hilbert transform pairs of wavelet bases and Gabor-like transforms. IEEE Trans. Signal Process., 57(9):3411–3425, 2009. chcikawe14 [1038] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss. Variable density sampling with continuous trajectories. SIAM J. Imaging Sci., 7(4):1962– 1992, 2014. chcomeou09 [1039] F. Chazal, D. Cohen Steiner, L. Memoli, and S. Oudot. GromovHausdorff Stable Signatures for Shapes using Persistence. Computer Graphics Forum (proc. SGP 2009), 2009. 93 chfiko09 [1040] A. Chebira, M. Fickus, and J. Kovacevic. Classifying compact convex sets with frames. Appl. Comput. Harmon. Anal., 27(1):73–86, 2009. chgrta82 [1041] J. Cheeger, M. Gromov, and M. Taylor. Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom., 17:15–53, 1982. chch96 [1042] C.-C. Chen and D. Chen. Multi-resolutional Gabor filter in texture analysis. Pattern Recognition Lett., 17(10):1069 – 1076, 1996. chro97 [1043] G. Chen and R. Rockafellar. Convergence rates in forward-backward splitting. SIAM J. Optim., 7(2):421–444, 1997. chxi10 [1044] G. Chen and W. Xie. Rotation invariant feature extraction by combining denoising with Zernike moments. In Wavelet Analysis and Pattern Recognition (ICWAPR), 2010 International Conference on, pages 186–189, July 2010. ch12-2 [1045] G.-S. Chen. Local fractional Mellin transform in fractal space. Advances in Electrical Engineering Systems, 1(2):89–95, 2012. chdedifa12 [1046] J. Chen, Q. Deng, Y. Ding, and D. Fan. Estimates on fractional power dissipative equations in function spaces. Nonlinear Analysis: Theory, Methods & Applications, 75(5):2959 – 2974, 2012. chzh06 [1047] L. Chen and D. Zhao. Application of fractional Fourier transform on spatial filtering. Optik - International Journal for Light and Electron Optics, 117(3):107 – 110, 2006. chmi12 [1048] Q. Chen and C. Micchelli. The Bedrosian identity for functions analytic in a neighborhood of the unit circle. Complex Anal. Oper. Theory, 6(3):781–798, 2012. chqi09 [1049] Q. Chen and T. Qian. Sampling theorem and multi-scale spectrum based on non-linear Fourier atoms. Appl. Anal., 88(6):903–919, June 1009. chwawa08 [1050] Q. Chen, Y. Wang, and Y. Wang. A sampling theorem for nonbandlimited signals using generalized sinc functions. Comput. Math. Appl., 56(6):1650–1661, 2008. 94 chgitr12 [1051] R. Chen, A. Gittens, and J. Tropp. The masked sample covariance estimator: An analysis via matrix concentration inequalities. Inform. Inference, 1:2–20, 2012. bichlu89 [1052] S. Chen, S. Billings, and W. Luo. Orthogonal least squares methods and their application to nonlinear system identification. Intl. J. Contr., 50(5):18731896, 1989. chmc97 [1053] S. Chen and S. McLaughlin. Blind channel identification based on higherorder cumulant fitting using genetic algorithms. pages 184–188, Jul. 1997. chpo12 [1054] X. Chen and A. Powell. Almost sure convergence of the Kaczmarz algorithm with random measurements. J. Fourier Anal. Appl., 18(6):1195–1214, 2012. chtewayu08 [1055] X. Chen, R. Tessera, X. Wang, and G. Yu. Metric sparsification and operator norm localization. Adv. Math., 218(5):1496–1511, 2008. chwa01 [1056] X. Chen and Q. Wang. Notes on ideals of Roe algebras. The Quarterly Journal of Mathematics, 52(4):437–446, 2001. chwa06 [1057] X. Chen and Q. Wang. Rank distributions of coarse spaces and ideal structure of Roe algebras. Bull. London Math. Soc., 38(5):847–856, 2006. chwe03 [1058] X. Chen and S. Wei. Spectral invariant subalgebras of reduced crossed product C*-algebras. J. Funct. Anal., 197(1):228–246, 2003. bhchsawa13 [1059] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Completing any low-rank matrix, provably. ArXiv e-prints, jun 2013. chdi08 [1060] Y. Chen and Y. Ding. Rough singular integrals on Triebel-Lizorkin space and Besov space. J. Math. Anal. Appl., 347(2):493–501, 2008. chla75 [1061] Y.-K. Chen and H.-C. Lai. Multipliers of Lorentz spaces. Hokkaido Math. J., 4(2):247–260, 1975. chguve12 [1062] M. Cheraghchi, V. Guruswami, and A. Velingker. Restricted isometry of Fourier matrices and list decodability of random linear codes. preprint, 2012. 95 ch91 [1063] I. Cherednik. A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras. Invent. Math., 106(2):411–432, 1991. bechwa03 [1064] J. Chessa, H. Wang, and T. Belytschko. On the construction of blending elements for local partition of unity enriched finite elements. Int. J. Numer. Methods Eng., 57(7):1015–1038, 2003. chtr10 [1065] C. Chettaoui and K. Trimeche. Bochner-Hecke theorems for the Weinstein transform and application. Fract. Calc. Appl. Anal., 13(3):261– 280, 2010. ch11-2 [1066] H. Chiba. A spectral theory of linear operators on rigged Hilbert spaces under certain analyticity conditions. ArXiv e-prints, jul 2011. aj79 [1067] A. K. Chilana and A. Kumar. Spectral synthesis in Segal algebras on hypergroups. Pacific J. Math., Volume 80(Number 1):59–76., 1979. chki92 [1068] M. Chipot and D. Kinderlehrer. Book Review: Weak convergence methods for nonlinear partial differential equations. Bull. Amer. Math. Soc. (N.S.), 26(1):147–148, 1992. chky01 [1069] G. Chirikjian and A. Kyatkin. Engineering Applications of Noncommutative Harmonic Analysis With Emphasis on Rotation and Motion Groups. Boca Raton, FL: CRC Press. xxii, 2001. ch12 [1070] G. S. Chirikjian. Applied and Numerical Harmonic Analysis - Stochastic Models, Information Theory and Lie Groups, volume 2. Birkh¨auser Verlag, 2012. chde12 [1071] J. Chiu and L. Demanet. Matrix probing and its conditioning. SIAM J. Numer. Anal., 50(1):171–193, 2012. chzh12 [1072] H. Cho and K. Zhu. Fock-Sobolev spaces and their Carleson measures. J. Funct. Anal., 263(8):2483–2506, 2012. chkile13 [1073] K. Cho, J. Kim, and H. Lee. Frames and Riesz bases for Banach spaces, and Banach spaces of vector-valued sequences. Banach J. Math. Anal., 7(2):172–193, 2013. choz09 [1074] Y. Cho and T. Ozawa. Sobolev inequalities with symmetry. Commun. Contemp. Math., 11(3):355–365, 2009. 96 ch10-1 [1075] Y.-K. Cho. Continuous characterization of the Triebel-Lizorkin spaces and Fourier multipliers. Bull. Korean Math. Soc., 47(4):839–857, 2010. chki06 [1076] Y.-K. Cho and J. Kim. Atomic decomposition on Hardy-Sobolev spaces. Studia Math., 177(1):25–42, 2006. chizko13 [1077] B. Choe, K. Izuchi, and H. Koo. Hardy-Carleson measures and their dual Poisson-Szeg¨o transforms. Potential Anal., 38(1):143–168, 2013. chna11 [1078] B. Choe and K. Nam. Double integral characterizations of harmonic Bergman spaces. J. Math. Anal. Appl., 379(2):889 – 909, 2011. chchsk12 [1079] J. Choi, D. Skoug, and S. Chang. A multiple generalized FourierFeynman transform via a rotation on Wiener space. Int. J. Math., 2012. chchsk13 [1080] J. Choi, D. Skoug, and S. Chang. Generalized analytic FourierFeynman transform of functionals in a Banach algebra. J. Funct. Spaces Appl., 2013:12, 2013. chlatswo08 [1081] W.-P. Choi, S.-H. Tse, K.-W. Wong, and K.-M. Lam. Simplified Gabor wavelets for human face recognition. Pattern Recognition, 41(3):1186–1199, 2008. ch54 [1082] G. Choquet. Theory of capacities. Ann. Inst. Fourier (Grenoble), 5:131–295, 1954. ch05 [1083] F. Chouchene. Harmonic analysis associated with the Jacobi-Dunkl operator on ] − π2 , π2 [. J. Comput. Appl. Math., 178(1-2):75–89, 2005. chluni06 [1084] B. Chow, P. Lu, and L. Ni. Hamilton’s Ricci flow. Graduate studies in mathematics. American Mathematical Society/Science Press, 2006. chda11 [1085] S. Chr´etien and S. Darses. Invertibility of random submatrices via tail decoupling and a matrix Chernoff inequality. preprint, 2011. chge84 [1086] M. Christ and D. Geller. Singular integral characterizations of Hardy spaces on homogeneous groups. Duke Math. J., 51(3):547–598, 1984. 97 chmaol11 [1087] J. Christensen, A. Mayeli, and G. Olafsson. Coorbit description and atomic decomposition of Besov spaces. Arxiv preprint arXiv:1110.6676, 2011. ch12-1 [1088] J. G. Christensen. Sampling in reproducing kernel Banach spaces on Lie groups. J. Approx. Theory, 164(1):179–203, 2012. chmaol12 [1089] J. G. Christensen, A. Mayeli, and G. Olafsson. Coorbit description and atomic decomposition of Besov spaces. Numer. Funct. Anal. Optim., 33(7-9):847–871, 2012. chol11 [1090] J. G. Christensen and G. Olafsson. Coorbit spaces for dual pairs. Appl. Comput. Harmon. Anal., 31(2):303–324, 2011. ch14 [1091] O. Christensen. Six (Seven) Problems in Frame Theory. In New Perspectives on Approximation and Sampling Theory, pages 337–358. Springer, 2014. chgo12 [1092] O. Christensen and S. S. Goh. Pairs of dual periodic frames. Appl. Comput. Harmon. Anal., 33(3):315 – 329, November 2012. chgo14 [1093] O. Christensen and S. S. Goh. From dual pairs of Gabor frames to dual pairs of wavelet frames and vice versa. Appl. Comput. Harmon. Anal., 36(2):198 – 214, 2014. chkiki12 [1094] O. Christensen, H. Kim, and R. Kim. Gabor windows supported on [-1, 1] and dual windows with small support. Adv. Comput. Math., 36(4):525–545, 2012. chkikili06 [1095] O. Christensen, H. Kim, R. Kim, and J. Lim. Riesz sequences of translates and generalized duals with support on [0, 1]. J. Geom. Anal., 16(4):585–596, 2006. chkiki10-1 [1096] O. Christensen, H. Kim, and R. Y. Kim. On the duality principle by Casazza, Kutyniok and Lammers. Technical report, February 2010. chki10 [1097] O. Christensen and R. Kim. On dual Gabor frame pairs generated by polynomials. J. Fourier Anal. Appl., 16(1):1–16, 2010. chla10 [1098] O. Christensen and R. S. Laugesen. Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal Image Process., 9(1-3):77–89, 2010. 98 chst03-1 [1099] O. Christensen and T. Strohmer. Methods for approximation of the inverse (Gabor) frame operator. Feichtinger, Hans G. (ed.) et al., Advances in Gabor analysis. Basel: Birkh¨auser. Applied and Numerical Harmonic Analysis, 171-195 (2003)., 2003. chxizh13 [1100] O. Christensen, X. Xiao, and Y. Zhu. Characterizing R-duality in Banach spaces. Acta Math. Sin. (Engl. Ser.), 29(1):75–84, 2013. chzw10 [1101] T. Christiansen and M. Zworski. Probabilistic Weyl laws for quantized tori. Comm. Math. Phys., 299(2):305–334, 2010. chwh11 [1102] S.-K. Chua and R. Wheeden. Self-improving properties of inequalities of Poincar’e type on s-John domains. Pacific J. Math., 250(1):67–108, 2011. chsiva13 [1103] R. Chugh, M. Singh, and L. Vashisht. On Λ-type duality of frames in Banach spaces. International Journal of Analysis and Applications, 4(2):148–158, 2013. chdi87 [1104] C. Chui and H. Diamond. A natural formulation of quasi-interpolation by multivariate splines. Proc. Amer. Math. Soc., 99:643–646, 1987. chdi90-1 [1105] C. Chui and H. Diamond. A characterization of multivariate quasiinterpolation formulas and its applications. Numer. Math., 57(2):105– 121, 1990. chdi90 [1106] C. Chui and H. Diamond. Approximation and interpolation formulas for real-time applications. Applied mathematics and computing, Trans. 7th Army Conf., West Point/NY (USA) 1989, ARO Rep. 90-1, 765-772 (1990)., 1990. chdi91 [1107] C. Chui and H. Diamond. A general framework for local interpolation. Numer. Math., 58(6):569–581, 1991. chdira84-1 [1108] C. Chui, H. Diamond, and L. A. Raphael. Best local approximation in several variables. J. Approximation Theory, 40:343–350, 1984. chdira84 [1109] C. Chui, H. Diamond, and L. A. Raphael. On best data approximation. J. Approximation Theory Appl., 1(1):37–56, 1984. 99 chdira87 [1110] C. Chui, H. Diamond, and L. A. Raphael. Interpolation by bivariate quadratic splines on a non-uniform rectangular grid. Applied mathematics and computing, Trans. 4th Army Conf., Ithaca/N. Y. 1986, ARO Rep. 87-1, 1261-1266 (1987)., 1987. chdira88 [1111] C. Chui, H. Diamond, and L. A. Raphael. Convexity-preserving quasiinterpolation and interpolation by box spline surfaces. Applied mathematics and computing, Trans. 5th Army Conf., West Point, NY 1987, ARO Rep. 88-1, 301-310 (1988)., 1988. chdira88-1 [1112] C. Chui, H. Diamond, and L. A. Raphael. Interpolation by multivariate splines. Math. Commun., 51(183):203–218, 1988. chdira89 [1113] C. Chui, H. Diamond, and L. A. Raphael. Shape-preserving quasiinterpolation and interpolation by box spline surfaces. J. Comput. Appl. Math., 25(2):169–198, 1989. chli94 [1114] C. Chui and C. Li. A general framework of multivariate wavelets with duals. Appl. Comput. Harmon. Anal., 1(4):368–390, 1994. chli95-1 [1115] C. Chui and C. Li. Multivariate interpolating wavelets. Chui, C. K. (ed.) et al., Approximation theory VIII. Vol. 2. Wavelets and multilevel approximation. Papers from the 8th Texas international conference, College Station, TX, USA, January 8–12, 1995. Singapore: World Scientific. Ser. Approx. Decompos. 6, 9, 1995. chsu07 [1116] C. Chui and Q. Sun. Characterizations of tight over-sampled affine frame systems and over-sampling rates. Appl. Comput. Harmon. Anal., 22(1):1–15, 2007. chzh99 [1117] C. K. Chui and L. Zhong. Polynomial interpolation and Marcinkiewicz-Zygmund inequalities on the unit circle. J. Math. Anal. Appl., 233(1):387–405, May 1999. chla11 [1118] C.-K. Chun Kit and L. Lai. On Fourier frame of absolutely continuous measures. J. Funct. Anal., 261(10):2877 – 2889, 2011. brch78 [1119] R. Churchill and J. Brown. Fourier Series and Boundary Value Problems 3rd ed. D¨ usseldorf etc.: McGraw-Hill Book Company. VIII, 271 p., 1978. 100 cipereva10 [1120] O. Ciaurri, M. Perez, J. Reyes, and J. Varona. Mean convergence of Fourier-Dunkl series. J. Math. Anal. Appl., 372(2):470–485, 2010. ciro12 [1121] O. Ciaurri and L. Roncal. Higher order Riesz transforms for FourierBessel expansions. J. Fourier Anal. Appl., 18(4):770–789, 2012. cirost13 [1122] O. Ciaurri, L. Roncal, and P. Stinga. Fractional integrals on compact Riemannian symmetric spaces of rank one. Adv. Math., 235:627–647, 2013. civa07 [1123] O. Ciaurri and J. Varona. A Whittaker-Shannon-Kotelnikov sampling theorem related to the Dunkl transform. Proc. Amer. Math. Soc., 135(9):2939–2947, 2007. civa10 [1124] O. Ciaurri and J. Varona. An uncertainty inequality for Fourier-Dunkl series. J. Comput. Appl. Math., 233(6):1499–1504, 2010. cish03 [1125] D. Cichon and H. S. Shapiro. Toeplitz operators in Segal-Bargmann spaces of vector-valued functions vector-valued functions. Math. Scand., 93(2):275–296, 2003. ciel12 [1126] K. Cieliebak and Y. Eliashberg. From Stein to Weinstein and Back Symplectic Geometry of Affine Complex Manifolds. Colloquium Publications. American Mathematical Society 59. Providence, RI: American Mathematical Society (AMS). xii, 2012. cikasa05 [1127] P. Cifuentes, K. S. Kazarian, and A. San Antolin. Characterization of scaling functions in a multiresolution analysis. Proc. Amer. Math. Soc., 133(4):1013–1023, 2005. cisaso14 [1128] P. Cifuentes, A. San Antonil, and M. Soto Bajo. Anisotropic dilations of shift-invariant subspaces and approximation properties in L2 (Rd ). Math. Nachr., pages n/a–n/a, 2014. cidifolalomascot14 [1129] P. Ciliegi, C. La, L. Schreiber, M. Bellazzini, M. Bertero, P. Boccacci, E. Diolaiti, I. Foppiani, M. Lombini, D. Massari, and o. others. Image restoration with spatially variable PSF. In SPIE Astronomical Telescopes+ Instrumentation, pages 91482O–91482O, 2014. ciro00 [1130] J. Cima and W. Ross. The backward shift on the Hardy space, volume 79 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000. 101 ci79 [1131] J. A. Cima. The basic properties of Bloch functions. Int. J. Math. Math. Sci., 2:369–413, 1979. cits98 [1132] H. Cirpan and M. Tsatsanis. Stochastic Maximum Likelihood Methods for Semi Blind Channel Estimation. IEEE Signal Process. Letters, 5:21–24, Feb. 1998. clmu73 [1133] J. Claerbout and F. Muir. Robust modeling of erratic data. Geophys. J. Internat., 38:826–844, Oct. 1973. clni11 [1134] M. Clausel and S. Nicolay. Wavelets techniques for pointwise antiH¨olderian irregularity. Constr. Approx., 33(1):41–75, 2011. cl72 [1135] A. Cline. Rate of convergence of Lawson’s algorithm. Math. Commun., 26:167–176, 1972. clmi13 [1136] R. Cluckers and D. Miller. Lebesgue classes and preparation of real constructible functions. J. Funct. Anal., 264(7):1599–1642, 2013. cosc11 [1137] H. Cobian and A. Schulze Halberg. Time-dependent Schr¨odinger equations with effective mass in (2+1) dimensions: intertwining relations and Darboux operators. J. Phys. A, 44(28):285301, 14p., 2011. cofe88 [1138] F. Cobos and D. Fernandez. Hardy-Sobolev spaces and Besov spaces with a function parameter. In Function spaces and applications (Lund, 1986), volume 1302 of Lecture Notes in Math., pages 158–170. Springer, Berlin, 1988. coga94 [1139] F. Cobos and M. Garcia Davia. Remarks on interpolation properties of Schatten classes. Bull. Lond. Math. Soc., 26(5):465–471, 1994. cokr11 [1140] F. Cobos and N. Y. Kruglyak. Exact minimizer for the couple (l∞ , bv) and the one-dimensional analogue of the Rudin-Osher-Fatemi model. J. Approx. Theory, 163(4):481–490, 2011. cope91 [1141] F. Cobos and J. Peetre. Interpolation of compact operators: The multidimensional case. Proc. Lond. Math. Soc., III. Ser., 63(2):371– 400, 1991. copepe98 [1142] F. Cobos, J. Peetre, and L. Persson. On the connection between real and complex interpolation of quasi-Banach spaces. Bull. Sci. Math., 122(1):17–37, 1998. 102 co12-1 co77 [1143] L. Coburn. Berezin transform and Weyl-type unitary operators on the Bergman space. Proc. Amer. Math. Soc., 140(10):3445–3451, 2012. [1144] W. G. Cochran. Sampling techniques. John Wiley & Sons, 1977. co00-2 [1145] A. Cohen. Wavelet methods in numerical analysis. Ciarlet, P. G. (ed.) et al., Handbook of numerical analysis. Vol. 7: Solution of equations in Rn (Part 3). Techniques of scientific computing (Part 3). Amsterdam: North-Holland/ Elsevier. 417-711 (2000)., 2000. codade07-1 [1146] A. Cohen, W. Dahmen, and R. DeVore. A taste of compressed sensing. In Proc. SPIE 6576,Wavelets pioneer award; Independent component analyses, wavelets, unsupervised nano-biomimetic sensors, and neural networks V, volume 6576, pages 65760C–165760C–8, Orlando, Florida, USA — April 09, 2007, 2007. SPIE. codadekepi12 [1147] A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, and D. Picard. Capturing Ridge Functions in High Dimensions from Point Queries. Constr. Approx., 35:225–243, 2012. codavi93 [1148] A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal., 1(1):54–81, 1993. codepexu99 [1149] A. Cohen, R. DeVore, P. Petrushev, and H. Xu. Nonlinear approximation and the space BV (R2 ). Amer. J. Math., 121(3):587–628, 1999. codefora11 [1150] A. Cohen, R. A. DeVore, S. Foucart, and H. Rauhut. Recovery of functions of many variables via compressive sensing. In Proc. SampTA 2011, Singapore,, 2011. coza11 [1151] J. Cohen and A. Zayed. Wavelets And Multiscale Analysis Theory And Applications. Birkh¨auser, 2011. cota11 [1152] M. Cohen and C. O. Tan. A polynomial approximation for arbitrary functions. to appear, page 6, 2011. cohu98 [1153] P. Cohen and R. Hudson. Generators of quantum stochastic flows and cyclic cohomology. Math. Proc. Cambridge Philos. Soc., 123(2):345– 363, 1998. 103 coluwa07 [1154] W. Cohn, G. Lu, and P. Wang. Sub-elliptic global high order Poincar´e inequalities in stratified Lie groups and applications. J. Funct. Anal., 249(2):393–424, 2007. co09-1 [1155] R. Coifman. Wavelets and their applications past and future. In Proc. SPIE, Wavelet pioneer award; Independent component analyses, wavelets, neural networks, biosystems, and nanoengineering VII, volume 7343, pages 734302–1734302–13, Orlando, Florida, USA — April 13, 2009, 2009. SPIE. coda79 [1156] R. Coifman and B. Dahlberg. Singular integral characterizations of nonisotropic H p spaces and the F. and M. Riesz theorem. In Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, pages 231–234. Amer. Math. Soc., Providence, 1979. codo95 [1157] R. Coifman and D. Donoho. Translation-invariant de-noising. LECTURE NOTES IN STATISTICS-NEW YORK-SPRINGER VERLAG-, pages 125–125, 1995. coro82 [1158] R. Coifman and R. Rochberg. Projections in weighted spaces, skew projections and inversion of Toeplitz operators. Integr. Equ. Oper. Theory, 5:145–159, 1982. cocwrosawe80 [1159] R. Coifman, R. Rochberg, G. Weiss, M. Cwikel, and Y. Sagher. The complex method for interpolation of operators acting on families of Banach spaces. In Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), volume 779 of Lecture Notes in Math., pages 123–153. Springer, Berlin, 1980. co06-1 [1160] R. R. Coifman. Geometric harmonic analysis in high dimensions: challenges and opportunities. Jensen, Gary R. (ed.) et al., 150 years of mathematics at Washington University in St. Louis. Sesquicentennial of mathematics at Washington University, St. Louis, MO, USA, October 3–5, 2003. Providence, RI: American Mathematical Society (AMS). Contempora, 2006. cocwrosawe82 [1161] R. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, and G. Weiss. A theory of complex interpolation for families of Banach spaces. Adv. Math., 43(3):203–229, 1982. 104 come97-1 [1162] R. R. Coifman and F. Meyer. Brushlets: A tool for directional image analysis and image compression. Appl. Comput. Harmon. Anal., 4(2):147–187, 1997. cogrnepe98 [1163] D. Cojoc, P. Grattoni, R. Nerino, and G. Pettiti. Image description using Gabor wavelets. In Proc. SPIE, OPTIKA ’98: 5th Congress on Modern Optics, volume 3573 of Optical Systems, Imaging, and Micro-Optics, page 4, Budapest, Hungary, 1998. cogh10 [1164] P. Cojuhari and A. Gheondea. Closed embeddings of Hilbert spaces. J. Math. Anal. Appl., 369(1):60–75, 2010. bacoerpu02 [1165] S. Coleri, M. Ergen, A. Puri, and A. Bahai. Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems. IEEE Trans. Broadcasting, 48(3):223–229, Sep. 2002. co92-2 [1166] M. Combescure. A generalized coherent state approach of the quantum dynamics for suitable time-dependent Hamiltonians. 1992. co09 [1167] M. Combescure. Circulant matrices, Gauss sums and mutually unbiased bases. I: The prime number case. Cubo, 11(4):73–86, 2009. coro12 [1168] M. Combescure and D. Robert. Coherent States and Applications in Mathematical Physics. Springer, 2012. coro12-1 [1169] M. Combescure and D. Robert. Fermionic coherent states. 2012. cope07 [1170] P. Combettes and J.-C. Pesquet. A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery. IEEE J. Sel. Topics Signal Process., 1(4):564 –574, 2007. cope11 [1171] P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212. Springer, New York, 2011. cowa05 [1172] P. Combettes and V. Wajs. Signal recovery by proximal forwardbackward splitting. Multiscale Model. Simul., 4(4):1168–1200 (electronic), 2005. 105 cowaot06 [1173] P. Combettes, V. Wajs, and o. others. Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation, 4:1168–1200, 2006. coto07 [1174] F. Concetti and J. Toft. Trace ideals for Fourier integral operators with non-smooth symbols. In Pseudo-differential operators: partial differential equations and time-frequency analysis, volume 52 of Fields Inst. Commun., pages 255–264. Providence, RI, 2007. coto09 [1175] F. Concetti and J. Toft. Schatten-von Neumann properties for Fourier integral operators with non-smooth symbols. I. Ark. Mat., 47(2):295– 312, 2009. co88-1 [1176] A. Connes. Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules. K-Theory, 1(6):519–548, 1988. co89-2 [1177] A. Connes. Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory Dynam. Systems, 9(2):207–220, 1989. co95-3 [1178] A. Connes. Geometry from the spectral point of view. Lett. Math. Phys., 34(3):203–238, 1995. co00-3 [1179] A. Connes. A short survey of noncommutative geometry. J. Math. Phys., 41(6):3832–3866, 2000. co06-2 [1180] A. Connes. Noncommutative geometry and physics. Alimi, JeanMichel (ed.) et al., Albert Einstein century international conference, Paris, France, 18–22 July 2005. Invited papers. With CD-ROM, which contains the contributed papers of this confernce. Melville, NY: American Institute of Physics (AIP). AI, 2006. co08-1 [1181] A. Connes. A unitary invariant in Riemannian geometry. Int. J. Geom. Methods Mod. Phys., 5(8):1215–1242, 2008. co08-2 [1182] A. Connes. On the spectral characterization of manifolds. Arxiv preprint arXiv:0810.2088, 2008. cocoma09 [1183] A. Connes, C. Consani, and M. Marcolli. The Weil proof and the geometry of the adel`es class space. Tschinkel, Yuri (ed.) et al., Algebra, arithmetic, and geometry. In honor of Yu. I. Manin on the occasion of 106 his 70th birthday. Vol. I. Boston, MA: Birkh¨auser. Progress in Mathematics 269, 339-405 (2009)., 2009. cohiXX [1184] A. Connes and N. Higson. Asymptotic morphisms and operator Ktheory. In preparation for the Proceedings of the 1997 AMS meeting on K-theory, Seattle, Washington. cohi90 [1185] A. Connes and N. Higson. Deformations, asymptotic morphisms, and bivariant K-theory. CR Acad. Sci. Paris I, 311:101–106, 1990. cotr09 [1186] A. Connes and P. Tretkoff. The Gauss-Bonnet Theorem for the noncommutative two torus. Arxiv preprint arXiv:0910.0188, 2009. cokrry12 [1187] D. Constales, S. Krausshar, and J. Ryan. Hyperbolic Dirac and Laplace operators on examples of hyperbolic spin manifolds. Houston J. Math., 38(2):405–420, 2012. codivu14 [1188] M. Contreras, S. Diaz Madrigal, and D. Vukotic. Compact and weakly compact composition operators from the Bloch space into M¨obius invariant spaces. J. Math. Anal. Appl., (0):–, 2014. co12 [1189] J. Conway. A Course in Abstract Analysis. Providence, RI: American Mathematical Society (AMS), 2012. cosh13 [1190] J. √ Conway and J. Shipman. Extreme Proofs I: The Irrationality of 2. The Mathematical Intelligencer, 35(3):2–7, 2013. cosl99 [1191] J. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Volume 290. Third Edition edition, 1999. conisa94 [1192] T. Cooklev, A. Nishihara, and M. Sablatash. Theory of filter banks over finite fields. In Circuits and Systems, 1994. APCCAS’94., 1994 IEEE Asia-Pacific Conference on, pages 260–265, 1994. co90-3 [1193] J. Cooley. How the FFT gained acceptance. In A history of scientific computing (Proc. of the ACM, Princeton, NJ, 1987), ACM Press Hist. Ser., pages 133–140. ACM, New York, 1990. bocogarast69 [1194] J. Cooley, R. Garwin, C. Rader, B. Bogert, and T. J. Stockham. The 1968 Arden house workshop on fast Fourier transform processing. Audio and Electroacoustics, IEEE Transactions on, 17(2):66 – 76, jun 1969. 107 colewe67-1 [1195] J. Cooley, P. Lewis, and P. Welch. Application of the fast Fourier transform to computation of Fourier integrals, Fourier series, and convolution integrals,. Audio and Electroacoustics, IEEE Transactions on,, 15(2):79–84, 1967. colewe67 [1196] J. Cooley, P. Lewis, and P. Welch. Historical notes on the fast Fourier transform. Proceedings of the IEEE, 55(10):1675 – 1677, oct. 1967. co87 [1197] J. W. Cooley. The re-discovery of the fast Fourier transform algorithm. Microchimica Acta, 93(3):33–45, 1987. co10-1 [1198] T. Cooney. A Hausdorff-Young inequality for locally compact quantum groups. Internat. J. Math., 21(12):1619–1632, 2010. co70 [1199] J. Cooper. Functional equations for linear transformations. Proc. Lond. Math. Soc., III. Ser., 20:1–32, 1970. coma11 [1200] E. Copuroglu and B. Mamedov. Use of binomial coefficients in fast and accurate calculation of L¨owdin-α radial functions. J. Math. Chem., 49(1):201–207, 2011. cogi11 [1201] G. Corach and J. Giribet. Oblique projections and sampling problems. Integr. Equ. Oper. Theory, 70(3):307–322, 2011. co04 [1202] E. Cordero. Wavelet MRA on the interval with dilation factor m. Rend. Sem. Mat. Univ. Politec. Torino, 62(1):39–57, 2004. codenota10 [1203] E. Cordero, M. De, K. Nowak, and A. Tabacco. Dimensional upper bounds for admissible subgroups for the metaplectic representation. Mathematische Nachrichten, 283(7):982–993, 2010. cogrni11 [1204] E. Cordero, K. Gr¨ochenig, and F. Nicola. Approximation of Fourier integral operators by Gabor multipliers. J. Fourier Anal. Appl., 18(4):661–684, 2012. cogrniro12 [1205] E. Cordero, K. Gr¨ochenig, F. Nicola, and L. Rodino. The Wiener property for a class of Fourier integral operators. Arxiv preprint arXiv:1201.4079, 2012. cogrniro13 [1206] E. Cordero, K. Gr¨ochenig, F. Nicola, and L. Rodino. Generalized metaplectic operators and the Sch¨odinger equation with a potential in the Sj¨ostrand class. Submitted on 22 Jun 2013, preprint:23, 2013. 108 cogrniro13-1 [1207] E. Cordero, K. Gr¨ochenig, F. Nicola, and L. Rodino. Wiener algebras of Fourier integral operators. J. Math. Pures Appl. (9), 99(2):219–233, 2013. comanota10 [1208] E. Cordero, F. Mari, K. Nowak, and A. Tabacco. Dimensional upper bounds for admissible subgroups for the metaplectic representation. Math. Nachr., 283(7):982–993, 2010. coni10-1 [1209] E. Cordero and F. Nicola. Boundedness of Schr¨odinger type propagators on modulation spaces., 2010. cook12 [1210] E. Cordero and K. A. Okoudjou. Dilation properties for weighted modulation spaces. J. Funct. Spaces Appl., pages Art. ID 145491, 29, 2012. cota14 [1211] E. Cordero and A. Tabacco. Triangular subgroups of Sp(d, R) and reproducing formulae. arXiv preprint arXiv:1402.4604, 2014. cotawa13 [1212] E. Cordero, A. Tabacco, and P. Wahlberg. Schr¨odinger-type propagators, pseudodifferential operators and modulation spaces. J. Lond. Math. Soc. (2), 88(2):375–395, 2013. cotowa14 [1213] E. Cordero, J. Toft, and P. Wahlberg. Sharp results for the Weyl product on modulation spaces. J. Funct. Anal., 267(8):3016–3057, 2014. co89-3 [1214] A. Cordoba. Dirac combs. Lett. Math. Phys., 17(3):191–196, 1989. co89-5 [1215] A. Cordoba. The disc multiplier. Duke Math. J., 58(1):21–29, 1989. co89-4 [1216] C. Corduneanu. Almost Periodic Functions. Chelsea, New York, 1989. cojoto13 [1217] S. Coriasco, K. Johansson, and J. Toft. Global wave-front sets of Banach, Frechet and modulation space types, and pseudo-differential operators. J. Differential Equations, 254(8):3228–3258, 2013. coru10 [1218] S. Coriasco and M. Ruzhansky. On the boundedness of Fourier integral operators on Lp (Rn ) (Sur la continuite des operateurs integraux de Fourier sur Lp (Rn )). C. R., Math., Acad. Sci. Paris, 348(1516):847–851, 2010. 109 colerist09 [1219] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009. codadosc09 [1220] B. Cornelis, A. Dooms, I. Daubechies, and P. Schelkens. Report on digital image processing for art historians. In Proc. of SAMPTA’09, page 4, Marseille, May 18-22, 2009, 2009. coioqustst07 [1221] C. Cornu, S. Stankovi´c, C. Ioana, A. Quinquis, and L. Stankovi´c. Generalized representation of phase derivatives for regular signals. IEEE Trans. Signal Process., 55(10):4831–4838, 2007. co84-2 [1222] J. Costas. A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties. Proceedings of the IEEE, 72:996–1009, 1984. coheje00 [1223] P. Coste, F. Hessel, and A. Jerraya. Multilanguage codesign using SDL and Matlab. Proc. SASIMI 2000, pages 49–55, 2000. cohejelerosusuze99 [1224] P. Coste, F. Hessel, M. Le, Z. Sugar, M. Romdhani, R. Suescun, N. Zergainoh, and A. Jerraya. Multilanguage design of heterogeneous systems. In Hardware/Software Codesign, 1999.(CODES’99) Proceedings of the Seventh International Workshop on, pages 54–58, 1999. co09-2 [1225] S. Costea. Besov capacity and Hausdorff measures in metric measure spaces. Publ. Mat., Barc., 53(1):141–178, 2009. co55 [1226] M. Cotlar. A combinatorial inequality and its applications to L2 spaces. Rev. Mat. Cuyana, 1:41–55 (1956), 1955. codepato10 [1227] Y. Cotte, M. Toy, N. Pavillon, and C. Depeursinge. Microscopy image resolution improvement by deconvolution of complex fields. Optics express, 18(19):19462–19478, 2010. coenkrra05 [1228] S. Cotter, B. Rao, K. Engan, and K. Kreutz Delgado. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process., 53:2477–2488, Jul. 2005. co13 [1229] T. Coulhon. Heat kernel estimates, Sobolev-type inequalities and Riesz transform on noncompact Riemannian manifolds. In Analysis and geometry of metric measure spaces. Lecture notes of the 50th S´eminaire de Math´ematiques Sup´erieures (SMS), Montr´eal, Canada, June 27 – July 8, 2011, pages 55–65. 2013. 110 cokepe12 [1230] T. Coulhon, G. Kerkyacharian, and P. Petrushev. Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl., 18(5):995–1066, 2012. cosi08-1 [1231] T. Coulhon and A. Sikora. Gaussian heat kernel upper bounds via the Phragmen-Lindel¨of theorem. Proc. Lond. Math. Soc. (3), 96(2):507– 544, 2008. cosi10 [1232] T. Coulhon and A. Sikora. Riesz meets Sobolev. Colloq. Math., 118(2):685–704, 2010. cohi62 [1233] R. Courant and D. Hilbert. Methods of mathematical physics. Vol. II: Partial differential equations. (Vol. II by R. Courant.). Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962. come99 [1234] E. Coven and A. Meyerowitz. Tiling the integers with translates of one finite set. J. Algebra, 212(1):161–174, 1999. co12-2 [1235] M. Cowling. Isomorphisms of the Fig`a-Talamanca–Herz algebras Ap (G) for connected Lie groups g. In Colloquium De Giorgi 2009, volume 3 of Colloquia, pages 1–18. 2012. codesu10 [1236] M. Cowling, B. Demange, and M. Sundari. Vector-valued distributions and Hardy’s uncertainty principle for operators. Rev. Mat. Iberoam., 26(1):133–146, 2010. codokori91 [1237] M. Cowling, A. Dooley, A. Kor´anyi, and F. Ricci. h-type groups and Iwasawa decompositions. Adv. Math., 87(1):1–41, 1991. coeskepove10 [1238] M. Cowling, L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega. The Hardy uncertainty principle revisited. Arxiv preprint arXiv:1005.1543, 2010. co84-3 [1239] H. S. M. Coxeter. Surprising relationships among unitary reflection groups. Proceedings of the Edinburgh Mathematical Society (Series 2), 27(02):185–194, 1984. crfdafo02 [1240] M. Craizer, D. A. J. Fonini, and E. A. B. da Silva. Alpha-expansions: a class of frame decompositions. Appl. Comput. Harmon. Anal., 13(2):103–115, 2002. 111 cr38 [1241] H. Cram´er. Sur un nouveau th´eor`eme-limite de la th´eorie des probabilit´es. Actual. sci. industr., 736:5–23, 1938. cr40 [1242] H. Cramer. On the Theory of Stationary Random Processes. Ann. of Math., 41(1):215–230, 1940. crcyfi06 [1243] M. Cranitch, M. Cychowski, and D. FitzGerald. Towards an Inverse Constant Q Transform. In Audio Engineering Society Convention 120, 5 2006. crrosa12 [1244] R. Criado, M. Romance, and . S´anchez. Interest point detection in images using complex network analysis. J. Comput. Appl. Math., 236(12):2975 – 2980, 2012. cr04 [1245] R. Cristi. Modern Digital Signal Processing. Brooks/Cole Pub Co, 2004. cr90-1 [1246] A. Crumeyrolle. Orthogonal and Symplectic Clifford Algebras, volume 57 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1990. crfi10 [1247] D. Cruz Uribe and A. Fiorenza. Convergence in variable Lebesgue spaces. (Convergence in variable Lebesque spaces.). Publ. Mat., Barc., 54(2):441–459, 2010. crfi13 [1248] D. Cruz Uribe and A. Fiorenza. Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Birkh¨auser, 2013. crfine04 [1249] D. Cruz Uribe, A. Fiorenza, and C. Neugebauer. Corrections to “The maximal function on variable Lp spaces. Ann. Acad. Sci. Fenn., Math., 29(1):247–249, 2004. cuzh07 [1250] F. Cucker and D.-X. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2007. cudy86 [1251] J. Cuellar and A. Dynin. Irreducibility of Toeplitz C ∗ -algebras. Int. Equ. Op. Theory, 9(5):613–622, 1986. cute04 [1252] T. Cui and C. Tellambura. Joint channel and frequency offset estimation and training sequence design for MIMO systems over frequency 112 selective channels. In Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, volume 4, pages 2344–2348, 2004. curi06 [1253] G. Curbera and W. Ricker. Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math., New Ser., 17(2):187–204, 2006. cuma11 [1254] B. Currey and A. Mayeli. Gabor fields and wavelet sets for the Heisenberg group. Monatsh. Math., 162(2):119–142, 2011. cuma12 [1255] B. Currey and A. Mayeli. A density condition for interpolation on the Heisenberg group. Rocky Mountain J. Math., 42(4):1135–1151, 2012. cufaza14 [1256] T. Curtright, D. Fairlie, and C. Zachos. A Concise Treatise on Quantum Mechanics In Phase Space. Hackensack, NJ: World Scientific and London: Imperial College Press, 2014. cwni84 [1257] M. Cwikel and P. Nilsson. The coincidence of real and complex interpolation methods for couples of weighted Banach lattices. In M. Cwikel, P. Nilsson, M. Cwikel, and J. Peetre, editors, Interpolation Spaces and Allied Topics in Analysis(Proceedings of the Conference held in Lund, Sweden, August 29 September 1, 1983), volume 1070 of Lecture Notes in Mathematics, pages 54–65. Springer Berlin / Heidelberg, 1984. cwsash12 [1258] M. Cwikel, Y. Sagher, and P. Shvartsman. A new look at the John Nirenberg and John Stroemberg theorems for BMO. J. Funct. Anal., 263(1):129 – 166, 2012. czki12 [1259] W. Czaja and E. King. Isotropic shearlet analogs for L2 (R)k and localization operators. Numer. Funct. Anal. Optim., 33(7-9):872–905, 2012. czta13 [1260] W. Czaja and J. Tanis. Kaczmarz algorithm and frames. Int. J. Wavelets Multiresolut. Inf. Process., 11(5):13, 2013. dapiri10 [1261] P. D Ancona, V. Pierfelice, and F. Ricci. On the wave equation associated to the Hermite and the twisted Laplacian. J. Fourier Anal. Appl., 16(2):294–310, 2010. 113 da06-2 [1262] P. Da. An Introduction to Infinite-dimensional Analysis. Universitext. Springer-Verlag, Berlin, 2006. da03-2 [1263] S. da. Atomic decomposition with evolutionary pursuit. Digital Signal Processing, 13(2):317–337, 2003. dakrla00 [1264] L. Dabrowski, T. Krajewski, and G. Landi. Some properties of nonlinear σ-models in noncommutative geometry. In Proceedings of the 1999 Euroconference: On Non-commutative Geometry and Hopf Algebras in Field Theory and Particle Physics (Torino), volume 14, pages 2367–2382, 2000. dakrla03 [1265] L. Dabrowski, T. Krajewski, and G. Landi. Non-linear σ-models in noncommutative geometry: fields with values in finite spaces. Modern Phys. Lett. A, 18(33-35):2371–2379, 2003. datv97 [1266] M. Daehlen and A. Tveito. Numerical Methods and Software Tools in Industrial Mathematics. Birkh¨auser Verlag, 1997. dago11 [1267] U. Daepp and P. Gorkin. Reading, Writing, and Proving. Springer, Second Edition edition, 2011. dakaxi08 [1268] G. Dafni, G. E. Karadzhov, and J. Xiao. Classes of Carleson-type measures generated by capacities. Math. Z., 258(4):827–844, 2008. daxi05 [1269] G. Dafni and J. Xiao. The dyadic structure and atomic decomposition of q spaces in several real variables. Tohoku Math. J., 57(1), 2005. dala09 [1270] C. Dagnino and P. Lamberti. Spline“quasi-interpolants”with boundary conditions on criss-cross triangulations. Quaderni scientifici del Dipartimento di Matematica, 2009. da79-1 [1271] B. Dahlberg. A note on Sobolev spaces. In Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, pages 183–185. Amer. Math. Soc., Providence, 1979. da79-2 [1272] B. Dahlberg. Regularity properties of Riesz potentials. Indiana Univ. Math. J., 28(2):257–268, 1979. 114 dadascwe95 [1273] S. Dahlke, W. Dahmen, I. Weinreich, and E. Schmitt. Multiresolution analysis and wavelets on S 2 and S 3 . Numer. Funct. Anal. Optim., 16(1-2):19–41, 1995. dadedelasttevi14 [1274] S. Dahlke, M. De, V. De, D. Labate, G. Steidl, G. Teschke, and S. Vigogna. Coorbit spaces with voice in a Frechet space. arXiv preprint arXiv:1402.3917, 2014. dastte12 [1275] S. Dahlke, Gabriele Steidl, and Gerd Teschke. Multivariate shearlet transform, shearlet coorbit spaces and their structural properties. In Shearlets. Multiscale analysis for multivariate data., pages 105–144. Boston, MA: Birkh¨auser, 2012. dahastte13 [1276] S. Dahlke, S. H¨auser, G. Steidl, and G. Teschke. Shearlet coorbit spaces: traces and embeddings in higher dimensions. Monatsh. Math., 169(1):15–32, 2013. dahate12 [1277] S. Dahlke, S. H¨auser, and G. Teschke. Coorbit space theory for the Toeplitz shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process., 10(04):1250037, 13 p., 2012. dalomasate08 [1278] S. Dahlke, D. Lorenz, P. Maass, C. Sagiv, and G. Teschke. The canonical coherent states associated with quotients of the affine WeylHeisenberg group. J. Appl. Funct. Anal., 3(2):215–232, 2008. dastte11 [1279] S. Dahlke, G. Steidl, and G. Teschke. Shearlet coorbit spaces: Compactly supported analyzing shearlets, traces and embeddings. J. Fourier Anal. Appl., 17(6):1232–1255, 2011. dastte08 [1280] S. Dahlke, G. Teschke, and K. Stingl. Coorbit theory, multi-αmodulation frames, and the concept of joint sparsity for medical multichannel data analysis. EURASIP J. Adv. Signal Process., 2008:19, 2008. daprsc93 [1281] W. Dahmen, S. Pr¨ossdorf, and R. Schneider. Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution. Adv. Comput. Math., 1:259–335,, oct 1993. dag95 [1282] G.-m. Dai. Modal compensation of atmospheric turbulence with the use of Zernike polynomials and KarhunenLo`eve functions. JOSA A, 12(10):2182–2193, 1995. 115 da08 [1283] G.-M. Dai. Wavefront optics for vision correction, volume 179. SPIE press Bellingham, WA, 2008. dadiguha03 [1284] X. Dai, Y. Diao, Q. Gu, and D. Han. The existence of subspace wavelet sets. J. Comput. Anal. Appl., 155(1):83–90, June 2003. lilupapasispwewe98 [1285] X. Dai, Q. Gu, D. Han, D. Larson, R. Liang, S. Lu, D. Speegle, G. Garrigos, E. Hernandez, M. Paluszynski, M. Papadakis, H. Sikic, D. Weiland, and G. Weiss. Basic properties of wavelets. J. Fourier Anal. Appl., 4(4-5):575–594, 1998. dalasp97 [1286] X. Dai, D. R. Larson, and D. M. Speegle. Wavelet sets in Rn . J. Fourier Anal. Appl., 3(4):451–456, 1997. da93-3 [1287] M. Dal. An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkh¨auser Boston Inc., Boston, MA, 1993. da00 [1288] H. Dales. Banach Algebras and Automatic Continuity, volume 24 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 2000. dapo04 [1289] H. Dales and M. Polyakov. Homological properties of modules over group algebras. Proc. Lond. Math. Soc. (3), 89(2):390–426, 2004. dama12 [1290] F. D’Andrea and P. Martinetti. On Pythagoras’ theorem for products of spectral triples. Arxiv preprint arXiv:1203.3184, 2012. apbeblda13 [1291] H. Dang, K. Blanchfield, I. Bengtsson, and D. Appleby. Linear dependencies in Weyl-Heisenberg orbits. Quantum Inf. Process., 12(11):3449–3475, 2013. daqiyo11 [1292] P. Dang, T. Qian, and Z. You. Hardy-Sobolev spaces decomposition in signal analysis. J. Fourier Anal. Appl., 17(1):36–64, 2011. da13 [1293] J. D’Angelo. Hermitian Analysis from Fourier Series to CauchyRiemann Geometry. New York, NY: Birkh¨auser/Springer, 2013. bedaduhuzh10 [1294] A. Dani, B. Huang, J. Bergan, C. Dulac, and X. Zhuang. Superresolution imaging of chemical synapses in the brain. Neuron, 68(5):843 – 856, December 2010. 116 daga08 [1295] D. Danielli and N. Garofalo. Interior Cauchy-Schauder estimates for the heat flow in Carnot-Carath´eodory spaces. Methods Appl. Anal., 15(1):121–136, 2008. daganh07 [1296] D. Danielli, N. Garofalo, and D.-M. Nhieu. Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math., 215(1):292–378, 2007. dagaph11 [1297] D. Danielli, N. Garofalo, and N. Phuc. Hardy-Sobolev type inequalities with sharp constants in Carnot-Caratheodory spaces. Potential Anal., 34(3):223–242, 2011. dala13 [1298] N. Das and R. Lal. Algebraic and ergodicity properties of the Berezin transform. Commun. Math. Anal., 14(1):85–103, 2013. da09-1 [1299] S. Das. Mathematical methods for wireless channel estimation and equalization. PhD thesis, University of Vienna, Vienna, Austria, September, 2009. dane11 [1300] S. Das and A. Neumaier. Regularized low rank approximation of weighted data sets. preprint, 2011. da09 [1301] A. Dasgupta. Rigged Hilbert Spaces. 2009. damowo11 [1302] A. Dasgupta, S. Molahajloo, and M.-W. Wong. The spectrum of the sub-Laplacian on the Heisenberg group. Tohoku Math. J., 63(2):269– 276, 2011. dawo07 [1303] A. Dasgupta and M. Wong. Weyl transforms and the heat equation for the sub-Laplacian on the Heisenberg group. Rodino, Luigi (ed.) et al., New developments in pseudo-differential operators. Selected papers of the 6th congress of the International Society for Analysis, its Applications and Computation (ISAAC), the ISAAC Group in Pseudo-Differential Operators (IGPDO, 2007. dawo10-1 [1304] A. Dasgupta and M. Wong. Fourier-Wigner transforms and Liouville’s theorems for the sub-Laplacian on the Heisenberg group. In Linear and non-linear theory of generalized functions and its applications, volume 88 of Banach Center Publ., pages 67–75. Polish Acad. Sci. Inst. Math., Warsaw, 2010. 117 dawo10 [1305] A. Dasgupta and M. Wong. The semigroup and the inverse of the Laplacian on the Heisenberg group. Cubo, 12(3):83–97, 2010. dawo13 [1306] A. Dasgupta and M. Wong. Hilbert-Schmidt and trace class pseudodifferential operators on the Heisenberg group. J. Pseudo-Differ. Oper. Appl., 4(3):345–359, 2013. dagu03 [1307] S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures Algorithms, 22(1):60– 65, 2003. da99-2 [1308] G. Dattoli. Hermite-Bessel and Laguerre-Bessel functions: a byproduct of the monomiality principle, 1999. daha04 [1309] I. Daubechies and B. Han. Pairs of dual wavelet frames from any two refinable functions. Constr. Approx., 20(3):325–352, 2004. dakl85 [1310] I. Daubechies and J. R. Klauder. Quantum-mechanical path integrals with Wiener measure for all polynomials Hamiltonians. II. J. Math. Phys., 26(9):2239–2256, 1985. daluwu11 [1311] I. Daubechies, J. Lu, and H.-T. Wu. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal., 30(2):243–261, 2011. damoto99 [1312] L. Daudet, M. Morvidone, and B. Torr´esani. Time-frequency and time-scale vector fields for deforming time-frequency and time-scale representations. In Proceedings of SPIE, volume 3813, pages 2–15, 1999. da85 [1313] J. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Amer. A, 2(7):1160–1169, Jul 1985. dali00 [1314] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology Volume 2: Functional and Variational methods With the Collaboration of Michel Artola, Marc Authier, Philippe B’enilan, Michel Cessenat, Jean-Michel Combes, H’el‘ene Lanchon, Bertr. Berlin: Springer, 2nd printing edition, 2000. 118 daer39 [1315] H. Davenport and P. Erd¨os. On sums of positive integral kth powers. Ann. of Math. (2), 40:553–536, 1939. da76 [1316] J. Davenport. Multipliers on a Banach algebra with a bounded approximate identity. Pacific J. Math., 63:131–135, 1976. dawa10 [1317] M. Davenport and M. Wakin. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans. Inform. Theory, 56:4395–4401, Sep. 2010. dawa11 [1318] M. Davenport and M. Wakin. Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences. Appl. Comput. Harmon. Anal., abs/1109.3649, 2011, submitted. dawa12 [1319] M. Davenport and M. Wakin. Compressive sensing of analog signals using discrete prolate spheroidal sequences. Appl. Comput. Harmon. Anal., 33(3):438 – 472, 2012. dajo84 [1320] G. David and J.-L. Journ´e. A boundedness criterion for generalized Calder´on-Zygmund operators. Ann. Math. (2), 120:371–397, 1984. cedahe09 [1321] R. Davidi, G. T. Herman, and Y. Censor. Perturbation-resilient blockiterative projection methods with application to image reconstruction from projections. Int. Trans. Oper. Res., 16(4):505–524, 2009. da89 [1322] E. Davies. Heat Kernels and Spectral Theory. Cambridge etc.: Cambridge University Press, 1989. da95 [1323] E. Davies. Spectral Theory and Differential Operators. Cambridge: Cambridge Univ. Press, 1995. dasi84 [1324] E. Davies and B. Simon. Ultracontractivity and the heat kernel for Schr¨odinger operators and Dirichlet Laplacians. J. Funct. Anal., 59:335–395, 1984. dael12 [1325] M. Davies and Y. Eldar. Rank Awareness in Joint Sparse Recovery. IEEE Trans. Inform. Theory,, 58(2):1135 –1146, 2012. daka12 [1326] R. Davies and M. Kasper. Adaptive optics for astronomy. arXiv preprint arXiv:1201.5741, 2012. 119 da86 [1327] A. Davis. Almost periodic extension of band-limited functions and its application to nonuniform sampling. IEEE Trans. on Circuits and Systems, CAS-33(10):933–938,, 1986. damazh94 [1328] G. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency decompositions. Opt. Eng., 33(7):21832191, 1994. da75 [1329] P. Davis. Interpolation and approximation. Dover Publications Inc., New York, 1975. daru10 [1330] M. Daws and V. Runde. Reiter’s properties (P1 ) and (P2 ) for locally compact quantum groups. J. Math. Anal. Appl., 364(2):352–365, 2010. de86-1 [1331] B. de. Quasi-crystals and their Fourier transform. Indag. Math., 48:123–152, 1986. de02-3 [1332] B. de. The upper error bound of a new near-optimal code. IEEE Trans. Information Theory, 21(4):441–445, 2002. dede11 [1333] B. De and S. De. Fourier transforms of hypercomplex signals. In Symposium on Fractional Signals and Systems (FSS-2011), pages 41– 49, 2011. dede12 [1334] B. De and S. De. Fractional Fourier transforms of hypercomplex signals. Signal, Image and Video Processing, 6(3):381–388, 2012. pide82 [1335] B. de and A. Pinkus. The approximation of a totally positive band matrix by a strictly banded totally positive one. Linear Algebra Appl., 42:81–98, 1982. dexu11 [1336] B. De and Y. Xu. On the Clifford–Fourier transform. International Mathematics Research Notices, page rnq288, 2011. de94-1 [1337] J. de. An uncertainty principle for integral operators. J. Funct. Anal., 122(1):247–253, 1994. de03-5 [1338] J. de. Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights. Ann. Probab., 31(3):1205– 1227, 2003. 120 de04-7 [1339] J. de. Subspaces with equal closure. Constr. Approx., 20(1):93–157, 2004. sisvde09 [1340] J. de, C. Svensson, and S. Silvestrov. Algebraic curves for commuting elements in the q-deformed Heisenberg algebra. J. Algebra, 321(4):1239–1255, 2009. dedero09 [1341] M. De, V. De, and L. Rosasco. Elastic-net regularization in learning theory. J. Complexity, 25(2):201–230, 2009. dehomu04 [1342] M. De, S. Munday, and A. Hood. Wavelet analysis: the effect of varying basic wavelet parameters. Solar Physics, 222(2):203–228, 2004. dela12 [1343] N. De and G. Landi. Generalized TKNN-equations. Advances in Theoretical and Mathematical Physics, 16(2):505–547, 2012. dele11 [1344] N. De and M. Lein. Applications of magnetic ψDO techniques to SAPT. Rev. Math. Phys., 23(3):233–260, 2011. vade10 [1345] O. de and F. Vallentin. Fourier analysis, linear programming, and densities of distance avoiding sets in Rn . J. Eur. Math. Soc. (JEMS), 12(6):1417–1428, 2010. de47 [1346] S. de. Expansion theorems of Paley-Wiener type. Duke Math. J., 14(4):975–978, 12 1947. de06-6 [1347] S. De. Multi-dimensional continuous wavelet transforms and generalized Fourier transforms in Clifford analysis. PhD thesis, Ghent University, 2006. ghde07 [1348] S. de and R. Ghrist. Coverage in sensor networks via persistent homology. Algebraic & Geometric Topology, 7:339–358, 2007. movede11 [1349] S. de, D. Morozov, and M. Vejdemo Johansson. Persistent cohomology and circular coordinates. Discrete Comput. Geom., 45(4):737–759, 2011. de11 [1350] M. De Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics, volume 7 of Pseudo-Differential Operators. Theory and Applications. Birkh¨auser/Springer Basel AG, Basel, 2011. 121 go11 [1351] M. De Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Basel: Birkh¨auser, 2011. de12 [1352] M. De Gosson. On the partial saturation of the uncertainty relations of a mixed Gaussian state. Journal of Physics A: Mathematical and Theoretical, 45(41):415301, 2012. de13-1 [1353] M. De Gosson. Symplectic and Hamiltonian deformations of Gabor frames. ArXiv e-prints, may 2013. de13 [1354] M. De Gosson. Symplectic covariance properties for Shubin and Born-Jordan pseudo-differential operators. Trans. Amer. Math. Soc., 365(6):3287–3307, 2013. lude12 [1355] M. De Gosson and F. Luef. Sub-Gaussian estimates for Wigner functions and their relation with the notion of symplectic capacity. preprint, 2011. lude14 [1356] M. De Gosson and F. Luef. Metaplectic group, symplectic Cayley transform, and fractional Fourier transforms. J. Math. Anal. Appl., 416(2):947–968, 2014. degrro14 [1357] M. V. de Hoop, K. Gr¨ochenig, and J. L. Romero. Exact and approximate expansions with pure Gaussian wave packets. SIAM J. Math. Anal., 43(3):2229–2253, 2014. de12-1 [1358] R. de la Madrid. The rigged Hilbert space approach to the Gamow states. Journal of Mathematical Physics, 53(10):102113, oct 2012. de85 [1359] J. De Sousa Pinto. A generalized Hankel convolution. SIAM J. Math. Anal., 16:1335–1346, 1985. de00-3 [1360] E. Decreux. Closed ideals of a quasianalytic Fr´echet algebra. Arch. Math. (Basel), 75(6):430–437, 2000. demose80 [1361] J. Deenen, M. Moshinsky, and T. Seligman. Canonical transformations to action and angle variables and their representations in quantum mechanics: III. The general problem. Annals of Physics, 127(2):458–477, 1980. 122 dejola97 [1362] B. DeFacio, G. Johnson, and M. Lapidus. Feynman’s operational calculus and evolution equations. Acta Appl. Math., 47(2):155–211, 1997. defrorouse11 [1363] A. Defant, L. Frerick, J. Ortega Cerd`a, M. Ounaies, and K. Seip. The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2), 174(1):485–497, 2011. demami02 [1364] A. Defant, M. Mastylo, and C. Michels. Summing inclusion maps between symmetric sequence spaces. Trans. Amer. Math. Soc., 354(11):4473–4492, 2002. de07-7 [1365] P. Deift. Universality for mathematical and physical systems. In International Congress of Mathematicians. Vol. I, pages 125–152. Eur. Math. Soc., Z¨ urich, 2007. dedi10 [1366] A. Deitmar and N. Diamantis. A new multiple Dirichlet series induced by a higher-order form. Acta Arith., 142(4):303–309, 2010. dele04 [1367] S. Dekel and D. Leviatan. The Bramble–Hilbert Lemma for Convex Domains. SIAM journal on mathematical analysis, 35(5):1203–1212, 2004. depe09 [1368] S. Dekel and P. Petrushev. Anisotropic function spaces with applications. In Multiscale, nonlinear and adaptive approximation. Dedicated to Wolfgang Dahmen on the occasion of his 60th birthday, pages 137– 167. Berlin: Springer, 2009. depewe11 [1369] S. Dekel, P. Petrushev, and T. Weissblat. Hardy spaces on rn with pointwise variable anisotropy. J. Fourier Anal. Appl., 17(5):1066– 1107, 2011. fefemanade08 [1370] C. del, A. Fernandez, I. Ferrando, F. Mayoral, and F. Naranjo. Multiplication operators on spaces of integrable functions with respect to a vector measure. J. Math. Anal. Appl., 343(1):514–524, 2008. deha03 [1371] G. Del and M. Haardt. IlmProp: A flexible geometry-based simulation environment for multiuser MIMO communications, Sep. 2003. dejo97 [1372] C. Delfs and F. Jondral. Classification of piano sounds using timefrequency signal analysis. In Acoustics, Speech, and Signal Processing, 1997. ICASSP-97, volume 3, pages 2093–2096, 1997. 123 dejo98 [1373] C. Delfs and F. Jondral. Classification of transient time-varying signals using DFT and wavelet packet based methods. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference, volume 3, pages 1569–1572, 1998. demi09 [1374] O. Delgado and P. Miana. Algebra structure for Lp of a vector measure. J. Math. Anal. Appl., 358(2):355–363, 2009. desc89-1 [1375] F.-J. Delvos and W. Schempp. Boolean Methods in Interpolation and Approximation. Pitman Research Notes in Mathematics Series, 230. Harlow: Longman Scientific & Technical and New York: John Wiley & Sons, Inc. 168 p., 1989. desc89 [1376] F.-J. Delvos and W. Schempp. Interpolation projectors and closed ideals. Approximation and function spaces, Proc. 27th Semest., Warsaw/Pol. 1986, Banch Cent. Publ. 22, 89-98 (1989)., 1989. degomeratatowiwo09 [1377] E. Demaine, F. Gomez Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, and D. Wood. The distance geometry of music. Computational Geometry, 42(5):429–454, 2009. de11-4 [1378] L. DEMANET. Discrete symbol calculus. SIAM Rev., 53(1):71–104, 2011. dehaXX [1379] L. Demanet and P. Hand. Stable optimizationless recovery from phaseless linear measurements. J. Fourier Anal. Appl., to appear. deyi11 [1380] L. Demanet and L. Ying. Discrete symbol calculus. SIAM Rev., 53(1):71–104, 2011. de09-2 [1381] B. Demange. Uncertainty principles associated to non-degenerate quadratic forms. M´em. Soc. Math. Fr. (N.S.), (119):98 pp. (2010), 2009. dedeXX [1382] F. DeMari and E. DeVito. Admissible vectors for mock metaplectic representations. Appl. Comput. Harmon. Anal. mano01 [1383] F. DeMari and K. Nowak. Analysis of the affine transformations of the time-frequency plane. Bull. Austral. Math. Soc., 63(2):195–218, 2001. 124 dede12-3 [1384] F. Demengel and G. Demengel. Fractional Sobolev Spaces. In Functional Spaces for the Theory of Elliptic Partial Differential Equations, pages 179–228. Springer, 2012. dede12-2 [1385] F. Demengel and G. Demengel. Sobolev spaces and embedding theorems. In Functional Spaces for the Theory of Elliptic Partial Differential Equations, pages 57–112. Springer, 2012. dede12-1 [1386] F. Demengel and G. Demengel. Traces of functions on Sobolev spaces. In Functional Spaces for the Theory of Elliptic Partial Differential Equations, pages 113–177. Springer, 2012. de99-2 [1387] G. Demengel. Transformations de Fourier g´en´eralis´ees: S´eries et transformations de Fourier et de Walsh, leurs extensions, transformations discr`etes et rapides, cours et probl`emes r´esolus. Universit’es. Math’ematiques. Ellipses, 1999. bobebedepo96 [1388] G. Demengel, P. B´enichou, R. B´enichou, N. Boy, and J.-P. Pouget. Distributions et applications. S´eries de Fourier, transformations de Fourier et de Laplace. Outils pour l’ing´enieur. Paris: Ellipses, 1996. dede12-4 [1389] G. Demengel and F. Demengel. Functional Spaces for the Theory of Elliptic Partial Differential Equations. Berlin: Springer, 2012. dega13 [1390] C. Demeter and S. Z. Gautam. On the finite linear independence of lattice Gabor systems. Proc. Amer. Math. Soc., 141(5):1735–1747, 2013. de77-2 [1391] S. Demko. Local approximation properties of spline projections. J. Approx. Theory, 19:176–185, 1977. de79 [1392] S. Demko. On bounding ||A−1 ||∞ for banded A. Math. Commun., 33:1283–1288, 1979. deva74 [1393] S. Demko and R. Varga. Extended lp -error bounds for spline and l-spline interpolation. J. Approx. Theory, 12:242–264, 1974. deduho07 [1394] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is stable. Numerische Mathematik, 108(1):59–91, 2007. deka90 [1395] J. Demmel and W. Kahan. Accurate Singular Values of Bidiagonal Matrices. SIAM J. Sci. Stat. Comput, 11:873–912, 1990. 125 de86 [1396] N. Dencker. The Weyl calculus with locally temperate metric and weights. Ark. Mat., 24:59–79, 1986. detawa06 [1397] B. Deng, R. Tao, and Y. Wang. Convolution theorems for the linear canonical transform and their applications. Science in China Series F: Information Sciences, 49(5):592–603, 2006. cudezh10 [1398] C. Deng, J. Zhao, and S. Cui. Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 73(7):2088– 2100, 2010. dehaya04 [1399] D. Deng, Y. Han, and D. Yang. Inhomogeneous Plancherel-P´olya inequalities on spaces of homogeneous type and their applications. Commun. Contemp. Math., 6(2):221–243, 2004. dedisu13 [1400] Q. Deng, Y. Ding, and L. Sun. Estimate for generalized unimodular multipliers on modulation spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 85:78–92, 2013. dediya12 [1401] Q. Deng, Y. Ding, and X. Yao. Characterizations of Hardy spaces associated to higher order elliptic operators. J. Funct. Anal., 263(3):604–674, 2012. de11-3 [1402] L. DENIS. Fast model of space-variant blurring and its application to deconvolution in astronomy. Image Processing (ICIP), 2011. de14 [1403] L. DENIS. Fast approximations of shift-variant blur. 2014. dehupe11 [1404] L. Denis, M. Hu, and S. Peng. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Analysis, 34(2):139–161, 2011. desoth11 [1405] L. Denis, E. Thiebaut, and F. Soulez. Fast model of space-variant blurring and its application to deconvolution in astronomy. In Image Processing (ICIP), 2011 18th IEEE International Conference on, pages 2817–2820, 2011. bedemosoth14 [1406] L. Denis, E. Thiebaut, F. Soulez, J.-M. Becker, and R. Mourya. Fast approximations of shift-variant blur. HAL archives-ouvertes.fr, 2014. 126 deli54 [1407] J. Deny and J.-L. Lions. Les espaces du type de Beppo Levi. In Annales de l’institut Fourier, volume 5, pages 305–370, 1954. de11-2 [1408] A. Derighetti. Convolution Operators on Groups. Springer Berlin / Heidelberg, 2011. degusa14 [1409] F. Deringoz, V. S. Guliyev, and S. Samko. Boundedness of the maximal and singular operators on generalized Orlicz–Morrey spaces. In Operator Theory, Operator Algebras and Applications, pages 139–158. Springer, 2014. de11-1 [1410] P. Devaraj. Reconstruction from local discrete averages on the plane. J. Math. Anal. Appl., 373(1):13–19, 2011. de07-6 [1411] R. DeVore. Optimal computation. Sanz-Sol´e, Marta (ed.) et al., Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume I: Plenary lectures and ceremonies. Z¨ urich: European Mathematical Society (EMS). 187-215 (2007)., 2007. desc79 [1412] R. DeVore and K. Scherer. Interpolation of linear operators on Sobolev spaces. Ann. Math. (2), 109:583–599, 1979. dh89 [1413] J. D’Haeyer. Gaussian filtering of images: A regularization approach. Signal Process., 18(2):169–181, 1989. chdhki07 [1414] B. Dhungana, S.-Y. Chung, and D. Kim. Characterization of Fourier hyperfunctions by solutions of the Hermite heat equation. Integral Transforms Spec. Funct., 18(7):471–480, 2007. digi04 [1415] B. Di and G. Giancola. Understanding ultra wide band radio fundamentals. Prentice Hall, 2004. dijala11 [1416] C. Di, G. Jacovitti, and A. Laurenti. On the inter-conversion between Hermite and Laguerre local image expansions. IEEE Transactions on Image Processing, 20(5762347):3553–3565, 2011. disa12 [1417] P. Diaconis and L. Saloff Coste. Convolution powers of complex functions on Z. Submitted on 29 May 2012, page 31, 2012. 127 diluprdeXX [1418] N. Dias, M. De Gosson, F. Luef, and J. Prata. Quantum mechanics in phase space: the Schr¨odinger and the Moyal representations. Journal of Pseudo-Differential Operators and Applications, pages 1–32. dedilupr12 [1419] N. Dias, M. De Gosson, F. Luef, and J. Prata. Quantum mechanics in phase space: the Schr¨odinger and the Moyal representations. J. Pseudo-Differ. Oper. Appl., 3(4):367–398, 2012. diluprde12 [1420] N. Dias, M. De Gosson, F. Luef, and J. Prata. Quantum mechanics in phase space: The Schroedinger and the Moyal representations. Journal of Pseudo-Differential Operators and Applications, 2012. digolupr11 [1421] N. Dias, M. De Gosson, F. Luef, and J. N. Prata. Quantum mechanics in phase space: The Schroedinger and the Moyal representations. preprint, 2011. dipr05 [1422] N. Dias and J. N. Prata. Deformation quantization and Wigner functions. Modern Phys. Lett. A, 20(17-18):1371–1385, 2005. dipr09 [1423] N. Dias and J. N. Prata. The Narcowich-Wigner spectrum of a pure state. Rep. Math. Phys., 63(1):43–54, 2009. dipr04 [1424] N. C. Dias and J. N. Prata. Time dependent transformations in deformation quantization. J. Math. Phys., 45(3):887–901, 2004. disest09 [1425] S. Didas, S. Setzer, and G. Steidl. Combined l2 data and gradient fitting in conjunction with l1 regularization. Adv. Comput. Math., 30(1):79–99, 2009. dikasc12 [1426] L. Diening, P. Kaplicky, and S. Schwarzacher. BMO estimates for the p-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 75(2):637–650, 2012. dileru11 [1427] L. Diening, D. Lengeler, and M. Ruzicka. The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations, 56(7-9):789–811, 2011. dijato95 [1428] J. Diestel, H. Jarchow, and A. Tonge. Absolutely Summing Operators, volume 43 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. 128 di80-1 [1429] J. Dieudonn’e. Special Functions And Linear Representations Of Lie Groups. AMS, 1980. dihe76 [1430] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Information Theory, IT-22(6):644–654, 1976. diwe09 [1431] T. Digernes and D. Weisbart. Matrix-valued Schr¨odinger operators over local fields. p-Adic Numbers Ultrametric Anal. Appl., 1(2):136– 144, 2009. discst09 [1432] T. Dijkema, C. Schwab, and R. Stevenson. An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx., 30(3):423–455, 2009. dist10 [1433] T. Dijkema and R. Stevenson. A sparse Laplacian in tensor product wavelet coordinates. Numer. Math., 115(3):433–449, 2010. di88 [1434] S. Dilworth. Interpolation of intersections of Lp spaces. Arch. Math. (Basel), 50(1):51–55, 1988. dimo93 [1435] S. Dilworth and S. Montgomery Smith. The distribution of vectorvalued Rademacher series. Ann. Probab., 21(4):2046–2052, 1993. dimu92 [1436] A. Dimakis and F. M¨ uller Hoissen. Quantum mechanics as noncommutative symplectic geometry. J. Phys. A, 25(21):5625–5648, 1992. dimu92-1 [1437] A. Dimakis and F. M¨ uller Hoissen. Quantum mechanics on a lattice and q-deformations. Phys. Lett. B, 295(3-4):242–248, 1992. dimu98 [1438] A. Dimakis and F. M¨ uller Hoissen. Connes’ distance function on onedimensional lattices. Internat. J. Theoret. Phys., 37(3):907–913, 1998. dimu99 [1439] A. Dimakis and F. M¨ uller Hoissen. Discrete Riemannian geometry. J. Math. Phys., 40(3):1518–1548, 1999. dimu05 [1440] A. Dimakis and F. M¨ uller Hoissen. Algebraic identities associated with KP and AKNS hierarchies. Czechoslovak J. Phys., 55(11):1385– 1390, 2005. dimust96 [1441] A. Dimakis, F. M¨ uller Hoissen, and T. Striker. Umbral calculus, discretization, and quantum mechanics on a lattice. J. Phys. A, 29(21):6861–6876, 1996. 129 di02 [1442] M. Dimassi. Resonances for slowly varying perturbations of a periodic Schr¨odinger operator. Canad. J. Math., 54(5):998–1037, 2002. di05-1 [1443] M. Dimassi. Spectral shift function and resonances for slowly varying perturbations of periodic Schr¨odinger operators. J. Funct. Anal., 225(1):193–228, 2005. ac96 [1444] D. Dimitrovski and R. Aceska. Un calcul immediat de l’Integrale Theodorescu. Annuaire, Facult´e des Sciences de l’Universit´e ’Sv. Kiril et Metodij’ L’Institute des Math´ematiques, 37:13–27, 1996. acdiil97 [1445] D. Dimitrovski, R. Aceska, and A. Ilievska. Approximately equal integrals Theodorescu. Annuaire, Facult´e des Sciences de l’Universit´e ’Sv. Kiril et Metodij’ L’Institute des Math´ematiques, 1997. di74 [1446] N. Dinculeanu. Integration on Locally Compact Spaces. Translation in English of a Romanian Version. Monographs and Textbooks on Pure and Applied Mathematics. Leyden: Noordhoff International Publishing. XV, 626 p., 1974. di82-2 [1447] N. Dinculeanu. On Kolmogorov-Tamarkin and M. Riesz compactness criteria in function spaces over a locally compact group. J. Math. Anal. Appl., 89:67–85, 1982. di82-3 [1448] N. Dinculeanu. Weak compactness criteria in function spaces over a locally compact group. Measure theory, Proc. Conf., Oberwolfach 1981, Lect. Notes Math. 945, 213-225 (1982)., 1982. di88-1 [1449] N. Dinculeanu. Vector-valued stochastic processes. I. Vector measures and vector-valued stochastic processes with finite variation. J. Theoret. Probab., 1(2):149–169, 1988. di14 [1450] M. DiPasquale. Lattice-supported splines on polytopal complexes. Advances in Applied Mathematics, (0):–, 2014. di13 [1451] S. Dirksen. Tail bounds via generic chaining. preprint, 2013. dito87 [1452] Z. Ditzian and V. Totik. Moduli of Smoothness. Springer Series in Computational Mathematics, 9. New York etc.: Springer- Verlag. IX, 1987. 130 dije77 [1453] J. Dixmier and F. Jellett. C*-algebras. North-Holland Amsterdam, 1977. dj95-1 [1454] A. Djemai. Introduction to Dubois-Violette’s noncommutative differential geometry. Internat. J. Theoret. Phys., 34(6):801–887, 1995. dj95 [1455] A. Djemai. The lattice quantum phase space and the Yang-Baxter equation. Internat. J. Modern Phys. A, 10(23):3303–3318, 1995. dj96 [1456] A. Djemai. Quantum mechanics as a matrix symplectic geometry. Internat. J. Theoret. Phys., 35(3):519–556, 1996. dj96-1 [1457] A. Djemai. Quantum mechanics, knot theory, and quantum doubles. Internat. J. Theoret. Phys., 35(10):2029–2056, 1996. dj04 [1458] A. Djemai. Noncommutative classical mechanics. Internat. J. Theoret. Phys., 43(2):299–314, 2004. dj04-1 [1459] A. Djemai. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. (Beijing), 41(6):837–844, 2004. djpist01 [1460] I. Djurovic, S. Stankovic, and I. Pitas. Digital watermarking in the fractional Fourier transformation domain. Journal of Network and Computer Applications, 24(2):167 – 173, April 2001. dl87 [1461] J. Dlugosz. Lp -multipliers for the Laguerre expansions. Colloq. Math., 54(2):285–293, 1987. dmkrov77 [1462] V. Dmitriev, S. Krein, and V. I. Ovchinnikov. Fundamentals of the theory of interpolation of linear operators. In Geometry of linear spaces and operator theory (Russian), pages 31–74. Jaroslav. Gos. Univ., Yaroslavl, 1977. dosi85 [1463] M. Dodson and A. Silva. Fourier analysis and the sampling theorem. Proc. Roy. Irish Acad. Sect. A, 85(1):81–108, 1985. dosiso86 [1464] M. M. Dodson, A. M. Silva, and V. Soucek. A note on Whittaker’s cardinal series in harmonic analysis. Proc. Edinb. Math. Soc., 29(03):349– 357, 1986. dogu00 [1465] M. Dogan and A. G¨ urkanli. On functions with Fourier transforms in Sω . Bull. Calcutta Math. Soc., 92(2):111–120, 2000. 131 dokupo10 [1466] M. D¨ohler, S. Kunis, and D. Potts. Nonequispaced hyperbolic cross fast Fourier transform. SIAM J. Numer. Anal., 47(6):4415–4428, 2010. donasa09 [1467] J. Dolbeault, B. Nazaret, and G. Savare. A new class of transport distances between measures. Calc. Var. Partial Differ. Equ., 34(2):193– 231, 2009. do75 [1468] Y. Domar. On the analytic transform of bounded linear functionals on certain Banach algebras. Studia Math., 53:203–224, 1975. doli75 [1469] Y. Domar and L.-A. Lindahl. Three spectral notions for representations of commutative Banach algebras. Ann. Inst. Fourier (Grenoble), 25(2):xi, 1–32, 1975. do89-1 [1470] P. Domich. Residual Hermite normal form computations. Trans. Math. Softw., 15(3):275–286, 1989. ACM dokatr87 [1471] P. Domich, R. Kannan, and L. Trotter. Hermite normal form computation using modulo determinant arithmetic. Math. Oper. Res., 12:50–59, 1987. domuvowa10 [1472] G. Don, K. Muir, G. Volk, and J. Walker. Music: Broken symmetry, geometry, and complexity. Notices Amer. Math. Soc., 57(1):30–49, 2010. dotr71 [1473] T. Donaldson and N. Trudinger. Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal., 8:52–75, 1971. doma12-1 [1474] M. Donatelli and N. Mastronardi. Fast deconvolution with approximated PSF by RSTLS with antireflective boundary conditions. J. Comput. Appl. Math., 236(16):3992–4005, 2012. doxu13 [1475] A. Dong and F. Xue. Image segmentation algorithm based on random spectral clustering. Math. Pract. Theory, 43(23):169–174, 2013. dodyho10 [1476] B. Dong, N. Dyn, and K. Hormann. Properties of dual pseudo-splines. Appl. Comput. Harmon. Anal., 29(1):104–110, 2010. dojilishxu12 [1477] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu. Wavelet frame based blind image inpainting. Appl. Comput. Harmon. Anal., 32(2):268– 279, 2012. 132 doru12 [1478] Z. Dong and Z.-J. Ruan. A Hilbert module approach to the Haagerup property. Integr. Equ. Oper. Theory, 73(3):431–454, 2012. do95 [1479] D. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform. Theory, 41(3):613 –627, 1995. dojokepi95 [1480] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: asymptopia? J. Roy. Statist. Soc. Ser. B, 57(2):301–369, 1995. dojokepi96 [1481] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Density estimation by wavelet thresholding. Ann. Statist., 24(2):508–539, 1996. doyu99 [1482] D. Donoho and T. Yu. Deslauriers-Dubuc: ten years after. Spline functions and the theory of wavelets (Montreal, PQ, 1996), 18:355– 370, 1999. dohu04 [1483] D. L. Donoho and X. Huo. BeamLab and reproducible research. Int. J. Wavelets Multiresolut. Inf. Process., 2(4):391–414, 2004. dokuXX [1484] D. L. Donoho and G. Kutyniok. Microlocal analysis of the geometric separation problem. Comm. Pure Appl. Math., to appear. domarashst09 [1485] D. L. Donoho, A. Maleki, I. Rahman, M. Shahram, and V. Stodden. Reproducible research in computational harmonic analysis. Computing in Science & Engineering, 11(1):8–18, 2009. dota09-1 [1486] D. L. Donoho and J. Tanner. Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367(1906):4273–4293, 2009. doga84 [1487] A. Dooley and G. I. Gaudry. An extension of deLeeuw’s theorem to the n-dimensional rotation group. Ann. Inst. Fourier (Grenoble), 34(2):111–135, 1984. doga86 [1488] A. Dooley and G. I. Gaudry. On Lp multipliers of Cartan motion groups. J. Funct. Anal., 67:1–24, 1986. dowi06 [1489] A. Dooley and N. Wildberger. Orbital convolution theory for semidirect products. J. Lie Theory, 16(4):743–776, 2006. 133 doow11 [1490] A. Doostan and H. Owahdi. A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys., 230:3015–3034, 2011. do12 [1491] K. D¨opfner. Quality of Gabor Multipliers for Operator Approximation. Master’s thesis, University of Vienna, 2012. dojo06 [1492] F. Dopico and C. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one. Linear Algebra and Appl., 419(2-3):772–778, 2006. doguve82 [1493] G. Dore, D. Guidetti, and A. Venni. Some properties of the sum and the intersection of normed spaces. Atti Semin. Mat. Fis. Univ. Modena, 31:325–331, 1982. do12-1 [1494] M. D¨orfler. Allocating, detecting and mining sound structures: An overview of technical tools. In L. Iliadis, I. Maglogiannis, H. Papadopoulos, K. Karatzas, and S. Sioutas, editors, Artificial Intelligence Applications and Innovations, volume 382 of IFIP Advances in Information and Communication Technology, pages 470–479. Springer Boston, 27-30 September 2012, Halkidiki, Greece, 2012. do12-3 [1495] M. D¨orfler. Constructing Quilted Gabor Frames. preprint, 2012. do13 [1496] M. D¨orfler. Local and Global Aspects of Time-Frequency Analysis With Applications to Sound Analysis. 2013. doma12 [1497] M. D¨orfler and E. Matusiak. Nonstationary Gabor Frames - Existence and Construction. Int. J. Wavelets Multiresolut. Inf. Process., to appear, http://arxiv.org/abs/1112.5262, 2012. doma13-3 [1498] M. D¨orfler and E. Matusiak. Identifying novelty and sound objects in texture sounds by sparse adaptation of Gabor coefficients. 10th International Symposium on Computer Music Multidisciplinary Research (CMMR), Marseille, Oct. 2013. doma13-1 [1499] M. D¨orfler and E. Matusiak. Nonstationary Gabor frames - approximately dual frames and reconstruction errors. Adv. Comput. Math., accepted, arXiv:1301.1802, 2013. doma13 [1500] M. D¨orfler and E. Matusiak. Tracing Sound Objects in Audio Textures. 2013. 134 doma14 [1501] M. D¨orfler and E. Matusiak. Sparse Gabor multiplier estimation for identification of sound objects in texture sound. preprint, Submitted, 2014. doroXX [1502] M. D¨orfler and J. L. Romero. Frames of eigenfunctions and localization of signal components. doro13 [1503] M. D¨orfler and J. L. Romero. Frames of eigenfunctions and localization of signal components. In Proceedings of the 10th International Conference on Sampling Theory and Applications (SampTA2013), July 2013. doro14 [1504] M. D¨orfler and J. L. Romero. Frames adapted to a phase-space cover. Constr. Approx., 39(3):445–484, 2014. doto11 [1505] M. D¨orfler and B. Torr´esani. Representation of operators by sampling in the time-frequency domain. Sampl. Theory Signal Image Process., 10(1-2):171–190, 2011. dove14 [1506] M. D¨orfler and G. Velasco. Adaptive Gabor frames by projection onto time-frequency subspaces. In Proc. ICASSP14, volume accepted, 2014. do13-1 [1507] M. Dorina. Groupoid metrization theory. With applications to analysis on quasi-metric spaces and functional analysis. New York, NY: Birkh´auser/Springer, 2013. do68 [1508] R. Doss. On the transform of a singular or an absolutely continuous measure. Proc. Amer. Math. Soc., 19:361–363, 1968. dozh08 [1509] M. Dostanic and K. Zhu. Integral operators induced by the Fock kernel. Integr. Equ. Oper. Theory, 60(2):217–236, 2008. dora56 [1510] J. Douglas and H. Rachford. On the numerical solution of heat conduction problems in two or three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956. dopuwa12 [1511] R. Douglas, M. Putinar, and K. Wang. Reducing subspaces for analytic multipliers of the Bergman space. J. Funct. Anal., 263(6):1744 – 1765, 2012. 135 dode07 [1512] H. Douma and M. V. De Hoop. Leading-order seismic imaging using curvelets. Geophys. J. Internat., 72(6):S231–S248, 2007. dora03 [1513] P. N. Dowling and N. Randrianantoanina. Riemann-Lebesgue properties of Banach spaces associated with subsets of countable discrete abelian groups. Glasgow Mathematical Journal, 45(01):159–166, 2003. drme96 [1514] J. Dr¨ager and N. Mermin. Superspace groups without the embedding: the link between superspace and Fourier-space crystallography. Physical review letters, 76(9):1489–1492, 1996. dr98 [1515] B. Dragovich. On generalized functions in adelic quantum mechanics. Integral Transform. Spec. Funct., 6(1-4):197–203, 1998. drkhra07 [1516] B. Dragovich, Y. Radyno, and A. Khrennikov. Distributions on adeles. Journal of Mathematical Sciences, 142:2105–2112, 2007. drha01 [1517] A. Dragt and T. Hakiouglu. The Moyal-Lie theory of phase space quantum mechanics. J. Phys. A, Math. Gen., 34(34):6603–6615, 2001. dr06-1 [1518] A. Dranishnikov. Groups with a polynomial dimension growth. Geometriae Dedicata, 119(1):1–15, 2006. dr12 [1519] D. Drihem. Atomic decomposition of Besov spaces with variable smoothness and integrability. J. Math. Anal. Appl., 389(1):15–31, 2012. drhero97 [1520] J. Driscoll, J. Healy, and D. Rockmore. Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput., 26(4):1066–1099, 1997. dr09-1 [1521] C. Dructu. Relatively hyperbolic groups: geometry and quasiisometric invariance. Comment. Math. Helv.., 84(3):503–546, 2009. drsa05 [1522] C. Dructu and M. Sapir. Relatively hyperbolic groups with rapid decay property. Internat. Math. Res. Notices, (19):1181–1194, 2005. dr85 [1523] D. Dryanov. Generalization of the Whittaker-Kotelnikov-Shannon sampling theorem. C. R. Acad. Bulg. Sci., 38:1319–1322, 1985. dugu97 [1524] L. Duan and G. Guo. Noise of quantum solitons and their quasicoherent states. Sci. China Ser. A, 40(1):83–92, 1997. 136 bacedu08 [1525] M. Duarte, V. Cevher, and R. G. Baraniuk. Model-based compressive sensing for signal ensembles. Sep. 2008. duhesm00 [1526] D. Dubin, M. Hennings, and T. Smith. Mathematical aspects of Weyl quantization and phase. World Scientific, 2000. andude10 [1527] A. A. Duchkov, F. Andersson, and M. de Hoop. Discrete almostsymmetric wave packets and multiscale geometrical representation of (seismic) waves. Geoscience and Remote Sensing, IEEE Transactions on, 48(9):3408–3423, 2010. du99 [1528] R. Dudley. Uniform Central Limit Theorems, volume 63 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. duve86 [1529] P. Duhamel and M. Vetterli. Cyclic convolution of real sequences: Hartley versus Fourier and new schemes. In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’86, volume 11, pages 229 – 232, apr 1986. duve87 [1530] P. Duhamel and M. Vetterli. Improved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data. Acoustics, Speech and Signal Processing, IEEE Transactions on, 35(6):818 – 824, jun 1987. duko10 [1531] J. J. Duistermaat and J. Kolk. Distributions Theory and Applications Transl from the Dutch By J P Van Braam Houckgeest. Cornerstones. Basel: Birkh¨auser. xvi, 445 p., 2010. du08 [1532] R. Duits. Image processing. I. Scores. (Onderzoek: partituren in de beeldanalyse I. Schaalpartituren.). 2008. dufr10 [1533] R. Duits and E. Franken. Left-invariant parabolic evolutions on se(2) and contour enhancement via invertible orientation scores. II: Nonlinear left-invariant diffusions on invertible orientation scores. Q. Appl. Math., 68(2):293–331, 2010. dufujabrflas11 [1534] R. Duits, H. F¨ uhr, B. Janssen, M. Bruurmijn, L. Florack, and H. van Assen. Evolution equations on Gabor transforms and their applications. Arxiv preprint arXiv:1110.6087, 2011. 137 du85-1 [1535] D. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng., 21:1129–1148, 1985. duhoso10 [1536] D. Duncan, T. Hoffman, and J. Solazzo. Equiangular tight frames and fourth root Seidel matrices. Linear Algebra Appl., 432(11):2816–2823, 2010. dupe40 [1537] N. Dunford and B. Petter. Linear operations on summable functions. Trans. Amer. Math. Soc., 47:323–392, 1940. du70 [1538] C. Dunkl. Modules over commutative Banach algebras. Monatshefte f¨ ur Mathematik, 74(1):6–14, 1970. du92 [1539] C. Dunkl. Hankel transforms associated to finite reflection groups. Contemp. Math, 138:123–138, 1992. dufr86 [1540] J. Duoandikoetxea and J. Francia. Maximal and singular integral operators via Fourier transform estimates. Invent. Math., 84:541–561, 1986. du96-2 [1541] X. Duong. From the L1 norms of the complex heat kernels to a H¨ormander multiplier theorem for sub-Laplacians on nilpotent Lie groups. Pacific J. Math., 173(2):413–424, 1996. dusiya11 [1542] X. Duong, A. Sikora, and L. Yan. Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers. J. Funct. Anal., 260(4):1106–1131, 2011. dusc78 [1543] T. Dupont and R. Scott. Constructive polynomial approximation in Sobolev spaces. In Recent advances in numerical analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978), volume 41 of Publ. Math. Res. Center Univ. Wisconsin, pages 31–44. Academic Press, New York-London, 1978. dusc80 [1544] T. Dupont and R. Scott. Polynomial approximation of functions in Sobolev spaces. Math. Comp., 34(150):441–463, 1980. dugl02 [1545] M. Dupr’e and J. Glazebrook. Holomorphic framings for projections in a Banach algebra. Georgian Mathematical Journal, 9(3):481–494, 2002. 138 duglpr11 [1546] M. Dupre, J. Glazebrook, and E. Previato. Differential algebras with Banach-algebra coefficients II: The operator cross-ratio tau-function and the Schwarzian derivative. Complex Analysis and Operator Theory, pages 1–22, 2011. duglpr12 [1547] M. Dupre, J. Glazebrook, and E. Previato. Differential algebras with Banach-algebra coefficients I: From C*-algebras to the K-theory of the spectral curve. Complex Analysis and Operator Theory, pages 1–25, 2012. ardu02 [1548] L. Durak and O. Arikan. Generalized time-bandwidth product optimal short-time Fourier transformation. In Acoustics, Speech, and Signal Processing, 2002. Proceedings.(ICASSP’02). IEEE International Conference on, volume 2, pages 1465–1468, 2002. arduoz08 ¨ [1549] L. Durak, A. Ozdemir, and O. Arikan. Efficient computation of joint fractional Fourier domain signal representation. J. Opt. Soc. Amer. A, 25(3):765–772, 2008. du12 [1550] P. Duren. Invitation to Classical analysis. Pure and Applied Undergraduate Texts 17. Providence, RI: American Mathematical Society (AMS). xiii, 2012. duhapi09 [1551] D. Dutkay, D. Han, and G. Picioroaga. Parseval frames for ICC groups. J. Funct. Anal., 256(9):3071–3090, 2009. chdu04 [1552] L. Duval and C. Chaux. Lapped transforms and hidden Markov models for seismic data filtering. Int. J. Wavelets Multiresolut. Inf. Process., 2(4):455–476, 2004. dusa02 [1553] C. Duyar and B. Sagir. Multipliers and relative completions of vectorvalued Lp (G, A) spaces. N. Z. J. Math., 31(1):33–38, 2002. du10 [1554] J. Duzelovic. Weyl Darstellung der metaplektischen Operatoren und die fraktionale Fourier Transformation der Gaussfunktion. Master’s thesis, 2010. dvel09 [1555] T. Dvorkind and Y. C. Eldar. Robust and consistent sampling. IEEE Signal Processing Letters, 16(9):739 –742, sept. 2009. 139 dw82 [1556] B. Dwork. Lectures on p-adic differential equations. Grundlehren der Mathematischen Wissenschaften, 253. New York Heidelberg - Berlin: Springer-Verlag. VIII and $ 47.20, 1982. dykanu14 [1557] M. Dyachenko, E. Nursultanov, and A. Kankenova. On summability of Fourier coefficients of functions from Lebesgue space. J. Math. Anal. Appl., 419(2):959–971, 2014. dy92 [1558] K. Dyakonov. Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators. Proc. Amer. Math. Soc., 116(4):1007–1013, 1992. dy00-1 [1559] K. Dyakonov. Kernels of Toeplitz operators via Bourgain’s factorization theorem. J. Funct. Anal., 170(1):93–106, art. no. jfan.1999.3499, 2000. dy09-1 [1560] K. Dyakonov. Kolmogorov averages and approximate identities. Constr. Approx., 30(1):17–31, 2009. dyho08 [1561] J. Dydak and C. Hoffland. An alternative definition of coarse structures. Topology and its Applications, 155(9):1013–1021, 2008. dyfiwewo04 [1562] K. Dykema, T. Figiel, G. Weiss, and M. Wodzicki. Commutator structure of operator ideals. Adv. Math., 185(1):1–79, 2004. dy75 [1563] A. Dynin. Pseudodifferential operators on the Heisenberg group. Dokl. Akad. Nauk SSSR, 225(6):1245–1248, 1975. dy76 [1564] A. Dynin. An algebra of pseudodifferential operators on the Heisenberg groups. Symbolic calculus. Dokl. Akad. Nauk SSSR, 227(4):792– 795, 1976. dy78 [1565] A. Dynin. Pseudodifferential operators on Heisenberg groups. In Pseudodifferential operator with applications (Bressanone, 1977), pages 5– 18. Liguori, Naples, 1978. dy11 [1566] A. Dynin. Pseudo-differential operators on Heisenberg groups. In Pseudodifferential Operators with Applications, pages 5–18. Springer, 2011. dy09-2 [1567] F. Dyson. Birds and frogs. Notices Amer. Math. Soc., 56(2):212–223, 2009. 140 dz74 [1568] M. Dzrbasjan. Biorthogonal systems of rational functions, and best approximation of the Cauchy kernel on the real axis. Mat. Sb. (N.S.), 95(137):418–444, 1974. baeaha08 [1569] J. Eaton, D. Bateman, and S. Hauberg. GNU Octave Manual, Version 3. Network Theory Limited, 3 for Octave Version 3.0.2 edition, 2008. brebsc88 [1570] E. Eberlein, K. H. Branderburg, and H. Schott. Signalprozessor codiert Musik in CD-Qualit¨at. Chip Plus, 11:4–14, November 1988. ebwi11 [1571] S. Ebert and J. Wirth. Diffusive wavelets on groups and homogeneous spaces. Proc. Roy. Soc. Edinburgh Sect. A, 141(3):497–520, 2011. ebli05 [1572] C. Ebmeyer and W. Liu. Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems. Numerische Mathematik, 100(2):233–258, 2005. eb00 [1573] F. B. Ebobisse. Fine properties of the functions with bounded deformation and their applications to variational problems. (Abstract of thesis). Boll. Unione Mat. Ital., Sez. A, Mat. Soc. Cult. (8), pages 77–80, 2000. ecluphwa10 [1574] S. Echterhoff, W. L¨ uck, N. Phillips, and S. Walters. The structure of crossed products of irrational rotation algebras by finite subgroups of SL2 (Z). J. Reine Angew. Math., 639:173–221, 2010. ecgakn11 [1575] C. Eck, H. Garcke, and P. Knabner. Mathematical Modelling (Mathematische Modellierung) 2nd Revised ed. Springer-Lehrbuch. Berlin: Springer. xiv, 513 p., 2011. ec11 [1576] M. Eckstein. On projections in the noncommutative 2-torus algebra. arXiv preprint arXiv:1103.6054, 2011. ed12 [1577] J. Edelman. Julia: A Fast Dynamic Language for Technical Computing. CoRR, abs/1209.5145, 2012. edha10 [1578] H. Edelsbrunner and J. Harer. Computational Topology. American Mathematical Society, Providence, RI, 2010. 141 edke11 [1579] H. Edelsbrunner and M. Kerber. Covering and packing with spheres by diagonal distortion in Rn . In Rainbow of computer science, volume 6570 of Lecture Notes in Comput. Sci., pages 20–35. Springer, Heidelberg, 2011. edszuy06 [1580] A. Eden, M. Uyttendaele, and R. Szeliski. Seamless image stitching of scenes with large motions and exposure differences. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2498–2505, 2006. edguop95 [1581] D. Edmunds, P. Gurka, and B. Opic. Double exponential integrability, Bessel potentials and embedding theorems. Studia Math., 115(2):151– 181, 1995. edguop97 [1582] D. Edmunds, P. Gurka, and B. Opic. On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal., 146(1):116–150, art. no. fu963037, 1997. edguop05 [1583] D. Edmunds, P. Gurka, and B. Opic. Compact and continuous embeddings of logarithmic Bessel potential spaces. Studia Math., 168(3):229– 250, 2005. edkepi00 [1584] D. Edmunds, R. Kerman, and L. Pick. Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal., 170(2):307–355, art. no. jfan.1999.3508, 2000. edne02 [1585] D. Edmunds and A. Nekvinda. Averaging operators on lpn and Lp(x) . Math. Inequal. Appl., 5(2):235–246, 2002. edev13 [1586] D. E. Edmunds and W. D. Evans. Representations of Linear Operators between Banach Spaces, volume 238 of Operator Theory: Advances and Applications. Basel: Birkh¨auser/Springer, 2013. ed06 [1587] J. Edward. Ingham-type inequalities for complex frequencies and applications to control theory. J. Math. Anal. Appl., 324(2):941–954, 2006. ef09 [1588] E. G. Effros. A matrix convexity approach to some celebrated quantum inequalities. Proc. Natl. Acad. Sci. USA, 106(4):1006–1008, 2009. 142 ef94 [1589] U. Efron. Spatial Light Modulator Technology: Materials, Devices, and Applications, volume 47. CRC Press, 1994. eg71 [1590] Y. V. Egorov. Canonical transformations and pseudodifferential operators. Trans. Moscow Math. Soc, 24:1–28, 1971. eh07 [1591] M. Ehler. The construction of Nonseparable Wavelet Bi-Frames and Associated Approximation Schemes. PhD thesis, 2007. eh10 [1592] M. Ehler. The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces. Jaen J. Approx., 2(2):193 – 214, December 2010. ehfimh12 [1593] M. Ehler, F. Filbir, and H. N. Mhaskar. Locally learning biomedical data using diffusion frames. Journal of Computational Biology, 19(11):1251–1264, November 2012. ehfosi14 [1594] M. Ehler, M. Fornasier, and J. Sigl. Quasi-linear compressed sensing. Multiscale Model. Simul., 12(2):725–754, 2014. eh04 [1595] M. Ehlers. Spectral characteristics preserving image fusion based on Fourier domain filtering. In Remote Sensing, pages 1–13, 2004. eivo11 [1596] A. Eichler and M. Vogel. Leitfaden Stochastik F¨ ur Studierende und Aus¨ ubende des Lehramts. Vieweg+Teubner, 2011. eima12 [1597] K. Eikrem and E. Malinnikova. Radial growth of harmonic functions in the unit ball. Math. Scand., 110(2):273–296, 2012. eirash86 [1598] P. Einziger, S. Raz, and M. Shapira. Gabor representation and aperture theory. JOSA A, 3(4):508–522, 1986. ei12 [1599] D. Eiwen. Compressive Channel Estimation - Compressed Sensing Methods for Estimating Doubly Selective Channels in Multicarrier Systems. PhD thesis, University of Vienna, Vienna, 2012. elfrgaha10 [1600] B. El, R. Fresneda, J.-P. Gazeau, and Y. Hassouni. Coherent state quantization of paragrassmann algebras. J. Phys. A, 43(38):385202, 15, 2010. 143 elfrgaha12 [1601] B. El, R. Fresneda, J.-P. Gazeau, and Y. Hassouni. Corrigendum: Coherent state quantization of paragrassmann algebras [MR2718322]. J. Phys. A, 45(7):079501, 2, 2012. elelna14 [1602] O. El Fallah, I. El, and H. Naqos. Composition operators with univalent symbol in Schatten classes. J. Funct. Anal., 266(3):1547–1564, 2014. elkemara12 [1603] O. El Fallah, K. Kellay, J. Mashreghi, and T. Ransford. A selfcontained proof of the strong-type capacitary inequality for the Dirichlet space. In Complex analysis and potential theory, volume 55 of CRM Proc. Lecture Notes, pages 1–20. Amer. Math. Soc., Providence, 2012. elkemara14 [1604] O. El Fallah, K. Kellay, J. Mashreghi, and T. Ransford. A Primer on the Dirichlet Space, volume 203 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2014. elkese12 [1605] O. El Fallah, K. Kellay, and K. Seip. Cyclicity of singular inner functions from the corona theorem. J. Inst. Math. Jussieu, 11(4):815– 824, 2012. ahel06 [1606] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process., 15(12):3736 –3745, 2006. elst98 [1607] B. Elbel and G. Steidl. Fast Fourier transforms for nonequispaced data. Chui, Charles K. (ed.) et al., Approximation theory IX. Volume 2. Computational aspects. Proceedings of the 9th international conference, Nashville, TN, USA, January 3–6, 1998. Nashville, TN: Vanderbilt University Press. Innovations in Applied Mathematic, 1998. boelku10 [1608] Y. Eldar, P. Kuppinger, and H. B¨olcskei. Compressed sensing of Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process., 58:3042–3054, Jun. 2010. elku12 [1609] Y. Eldar and G. Kutyniok, editors. Compressed Sensing - Theory and Applications. Cambridge Univ. Press, 2012. elme14 [1610] Y. Eldar and S. Mendelson. Phase retrieval: Stability and recovery guarantees. Appl. Comput. Harmon. Anal., 36(3):473 – 494, 2014. 144 elmeXX [1611] Y. Eldar and S. Mendelson. Phase retrieval: Stability and recovery guarantees. Appl. Comput. Harmon. Anal., to appear. elne11 [1612] Y. Eldar and D. Needell. Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss lemma. Numer. Algorithms, 58(2):163–177, 2011. el03 [1613] Y. C. Eldar. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl., 9(1):77–96, January 2003. elmi09-1 [1614] Y. C. Eldar and T. Michaeli. Beyond bandlimited sampling. IEEE Signal Processing Magazine, 26(3):48 –68, may 2009. elhalu11 [1615] M. Eleuteri, P. Harjulehto, and T. Lukkari. Global regularity and stability of solutions to elliptic equations with nonstandard growth. Complex Variables and Elliptic Equations, 56(7-9):599–622, 2011. daduel03 [1616] A. Elgammal, R. Duraiswami, and L. Davis. Efficient Kernel density estimation using the fast Gauss transform with applications to color modeling and tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:1499–1504, 2003. elrato01 [1617] A. Elias Juarez, N. Razo Razo, and M. Torres Cisneros. Estimation of interferogram aberration coefficients using wavelet bases and Zernike polynomials. In A. A. Elias Juarez, N. Razo Razo, M. Torres Cisneros, A. F. Laine, M. A. Unser, and A. Aldroubi, editors, Proc. SPIE, Wavelets: Applications in Signal and Image Processing IX, volume 4478 of Feature Extraction, pages 373–382, San Diego, CA, USA, 2001. SPIE. eljats12 [1618] M. Eliashvili, G. Japaridze, and G. Tsitsishvili. The quantum group, Harper equation and structure of Bloch eigenstates on a honeycomb lattice. 2012. brel08 [1619] D. Ellinas and A. Bracken. Phase-space-region operators and the Wigner function: Geometric constructions and tomography. Physical Review A, 78(5):52106(9), 2008. 145 elts06 [1620] D. Ellinas and I. Tsohantjis. Region operators of wigner function: Transformations, realizations and bounds. Rep. Math. Phys., 57(1):69–87, 2006. el84 [1621] G. Elliott. On the k-theory of the c∗ -algebra generated by a projective representation of a torsion-free discrete abelian group. In Operator algebras and group representations, Vol. I (Neptun, 1980), volume 17 of Monogr. Stud. Math., pages 157–184. Pitman, Boston, MA, 1984. elli07 [1622] G. Elliott and H. Li. Morita equivalence of smooth noncommutative tori. Acta Math., 199(1):1–27, 2007. elli08 [1623] G. Elliott and H. Li. Strong Morita equivalence of higher-dimensional noncommutative tori. II. Math. Ann., 341(4):825–844, 2008. elhu12 [1624] A. Elmabrok and O. Hutnik. Induced representations of the affine group and intertwining operators: I. Analytical approach. J. Phys. A, 45(24):244017, 15, 2012. em86 [1625] G. Emch. New classical properties of quantum coherent states. In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), volume 27 of Contemp. Math., pages 2731–2737. Amer. Math. Soc., Providence, RI, 1986. em87 [1626] G. Emch. KMS structures in geometric quantization. In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), volume 62 of Contemp. Math., pages 175–186. Amer. Math. Soc., Providence, RI, 1987. emgr67 [1627] W. Emerson and F. Greenleaf. Covering properties and Følner conditions for locally compact groups. Math. Z., 102:370–384, 1967. en10-1 [1628] J. Ender. On compressive sensing applied to radar. Signal Process., 90(5):1402 – 1414, 2010. enna06 [1629] K.-J. Engel and R. Nagel. A Short Course on Operator Semigroups. Springer-Verlag, 2006. en15 [1630] N. Engelputzeder. Linear Time Variant Systems and Gabor Riesz Bases. PhD thesis, University of Vienna, 2015. 146 en07-1 [1631] M. Englis. Toeplitz operators and group representations. J. Fourier Anal. Appl., 13(3):243–265, 2007. enup10 [1632] M. Englis and H. Upmeier. Toeplitz quantization and asymptotic expansions: Peter-Weyl decomposition. Integr. Equ. Oper. Theory, 68(3):427–449, 2010. enporo10 [1633] M. Entov, L. Polterovich, and D. Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete Contin. Dyn. Syst., 28(4):1455– 1468, 2010. babeenma11 [1634] E. Enzinger, P. Balazs, D. Marelli, and T. Becker. A logarithmic based pole-zero vocal tract model estimation for speaker verification. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing 2011, Prague, May 2011. er38 [1635] A. Erdelyi. On some expansions in Laguerre polynomials. J. London Math. Soc., 13:154–156, 1938. er61 [1636] A. Erdelyi. Asymptotic forms for Laguerre polynomials. J. Indian Math. Soc., n. Ser., 24:235–250, 1961. erno04 [1637] A. Eremenko and D. Novikov. Oscillation of functions with a spectral gap. Proc. Natl. Acad. Sci. USA, 101(16):5872–5873, 2004. ergr05-1 [1638] S. Ericsson and N. Grip. Efficient wavelet prefilters with optimal time-shifts. IEEE Trans. Signal Process., 53(7):2451–2461, 2005. ergr11 [1639] S. Ericsson and N. Grip. Using a natural deconvolution for analysis of perturbed integer sampling in shift-invariant spaces. J. Math. Anal. Appl., 373(1):271–286, 2011. er11 [1640] J. Erven. Taschenbuch der Ingenieurmathematik. Grundlagen, Formelsammlung, Tabellen. M¨ unchen: Oldenbourg Verlag, 2011. ererho10 [1641] J. Erven, M. Erven, and J. H¨orwick. Vorkurs Mathematik. Ein kompakter Leitfaden. M¨ unchen: Oldenbourg Verlag, 4., korrigierte und erweiterte Auflage edition, 2010. ersc11 [1642] J. Erven and D. Schw¨agerl. Mathematik f¨ ur Ingenieure. M¨ unchen: Oldenbourg Verlag, 4., korrigierte Auflage edition, 2011. 147 erXX [1643] A. Erwin. Common fundamental domains for lattices of the same volume. PhD thesis. duer11 [1644] I. Eryilmaz and C. Duyar. Multipliers on some Lorentz spaces. 19(1), 2011. esra11 [1645] R. Escalante and M. Raydan. Alternating projection methods, volume 8 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. eswe14 [1646] P. Escande and P. Weiss. Numerical computation of spatially varying blur operators: a review of existing approaches with a new one. arXiv, 2014. esmaweot12 [1647] P. Escande, P. Weiss, and F. Malgouyres. Spatially varying blur recovery. diagonal approximations in the wavelet domain, 2012. esmawe13 [1648] P. Escande, P. Weiss, and F. Malgouyres. Image restoration using sparse approximations of spatially varying blur operators in the wavelet domain. In Journal of Physics: Conference Series, volume 464, page 012004, 2013. esmawe13-1 [1649] P. Escande, P. Weiss, and F. Malgouyres. Spatially Varying Blur Recovery. Diagonal Approximations in the Wavelet Domain. Proceedings of ICPRAM, 2013,. eskepove10 [1650] L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega. The sharp Hardy uncertainty principle for Schr¨odinger evolutions. Duke Math. J., 155(1):163–187, 2010. es12 [1651] G. Eshel. Spatiotemporal data analysis. Princeton University Press, 2012. esgoonozuz07 [1652] G. Esmer, V. Uzunov, L. Onural, H. Ozaktas, and A. Gotchev. Diffraction field computation from arbitrarily distributed data points in space. Signal Processing: Image Communication, 22(2):178 – 187, 2007. esjapexi00 [1653] M. Essen, S. Janson, L. Peng, and J. Xiao. q spaces of several real variables. Indiana Univ. Math. J., 49(2):575–615, 2000. 148 es09 [1654] E. Esser. Applications of Lagrangian-based alternating direction methods and connections to split Bregman. preprint, 2009. esfoko11 [1655] M. Essoh, I. Fofana, and K. Koua. In´egalit´es de type faible pour l’op´erateur maximal fractionnaire dans les espaces de Morrey par rapport `a la capacit´e de Hausdorff. Ital. J. Pure Appl. Math., (28):81–92, 2011. esme12 [1656] S. Esterhazy and J. Melenk. On stability of discretizations of the Helmholtz equation. Graham, Ivan G. (ed.) et al., Numerical analysis of multiscale problems. Selected papers based on the presentations at the 91st London Mathematical Society symposium, Durham, UK, July 5–15, 2010. Berlin: Springer. Lecture Notes in Computational Science a, 2012. es12-1 [1657] D. Estevez. Explicit traces of functions on Sobolev spaces and quasioptimal linear interpolators. arXiv preprint arXiv:1211.1498, 2012. euXX [1658] K. Eugenijus. Biomedical Signals and Sensors I. Biological and Medical Physics, Biomedical Engineering. http://link.springer.com/book/10.1007/978-3-642-24843-6/page/1, 2012. ev01 [1659] G. Evangelista. Flexible wavelets for music signal processing. Journal of New Music Research, 30(1):13–22, 2001. doevma12 [1660] G. Evangelista, M. D¨orfler, and E. Matusiak. Phase vocoders with arbitrary frequency band selection. Proceedings of the 9th Sound and Music Computing Conference, July 11-14th 2012 Kopenhagen, 2012. doevma13 [1661] G. Evangelista, M. D¨orfler, and E. Matusiak. Arbitrary phase vocoders by means of warping. Musica/Tecnologia, 7, 2013. blevya00 [1662] G. Evans, J. Blackledge, and P. Yardley. Numerical Methods for Partial Differential Equations. Springer Verlag, 2000. ev96 [1663] E. Evgenij. A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra and its Applications, 232(1):1–43, 1996. 149 exlo91 [1664] R. Exel and T. Loring. Invariants of almost commuting unitaries. J. Funct. Anal., 95(2):364–376, 1991. ey75 [1665] P. Eymard. Initiation ‘a la th’eorie des groupes moyennables. In Analyse harmonique sur les groupes de Lie, pages 89–107. Springer, 1975. fa14-1 [1666] B. Fabio. Functional analysis and applied optimization in Banach spaces. Applications to non-convex variational models. With contributions by Anderson Ferreira and Alexandre Molter. Springer, 2014. fa10 [1667] D. Faifman. A characterization of Fourier transform by Poisson summation formula. C. R., Math., Acad. Sci. Paris, 348(7-8):407–410, 2010. elfami10 [1668] T. Faktor, T. Michaeli, and Y. C. Eldar. Nonlinear and nonideal sampling revisited. IEEE Signal Processing Letters, 17(2):205 –208, feb. 2010. abfawa03 [1669] P. E. Falloon, P. Abbott, and J. Wang. Theory and computation of spheroidal wavefunctions. J. Phys. A, 36(20):5477–5495, 2003. faho55 [1670] K. Fan and A. Hoffman. Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc., 6:111–116, 1955. fa11-1 [1671] X. Fan. Anisotropic variable exponent Sobolev spaces and -Laplacian equations. Complex Variables and Elliptic Equations, 56(7-9):623– 642, 2011. anfashXX [1672] Z. Fan, H. Andreas, and Z. Shen. Duality for Frames. fajish14 [1673] Z. Fan, H. Ji, and Z. Shen. Dual Gramian analysis: duality principle and unitary extension principle. Math. Commun., 2014. fashsu14 [1674] Q. Fang, C. Shin, and Q. Sun. Wiener’s lemma for singular integral operators of Bessel potential type. Monatsh. Math., 173(1):35–54, 2014. fa11-2 [1675] D. Farenick. Arveson’s criterion for unitary similarity. Linear Algebra Appl., 435(4):769–777, 2011. 150 fakrkrle96 [1676] D. Farenick, M. Krupnik, N. Krupnik, and W. Lee. Normal Toeplitz matrices. SIAM J. Matrix Anal. Appl., 17(4):1037–1043, 1996. fa92 [1677] M. Farge. Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24(1):395–458, 1992. fa06 [1678] A. Faridani. Fan-beam tomography and sampling theory. Proceedings of Symposia in Applied Mathematics, 63:43–66, 2006. faha08 [1679] G. Farin and D. Hansford. Mathematical Principles for Scientific Computing and Visualization. A K Peters Ltd., Wellesley, MA, 2008. fa78 [1680] W. G. Faris. Inequalities and uncertainty principles. J. Mathematical Phys., 19(2):461–466, 1978. fageguknpeta13 [1681] H. Farkas, R. Gunning, M. Knopp, B. A. Taylor, I. Z. Pesenson, and D. Geller. Cubature Formulas and Discrete Fourier Transform on Compact Manifolds. In H. M. Farkas, R. C. Gunning, M. I. Knopp, and B. A. Taylor, editors, From Fourier Analysis and Number Theory to Radon Transforms and Geometry, volume 28 of Developments in Mathematics, pages 431–453. 2013. fa00 [1682] W. Farkas. Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr., 209:83–113, 2000. fajosi00 [1683] W. Farkas, J. Johnsen, and W. Sickel. Traces of anisotropic BesovLizorkin-Triebel spaces–a complete treatment of the borderline cases. Math. Bohem., 125(1):1–37, 2000. fara93 [1684] S. Farkash and S. Raz. The legality problem of linear systems in Gabor time-frequency space. Signal Process., 34(3):283–295, 1993. fa97-1 [1685] Y. Farkov. Orthogonal wavelets on locally compact abelian groups. Funct. Anal. Appl., 31(4):294–296, 1997. fa11 [1686] D. Farnsworth. Hankel operators, the Segal-Bargmann space, and symmetrically-normed ideals. J. Funct. Anal., 260(5):1523 – 1542, 2011. faos11 [1687] M. Faroughi and E. Osgooei. Continuous p-Bessel mappings and continuous p-frames in Banach spaces. Involve, 4(2):167–186, 2011. 151 faja12 [1688] A. Fattahi and H. Javanshiri. Discretization of continuous frame. Proc. Indian Acad. Sci. Math. Sci., 122(2):189–202, 2012. fa14 [1689] M. Faulhuber. Geometry and Gabor Frames. Master’s thesis, 2014. fe78 [1690] W. Fechner. On general function spaces with and without weights. Math. Nachr., 84:123–144, 1978. fe07-1 [1691] C. Fefferman. cm extension by linear operators. Ann. Math. (2), 166(3):779–835, 2007. fe07 [1692] C. Fefferman. Smooth interpolation of functions on n . In Rosenblatt, Joseph M. (ed.) et al., Topics in harmonic analysis and ergodic theory. Based on talks delivered by plenary speakers at a conference on harmonic analysis and ergodic theory, Chicago, IL, USA, December 2-4, 2005, volume 444, pages 167–173. American Mathematical Society (AMS), 2007. fe09-5 [1693] C. Fefferman. Extension of cm,ω -smooth functions by linear operators. Rev. Mat. Iberoam., 25(1):1–48, 2009. fe09-4 [1694] C. Fefferman. Fitting a cm -smooth function to data III. Ann. Math. (2), 170(1):427–441, 2009. fe09-3 [1695] C. Fefferman. Whitney’s extension problems and interpolation of data. Bull. Amer. Math. Soc. (N.S.), 46(2):207–220, 2009. fe10-2 [1696] C. Fefferman. The cm norm of a function with prescribed jets I. Rev. Mat. Iberoam., 26(3):1075–1098, 2010. fegr12 [1697] C. Fefferman and R. C. Graham. The Ambient Metric. Annals of Mathematics Studies 178. Princeton, NJ: Princeton University Press. v, 2012. fekl09-1 [1698] C. Fefferman and B. Klartag. Fitting a cm -smooth function to data I. Ann. Math. (2), 169(1):315–346, 2009. fekl09 [1699] C. Fefferman and B. Klartag. Fitting a cm -smooth function to data II. Rev. Mat. Iberoam., 25(1):49–273, 2009. ferisa74 [1700] C. Fefferman, N. Riviere, and Y. Sagher. Interpolation between H p spaces: the real method. Trans. Amer. Math. Soc., 191:75–81, 1974. 152 fest72 [1701] C. Fefferman and E. M. Stein. H p spaces of several variables. Acta Math., 129(3-4):137–193, 1972. fe83-5 [1702] R. Fefferman. On an operator arising in the Calder’on-Zygmund method of rotations and the Bramble-Hilbert lemma. Proceedings of the National Academy of Sciences, 80(12):3877–3878, 1983. felowe12 [1703] J. Fehrenbach, P. Weiss, and C. Lorenzo. Variational algorithms to remove stationary noise: applications to microscopy imaging. IEEE Trans. Image Process., 21(10):4420–4430, 2012. fe13-1 [1704] H. Feichtinger. Group theoretical methods and wavelet theory (coorbit theory and applications). 2013. fe14 [1705] H. G. Feichtinger. Elements of Postmodern Harmonic Analysis, page 27. Springer, 2014. fe15 [1706] H. G. Feichtinger. Choosing Function Spaces in Harmonic Analysis. 2015. fe15-1 [1707] H. G. Feichtinger. Numerical and Conceptual Harmonic Analysis. In CIMPA notes. 2015. acfe07 [1708] H. G. Feichtinger and R. Aceska. Variable Bandwidth from TFA point of view. page 10, 2007. fegron14 [1709] H. G. Feichtinger, A. Grybos, and D. Onchis. Approximate dual Gabor atoms via the adjoint lattice method. Adv. Comput. Math., 40(3):651–665, 2014. fehe10 [1710] H. G. Feichtinger and S. B. Heineken. Spline-like spaces with slowly varying kernels. preprint, 2010. felu12 [1711] H. G. Feichtinger and F. Luef. Gabor analysis and time-frequency methods. Encyclopedia of Applied and Computational Mathematics, 2012. felu15 [1712] H. G. Feichtinger and F. Luef. Banach Gelfand Triples for analysis. Notices Amer. Math. Soc., in preparation, 2015. 153 fenopa14 [1713] H. G. Feichtinger, K. Nowak, and M. Pap. Spectral properties of Toeplitz operators acting on Gabor type reproducing kernel Hilbert spaces. MATHEMATICS WITHOUT BOUNDARIES : SURVEYS IN PURE MATHEM, 2014. feon10-1 [1714] H. G. Feichtinger and D. Onchis. Constructive reconstruction from irregular sampling in multi-window spline-type spaces. In Progress in analysis and its applications, pages 257–265. World Sci. Publ., Hackensack, 2010. feonritowi12 [1715] H. G. Feichtinger, D. Onchis, B. Ricaud, B. Torr´esani, and C. Wiesmeyr. A method for optimizing the ambiguity function concentration. In Proceedings of the European Signal Processing Conference, pages 804–808. IEEE, 2012. feonwi14 [1716] H. G. Feichtinger, D. Onchis, and C. Wiesmeyr. Construction of approximate dual wavelet frames. Adv. Comput. Math., 40:273 – 282, 2014. fepa13-1 [1717] H. G. Feichtinger and M. Pap. Connection between the coorbit theory and the theory of Bergman spaces. In A. Vasilevksii, editor, Harmonic and Complex Analysis and Applications (HCAA). 2013. fepa13 [1718] H. G. Feichtinger and M. Pap. Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane. Blaschke Products and Their Applications: Fields Institute Communications, 65:193– 208, 2013. fepa14 [1719] H. G. Feichtinger and M. Pap. Coorbit Theory and Bergman Spaces, pages 231–260. Birkh¨auser, 2014. feprrosive12 [1720] H. G. Feichtinger, J. Principe, J. L. Romero, A. Singh Alvarado, and G. A. Velasco. Approximate reconstruction of bandlimited functions for the integrate and fire sampler. Adv. Comput. Math., 36(1):67–78, 2012. femunopo12 [1721] E. Feireisl, P. Mucha, A. Novotny, and M. Pokorny. Time-periodic solutions to the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal., 204(3):745–786, 2012. 154 fe48-1 [1722] L. Fejes Toth. On the densest packing of convex domains. Proc. Akad. Wet. Amsterdam, 51:544–547, 1948. fe23-1 [1723] M. Fekete. On the distribution of roots of algebraic equations with ¨ integral coefficients (Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten). Math. Zeitschr., 17:228–249, 1923. fe06-2 [1724] C. Felber. 50 Vorschl¨age f¨ ur eine gerechtere Welt. Zsolnay, Paul, 2006. fe09-2 [1725] C. Felber. Neue Werte f¨ ur die Wirtschaft. Eine Alternative zwischen Kommunismus und Kapitalismus. Wien, Deuticke, 2009. fe10-1 ¨ [1726] C. Felber. Die Gemeinwohl-Okonomie: Das Wirtschaftsmodell der Zukunft. Deuticke, 2010. fe91-4 [1727] M. Feldman. Mean oscillation, weighted Bergman spaces, and Besov spaces on the Heisenberg group and atomic decomposition. J. Math. Anal. Appl., 158(2):376–395, 1991. dofe88 [1728] J. Fell and R. Doran. Representations of *-algebras, Locally Compact Groups, and Banach *- Algebraic Bundles Vol 1: Basic representation theory of Groups and Algebras. Pure and Applied Mathematics, 125. Nosten, 1988. dofe88-1 [1729] J. Fell and R. Doran. Representations of *-algebras, Locally Compact Groups, and Banach *-algebraic Bundles Vol 2: Banach *-algebraic Bundles, Induced Representations, and the Generalized Mackey analysis. Pure and Applied Mathematics, 126. Boston, 1988. fe87-2 [1730] G. Fendler. Herz Schur multipliers and coefficients of bounded representations. PhD thesis, Ruprecht-Karls-University Heidelberg, 1987. fegrle10 [1731] G. Fendler, K. Gr¨ochenig, and M. Leinert. Convolution-dominated integral operators. Banach Center Publications, 89:121–127, 2010. feka13 [1732] G. Fendler and N. Kaiblinger. Discrete Fourier transform of prime order: Eigenvectors with small support. Linear Algebra and its Applications, 438(1):288 – 302, 2013. 155 fekr14 [1733] J.-M. Feng and F. Krahmer. An RIP-based approach to σδ quantization for compressed sensing. IEEE Signal Proc. Letters, 21(11):1351– 1355, 2014. feyayu14 [1734] Y. Feng, D. Yuan, and S. Yang. Construction of orthogonal shearlet tight frames with symmetry. J. Comput. Anal. Appl., 16(5):887–894, 2014. fesa11 [1735] A. Fereydooni and A. Safapour. Pair frames. Results in Mathematics, pages 1–17, 2011. ferasa12 [1736] A. Fereydooni, A. Safapour, and A. Rahimi. Adjoint of pair frames. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., 74(4):131–140, 2012. fetovi09 [1737] J. Fernandes, S. Victer, and J. Torre˜ao. A model for neuronal signal representation by stimulus-dependent receptive fields. Artificial Neural Networks–ICANN 2009, pages 356–362, 2009. femana11 [1738] A. Fernandez, F. Mayoral, and F. Naranjo. Real interpolation method on spaces of scalar integrable functions with respect to vector measures. J. Math. Anal. Appl., 376(1):203–211, 2011. femanasa10 [1739] A. Fernandez, F. Mayoral, F. Naranjo, and E. A. Sanchez P’erez. Complex interpolation of spaces of integrable functions with respect to a vector measure. Collect. Math., 61(3):241–252, 2010. fegajo05 [1740] C. Fernandez, A. Galbis, and D. Jornet. Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math., 167(2):99–131, 2005. fegama13 [1741] C. Fernandez, A. Galbis, and J. Martinez. Multilinear Fourier multipliers related to time-frequency localization. J. Math. Anal. Appl., 398(1):113–122, 2013. fe77-6 [1742] D. Fernandez. Lorentz spaces, with mixed norms. J. Funct. Anal., 25:128–146, 1977. fevawe09 [1743] R. Fernandez, V. Varadarajan, and D. Weisbart. Airy functions over local fields. Lett. Math. Phys., 88(1-3):187–206, 2009. 156 fepape08 [1744] C. Fernandez Gonzalez, C. Palazuelos, and D. Perez Garcia. The natural rearrangement invariant structure on tensor products. J. Math. Anal. Appl., 343(1):40–47, July 2008. fe75-1 [1745] X. Fernique. Regularit´e des trajectoires des fonctions al´eatoires gaussi´ ´ e de Probabilit´es de Saint-Flour, IV-1974, pages ennes. In Ecole d’Et´ 1–96. Lecture Notes in Math., Vol. 480. Springer, Berlin, 1975. fe97-1 [1746] X. Fernique. Fonctions Al’eatoires Gaussiennes, Vecteurs Al’eatoires Gaussiens. Universit´e de Montr´eal Centre de Recherches Math´ematiques, Montreal, QC, 1997. fe09-1 [1747] M. Ferreira. Spherical continuous wavelet transforms arising from sections of the Lorentz group. Appl. Comput. Harmon. Anal., 26(2):212– 229, 2009. fe99 [1748] P. Ferreira. Sampling and generalized almost periodic extension of functions. IEEE Trans. on Circuits and Systems - II: Analog and Digital Signal Process., 46(4):475–478,, 1999. fehi11 [1749] P. J. S. G. Ferreira and J. R. Higgins. The establishment of sampling as a scientific principle -A striking case of multiple discovery. Notices of the American Mathematical Society, 58(10):1446–1450, November 2011. fe00 [1750] J. Fessler. Statistical image reconstruction methods for transmission tomography. Handbook of Medical Imaging, 2:1–70, 2000. fe12 [1751] J. Feuto. Norm inequalities in a class of function spaces including weighted Morrey. arXiv preprint arXiv:1205.6516, 2012. fefoko03 [1752] J. Feuto, I. Fofana, and K. Koua. Spaces of functions with integrable fractional mean on locally compact groups (Espaces de fonctions a` moyenne fractionnaire int´egrable sur les groupes localement compacts). Afr. Mat., S´er. III, 15:73–91, 2003. fefoko10 [1753] J. Feuto, I. Fofana, and K. Koua. Weighted norm inequalities for a maximal operator in some subspace of amalgams. Canad. Math. Bull., 53(2):263–277, 2010. 157 fe51 [1754] R. Feynman. An operator calculus having applications in quantum electrodynamics. Phys. Rev., II. Ser., 84(1):108–128, 1951. fehi05 [1755] R. Feynman and A. Hibbs. Quantum Mechanics and Path Integrals. Daniel F. Styer, Emended Edition edition, 2005. fijamipe12 [1756] M. Fickus, J. Jasper, D. Mixon, and J. Peterson. Group-theoretic constructions of erasure-robust frames. arXiv, 2012. fi82-1 [1757] J. Fienup. Phase retrieval algorithms: A comparison. Appl. Opt., 21(15):2758–2769, 1982. firi10 [1758] A. Figalli and L. Rifford. Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal., 20(1):124–159, 2010. fimh11 [1759] F. Filbir and H. Mhaskar. Marcinkiewicz-Zygmund measures on manifolds. J. Complexity, 27(6):568–596, 2011. fimh10 [1760] F. Filbir and H. N. Mhaskar. A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel. J. Fourier Anal. Appl., 16(5):629–657, 2010. fimote08 [1761] S. Filippas, L. Moschini, and A. Tertikas. On a class of weighted anisotropic Sobolev inequalities. J. Funct. Anal., 255(1):90–119, 2008. fi82 [1762] A. Filippenko. The importance of atmospheric differential refraction in spectrophotometry. Publications of the Astronomical Society of the Pacific, 94:715–721, 1982. fima11 [1763] S. Filippov and V. Manko. Unitary and non-unitary matrices as a source of different bases of operators acting on hilbert spaces. Journal of Russian Laser Research, pages 1–12, 2011. fimi06 [1764] W. Fink and D. Micol. simEye: computer-based simulation of visual perception under various eye defects using Zernike polynomials. Journal of Biomedical Optics, 11(5):054011(12), October 2006. fi84 [1765] C. Finol. Linear transformations intertwining with group representations. Notas Mat., 63:89 p., 1984. 158 fi11 [1766] G. Fischer. Lernbuch Lineare Algebra Und Analytische Geometrie Das Wichtigste Ausf¨ uhrlich F¨ ur Das Lehramts- Und Bachelorstudium. Vieweg+Teubner, 2011. crfiperesr07 [1767] S. Fischer, F. Sroubek, L. Perrinet, R. Redondo, and G. Cristobal. Self-invertible 2D log-Gabor wavelets. Int. J. Computer Vision, 75(2):231–246, 2007. firiya12 [1768] V. Fischer, F. Ricci, and O. Yakimova. Nilpotent Gelfand pairs and spherical transforms of Schwartz functions. I: Rank-one actions on the centre. Math. Z., 271(1-2):221–255, 2012. firiya13 [1769] V. Fischer, F. Ricci, and O. Yakimova. Nilpotent Gelfand pairs and spherical transforms of Schwartz functions. II: Taylor expansions on singular sets. In Lie groups: structure, actions, and representations. In honor of Joseph A. Wolf on the occasion of his 75th birthday, pages 81–112. New York, NY: Birkh¨auser/Springer, 2013. firu13 [1770] V. Fischer and M. Ruzhansky. Lower bounds for operators on graded Lie groups. C. R., Math., Acad. Sci. Paris, 351(1-2):13–18, 2013. firu14 [1771] V. Fischer and M. Ruzhansky. Un calcul pseudo-diff´erentiel sur le groupe de Heisenberg. C. R., Math., Acad. Sci. Paris, 352(3):197– 204, 2014. figuhasasc12 [1772] A. Fish, S. Gurevich, R. A. Haddad, A. Sayeed, and O. Schwartz. Delay-Doppler Channel Estimation with Almost Linear Complexity, 2012. fiyu05 [1773] J. Fish and Z. Yuan. Multiscale enrichment based on partition of unity. International Journal for Numerical Methods in Engineering, 62(10):1341–1359, 2005. fi76 [1774] M. Fisher. On the algebra of multipliers of a p-Fourier algebra. Amer. J. Math., 98:171–181, 1976. fimowu81 [1775] S. Fisher, P. Morris, and D. Wulbert. Unique minimality of Fourier projections. Trans. Amer. Math. Soc., 265:235–246, 1981. fi91 [1776] C. Fisk. Traffic performance analysis at roundabouts. Transportation Research Part B: Methodological, 25(2-3):89 – 102, 1991. 159 befi08 [1777] A. Fitouhi and R. Bettaieb. Wavelet transforms in the q 2 -analogue Fourier analysis. Math. Sci. Res. J., 12(9):202–214, 2008. fl57-1 [1778] C. Flammer. Spheroidal wave functions. Stanford University Press, Stanford, California, 1957. fl14 [1779] C. Flammer. Spheroidal Wave Functions. Courier Dover Publications, 2014. fl88 [1780] P. Flandrin. Maximum signal energy concentration in a timefrequency domain. volume 4, pages 2176 – 2179, 1988. flgora07 [1781] A. K. Fletcher, S. Rangan, and V. K. Goyal. Rate-distortion bounds for sparse approximation. In IEEE/SP 14th Workshop on Statistical Signal Processing (SSP), pages 254–258, 2007. fl72 [1782] T. M. Flett. Lipschitz spaces of functions on the circle and the disc. J. Math. Anal. Appl., 39:125–158, 1972. flri05 [1783] R. Flicker and F. Rigaut. Anisoplanatic deconvolution of adaptive optics images. JOSA A, 22(3):504–513, 2005. flkasa90 [1784] Y. Flicker, D. Kazhdan, and G. Savin. Explicit realization of a metaplectic representation. J. Analyse Math., 55:17–39, 1990. coflsl09 [1785] F. Flitti, C. Collet, and E. Slezak. Image fusion based on pyramidal multiband multiresolution markovian analysis. Signal, image and video processing, 3(3):275–289, 2009. fl98 [1786] K. Flornes. Sampling and interpolation in the Paley-Wiener spaces [...]. Publicacions matematiques, 42(1):103–118, 1998. flgrhoto94 [1787] K. Flornes, A. Grossmann, M. Holschneider, and B. Torresani. Wavelets on discrete fields. Appl. Comput. Harmon. Anal., 1(2):137– 146, 1994. fllyse99 [1788] K. Flornes, Y. Lyubarskii, and K. Seip. A direct interpolation method for irregular sampling. Appl. Comput. Harmon. Anal., 7(3):305–314, art. no. acha.1998.0273, 1999. 160 fosa11 [1789] I. Fofana and M. Sanogo. Fourier transform and compactness in (Lq , lp )α and M p,α spaces. Commun. Math. Anal., 11(2):139–153, 2011. fo58 [1790] C. Foias. On a commutative extension of a commutative Banach algebra. Pacific J. Math., 8:407–410, 1958. foli61 [1791] C. Foias and J. Lions. Sur certains theoremes d’interpolation. Acta Sci. Math. (Szeged), 22:269–282, 1961. fo75-1 [1792] G. B. Folland. Spherical harmonic expansion of the Poisson-Szeg¨o kernel for the ball. Proc. Amer. Math. Soc., 47:401–408, 1975. fo75 [1793] G. B. Folland. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat., 13(2):161–207, 1975. fo77-1 [1794] G. B. Folland. Applications of analysis on nilpotent groups to partial differential equations. Bull. Amer. Math. Soc., 83:912–930, 1977. fo94-1 [1795] G. B. Folland. Meta-Heisenberg groups. In Fourier analysis: analytic and geometric aspects. Proceedings of the 6th international workshop on analysis and its applications, IWAA, held at the University of Maine, Orono, USA, June 15-21, 1992, pages 121–147. New York: Marcel Dekker, 1994. folive11 [1796] V. Fonf, J. Lindenstrauss, and L. Vesely. Best approximation in polyhedral Banach spaces. J. Approx. Theory, 163(11):1748–1771, 2011. fohavy11 [1797] M. Fornasier, J. Haskovec, and J. Vyb´ıral. Particle systems and kinetic equations modeling interacting agents in high dimension. preprint, 2011. folasc10 [1798] M. Fornasier, A. Langer, and C. Sch¨onlieb. A convergent overlapping domain decomposition method for total variation minimization. Numerische Mathematik, 116(4):645–685, 2010. foscvy12 [1799] M. Fornasier, K. Schnass, and J. Vybiral. Learning Functions of Few Arbitrary Linear Parameters in High Dimensions. Foundations of Computational Mathematics, 12:229–262, 2012. 161 fozu07 [1800] B. Fornberg and J. Zuev. The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl., 54(3):379–398, August 2007. befoze02 [1801] H. Foroosh, J. B. Zerubia, and M. Berthod. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process., 11(3):188 –200, mar 2002. fo98 [1802] B. Forrest. Fourier analysis on coset spaces. Rocky Mountain J. Math., 28(1):173–190, 1998. fofo98 [1803] B. Forrest. Fourier analysis on coset spaces. Rocky Mountain Journal of Mathematics, 28(1):18, 1998. fo11 [1804] B. Forrest. Projective operator spaces, almost periodicity and completely complemented ideals in the Fourier algebra. Rocky Mountain J. Math., 41(1):155–176, 2011. fogrgrli13 [1805] S. Fors´en, H. Gray, L. Lindgren, and S. Gray. Was something wrong with Beethoven’s metronome? Notices Amer. Math. Soc., 60(9):1146– 1153, 2013. fohasc10 [1806] L. Forzani, E. Harboure, and R. Scotto. Harmonic analysis related to Hermite expansions. Cabrelli, Carlos (ed.) et al., Recent developments in real and harmonic analysis. In honor of Carlos Segovia. Boston, MA: Birkh´auser. Applied and Numerical Harmonic Analysis, 2010. fo11-1 [1807] S. Foucart. Stability and robustness of weak orthogonal matching pursuits. In AMS Spring 2011 Southeastern Conference, Springer Proceedings in Mathematics, 2011. fo12 [1808] S. Foucart. Stability and robustness of 1 -minimizations with Weibull matrices and redundant dictionaries. Linear Algebra and Appl., 441:4– 21, 2014. fora13 [1809] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkh¨auser, 2013. fo03-3 [1810] K. Fourmont. Non-equispaced fast Fourier transforms with applications to tomography. J. Fourier Anal. Appl., 9(5):431–450, 2003. 162 foma14 [1811] R. Foygel and L. Mackey. Corrupted sensing: Novel guarantees for separating structured signals. IEEE Trans. Inform. Theory, 60(2):1223–1247, Feb 2014. frluwh95 [1812] B. Franchi, G. Lu, and R. Wheeden. Representation formulas and weighted Poincar´e inequalities for H¨ormander vector fields. Ann. Inst. Fourier (Grenoble), 45(2):577–604, 1995. fr99-2 [1813] M. Frank. Geometrical aspects of Hilbert C ∗ -modules. Positivity, 3(3):215–243, 1999. fr01-1 [1814] M. Frank. Hilbertian versus Hilbert W ∗ -modules and applications to L2 - and other invariants. Acta Appl. Math., 68(1-3):227–242, 2001. frpati02 [1815] M. Frank, V. I. Paulsen, and T. Tiballi. Symmetric approximation of frames and bases in Hilbert spaces. Trans. Amer. Math. Soc., 354(2):777–793, 2002. frsh10 [1816] M. Frank and K. Sharifi. Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C ∗ -modules. J. Operator Theory, 64(2):377–386, 2010. ol10-2 [1817] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010. cofrwo10 [1818] T. Frankcombe, M. Collins, and G. Worth. Converged quantum dynamics with modified Shepard interpolation and Gaussian wave packets. Chemical Physics Letters, 489(4-6):242–247, 2010. fr86 [1819] J. Franke. On the spaces Fspq of Triebel-Lizorkin type: pointwise multipliers and spaces on domains. Math. Nachr., 125:29–68, 1986. fr98-2 [1820] J. Franke. Harmonic analysis in weighted L2 -spaces. 1998. frsc98 [1821] J. Franke and J. Schwermer. A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups. Math. Ann., 311(4):765–790, 1998. 163 bofr94 [1822] G. Fraser and B. Boashash. Multiple window spectrogram and timefrequency distributions. In Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on, volume 4, pages IV–293, 1994. frnave14 [1823] M. Frazier, F. Nazarov, and I. Verbitsky. Global estimates for kernels of Neumann series and Green’s functions. arXiv, 2014. frgesc98 [1824] W. Freeden, T. Gervens, and M. Schreiner. Constructive approximation on the sphere. With applications to geomathematics. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York, 1998. frgu13 [1825] W. Freeden and M. Gutting. Special Functions of Mathematical (geo)Physics. Birkh¨auser, 2013. frnaso10-1 [1826] W. Freeden, M. Nashed, and T. Sonar. Handbook of Geomathematics Vol 2. Springer, 2010. blfrhemowo08 [1827] F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, and S. Bl¨ ugel. Maximally localized Wannier functions within the FLAPW formalism. Physical Review B, 78(3):035120, 2008. frgiva08 [1828] R. Fresneda, D. M. Gitman, and D. Vassilevich. Nilpotent noncommutativity and renormalization. Physical Review D, 78(2):025004, 2008. frkova02 [1829] B. Frey, R. Koetter, and A. Vardy. Signal-space characterization of iterative decoding. IEEE Trans. Information Theory, 47(2):766–781, 2002. fr71 [1830] S. Friedberg. The Fourier transform is onto only when the group is finite. Proc. Amer. Math. Soc., 27:421–422, 1971. fr98-3 [1831] S. Friedberg. An analytical proof of the Cayley-Hamilton theorem. Int. J. Math. Educ. Sci. Technol., 29(4):598–600, 1998. fr98-4 [1832] S. Friedberg. Applications of the binomial theorem. Int. J. Math. Educ. Sci. Technol., 29(3):459–471, 1998. frinsp03 [1833] S. Friedberg, A. Insel, and L. Spence. Linear Algebra Fourth Edition. PHI, 2003. 164 fr05 [1834] S. Friedland. A new approach to generalized singular value decomposition. SIAM J. Matrix Anal. Appl., 27(2):434–444 (electronic), 2005. frjo98-2 [1835] F. Friedlander and M. Joshi. Introduction to the Theory of Distributions. Cambridge Univ Pr, 1998. frst81 [1836] J. Friedman and W. Stuetzle. Projection pursuit regressions. J. Amer. Statist. Soc., 76:817823, 1981. befr07 [1837] T.-P. Fries and T. Belytschko. The intrinsic partition of unity method. Comput. Mech., 40(4):803–814, 2007. frjo98 [1838] M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998., volume 3, pages 1381–1384, 1998. frjo98-1 [1839] M. Frigo and S. Johnson. FFTW users manual. Massachusetts Institute of Technology, 1998. defr09 [1840] J. Fripiat and J. Delhalle. Efficient calculation of the exchange in the Fourier representation of HF-LCAO-CO equations for 1D periodic systems. International Journal of Quantum Chemistry, 109(13):2960– 2967, 2009. cefuka13 [1841] Y. Fu, U. Kaehler, and P. Cerejeiras. The Balian-Low theorem for a new kind of Gabor system. Appl. Anal., 92(4):799–813, 2013. fusa03 [1842] C. Fuchs and M. Sasaki. Squeezing quantum information through a classical channel: measuring the “quantumness” of a set of quantum states. Quantum Inf. Comput., 3(5):377–404, 2003. fu13 [1843] D. Fuchs. Gabor Analysis of Structured Sparsity and some Applications. Master’s thesis, University of Vienna, 2013. fu11 [1844] M. Fuchs. Computable upper bounds for the constants in Poincar´etype inequalities for fields of bounded deformation. Math. Methods Appl. Sci., 34(15):1920–1932, 2011. fu64 [1845] W. Fuchs. On the eigenvalues of an integral equation arising in the theory of band-limited signals. J. Math. Anal. Appl., 9:317–330, 1964. 165 fu97 [1846] M. Fugarolas. Entropy ideals and matrix operators of Besov-type. Acta Math. Hungar., 75(1-2):55–64, 1997. fu99 [1847] M. Fugarolas. Besov spaces and a trace ideal. Acta Math. Hungar., 82(1-2):75–81, 1999. fuXX [1848] H. F¨ uhr. Admissible vectors for the regular representation. Proc. Amer. Math. Soc. fu10 [1849] H. F¨ uhr. Generalized Calderon conditions and regular orbit spaces. Colloq. Math., 120(1):103–126, 2010. fuma12 [1850] H. F¨ uhr and A. Mayeli. Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization. J. Funct. Spaces Appl., pages Art. ID 523586, 41, 2012. fupe13 [1851] H. F¨ uhr and I. Z. Pesenson. Poincare and Plancherel-Polya inequalities in harmonic analysis on weighted combinatorial graphs. SIAM J. Discrete Math., 27(4):2007–2028, 2013. fuvo14 [1852] H. F¨ uhr and F. Voigtlaender. Wavelet coorbit spaces viewed as decomposition spaces. arXiv preprint arXiv:1404.4298, 2014. fu81 [1853] P. Fuhrmann. Linear systems and operators in Hilbert space. New York etc.: McGraw-Hill International Book Company. X, 325 p., 1981. fu12 [1854] P. Fuhrmann. A Polynomial Approach to Linear algebra 2nd Ed. Universitext. New York, NY: Springer. xvi, 2012. fuho05 [1855] M. Fukuda and A. S. Holevo. On Weyl-covariant channels. Arxiv preprint quant-ph/0510148, 2005. bafujo09 [1856] K. Fukumizu, F. Bach, and M. Jordan. Kernel dimension reduction in regression. Ann. Statist., 37(4):1871–1905, 2009. fuosta11 [1857] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Symmetric Markov Processes 2nd revised and Extended Ed. de Gruyter Studies in Mathematics 19. Berlin: Walter de Gruyter. x, 489 p., 2011. fugr00 [1858] L. Funar and R. Grimaldi. On the spectrum obtained from packing balls on Riemann manifolds. Southeast Asian Bull. Math., 24(4):543– 552, 2000. 166 fumeve06 [1859] G. Furioli, C. Melzi, and A. Veneruso. Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth. Math. Nachr., 279(9-10):1028–1040, 2006. fufi11 [1860] I. Fuss and A. Filinkov. A rigorous description of optical phase. In Quantum Electronics Conference Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), 2011, pages 1424–1426, Aug, 2011. cocrfigagare04 [1861] S. Gabarda, G. Cristobal, S. Fischer, R. Redondo, L. Galleani, and L. Cohen. Volumetric image fusion using the pseudo-Wigner distribution. In Proc. of SPIE Vol, volume 5558, page 625, 2004. ga00 [1862] J.-P. Gabardo. Hilbert spaces of distributions having an orthogonal basis of exponentials. J. Fourier Anal. Appl., 6(3):277–298, 2000. gana98 [1863] J.-P. Gabardo and M. Nashed. Nonuniform multiresolution analyses and spectral pairs. J. Funct. Anal., 158(1):209–241, 1998. ga83 [1864] D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, pages 299–331. North-Holland, Amsterdam, 1983. game76 [1865] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput. Math. Appl., 2:17–40, 1976. ga74 [1866] O. Gabisonija. Points of strong summability of Fourier series. Math. Notes, 14:913–918, 1974. ga58 [1867] E. Gagliardo. Proprieta di alcune classi di funzioni in piu variabili. Ricerche Mat., 7:102–137, 1958. ga63 [1868] E. Gagliardo. A common structure in various families of functional spaces II. Quasilinear interpolation spaces. Ricerche Mat., 12:87–107, 1963. ga69-4 [1869] E. Gagliardo. Caratterizzazione costruttiva di tutti gli spazi di interpolazione tra spazi di Banach. In Symposia Mathematica (INDAM, Rome, 1968), volume 2, pages 95–106. Academic Press, London, 1969. 167 ga08-1 [1870] A. Gal´antai. Subspaces, angles and pairs of orthogonal projections. Linear and Multilinear Algebra, 56(3):227–260, May 2008. gapy97 [1871] J. Gal’e and T. Pytlik. Functional calculus for infinitesimal generators of holomorphic semigroups. J. Funct. Anal., 150(2):307–355, 1997. gawa11 [1872] J. E. Gale and A. Wawrzynczyk. Standard ideals in weighted algebras of Korenblyum and Wiener types. Math. Scand., 108(2):291–319, 2011. gasi10 [1873] I. Gallagher and Y. Sire. Besov algebras on Lie groups of polynomial growth. :1010.0154, 2010. cogano06 [1874] L. Galleani, L. Cohen, and A. Noga. A time-frequency approach to the adjustable bandwidth concept. Digital Signal Processing, 16(5):454 – 467, 2006. gasa12 [1875] W. Gan and G. Savin. Representations of metaplectic groups II: Hecke algebra correspondences. Reres. Theory Amer. Math. Soc., 16(14):513–539, 2012. gakipa11 [1876] W. Gangbo, H. Kim, and T. Pacini. Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems. 2011. gagrnist11 [1877] W. Gansterer, G. Niederbrucker, S. Grotthoff, and H. Strakov´a. Robust Distributed Orthogonalization Based on Randomized Aggregation. In Proceedings of the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA) held in conjunction with the 24th IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis (SC) 2011, New York, NY, USA, 2011. ACM. gagrnist12 [1878] W. Gansterer, G. Niederbrucker, H. Strakov´a, and S. Grotthoff. Scalable and Fault Tolerant Orthogonalization Based on Randomized Aggregation. Journal of Computational Science, 2012. gastze11 [1879] W. Gansterer, T. Zemen, and H. Strakov´a. Distributed QR Factorization Based on Randomized Algorithms. In Proceedings of the 9th International Conference on Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Torun, Poland, 2011. Springer Verlag. 168 gahukelo09 [1880] W. Gao, N. Huyen, H. Loi, and Q. Kemao. Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using graphics processing unit. Optics Express, 17(25):23147–23152, 2009. gawu12 [1881] W. Gao and Z. Wu. Quasi-interpolation for linear functional data. J. Comput. Appl. Math., 236(13):3256 – 3264, 2012. chgazhzh04 [1882] Z. Gao, L. Chen, S. Zhou, and R. Zhu. Computer-aided alignment for a reference transmission sphere of an interferometer. Opt. Eng., 43(1):69–74, 2004. game78 [1883] C. Gapaillard and C. Merucci. Espaces fonctionnels de Banach M´ethode discrete l’interpolation. Ark. Mat., 16:161–170, 1978. gakikwyo12 [1884] A. Garcia, J. Kim, K. Kwon, and G. Yoon. Multi-channel sampling on shift-invariant spaces with frame generators. Int. J. Wavelets Multiresolut. Inf. Process., 10(1):1250003, 20, 2012. gamupe11 [1885] A. G. Garc´ıa, M. Muoz Bouzo, and G. P´erez Villal´on. Regular multivariate sampling and approximation in Lp shift-invariant spaces. J. Math. Anal. Appl., 380(2):607 – 627, 2011. gapo08 [1886] A. G. Garcia and A. Portal. A general sampling theory in the functional Hilbert space induced by a Hilbert space valued kernel. J. Appl. Funct. Anal., 3(3):299–313, 2008. gapo13 [1887] A. G. Garcia and A. Portal. Sampling in reproducing kernel Banach spaces. Mediterr. J. Math., 10(3):1401–1417, 2013. galawo86 [1888] M. Garcia Bulle, W. Lassner, and K. Wolf. The metaplectic group within the Heisenberg–Weyl ring. J. Math. Phys., 27(1):29–36, 1986. gaka95 [1889] J. Garcia Cuerva and K. S. Kazarian. Spline wavelet bases of weighted spaces. Garc´ıa-Cuerva, Jos´e (ed.) et al., Fourier analysis and partial differential equations. Proceedings of the conference held in Miraflores de la Sierra, Madrid, Spain, June 15–20, 1992. Boca Raton, FL: CRC Press. Studies in Advanced Mathematics. 169-, 1995. gamato93 [1890] J. Garcia Cuerva, R. Macias, and J.-L. Torrea. The Hardy-Littlewood property of Banach lattices. Israel J. Math., 83(1-2):177–201, 1993. 169 gathwe90 [1891] C. Gardner, B. Welsh, and L. Thompson. Design and performance analysis of adaptive optical telescopes using lasing guide stars. Proceedings of the IEEE, 78(11):1721–1743, 1990. gahoob09 [1892] C. Garetto, G. H¨ormann, and M. Oberguggenberger. Generalized oscillatory integrals and Fourier integral operators. Proc. Edinburgh Math. Soc. (2), 52(2):351–386, 2009. ga66-3 [1893] D. Garling. On symmetric sequence spaces. Proc. Lond. Math. Soc. (3), 16:85–106, 1966. gayo01 [1894] J. Garnett and S. Yoshinobu. Large sets of zero analytic capacity. Proc. Amer. Math. Soc., 129(12):3543–3548, 2001. gajo82 [1895] J. B. Garnett and P. W. Jones. BMO from dyadic BMO. Pacific J. Math., 99(2):351–371, 1982. gaty12 [1896] N. Garofalo and J. Tyson. Riesz potentials and p-superharmonic functions in Lie groups of Heisenberg type. Bull. Lond. Math. Soc., 44(2):353–366, 2012. gahema08 [1897] G. Garrigos, E. Hernandez, and J. M. Martell. Wavelets, Orlicz spaces, and greedy bases. Appl. Comput. Harmon. Anal., 24(1):70–93, 2008. gahesiso06 [1898] G. Garrigos, E. Hernandez, H. Sikic, and F. Soria. Further results on the connectivity of Parseval frame wavelets. Proc. Amer. Math. Soc., 134(11):3211–3221, 2006. gahesisowewi03 [1899] G. Garrigos, E. Hernandez, H. Sikic, F. Soria, G. Weiss, and E. Wilson. Connectivity in the set of tight frame wavelets (TFW). Glas. Mat., III. Ser., 38(1):75–98, 2003. flgagrXX [1900] M. Gasser, A. Flexer, and T. Grill. On Computing Morphological Similarity of Audio Signals,. Proceedings of the 8th Sound and Music Computing Conference , Padova, Italy, 2011. ga09-5 [1901] G. Gat. On almost everywhere convergence of Fourier series on unbounded Vilenkin groups. Publ. Math., 75(1-2):85–94, 2009. gapi86 [1902] G. I. Gaudry and R. Pini. Bernstein’s theorem for compact, connected Lie groups. Math. Proc. Cambridge Philos. Soc., 99:297–305, 1986. 170 gapi87 [1903] G. I. Gaudry and R. Pini. Motion groups and absolutely convergent Fourier transforms. J. Austral. Math. Soc. Ser. A, 43:385–397, 1987. ga08 [1904] S. Z. Gautam. A critical-exponent Balian-Low theorem. Math. Res. Lett., 15(3):471–783, May 2008. ga11 [1905] L. Gavruta. Frames for operators. Appl. Comput. Harmon. Anal., 32(1):139–144, 2011. gaga10 [1906] L. Gavruta and P. Gavruta. Frames in duality. In Proceedings of the 12th symposium of mathematics and its applications, ’Politehnica’ University of Timisoara, pages 100–107, Timisoara, Romania, November 5-7, 2009, 2010. ga13 [1907] P. Gavruta. On the Feichtinger Conjecture. preprint-last revised 12 Feb 2013. This paper has been withdrawn by the author due to a sign error in the proof of Theorem 1, 2013. gaga10-1 [1908] P. Gavruta and L. Gavruta. psi-aditive mappings and HyersUlam stability. In P. Gavruta, L. Gavruta, P. M. Pardalos, T. M. Rassias, and A. A. Khan, editors, Nonlinear Analysis and Variational Problems, volume 35 of Springer Optimization and Its Applications, pages 81–86. Springer New York, 2010. gajukrwu07 [1909] V. Gayral, J.-H. Jureit, T. Krajewski, and R. Wulkenhaar. Quantum field theory on projective modules. J. Noncommut. Geom., 1(4):431– 496, 2007. ge65-1 [1910] S. Geisberg. Quasianalytic functions in L(−∞, ∞). 1965. ge88-1 [1911] M. Geisler. Besov spaces on compact Lie groups. Math. Nachr., 139:193–205, 1988. gegr08 [1912] P. Geladi and H. F. Grahn. Multivariate and Hyperspectral Image Analysis, volume 15 (General articles), page 26. Wiley, Online Library, 2008. ge07 [1913] A. Gelb. Reconstruction of piecewise smooth functions from nonuniform grid point data. J. Sci. Comput., 30(3):409–440, 2007. 171 gegrpi90 [1914] I. Gelfand, M. Graev, and I. Piatetski Shapiro. Representation theory and automorphic functions. Transl. from the Russian by K.A. Hirsch. Reprint of the 1969 edition. Academic Press, 1990. geko55 [1915] I. Gelfand and A. Kostyucenko. Expansion in eigenfunctions of differential and other operators. Dokl. Akad. Nauk SSSR (N.S.), 103:349– 352, 1955. ge84 [1916] D. Geller. Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group. Canad. J. Math., 36:615–684, 1984. gema11 [1917] D. Geller and D. Marinucci. Mixed needlets. J. Math. Anal. Appl., 375(2):610–630, 2011. gema09-2 [1918] D. Geller and A. Mayeli. Continuous wavelets on compact manifolds. Math. Z., 262(4):895–927, 2009. gema11-1 [1919] D. Geller and A. Mayeli. Wavelets on manifolds and statistical applications to cosmology. In Wavelets and multiscale analysis, Appl. Numer. Harmon. Anal., pages 259–277. Springer, 2011. gepe11 [1920] D. Geller and I. Pesenson. Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal., 21(2):334–371, 2011. gest82 [1921] D. Geller and E. M. Stein. Singular convolution operators on the Heisenberg group. Bull. Amer. Math. Soc. (N.S.), 6:99–103, 1982. gewr11 [1922] Q. Geng and J. Wright. On the local correctness of ell1 -minimization for dictionary learning. preprint, 2011. ge90 [1923] P. Gerard. Moyennisation et r´egularit´e deux-microlocale. Ann. Sci. ´ Ecole Norm. Sup. (4), 23(1):89–121, 1990. gesa72 [1924] R. Gerchberg and W. Saxton. Phase retrieval by iterated projection. Optik, 35, 1972. ge97 [1925] P. Gerdes. Ethnomathematics -described by the example of Sona geometry. (Ethnomathematik -dargestellt am Beispiel der Sona Geometrie). Heidelberg: Spektrum Akademischer Verlag, 1997. 172 geto95 [1926] I. Gertner and R. Tolimieri. Multiplicative Zak Transform. Journal of Visual Communication and Image Representation, 6(1):89–95, 1995. geze90 [1927] I. Gertner and Y. Y. Zeevi. Zak-Gabor representation of images. In Proc. SPIE, Visual Communications and Image Processing ’90: Fifth in a Series, volume 1360 of Pattern Recognition, pages 1738–1748, Lausanne, Switzerland, October 1990. bogegopa02 [1928] D. Gesbert, H. B¨olcskei, D. Gore, and A. Paulraj. Outdoor MIMO Wireless Channels: Models and Performance Prediction. IEEE Trans. Comm., 50:1926–1934, Dec. 2002. gekima02 [1929] F. Gesztesy, A. Kiselev, and K. Makarov. Uniqueness results for matrix-valued Schr¨odinger, Jacobi, and Dirac-type operators. 2002. gh12 [1930] A. Ghaani Farashahi. Abstract Non-Commutative Harmonic Analysis of Coherent State Transforms (Non-commutative time-frequency analysis). PhD thesis, Department Of Mathematics, Ferdowsi University of Mashhad, 2012. gh14 [1931] A. Ghaani Farashahi. Continuous partial Gabor transform for semidirect product of locally compact groups. Bull. Malaysian Math. Soc., pages 1–25, 2014. ghXX [1932] A. Ghaani Farashahi. Generalized WeylHeisenberg (GWH) groups. Anal.Math.Phys., 4:187–197, 2014. gh80 [1933] F. Ghahramani. Homomorphisms and derivations on weighted convolution algebras. J. London Math. Soc. (2), 21(1):149–161, 1980. gh84 [1934] F. Ghahramani. Weighted group algebra as an ideal in its second dual space. Proc. Amer. Math. Soc., 90(1):71–76, 1984. ghja11 [1935] S. Ghobber and P. Jaming. On uncertainty principles in the finitedimensional setting. Linear Algebra and its Applications, 435:751–768, 2011. gh10 [1936] R. Ghrist. Configuration spaces, braids, and robotics. Berrick, A. Jon (ed.) et al., Braids. Introductory lectures on braids, configurations and their applications. Based on the program “Braids, 2010. 173 gi97 [1937] G. Giannakis. Filterbanks for blind channel identification and equalization. IEEE Signal Process. Letters, pages 184–187, Jun. 1997. giis11 [1938] P. Gibilisco and T. Isola. On a refinement of Heisenberg uncertainty relation by means of quantum Fisher information. J. Math. Anal. Appl., 375(1):270–275, 2011. gisk74 [1939] I. Gihman and A. Skorohod. The theory of stochastic processes. I. Translated from the Russian by S. Kotz. Die Grundlehren der mathematischen Wissenschaften. Band 210. Springer, 1974. giha06 [1940] E. Gilad and J. Von Hardenberg. A fast algorithm for convolution integrals with space and time variant kernels. Journal of Computational Physics, 216(1):326–336, 2006. gimu08 [1941] J. Gilbert and M. Murray. Clifford Algebras and Dirac operators in Harmonic Analysis Paperback Reprint of the Hardback Edition 1991. Cambridge Studies in Advanced Mathematics 26. Cambridge: Cambridge University Press. vi, 334 p., 2008. gi94 [1942] P. Gilkey. Invariance Theory: The Heat Equation and the AtiyahSinger Index Theorem. CRC Press, 2nd edition, 1994. gisi12 [1943] F. Gilles and K. Sinuk. Average sampling of band-limited stochastic processes. Appl. Comput. Harmon. Anal., 2012. gi14 [1944] J. Gilman. The non-Euclidean Euclidean algorithm. Adv. Math., 250(0):227 – 241, 2014. gi65 [1945] J. Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J. Mathematical Phys., 6:440–449, 1965. gi09 [1946] N. Ginoux. The Dirac Spectrum, volume 1976 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009. giha10 [1947] N. Ginoux and G. Habib. A spectral estimate for the Dirac operator on Riemannian flows. Cent. Eur. J. Math., 8(5):950–965, 2010. gimamape12 [1948] J. Giribet, A. Maestripieri, F. Peria, and P. Massey. On frames for Krein spaces. J. Math. Anal. Appl., 393(1):122–137, 2012. 174 daelgigrna14 [1949] R. Giryes, S. Nam, M. Elad, R. Gribonval, and M. Davies. Greedylike algorithms for the cosparse analysis model. Linear Algebra and Appl., 441(0):22 – 60, 2014. gi85 [1950] S. Giulini. Bernstein and Jackson theorems for the Heisenberg group. J. Austral. Math. Soc. Ser. A, 38:241–254, 1985. gi86 [1951] S. Giulini. Approximation and Besov spaces on stratified groups. Proc. Amer. Math. Soc., 96(4):569–578, 1986. gi13 [1952] H. Giv. Directional short-time Fourier transform. J. Math. Anal. Appl., 399(1):100 – 107, 2013. glmo90 [1953] B. R. Glasberg and B. Moore. Derivation of auditory filter shapes from notched-noise data. Hearing Research, 47:103–138, 1990. baglir09 [1954] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In Computer Vision, 2009 IEEE 12th International Conference on, pages 349 –356, Kyoto, October 2009. glgo04 [1955] L. Glebsky and E. I. Gordon. On approximation of locally compact groups by finite algebraic systems. Electron. Res. Announc. Amer. Math. Soc., 10:21–28 (electronic), 2004. glja81 [1956] J. Glimm and A. Jaffe. Quantum physics. A functional integral point of view. New York - Heidelberg - Berlin: Springer-Verlag. XX, 417 p., 43 ill. $ 26.40 (1981)., 1981. glporasisovo04 [1957] J. Glover, Z. Pop Stojanovic, M. Rao, H. Sikic, R. Song, and Z. Vondracek. Harmonic functions of subordinate killed Brownian motion. J. Funct. Anal., 215(2):399–426, 2004. glle89 [1958] R. Glowinski and T. Le. Augmented Lagrangian and OperatorSplitting Methods. SIAM, Philadelphia, 1989. gl88 [1959] E. Gluskin. Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Mat. Sb. (N.S.), 136(178)(1):85–96, 1988. glol11 [1960] E. Gluskin and A. Olevskii. Invertibility of sub-matrices and the octahedron width theorem. Israel Journal of Mathematics, 186:61– 68, 2011. 175 go10 [1961] M. Gockenbach. Finite-Dimensional Linear Algebra. Taylor and Francis, 2010. go03-1 [1962] R. Godement. Analyse Mathematique IV Integration et Theorie Spectrale, Analyse Harmonique, Le Jardin des Delices Modulaires. Berlin: Springer, xii, 599 p. edition, 2003. gosi13 [1963] N. Goel and K. Singh. A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics. Int. J. Appl. Math. Comput. Sci., 23(3):685–695, 2013. dagoko14 [1964] A. Gogatishvili, A. Danelia, and T. Kopaliani. Local HardyLittlewood maximal operator in variable Lebesgue spaces. Banach J. Math. Anal., 8(2):229–244, 2014. gokosh10 [1965] A. Gogatishvili, P. Koskela, and N. Shanmugalingam. Interpolation properties of Besov spaces defined on metric spaces. Mathematische Nachrichten, 283(2):215–231, 2010. gokozh11 [1966] A. Gogatishvili, P. Koskela, and Y. Zhou. Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces. In Forum Math., to appear, 2011. gokozh13 [1967] A. Gogatishvili, P. Koskela, and Y. Zhou. Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces. In Forum Mathematicum, volume 25, pages 787–819, 2013. gomu11 [1968] A. Gogatishvili and R. Mustafayev. Dual spaces of local Morrey-type spaces. Czechoslovak Math. J., 61(136)(3):609–622, 2011. gomu11-1 [1969] A. Gogatishvili and R. Mustafayev. On a theorem of MuckenhouptWheeden in generalized Morrey spaces. Eurasian Math. J., 2(2):134– 138, 2011. gomu12 [1970] A. Gogatishvili and R. Mustafayev. Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces. Collect. Math., 63(1):11–28, 2012. gomu13 [1971] A. Gogatishvili and R. Mustafayev. New characterization of Morrey spaces. Eurasian Math. J., 4(1):54–64, 2013. 176 gomu13-1 [1972] A. Gogatishvili and R. Mustafayev. New pre-dual space of Morrey space. J. Math. Anal. Appl., 397(2):678–692, 2013. goneop11 [1973] A. Gogatishvili, J. Neves, and B. Opic. Compact embeddings of Bessel-potential-type spaces into generalized H¨older spaces involving k-modulus of smoothness. Zeitschrift f¨ ur Analysis und ihre Anwendungen, 30(1):1–27, 2011. gopi03 [1974] A. Gogatishvili and L. Pick. Discretization and anti-discretization of rearrangement-invariant norms. Publ. Mat., Barc., 47(2):311–358, 2003. gopisc12 [1975] A. Gogatishvili, L. Pick, and J. Schneider. Characterization of a rearrangement-invariant hull of a Besov space via interpolation. Rev. Mat. Complut., 25(1):267–283, 2012. go13 [1976] U. Goginava. Negative order Cesaro means of double Fourier series and bounded generalized variation. Siberian Math. J., 54(6):1005– 1012, 2013. gowe12 [1977] U. Goginava and F. Weisz. Maximal operator of the Fej´er means of triangular partial sums of two-dimensional Walsh-Fourier series. Georgian Math. J., 19(1):101–115, 2012. gowe12-1 [1978] U. Goginava and F. Weisz. Pointwise convergence of MarcinkiewiczFejer means of two-dimensional Walsh-Fourier series. Studia Sci. Math. Hungar., 49(2):236–253, 2012. gohash11 [1979] S. S. Goh, B. Han, and Z. Shen. Tight periodic wavelet frames and approximation orders. Appl. Comput. Harmon. Anal., 31(2):228–248, 2011. gola94 [1980] I. Gohberg and H. J. Landau. Prediction and the inverse of Toeplitz matrices. Zahar, R. V. M. (ed.), Approximation and computation: a Festschrift in honor of Walter Gautschi. Proceedings of the Purdue conference, West Lafayette, IN, USA, December 2-5, 1993. Boston, US: Birkh¨auser. ISNM, Int. Ser. Numer. Math. 119, 219-229 (1994)., 1994. go12 [1981] J. Golan. The Linear Algebra a Beginning Graduate Student ought to know. 3rd ed. Dordrecht: Springer. xii, 497 p., 2012. 177 gosi08 [1982] B. Gold and R. Simons. Proof and other dilemmas. Mathematics and philosophy. Spectrum Series. The Mathematical Association of America (MAA), Washington, DC, 2008. gohu11 [1983] D. Goldfeld and J. Hundley. Automorphic representations and Lfunctions for the general linear group. Volume II, volume 130 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2011. go84-1 [1984] M. Gol’dman. Imbedding theorems for anisotropic Nikol’skii-Besov spaces with moduli of continuity of a general type. Trudy Matematicheskogo Instituta im. VA Steklova, 170:86–104, 1984. goos09 [1985] T. Goldstein and S. Osher. The split Bregman method for L1regularized problems. SIAM J. Imag. Sciences, 2(2):323–343, 2009. go14 [1986] M. Golitschek. On the -norm of the orthogonal projector onto splines. A short proof of A. Shadrina’s theorem. J. Approx. Theory, (0):–, 2014. gogo05 [1987] S. Golomb and G. Gong. Signal Design for Good Correlation. Cambridge University Press, Cambridge, 2005. gova12 [1988] G. Golub and L. Van. Matrix computations, volume 3. JHU Press, 2012. gora89 [1989] A. Gonchar and E. Rakhmanov. Equilibrium distributions and degree of rational approximation of analytic functions. Math. USSR-Sb., 62(2):305–348, 1989. goyo10 [1990] J. Gonessa and E. Youssfi. Hankel operators and the Stieltjes moment problem. J. Funct. Anal., 258(3):978–998, 2010. goyo12 [1991] J. Gonessa and E. H. Youssfi. The Bergman projection in spaces of entire functions. Ann. Pol. Math., 104(2):161–174, 2012. gove14 [1992] D. Gontier and M. Vetterli. Sampling based on timing: Time encoding machines on shift-invariant subspaces. Appl. Comput. Harmon. Anal., 36(1):63 – 78, 2014. 178 gogoja99 [1993] M. Gonz´alez, R. Gonzalo, and J. Jaramillo. Symmetric polynomials on rearrangement invariant function spaces. J. Lond. Math. Soc. (2), 59(2), 1999. gogr07 [1994] V. Gonzalez and C. C. Graham. On the support of tempered distributions. Arch. Math. (Basel), 88(2):133–142, 2007. argohelosatovi06 [1995] J. Gonzalez Nuevo, F. Argueso, M. Lopez Caniego, L. Toffolatti, J. Sanz, P. Vielva, and D. Herranz. The Mexican Hat Wavelet Family. Application to point source detection in CMB maps, 2006. go92-1 [1996] E. Gonzalez Velasco. Connections in Mathematical Analysis: the case of Fourier series. Amer. Math. Monthly, pages 427–441, 1992. go03 [1997] F. Gonz´alez Vieli. Characterization of the support of pseudomeasures on R. Math. Proc. Cambridge Philos. Soc., 135(3):431–442, 2003. go71 [1998] I. Good. The relationship between two fast Fourier transforms. IEEE Trans. Comput., 20:310–317, 1971. gone84 [1999] A. Goodman and D. Newman. A Wiener type theorem for Dirichlet series. Proc. Amer. Math. Soc., 92:521–527, 1984. go04-1 [2000] R. Goodman. Alice through looking glass after looking glass: the mathematics of mirrors and kaleidoscopes. Amer. Math. Monthly, 111(4):281–298, 2004. gowa85 [2001] R. Goodman and N. R. Wallach. Projective unitary positive-energy representations of diff (S1). J. Funct. Anal., 63(3):299 – 321, 1985. goha06 [2002] T. Goodman and D. Hardin. Refinable multivariate spline functions. In Topics in multivariate approximation and interpolation, volume 12 of Stud. Comput. Math., pages 55–83. Elsevier B. V., Amsterdam, 2006. gorita09 [2003] A. G¨opfert, T. Riedrich, and C. Tammer. Applied Functional Analysis Motivations and Methods for Mathematicians and Economists (Angewandte Funktionalanalysis Motivationen Und Methoden f¨ ur Mathematiker Und Wirtschaftswissenschaftler). Studium. Studienb¨ ucher Wirtschaftsmathematik. Wiesbaden: Vieweg+Teubner. xiv, 390 p. EUR 29.90, 2009. 179 go95 [2004] R. Gopinath. Nonlinear recovery of sparse signals from narrowband data. In Proceedings of the Acoustics, Speech, and Signal Processing, 1995 - Volume 02, ICASSP ’95, page 3, Washington, DC, USA,, 1995. IEEE Computer Society. goti12 [2005] D. Gorbachev and S. Tikhonov. Moduli of smoothness and growth properties of Fourier transforms: Two-sided estimates. Journal of Approximation Theory,, 164(9):1283 – 1312, 2012. go05-1 [2006] E. Gordon. I.I. Gordon who was an addressee of L. S. Pontryagin (introductory notes). 2005. go85-1 [2007] Y. Gordon. Some inequalities for Gaussian processes and applications. Israel J. Math., 50(4):265–289, 1985. go87 [2008] Y. Gordon. Elliptically contoured distributions. Probab. Theory Related Fields, 76(4):429–438, 1987. go88-1 [2009] Y. Gordon. Gaussian processes and almost spherical sections of convex bodies. Ann. Probab., 16(1):180–188, 1988. go88-2 [2010] Y. Gordon. On Milman’s inequality and random subspaces which escape through a mesh in rn . In Geometric aspects of functional analysis (1986/87), volume 1317 of Lecture Notes in Math., pages 84–106. 1988. golere73 [2011] Y. Gordon, D. Lewis, and J. Retherford. Banach ideals of operators with applications. J. Funct. Anal., 14:85–129, 1973. golere73-1 [2012] Y. Gordon, D. Lewis, and J. Retherford. Banach ideals of operators with applications to the finite dimensional structure of Banach spaces. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II. Israel J. Math., 13:348–360, 1973. gokore13 [2013] P. Gorka, T. Kostrzewa, and E. Reyes. The Rellich lemma on compact abelian groups and equations of infinite order. 2013. gozh98 [2014] P. Gorkin and D. Zheng. Harmonic extensions and the B¨ottcherSilbermann conjecture. Studia Math., 127(3):201–222, 1998. 180 gogori05 [2015] J. Gosme, C. Richard, and P. Goncalves. Adaptive diffusion as a versatile tool for time-frequency and time-scale representations processing: a review. IEEE Trans. Sign. Proc., 53(11):4136–4146, 2005. gomo01 [2016] Y. Gousseau and J.-M. Morel. Are natural images of bounded variation? SIAM Journ. Math. Anal., 33(3):634–648, 2001. gokove99 [2017] V. K. Goyal, J. Kovacevic, and M. Vetterli. Quantized frame expansions as source channel codes for erasure channels. In dcc, page 326, 1999. chgovezh02 [2018] V. K. Goyal, J. Zhuang, M. Vetterli, and C. Chan. Transform coding using adaptive bases and quantization. In Image Processing, 1996. Proceedings., International Conference on, volume 1, pages 365–368, 2002. grva93 [2019] J. M. Gracia Bondia and J. Varilly. On the metaplectic representation in quantum field theory. In Proc. of the II International Wigner Symposium. Foundations and Symmetries-Goslar 1991, pages 611– 614. World Scientific, 1993. grry07 [2020] I. Gradshteyn and I. Ryzhik. Table of Integrals, Series, and Products,. Academic Press,, seventh edition, 2007. gr05-1 [2021] M. Grady. A group theoretic approach to a famous partition formula. The American Mathematical Monthly, 112(7):645–651, 2005. grpo09 [2022] M. Graef and D. Potts. Sampling sets and quadrature formulae on the rotation group. Numer. Funct. Anal. Optim., 30(7-8):665–688, 2009. grsc11 [2023] E. Graefe and R. Schubert. Wave-packet evolution in non-Hermitian quantum systems. Physical Review A, 83(6):060101, 2011. grku08 [2024] M. Gr¨af and S. Kunis. Stability results for scattered data interpolation on the rotation group. Electron. Trans. Numer. Anal., 31:30–39, 2008. dogrgrku02 [2025] R. Graf, C. Kuo, A. Dowling, and W. Graham. On the horn effect of a tyre/road interface, Part l: Experiment and computation. Journal of Sound and Vibration, 256(3):417 – 431, September 2002. 181 gr11-5 [2026] L. Grafakos. Multilinear harmonic analysis. In Nonlinear analysis, function spaces and applications. Vol. 9 (NAFSA 9) Proceedings of the 9th International School held in Trest, September 11-17, 2010, page 33, 2011. grhe14 [2027] L. Grafakos and D. He. Multilinear Calderon-Zygmund operators on Hardy spaces, II. J. Math. Anal. Appl., (0):–, 2014. grliya09 [2028] L. Grafakos, L. Liu, and D. Yang. Radial maximal function characterizations for Hardy spaces on RD-spaces. Bull. Soc. Math. France, 137(2):225–251, 2009. grmito10 [2029] L. Grafakos, A. Miyachi, and N. Tomita. On multilinear Fourier multipliers of limited smootheness. to appear, page 22, 2010. gr73 [2030] C. Graham. The Fourier transform is onto only when the group is finite. Proc. Amer. Math. Soc., 38:365–366, 1973. gr07-1 [2031] C. C. Graham. The support of pseudomeasures on R. Math. Proc. Cambridge Philos. Soc., 142(1):149–152, 2007. gr08-3 [2032] C. C. Graham. The support of tempered distributions. Math. Proc. Cambridge Philos. Soc., 144(2):495–498, 2008. grko09 [2033] A. Gramfort and M. Kowalski. Improving M/EEG source localization with an inter-condition sparse prior. pages 141–144, Paris, France, Jun. 2009. gr84-1 [2034] B. Gramsch. Relative Inversion in der St¨orungstheorie von Operatoren und Ψ-Algebren. Math. Ann., 269(1):27–71, 1984. gr92-5 [2035] A. Granville. Zaphod Beeblebrox’s brain and the fifty-ninth row of Pascal’s triangle. Amer. Math. Monthly, 99(4):318–331, 1992. gr05-2 [2036] A. Granville. It is easy to determine whether a given integer is prime. Bull. Amer. Math. Soc. (N.S.), 42(1):3–38, 2005. gr08-4 [2037] A. Granville. Prime number patterns. 115(4):279–296, 2008. gr10 Amer. Math. Monthly, [2038] A. Granville. Different approaches to the distribution of primes. Milan J. Math., 78(1):65–84, 2010. 182 gr95 [2039] A. Graps. An introduction to wavelets. IEEE Comput. Science and Engineering, 2(2):50–61, 1995. gr93-4 [2040] G. Gr¨atzer. Math into TeX. A simple introduction to AM S- LATeX. Birkh¨auser, 1993. gr99-1 [2041] G. Gr¨atzer. First steps in LaTeX. Boston, MA: Birkh¨auser. New York, 1999. grkorosh13 [2042] N. Gravin, M. Kolountzakis, S. Robins, and D. Shiryaev. Structure results for multiple tilings in 3D. Discrete Comput. Geom., 50(4):1033– 1050, 2013. gr11-4 [2043] J. Grcar. How ordinary elimination became Gaussian elimination. Historia Math., 38(2):163–218, 2011. gr11-3 [2044] J. Grcar. Mathematicians of Gaussian elimination. Notices Amer. Math. Soc., 58(6):782–792, 2011. gr12-1 [2045] U. Grenander. A Calculus of Ideas A mathematical Study of Human Thought. Hackensack, NJ: World Scientific. xv, 2012. grle14-1 [2046] S. Grepstad and N. Lev. Multi-tiling and Riesz bases. Adv. Math., 252:1–6, 2014. grle14 [2047] S. Grepstad and N. Lev. Universal sampling, quasicrystals and bounded remainder sets. C. R. Math. Acad. Sci. Paris, 352(7-8):633– 638, 2014. gr76-4 [2048] W. Greub. Lineare Algebra Korr Nachdruck Der 1 Aufl. Springer, 1976. gr81-2 [2049] T. Greville. Moving-weighted-average smoothing extended to the extremities of the data. III. Stability and optimal properties. J. Approximation Theory, 33:43–58, 1981. badegrmaro02 [2050] R. Gribonval, E. Bacry, S. Mallat, P. Depalle, and X. Rodet. Analysis of sound signals with high resolution matching pursuit. In TimeFrequency and Time-Scale Analysis, 1996., Proceedings of the IEEESP International Symposium on, pages 125–128, Paris , France, 2002. 183 grni13 [2051] R. Gribonval and M. Nielsen. The restricted isometry property meets nonlinear approximation with redundant frames. J. Approx. Theory, 165(1):1–19, 2013. gr11-7 [2052] R. Griesmaier. Multi-frequency orthogonality sampling for inverse obstacle scattering problems. Inverse Problems, 27(8):Article ID 085005, 23p., 2011. gr11-6 [2053] R. Grigorchuk. Milnor’s Problem on the Growth of Groups and its Consequences. Arxiv preprint arXiv:1111.0512, 2011. grpa06 [2054] R. Grigorchuk and I. Pak. Groups of intermediate growth: an introduction for beginners. Arxiv preprint math.GR/0607384, 78, 2006. gr96-2 [2055] D. R. Grigore. The projective unitary irreducible representations of the Galilei group in 1+2 dimensions. J. Math. Phys., 37(1):460–473, 1996. 07 p [2056] M. Grigorian. Quasiuniversal in l[0,1] orthogonal series. 3(2):139–150, 2007. grpa11 [2057] R. Grimaldi and P. Pansu. Bounded geometry, growth and topology. J. Math. Pures Appl. (9), 95(1):85–98, 2011. gr93-5 [2058] G. Gripenberg. Wavelet bases in Lp (R). Studia Math., 106(2):175– 187, 1993. gr66 [2059] P. Grisvard. Commutativite de deux foncteurs d’interpolation et applications. J. Math. Pures Appl. (9), 45:207–290, 1966. gr85-4 [2060] P. Grisvard. Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985. gr07-3 [2061] K. Gr¨ochenig. Wiener’s Lemma: Theme and variations. Short course at summer school on ’Harmonic Analysis, Wavelets, and Image Processing’, September 2007. gr09-3 [2062] K. Gr¨ochenig. Representation and approximation of pseudodifferential operators by sums of Gabor multipliers. to appear in Appl. Anal., page 16, 2009. 184 gr11-1 [2063] K. Gr¨ochenig. Multivariate Gabor frames and sampling of entire functions of several variables. Appl. Comput. Harmon. Anal., 31(2):218– 227, September 2011. grma11 [2064] K. Gr¨ochenig and E. Malinnikova. Phase space localization of Riesz bases for L2 (Rd ). arXiv preprint arXiv:1102.3097, 2011. grma13 [2065] K. Gr¨ochenig and E. Malinnikova. Phase space localization of Riesz bases for l2 (Rd ). Rev. Mat. Iberoam., 29(1):115–134, 2013. grorro15 [2066] K. Gr¨ochenig, J. Ortega Cerd`a, and J. L. Romero. Deformation of Gabor systems. Adv. Math., To appear, 2015. grpa14 [2067] K. Gr¨ochenig and E. Pauwels. Uniqueness and reconstruction theorems for pseudodifferential operators with a bandlimited KohnNirenberg symbol. Adv. Comput. Math., 40:49–63, 2014. grrounve14 [2068] K. Gr¨ochenig, J. L. Romero, J. Unnikrishnan, and M. Vetterli. On minimal trajectories for mobile sampling of bandlimited fields. Appl. Comput. Harmon. Anal., To appear., 2014. grst13 [2069] K. Gr¨ochenig and J. St¨ockler. Gabor frames and totally positive functions. Duke Math. J., 162(6):1003–1031, 2013. grto13 [2070] K. Gr¨ochenig and J. Toft. The range of localization operators and lifting theorems for modulation and Bargmann-Fock spaces. Trans. Amer. Math. Soc., 365:4475–4496, 2013. gr11-8 [2071] P. Grohs. Continuous shearlet frames and resolution of the wavefront set. Monatsh. Math., 164(4):393–426, 2011. gr11 [2072] P. Grohs. Continuous shearlet tight frames. J. Fourier Anal. Appl., 17(3):506–518, 2011. gr12 [2073] P. Grohs. Ridgelet-type frame decompositions for Sobolev spaces related to linear transport. J. Fourier Anal. Appl., 18(2):309–325, 2012. gr12-2 [2074] P. Grohs. Shearlets and microlocal analysis. In Shearlets. Multiscale analysis for multivariate data., pages 39–67. 2012. gr12-3 [2075] P. Grohs. Tree approximation with anisotropic decompositions. Appl. Comput. Harmon. Anal., 33(1):44 – 57, 2012. 185 gr13 [2076] P. Grohs. Bandlimited shearlet-type frames with nice duals. J. Comput. Appl. Math., 243:139–151, 2013. gr13-2 [2077] P. Grohs. Intrinsic localization of anisotropic frames. Appl. Comput. Harmon. Anal., 35(2):264–283, 2013. gr13-1 [2078] P. Grohs. Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal., 33(3):849–874, 2013. grku14 [2079] P. Grohs and G. Kutyniok. Parabolic molecules. Found. Comput. Math., 14(2):299–337, 2014. grvi14 [2080] P. Grohs and S. Vigogna. Intrinsic localization of anisotropic frames II: α-molecules. ArXiv e-prints, mar 2014. gr81-1 [2081] M. Gromov. Groups of polynomial growth and expanding maps. Publications Math’ematiques de l’IH’ES, 53(1):53–78, 1981. gr93-3 [2082] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1–295. Cambridge Univ. Press, Cambridge, 1993. bagrkapase06 [2083] M. Gromov, M. Katz, P. Pansu, S. Bates, and S. Semmes. Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhuser Classics. Birkh¨auser, 2006. grpa91 [2084] M. Gromov and P. Pansu. Rigidity of lattices: an introduction. In Geometric topology: recent developments (Montecatini Terme, 1990), volume 1504 of Lecture Notes in Math., pages 39–137. Springer, Berlin, 1991. grwe95 [2085] A. Gross and A. Weron. On measure-preserving transformations and doubly stationary symmetric stable processes. Studia Math., 114(3):275–287, 1995. grkrku14 [2086] D. Gross, F. Krahmer, and R. Kueng. Improved recovery guarantees for phase retrieval from coded diffraction patterns. preprint, 2014. grkrku13 [2087] D. Gross, F. Krahmer, and R. Kueng. A partial derandomization of PhaseLift using spherical designs. J. Fourier Anal. Appl., to appear. 186 gr75-1 [2088] L. Gross. Logarithmic Sobolev inequalities. 97(4):1061–1083, 1975. grpo93 [2089] R. Grossman and H. Poor. Wavelet transforms associated with finite cyclic groups. IEEE Trans. Inform. Theory, 39:1157–1166, 1993. grsi01 [2090] S. M. Grudsky and B. Silbermann. Approximate identities, almostperiodic functions and Toeplitz operators. Acta Appl. Math., 65(13):237–271, 2001. grva02 [2091] S. M. Grudsky and N. Vasilevski. Toeplitz operators on the Fock space: Radial component effects. Integr. Equ. Oper. Theory, 44(1):10– 37, 2002. dogrmapa09 [2092] M. Grundland, J. Patera, Z. Masakova, and N. A. Dodgson. Image Sampling with Quasicrystals. Symmetry, Integrability and Geometry: Methods and Applications, 5(075):23pages, 2009. gr99-2 [2093] A. Grybos. Fractal Image Compression. Master’s thesis, Jagiellonian University in Krakow, 1999. grke11 [2094] W. Gryc and T. Kemp. Duality in Segal-Bargmann spaces. J. Funct. Anal., 261(6):1591 – 1623, 2011. guzh97 [2095] C. Gu and D. Zheng. The semi-commutator of Toeplitz operators on the bidisc. J. Operator Theory, 38:173–193, 1997. gulushto02 [2096] J. Gu, H. Shu, C. Toumoulin, and L. Luo. A novel algorithm for fast computation of Zernike moments. Pattern Recognition, 35(12):2905– 2911, 2002. eigu95 [2097] M. Gu and S. Eisenstat. A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl., 16(1):172–191, 1995. guha00 [2098] Q. Gu and D. Han. On multiresolution analysis (MRA) wavelets in Rn . J. Fourier Anal. Appl., 6(4):437–447, 2000. guha09-3 [2099] Q. Gu and D. Han. Wavelet frames for (not necessarily reducing) affine subspaces II: The structure of affine subspaces. Appl. Comput. Harmon. Anal., 27(1):47–54, 2009. 187 Amer. J. Math., guxixi09-2 [2100] X. Guanlei, W. Xiaotong, and X. Xiaogang. Generalized entropic uncertainty principle on fractional Fourier transform. Signal Process., 89(12):2692–2697, 2009. guxixi09-1 [2101] X. Guanlei, W. Xiaotong, and X. Xiaogang. Uncertainty inequalities for linear canonical transform. Signal Processing, IET, 3(5):392–402, 2009. guth13 [2102] A. Gudadhe and P. Thakare. Fractional Shift Invariant System in the Linear Canonical Transform Domain. International Journal of Engineering, 2(12), 2013. gu85 [2103] D. Guedj. Nicholas Bourbaki, collective mathematician. An interview with Claude Chevalley. 7(2):18–22, 1985. gu00-1 [2104] E. Guentner. Wick quantization and asymptotic morphisms. Houston J. Math., 26:361–375, 2000. gu03 [2105] E. Guentner. Berezin quantization and K-homology. Communications in mathematical physics, 240(3):423–446, 2003. guhitr00 [2106] E. Guentner, N. Higson, and J. Trout. Equivariant E-theory for C ∗ algebras. Mem. Amer. Math. Soc., 148(703):viii+86, 2000. gu10 [2107] J. Guerci. Cognitive radar: a knowledge-aided fully adaptive approach. In Radar Conference, 2010 IEEE, pages 1365–1370, 2010. gulu05 [2108] N. Guglielmi and C. Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete Contin. Dyn. Syst., 13(4):1057–1067, 2005. gulu12 [2109] N. Guglielmi and C. Lubich. Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking. SIAM J. Numer. Anal., 50(2):977–981, 2012. guis06 [2110] D. Guido and T. Isola. The problem of completeness for GromovHausdorff metrics on C ∗ -algebras. J. Funct. Anal., 233(1):173–205, 2006. guis11 [2111] M. Guillemard and A. Iske. Curvature analysis of frequency modulated manifolds in dimensionality reduction. Calcolo, 48(1):107–125, 2011. 188 gust80 [2112] V. Guillemin and S. Sternberg. The metaplectic representation, Weyl operators and spectral theory. In Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), volume 836 of Lecture Notes in Math., pages 420–431. Springer, Berlin, 1980. gust83 [2113] V. Guillemin and S. Sternberg. The Frobenius reciprocity theorem from a symplectic point of view. In Nonlinear partial differential operators and quantization procedures (Clausthal, 1981), volume 1037 of Lecture Notes in Math., pages 242–256. Springer, Berlin, 1983. gust86 [2114] V. Guillemin and S. Sternberg. A generalization of the notion of polarization. Ann. Global Anal. Geom., 4(3):327–347, 1986. gust05 [2115] V. Guillemin and S. Sternberg. The moment map revisited. J. Differential Geom., 69(1):137–162, 2005. gu70-1 [2116] F. Gulick. Actions of functions in Banach algebras. Pacific J. Math., 34:657–673, 1970. gugu76 [2117] F. Gulick and D. Gulick. Boundedness for spaces of continuous functions. Rocky Mountain J. Math., 6:247–263, 1976. guliro70-1 [2118] S. Gulick, T. Liu, and A. Rooij. Group algebra modules. III. Trans. Amer. Math. Soc., 152:561–579, 1970. guliro70 [2119] S. L. Gulick, T. Liu, and A. C. M. van Rooji. Group Algebra Modules. IV. Trans. Amer. Math. Soc., 152(2):581–596, 1970. gu12 [2120] V. S. Guliyev. Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Math. J., 3(3):33–61, 2012. gu13 [2121] V. S. Guliyev. Generalized local Morrey spaces and fractional integral operators with rough kernel. J. Math. Sci. (N. Y.), 193(2):211–227, 2013. gunese05 [2122] H. Gunawan, O. Neswan, and W. Setya Budhi. A Formula for Angles between Subspaces of Inner Product Spaces. Contributions to Algebra and Geometry, 46(2):311–320, 2005. 189 gulaposayi10 ¨ Yilmaz. Sobolev [2123] C. G¨ unt¨ urk, M. Lammers, A. Powell, R. Saab, and O. duals for random frames and sigma-delta quantization of compressed sensing measurements. preprint, 2010. gulaposayi13 ¨ Yilmaz. Sobolev [2124] C. G¨ unt¨ urk, M. Lammers, A. Powell, R. Saab, and O. duals for random frames and σδ quantization of compressed sensing measurements. preprint, 13(1):1–36, 2013. gula08-1 [2125] K. Guo and D. Labate. Sparse shearlet representation of Fourier integral operators. Electron. Res. Announc. Math. Sci., 14:7–19, 2008. gula10 [2126] K. Guo and D. Labate. Optimally sparse 3D approximations using shearlet representations. Electron. Res. Announc. Math. Sci., 17:125– 137, 2010. gula13-1 [2127] K. Guo and D. Labate. Optimal recovery of 3D X-ray tomographic data via shearlet decomposition. Adv. Comput. Math., 39(2):227–255, 2013. gula13 [2128] K. Guo and D. Labate. The construction of smooth Parseval frames of shearlets. Math. Model. Nat. Phenom., 8(1):82–105, 2013. fagu08 [2129] Q. Guo and H.-Y. Fan. Husimi operator for describing probability distribution of electron states in uniform magnetic field studied by virtue of entangled state representation. Internat. J. Theoret. Phys., 47(12):3234–3247, 2008. gumowo10 [2130] Q. Guo, S. Molahajloo, and M. Wong. Phases of modified Stockwell transforms and instantaneous frequencies. Journal of Mathematical Physics, 51:052101, 2010. guji12 [2131] Y. Guo and Y. Jiang. Weighted Herz spaces and regularity results. J. Funct. Spaces Appl., 2012(Article ID 283730):13, 2012. gukaru86 [2132] M. Gupta, P. Kamthan, and W. Ruckle. Symmetric sequence spaces, bases, and applications. J. Math. Anal. Appl., 113:210–229, 1986. guha10 [2133] S. Gurevich and R. Hadani. Notes on canonical quantization of sym¨ ur (ed.) et al., plectic vector spaces over finite fields. Ceyhan, Ozg¨ Arithmetic and geometry around quantization. Basel: Birkh¨auser. Progress in Mathematics 279, 233-251 (2010)., 2010. 190 guha12 [2134] S. Gurevich and R. Hadani. The Weil representation in characteristic two. Adv. Math., 230(3):894–926, 2012. guhaho10 [2135] S. Gurevich, R. Hadani, and R. Howe. Quadratic reciprocity and the sign of the Gauss sum via the finite Weil representation. Internat. Math. Res. Notices, 2010(19):3729–3745, 2010. gu00-2 [2136] P. Gurka. On embeddings of logarithmic Bessel potential and Sobolevtype spaces. In Function spaces, differential operators and nonlinear analysis. Proceedings of the conference, FSDONA-99, Sy¨ote, Finland, June 10–16, 1999, pages 87–98. Prague: Mathematical Institute of the Academy of Sciences of the Czech Republic, 2000. guumva07 [2137] V. Guruswani, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. In IEEE Conference on Computational Complexity, pages 237–246, 2007. gupe77 [2138] J. Gustavsson and J. Peetre. Interpolation of Orlicz spaces. Studia Math., 60(1):33–59, 1977. baceguoz08 [2139] H. Guven, H. Ozaktas, A. Cetin, and B. Barshan. Signal recovery from partial fractional Fourier domain information and its applications. Signal Processing, IET, 2(1):15 –25, march 2008. haka64 [2140] R. Haag and D. Kastler. An algebraic approach to quantum field theory. J.Math.Phys., 5:848–861, 1964. ha79-2 [2141] U. Haagerup. Lp -spaces associated with an arbitrary von Neumann algebra. Algebres d’operateurs et leurs applications en physique mathematique, Colloq. int. CNRS No.274, Marseille 1977, 175-184 (1979)., 1979. har95 [2142] U. Haagerup and M. Rordam. Perturbations of the rotation C ∗ algebras and of the Heisenberg commutation relation. Duke Math. J., 77(3):627–656, 1995. ha33 [2143] A. Haar. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. of Math., 34(1):147–169, 1933. haso87 [2144] H. Haario and E. Somersalo. The Backus-Gilbert method revisited: Background, implementation and examples. Numer. Funct. Anal. Optim., 9:917–943, 1987. 191 ha06-1 [2145] M. Haase. The Functional Calculus for Sectorial Operators. Basel: Birkh¨auser, 2006. ha13-1 [2146] M. Haase. The functional calculus approach to operator cosine functions. In Recent trends in analysis. Proceedings of the conference in honor of Nikolai Nikolski on the occasion of his 70th birthday, Bordeaux, France, August 31 – September 2, 2011, pages 123–147. Bucharest: The Theta Foundation, 2013. dahaseze09 [2147] J. Haber, F. Zeilfelder, O. Davydov, and H. Seidel. Smooth approximation and rendering of large scattered data sets. In Visualization, 2001. VIS’01. Proceedings, pages 341–571, 2009. hasi11-1 [2148] R. Hadani and A. Singer. Representation theoretic patterns in three dimensional cryo-electron microscopy. I: The intrinsic reconstitution algorithm. Ann. Math., 174(2):1219–1241, 2011. hasi11-2 [2149] R. Hadani and A. Singer. Representation theoretic patterns in threedimensional cryo-electron microscopy. II: The class averaging problem. Annals of Mathematics, 11(5):589–616, 2011. ha78-2 [2150] G. Haemmerlin. Numerische Mathematik I. Bibliographisches Institut, 1978. hasj08 [2151] M. Hager and J. Sj¨ostrand. Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann., 342(1):177–243, 2008. haru90 [2152] T. Hagerup and C. R¨ ub. A guided tour of Chernoff bounds. Inform. Process. Lett., 33(6):305–308, 1990. chha11 [2153] L. Hai and Y. Chuping. Two-dimensional multiscale windowed Fourier transform based on two-dimensional wavelet transform for fringe pattern demodulation. Optics & Laser Technology, 43(1), 201172-81. ha13 [2154] A. Haimi. Polyanalytic Bergman kernels. PhD thesis, 2013. hahe11 [2155] A. Haimi and H. Hedenmalm. The polyanalytic Ginibre ensembles. Submitted on 15 Jun 2011, preprint:31, 2011. hahe14 [2156] A. Haimi and H. Hedenmalm. Asymptotic expansion of polyanalytic Bergman kernels. J. Funct. Anal., 267(12):4567–4806, December 2014. 192 bechfahape10 [2157] N. Hajlaoui, C. Chaux, G. Perrin, F. Falzon, and A. Benazza Benyahia. Satellite image restoration in the context of a spatially varying point spread function. JOSA A, 27(6):1473–1481, 2010. ha03-2 [2158] P. Hajlasz. A new characterization of the Sobolev space. Studia Math., 159(2):263–275, 2003. hali10-2 [2159] P. Hajlasz and Z. Liu. A compact embedding of a Sobolev space is equivalent to an embedding into a better space. Proc. Amer. Math. Soc., 138(9):3257–3266, 2010. haki10 [2160] H. Hakkarainen and J. Kinnunen. The BV-capacity in metric spaces. Manuscripta Math., 132(1-2):51–73, 2010. hanu14 [2161] H. Hakkarainen and M. Nuortio. The variable exponent BV-Sobolev capacity. Rev. Mat. Complut., 27(1):13–40, 2014. haheli11 [2162] J. Haldar, D. Hernando, and Z. Liang. Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging, 30(4):893–903, 2011. anhata13 [2163] K. Halder, M. Tahtali, and S. Anavatti. An improved restoration method for non-uniformly warped images using optical flow technique. In Digital Image Computing: Techniques and Applications (DICTA), 2013 International Conference on, pages 1–6, 2013. hayizh08 [2164] E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for 1 minimization: methodology and convergence. SIAM J. Optim., 19(3):1107–1130, 2008. hayizh10 [2165] E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation applied to compressed sensing: implementation and numerical experiments. J. Comput. Math., 28(2):170–194, 2010. ha12-2 [2166] T. Hales. Dense Sphere packings A blueprint for formal proofs. London Mathematical Society Lecture Note Series 400. Cambridge: Cambridge University Press. xiv, 271 p., 2012. hama95-1 [2167] G. Haley and B. Manjunath. Rotation-invariant texture classification using modified Gabor filters. In Image Processing, 1995. Proceedings., International Conference on, volume 1, pages 262 –265, Washington, DC , USA, oct 1995. 193 ha08-2 [2168] B. Hall. Berezin-Toeplitz quantization on Lie groups. J. Funct. Anal., 255(9):2488–2506, 2008. ha92 [2169] K. Hallatschek. Fouriertransform on sparse grids with hierarchical bases. (Fouriertransformation auf d¨ unnen Gittern mit hierarchischen Basen.). Numer. Math., 63(1):83–97, 1992. ha14 [2170] K. Hallatschek. An ultra-fast smoothing algorithm for timefrequency transforms based on Gabor functions. Appl. Comput. Harmon. Anal., 36(1):158 – 166, 2014. ha99 [2171] G. Haller. Chaos Near Resonance. Applied Mathematical Sciences. 138. New York, NY: Springer. xvi, 1999. ha63 [2172] P. Halmos. What does the spectral theorem say? Monthly, 70:241–247, 1963. Amer. Math. ha11-1 [2173] U. Hammarqvist. Audio editing in the time-frequency domain using the Gabor Wavelet Transform, 2011. haha64 [2174] J. Hammersley and D. Handscomb. Monte Carlo Methods. London: Methuen & Co Ltd, 1964. ha80-1 [2175] R. Hamming. The unreasonable effectiveness of mathematics. Amer. Math. Monthly, 87(2):81–90, 1980. grhava11 [2176] D. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal., 30(2):129–150, 2011. hahotowi12 [2177] M. Hampejs, N. Holighaus, L. T´oth, and C. Wiesmeyr. On the subgroups of the group Zm ×Zn . ArXiv e-prints, (arXiv:1211.1797), 2012. hato13 [2178] M. Hampejs and L. T´oth. On the subgroups of finite Abelian groups of rank three. Annales Univ. Sci. Budapest., Sect. Comp., 39:111–124, 2013. ha10-2 [2179] B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal., 29(3):330–353, 2010. 194 ha12-1 [2180] B. Han. Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal., 32(2):169 – 196, March 2012. hakwpa06 [2181] B. Han, S.-G. Kwon, and S. Park. Riesz multiwavelet bases. Appl. Comput. Harmon. Anal., 20(2):161–183, 2006. ha09-7 [2182] D. Han. Dilations and completions for Gabor systems. J. Fourier Anal. Appl., 15(2):201–217, 2009. hajilamo08 [2183] D. Han, W. Jing, D. Larson, and R. Mohapatra. Riesz bases and their dual modular frames in Hilbert C ∗ -modules. J. Math. Anal. Appl., 343(1):246–256, 2008. hala08 [2184] D. Han and D. Larson. Frame duality properties for projective unitary representations. Bull. Lond. Math. Soc., 40(4):685–695, 2008. ha07-3 [2185] F. Han. Hexagonal multicarrier modulation: a robust transmission scheme for time-frequency dispersive channels. IEEE Trans. Signal Process., 55(5):1955–1961, 2007. hama07 [2186] J. Han and K.-K. Ma. Rotation-invariant and scale-invariant Gabor features for texture image retrieval. Image and Vision Computing, 25(9):1474 – 1481, 2007. halelisu04 [2187] K.-Y. Han, S.-W. Lee, J.-S. Lim, and K.-M. Sung. Channel estimation for OFDM with fast fading channels by modified Kalman filter. IEEE Trans. Consumer Electronics, 50:443–449, May 2004. guhawa11 [2188] L. Han, B. Wang, and B. Guo. Inviscid limit for the derivative Ginzburg-Landau equation with small data in modulation and Sobolev spaces. Appl. Comput. Harmon. Anal., In Press, Corrected Proof:–, 2011. ha97-4 [2189] Y. Han. Plancherel-P´olya type inequality and its applications. Approx. Theory Appl., 13(3):104–111, 1997. ha09-6 [2190] Y. Han. New characterizations of inhomogeneous Besov and TriebelLizorkin spaces over spaces of homogeneous type. Acta Math. Sin. (Engl. Ser.), 25(11):1787–1804, 2009. 195 hamuya08 [2191] Y. Han, D. M¨ uller, and D. Yang. A theory of Besov and TriebelLizorkin spaces on metric measure spaces modeled on CarnotCaratheodory spaces. 2008. haho10 [2192] H. Hanche Olsen and H. Holden. The Kolmogorov-Riesz compactness theorem. Exposition. Math., 28(4):385–394, 2010. ha11 [2193] A. C. Hansen. On the solvability complexity index, the npseudospectrum and approximations of spectra of operators. J. Amer. Math. Soc., 24(1):81–124, 2011. ha10-3 [2194] C. Hansen. Discrete inverse problems: Insight and algorithms, volume 7 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), 2010. hape82 [2195] F. Hansen and G. K. Pedersen. Jensen’s inequality for operators and L¨owner’s theorem. Math. Ann., 258(3):229–241, 1982. hape03 [2196] F. Hansen and G. K. Pedersen. Jensen’s operator inequality. Bull. Lond. Math. Soc., 35(4):553–564, 2003. hasc11 [2197] M. Hansen and C. Schwab. Analytic regularity and nonlinear approximation of a class of parametric, semilinear elliptic PDEs. preprint, 2011. hasi11 [2198] M. Hansen and W. Sickel. Best m-term approximation and LizorkinTriebel spaces. J. Approx. Theory, 163(8):923 – 954, 2011. hanaol06 [2199] P. Hansen, J. Nagy, and D. O’leary. Deblurring images: matrices, spectra, and filtering. Siam, 2006. ha94-1 [2200] P. C. Hansen. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms, 6(12):1–35, 1994. hawr71 [2201] D. Hanson and F. Wright. A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Statist., 42:1079– 1083, 1971. ha79-1 [2202] K. Hansson. Imbedding theorems of Sobolev type in potential theory. Math. Scand., 45:77–102, 1979. 196 hasa05 [2203] M. Hansson and J. Sandberg. Multiple windows for estimation of locally stationary transients in the electroencephalogram. In M. Hansson and J. Sandberg, editors, Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, volume 7 VOLS, pages 7293–7296, 2005. chhakemu12 [2204] L. Hanzo, M. Muenster, B. Choi, and T. Keller. OFDM Transmission over Wideband Channels. OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting, pages 75–116, 2012. hasavi07 [2205] E. Harboure, O. Salinas, and B. Viviani. A look at BMOϕ (ω) through Carleson measures. J. Fourier Anal. Appl., 13(3):267–284, 2007. hahala11 [2206] P. Harjulehto, P. H¨ast¨o, and V. Latvala. Boundedness of solutions of the non-uniformly convex, non-standard growth Laplacian. Complex Variables and Elliptic Equations, 56(7-9):643–657, 2011. hamawi11 [2207] Z. Harmany, R. Marcia, and R. Willett. Spatio-temporal Compressed Sensing with Coded Apertures and Keyed Exposures. preprint, 2011. ha72 [2208] H. Harmuth. Transmission of Information By Orthogonal Functions 2nd Ed. Berlin-Heidelberg-New York: Springer-Verlag. XII, 393 p. with 210 fig., 1972. hasc09 [2209] D. Haroske and C. Schneider. Besov spaces with positive smoothness on n , embeddings and growth envelopes. J. Approx. Theory, 161(2):723–747, 2009. hask14 [2210] D. Haroske and L. Skrzypczak. On Sobolev and Franke-Jawerth embeddings of smoothness Morrey spaces. Rev. Mat. Complut., 27(2):541–573, 2014. ha02-2 [2211] F. Harris. Comments on “Ewald summation technique for onedimensional charge distributions”. Comput. Phys. Commun., 146(2):271–273, 2002. ha93 [2212] R. Harrison. Phase problem in crystallography. JOSA A, 10(5):1046– 1055, 1993. 197 ha12-3 [2213] J. Hart. Bilinear square functions and vector-valued Calder´onZygmund operators. J. Fourier Anal. Appl., 18(6):1291–1313, 2012. ha14-2 [2214] J. Hart. A new proof of the bilinear T (1) Theorem. Proc. Amer. Math. Soc., 142(9):3169–3181, 2014. hazi04 [2215] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. With foreword by Olivier Faugeras. 2nd edition. Cambridge: Cambridge University Press, 2004. hainkapr12-1 [2216] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse Fourier transform. In STOC, 2012. hainkapr12 [2217] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for sparse Fourier transform. In SODA, 2012. ha07-2 [2218] H. Hassanpour. Improved SVD-based technique for enhancing the time-frequency representation of signals. IEEE International Symposium on Circuits and Systems, pages 1819 – 1822, May 2007. bohame02 [2219] H. Hassanpour, M. Mesbah, and B. Boashash. SVD-based technique for enhancing the time-frequency representation of signals. pages 113– 116, December 2002. haka03 [2220] B. Hasselblatt and A. Katok. A First Course in Dynamics with a Panorama of Recent Developments. Cambridge: Cambridge University Press. x, 424 p., 2003. ha14-1 [2221] B. Hauchecorne. Les fonctions a` variation born´ee. Quadrature, 91:15– 17, 2014. ha09-5 [2222] J. D. Haupt. New theory and methods in adaptive and compressive sampling for sparse discovery. PhD thesis, The University of Wisconsin - Madison, August 2009. bacahano09 [2223] J. D. Haupt, R. G. Baranuik, R. M. Castro, and R. D. Nowak. Compressive distilled sensing: Sparse recovery using adaptivity in compressive measurements. In Proc. 43rd Asilomar Conf. Signals, Systems, and Computers, pages 1551 – 1555, Pacific Grove, CA, November 2009. 198 cahano09 [2224] J. D. Haupt, R. M. Castro, and R. D. Nowak. Distilled sensing: Selective sampling for sparse signal recovery. In Proc. 12th International Conference on Artificial Intelligence and Statistics (AISTATS), pages 216–223, Clearwater Beach, Florida, April 2009. cahano10 [2225] J. D. Haupt, R. M. Castro, and R. D. Nowak. Distilled sensing: Adaptive sampling for sparse detection and estimation. Arxiv preprint arXiv:1001.5311, 2010. cahano10-1 [2226] J. D. Haupt, R. M. Castro, and R. D. Nowak. Improved bounds for sparse recovery from adaptive measurements. In IEEE International Symposium on Information Theory Proceedings (ISIT), pages 1563– 1567, Austin, TX, June 2010. hano10 [2227] J. D. Haupt and R. D. Nowak. Adaptive sensing for sparse recovery. preprint, 2010. halu11 [2228] F. Haußer and Y. Luchko. Mathematische Modellierung mit MATLAB - Eine praxisorientierte Einf¨ uhrung. Spektrum Akademischer Verlag Heidelberg 2011, 2011. ha99-01 [2229] P. Hawkes. Advances in Imaging and Electron Physics. volume 106, page 353. Academic Press, 1999. ha06 [2230] S. Haykin. Cognitive radar: a way of the future. Signal Processing Magazine, IEEE, 23(1):30–40, 2006. coha00 [2231] P. Haynes and M. Cote. Parallel fast Fourier transforms for electronic structure calculations. Comput. Phys. Commun., 130(1-2):130–136, 2000. heyu12 [2232] B. He and X. Yuan. Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci., 5(1):119–149, 2012. heli10 [2233] T.-X. He and E.-B. Lin. Wavelet Analysis and its Applications. Numerical Methods, Computer Graphics and Economics. Hackensack, NJ: World Scientific. 250 p., 2010. hela11 [2234] X.-G. He and K.-S. Lau. On the Weyl-Heisenberg frames generated by simple functions. J. Funct. Anal., 261(4):1010–1027, 2011. 199 hekoro04 [2235] J. Healy, P. Kostelec, and D. Rockmore. Towards safe and effective high-order Legendre transforms with applications to FFTs for the 2sphere. Adv. Comput. Math., 21(1-2):59–105, 2004. hehekokororo04 [2236] J. Healy, P. Kostelec, D. Rockmore, J. Healy, P. Kostelec, and D. Rockmore. Towards safe and effective high-order Legendre transforms with applications to FFTs for the 2-sphere. Adv. Comput. Math., 21(1-2):59–105, 2004. hehesh08 [2237] J. J. Healy, B. M. Hennelly, and J. T. Sheridan. Additional sampling criterion for the linear canonical transform. Opt. Lett., 33(22):2599– 2601, 2008. hesh08 [2238] J. J. Healy and J. Sheridan. Cases where the linear canonical transform of a signal has compact support or is band-limited. Opt. Lett., 33(3):228–230, February 2008. hesh10 [2239] J. J. Healy and J. Sheridan. Fast linear canonical transforms. J. Opt. Soc. Amer. A, 27(1):21–30, 2010. hesh10-1 [2240] J. J. Healy and J. Sheridan. Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms. Opt. Lett., 35(7):947–949, 2010. he96-1 [2241] E. Hebey. Sobolev spaces on Riemannian manifolds. Lecture Notes in Mathematics. 1635. Berlin: Springer. x, 116 p., 1996. hemame05 [2242] W. Hebisch, G. Mauceri, and S. Meda. Spectral multipliers for subLaplacians with drift on Lie groups. Math. Z., 251(4):899–927, 2005. heop87 [2243] G. Heckman and E. Opdam. Root systems and hypergeometric functions. I. Compos. Math., 64:329–352, 1987. he12-1 [2244] H. Hedenmalm. Heisenberg’s uncertainty principle in the sense of Beurling. J. Anal. Math., 118(2):691–702, 2012. he12-2 [2245] H. Hedenmalm. The Beurling operator for the hyperbolic plane. Ann. Acad. Sci. Fenn., Math., 37(1):3–18, 2012. helise97 [2246] H. Hedenmalm, P. Lindqvist, and K. Seip. A Hilbert space of Dirichlet series and systems of dilated functions in L2 (0, 1). Duke Math. J., 86(1):1–37, 1997. 200 helise99 [2247] H. Hedenmalm, P. Lindqvist, and K. Seip. Addendum to: “A Hilbert space Dirichlet series and systems of dilated functions in l2 (0, 1). Duke Math. J., 99(1):175–178, 1999. he69-1 [2248] J. Hedlund. Multipliers of H 1 and Hankel matrices. Proc. Amer. Math. Soc., 22:20–23, 1969. buhejo84 [2249] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast fourier transform. ASSP Magazine, IEEE, 1(4):14 –21, october 1984. buhejo85 [2250] M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci., 34:265– 277, 1985. hekotu07 [2251] T. Heikkinen, P. Koskela, and H. Tuominen. Sobolev-type spaces from generalized Poincar´e inequalities. Studia Math., 181(1):1–16, 2007. he08-1 [2252] C. Heil. The density theorem and the Homogeneous Approximation Property for Gabor frames. In Representations, wavelets, and frames. A celebration of the mathematical work of Lawrence W. Baggett, Appl. Numer. Harmon. Anal., pages 71–102. Birkh¨auser, 2008. he11 [2253] C. Heil. A Basis Theory Primer. Expanded ed. Applied and Numerical Harmonic Analysis. Basel: Birkh¨auser, 2011. hekoli09 [2254] C. Heil, Y. Koo, and J. Lim. Duals of frame sequences. Acta Appl. Math., 107(1-3):75–90, 2009. hemapa14 [2255] S. Heineken, E. Matusiak, and V. Paternostro. Perturbed frame sequences: canonical dual systems, approximate reconstructions and applications. Int. J. Wavelets Multiresolut. Inf. Process., 12(2):19, 2014. behemoza14 [2256] S. B. Heineken, P. Morillas, A. Benavente, and M. Zakowicz. Dual fusion frames. Arch. Math. (Basel), 103(4):355–365, 2014. he03-3 [2257] P. Heinlein. Discretizing continuous wavelet transforms using integrated wavelets. Appl. Comput. Harmon. Anal., 14(3):238–256, 2003. 201 drhesc03 [2258] P. Heinlein, J. Drexl, and W. Schneider. Integrated wavelets for enhancement of microcalcifications in digital mammography. Medical Imaging, IEEE Transactions on, 22(3):402 –413, march 2003. he01-1 [2259] J. Heinonen. Lectures on analysis on metric spaces. Springer Verlag, 2001. hehowo10 [2260] T. Heinosaari, A. S. Holevo, and M. Wolf. The semigroup structure of Gaussian channels. Quantum Inf. Comput., 10(7-8):619–635, 2010. heklvi09 [2261] T. Heittola, A. Klapuri, and T. Virtanen. Musical instrument recognition in polyphonic audio using source-filter model for sound separation. In Proc. 10th International Society for Music Information Retrieval Conference (ISMIR 2009), pages 327–332, 2009. he12 [2262] J. Heitzer. Orthogonality and Approximation. From Raising a Perpendicular to the JPEG Format. From School Mathematics to Modern Applications (Orthogonalit¨at und Approximation. Vom Lotf¨allen bis zum JPEG-Format. Von der Schulmathematik zu Modernen Anwendungen). Wiesbaden: Springer Spektrum, 2012. heti12-1 [2263] J. Heitzer and G. Tischel. Spiralen – ein Ph¨anomen an der Schnittstelle von Kunst und Mathematik. Mitt. Math. Ges. Hamb., 32:63–94, 2012. he10-2 [2264] A. Y. Helemskii. Quantum Functional Analysis: Non-coordinate Approach, volume 56 of University Lecture Series. American Mathematical Society, December 2010. he84-1 [2265] B. Helffer. Th’eorie Spectrale Pour des Op’erateurs Globalement Elliptiques. 1984. he10-1 [2266] P. Hellekalek. A notion of diaphony based on p-adic arithmetic. Acta Arith., 145(3):273–284, 2010. he52-2 [2267] H. Helson. Spectral synthesis of bounded functions. Ark. Mat., 1:497– 502, 1952. cehe12 [2268] T. Hemant and V. Cevher. Learning non-parametric basis independent models from point queries via low-rank methods. preprint, 2012. 202 hemo84 [2269] W. Hendee and C. Morgan. Magnetic resonance imaging Part I Physical principles. West J. Med., 141(4):491–500, 1984. heorsovl13 [2270] D. Hendrik, B. Orsted, P. Somberg, and S. Vladimir. The Clifford deformation of the Hermite semigroup. Symmetry, Integrability and Geometry: Methods and Applications, 9:010–22, 2013. hesh03 [2271] B. Hennelly and J. Sheridan. Optical image encryption by random shifting in fractional Fourier domains. Opt. Lett., 28(4):269–271, Feb 2003. hesh05 [2272] B. Hennelly and J. Sheridan. Fast numerical algorithm for the linear canonical transform. JOSA A, 22(5):928–937, 2005. hema07 [2273] D. Henrion and J. Malick. SDLS: a Matlab package for solving conic least-squares problems. Arxiv preprint arXiv:0709.2556, 2007. hena14 [2274] J. Herbert and V. Naibo. Bilinear pseudodifferential operators with symbols in Besov spaces. J. Pseudo-Differ. Oper. Appl., 5(2):231–254, 2014. hemc12 [2275] A.-K. Herbig and J. McNeal. A smoothing property of the Bergman projection. Math. Ann., 354(2):427–449, 2012. hemcst14 [2276] A.-K. Herbig, J. Mcneal, and E. Straube. Duality of holomorphic function spaces and smoothing properties of the Bergman projection. Trans. Amer. Math. Soc., 366(2):647–665, 2014. frhe14 [2277] G. Herman and J. Frank. Computational Methods for ThreeDimensional Microscopy Reconstruction, 2014. he04-2 [2278] M. Hermann. Numerik Gew¨ohnlicher Differentialgleichungen. Oldenbourg, 2004. hesi07 [2279] E. Hernandez and H. Sikic. Schauder bases of integer translates. Appl. Comput. Harmon. Anal., 23(2):259–262, 2007. hesiwewi10-1 [2280] E. Hernandez, H. Sikic, G. Weiss, and E. Wilson. Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform. Colloq. Math., 118(1):313–332, 2010. 203 hesiwewi10 [2281] E. Hernandez, H. Sikic, G. Weiss, and E. Wilson. On the properties of the integer translates of a square integrable function. In P. Cifuentes, editor, Harmonic analysis and partial differential equations (8th international conference,El Escorial, Madrid, Spain, June 16-20, 2008), volume 505 of Contemporary Mathematics, pages 233–249. American Mathematical Society (AMS), 2010. hese00 [2282] F. Hernandez and E. M. Semenov. A characterization of Lp among rearrangement invariant function spaces. Positivity, 4(3):253–258, 2000. hehuma14 [2283] Y. C. Herrera, O. Hutnik, and E. A. Maximenko. Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper halfplane and very slowly oscillating functions. C. R. Math. Acad. Sci. Paris, 352(2):129–132, 2014. frheyi12 ¨ Yilmaz. Fighting the Curse [2284] F. Herrmann, M. Friedlander, and O. of Dimensionality: Compressive Sensing in Exploration Seismology. Signal Processing Magazine, IEEE, 29(3):88–100, 2012. heliwa11 [2285] F. Herrmann, H. Wason, and T. Lin. Compressive sensing in seismic exploration: an outlook on a new paradigm. CSEG Recorder, 36(4):19–33, 2011. he69 [2286] R. Hersh. A class of ’central limit theorems’ for convolution products of generalized functions. Trans. Amer. Math. Soc., 140:71–85, 1969. he54 [2287] C. Herz. On the mean inversion of Fourier and Hankel transforms. Proc. Nat. Acad. Sci. , USA, 40(10):996, 1954. he60 [2288] C. Herz. The spectral theory of bounded functions. Trans. Amer. Math. Soc., 94:181–232, 1960. he73 [2289] C. Herz. Harmonic synthesis for subgroups. (Grenoble), 23(3):91–123, 1973. he14 [2290] N. Heuer. On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl., 417(2):505–518, 2014. he89-1 [2291] H. Heuser. Gew¨ohnliche Differentialgleichungen. Mathematische Leitf¨aden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart, 1989. 204 Ann. Inst. Fourier hi91-1 [2292] J. Higgins. Sampling and aliasing for functions band-limited to a thin shell. Num. Funct. Anal. Opt., 12(3-4):327–337, 1991. hi86 [2293] N. J. Higham. Computing the polar decomposition-with applications. SIAM J. Sci. Statist. Comput., 7(4):1160–1174, 1986. hi93 [2294] N. Higson. On the K-theory proof of the index theorem. In Index theory and operator algebras: proceedings of a CBMS regional conference held August 6-10, 1991 with support from the National Science Foundation, volume 148, page 67, 1993. hipero97 [2295] N. Higson, E. Pedersen, and J. Roe. C*-algebras and controlled topology. K-theory, 11(3):209–239, 1997. hi08-1 [2296] S. Hildebrandt. Analisys 2. Springer, 2008. hiocscwi84 [2297] M. Hillery, R. O’Connell, M. Scully, and E. P. Wigner. Distribution functions in physics: Fundamentals. Physics Reports, 106(3):121 – 167, 1984. hi81 [2298] M. Hilsum. Les espaces Lp d’une algebre de von Neumann definies par la derivee spatiale. J. Funct. Anal., 40:151–169, 1981. behist84 [2299] B. Hinman, J. Bernstein, and D. Staelin. Short-space Fourier transform image processing. In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’84., volume 9, pages 166– 169, 1984. hi10 [2300] A. Hinrichs. Optimal importance sampling for the approximation of integrals. J. Complexity, 26(2):125–134, 2010. hiun07 [2301] A. Hirabayashi and M. Unser. Consistent sampling and signal recovery. IEEE Trans. Signal Process., 55(8):4104–4115, August 2007. hile01 [2302] J.-B. Hiriart Urruty and C. Lemar´echal. Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer-Verlag, Berlin, 2001. hahiscsc11 [2303] M. Hirsch, C. Schuler, S. Harmeling, and B. Scholkopf. Fast removal of non-uniform camera shake. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 463–470, 2011. 205 hahiscsr10 [2304] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. Efficient filter flow for space-variant multiframe blind deconvolution. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 607–614, 2010. hi57 [2305] I. Hirschman. A note on entropy. Amer. J. Math., 79(1):152–156, 1957. hihu77 [2306] J. Hirschman and D. Hughes. Extreme eigenvalues of Toeplitz operators. Lecture Notes in Mathematics, Vol. 618. Springer-Verlag, Berlin, 1977. hisc91 [2307] F. Hirzebruch and W. Scharlau. Einf¨ uhrung in die Funktionalanalysis. Mannheim: BI-Wissenschaftsverlag, Unver¨and. Nachdr. der 1. Aufl. 1971 edition, 1991. hisj08 [2308] M. Hitrik and J. Sj¨ostrand. Rational invariant tori, phase space tunneling, and spectra for non-selfadjointoperators in dimension 2. 2008. hisa13 [2309] E. Hitzer and S. Sangwine. Quaternion and Clifford Fourier Transforms and Wavelets. Birkh¨auser, 2013. hjlimath98 [2310] P. Hjorth, P. Lisonuek, S. Markvorsen, and C. Thomassen. Finite metric spaces of strictly negative type. Linear Algebra Appl., 270:255– 273, 1998. hlkr92 [2311] F. Hlawatsch and W. Krattenthaler. Bilinear signal synthesis. IEEE Trans. Signal Process., 40(2):352–363, 1992. hlma11 [2312] F. Hlawatsch and G. Matz, editors. Wireless Communications Over Rapidly Time-Varying Channels. 2011. hl93 [2313] E. Hlawka. Nachruf auf Nikolaus Hofreiter (Obituary for Nikolaus Hofreiter). Monatsh. Math., 116(3-4):263–273, 1993. ho11-2 [2314] C.-L. Ho. Dirac (-Pauli), Fokker–Planck equations and exceptional Laguerre polynomials. Annals of Physics, 326(4):797–807, 2011. ho07-3 [2315] K.-P. Ho. Annihilator, completeness and convergence of wavelet system. Nagoya Math. J., 188:59–105, 2007. 206 ho10-3 [2316] K.-P. Ho. Littlewood-Paley theory for the differential operator ∂2 ∂2 ∂2 − ∂x 2 . Z. Anal. Anwend., 29(2):183–217, 2010. ∂x2 ∂x2 1 2 3 ho11-4 [2317] K.-P. Ho. Littlewood-Paley spaces. Math. Scand., 108(1):77–102, 2011. ho11-3 [2318] K.-P. Ho. Wavelet bases in Littlewood-Paley spaces. East J. Approx., 17(4):333–345 (2012), 2011. ho12 [2319] K.-P. Ho. Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces. Anal. Math., 38(3):173–185, 2012. ho13-2 [2320] K.-P. Ho. Atomic decompositions of weighted Hardy-Morrey spaces. Hokkaido Math. J., 42(1):131–157, 2013. hosc10 [2321] V. Hoang and C. Schwab. Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs. I: Analytic regularity and gpc-approximation. preprint, 2010. hoscXX [2322] V. Hoang and C. Schwab. Analytic regularity and gpc approximation for parametric and random 2nd order hyperbolic PDEs. Anal. Appl. (Singap.), to appear. ho70 [2323] D. Hodge. Eigenvalues and eigenfunctions of the spheroidal wave equation. J. Mathematical Phys., 11:2308–2312, 1970. auho04 [2324] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artif. Intell. Rev., 22(2):85–126, 2004. hool14 [2325] D. Hoff and P. Olver. Automatic Solution of Jigsaw Puzzles. J. Math. Imaging Vision, 49(1):234–250, 2014. howi88 [2326] M. Hoffman and W. Withers. Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. Amer. Math. Soc., 308(1):91– 104, 1988. ho14 [2327] A. H¨ofler. Necessary Density Conditions for Frames on Homogeneous Groups. PhD thesis, 2014. 207 hola12 [2328] J. Hogan and J. Lakey. Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Applied and Numerical Harmonic Analysis. Boston, MA: Birkh¨auser. xvii and SFR 106.50 and sterling 72.00, 2012. hoizla10 [2329] J. A. Hogan, S. Izu, and J. D. Lakey. Sampling approximations for time- and bandlimiting. Sampl. Theory Signal Image Process., 9(13):91–117, 2010. hola06-2 [2330] J. A. Hogan and J. Lakey. Periodic nonuniform sampling in shiftinvariant spaces. In C. Heil, editor, Harmonic analysis and applications. In Honor of John J. Benedetto, volume Part V Sampling Theory and Shift-Invariant Spaces of Appl. Numer. Harmon. Anal., chapter 12, pages 253–287. Birkh¨auser Boston, 2006. hola09 [2331] J. A. Hogan and J. Lakey. Non-translation-invariance and the synchronization problem in wavelet sampling. Acta Appl. Math., 107(13):373–398, 2009. ho74-1 [2332] J. H¨ogborn. Aperture synthesis with a non-regular distribution of interferometer baselines. Astronom. and Astrophys., 15:417, 1974. hopr07 [2333] M. Hohenwarter and J. Preiner. Dynamic mathematics with GeoGebra. AMC, 10:12, 2007. alhoth03 [2334] A. Hohoueto, S. Ali, and T. Kengatharam. Coherent state lattices and square integrability of representations. Journal of Physics A: Mathematical and General, 36:11817, 2003. ho78-1 [2335] A. S. Holevo. Estimation of shift parameters of a quantum state. Rep. Math. Phys., 13(3):379–399, 1978. ho79-6 [2336] A. S. Holevo. Covariant measurements and uncertainty relations. Rep. Math. Phys., 16(3):385–400, 1979. ho11 [2337] A. S. Holevo. Information capacity of quantum observable. Arxiv preprint arXiv:1103.2615, 2011. ho11-1 [2338] A. S. Holevo. Probabilistic and Statistical Aspects of Quantum Theory, volume 1 of Quaderni. Monographs. Edizioni della Normale, Pisa, Second edition, 2011. 208 ho13 [2339] N. Holighaus. Theory and implementation of adaptive time-frequency transforms. PhD thesis, University of Vienna, 2013. ho14-1 [2340] N. Holighaus. Structure of nonstationary Gabor frames and their dual systems. Appl. Comput. Harmon. Anal., 37(3):442–463, November 2014. dogrhove13 [2341] N. Holighaus, M. D¨orfler, G. A. Velasco, and T. Grill. A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process., 21(4):775 –785, 2013. hahotowi14 [2342] N. Holighaus, M. Hampejs, C. Wiesmeyr, and L. T´oth. Representing and counting the subgroups of the group Zm × Zn . J. Number Theory, 2014:6, 2014. ho81-1 [2343] A. Holland. A survey of degree of approximation of continuous functions. SIAM Rev., 23(3):344–379, 1981. boglhoni11 [2344] D. Holland, M. Bostock, L. Gladden, and D. Nietlispach. Fast multidimensional NMR spectroscopy using compressed sensing. Angew. Chem. Int. Ed., 50(29):6548–6551, 2011. ho95-2 [2345] P. Holland. The Quantum Theory of Motion An Account of the De Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge: Cambridge Univ. Press. xx, 618 p., 1995. ho90-3 [2346] R. Holmes. Signal processing on finite groups. Technical report, DTIC Document, 1990. ho67-1 [2347] T. Holmstedt. Interpolation d’espaces quasi-norm´es. C. R. Acad. Sci. Paris S´er. A-B, 264:A242–A244, 1967. ho70-1 [2348] T. Holmstedt. Interpolation of quasi-normed spaces. Math. Scand., 26:177–199, 1970. hope69 [2349] T. Holmstedt and J. Peetre. On certain functionals arising in the theory of interpolation spaces. J. Funct. Anal., 4:88–94, 1969. ho91-2 [2350] M. Holschneider. Inverse Radon transforms through inverse wavelet transforms. Inverse Problems, 7(6):853–861, 1991. 209 ho95-3 [2351] M. Holschneider. Wavelet analysis over Abelian groups. Appl. Comput. Harmon. Anal., 2(1):52–60, 1995. ho95-1 [2352] M. Holschneider. Wavelets - An Analysis Tool. Oxford Mathematical Monographs. Clarendon Press, 1995. hotowa10 [2353] A. Holst, J. Toft, and P. Wahlberg. Weyl product algebras and classical modulation spaces. Warszawa: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications, 2010. ho81-2 [2354] J. Holub. On bases and the shift operator. Studia Math., 71(2):191– 202, 1981. ho83-3 [2355] J. Holub. Shift basic sequences in the Wiener disc algebra. Proc. Amer. Math. Soc., 88(3):464–468, 1983. ho86-2 [2356] J. Holub. A Wiener inversion-type theorem. Proc. Amer. Math. Soc., 97(3):399–402, 1986. ho94 [2357] J. Holub. Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces. Proc. Amer. Math. Soc., 122(3):779–785, 1994. doflhohove11 [2358] A. Holzapfel, G. A. Velasco, N. Holighaus, M. D¨orfler, and A. Flexer. Advantages of nonstationary Gabor transforms in beat tracking. In Proceedings of MIRUM11, November 2011. duhove94 [2359] J. Hong, M. Vetterli, and P. Duhamel. Basefield transforms with the convolution property. In Proceedings of the IEEE, volume 82, pages 400 –412, mar 1994. zh13-1 [2360] Hongkai Zhao. Mathematics in Image Processing, volume 19. American Mathematical Soc., 2013. fuho97 [2361] C. Hope and D. Furlong. Time-Frequency Distributions for Timbre Morphing: The Wigner Distribution versus the STFT. 1997. ho86-1 [2362] K. Horne. An optimal extraction algorithm for CCD spectroscopy. Publications of the Astronomical Society of the Pacific, pages 609– 617, 1986. 210 hokoze12 [2363] I. Horova, J. Kolavcek, and J. Zelinka. Kernel Smoothing in MATLAB. Theory and Practice of Kernel Smoothing. Hackensack, NJ: World Scientific, 2012. hoob75 [2364] C. Horowicz and D. M. Oberlin. Restrictions of Hp functions to the diagonal of Un. Indiana U. Math. J., 24:767–772, 1975. hokopi97 [2365] C. Horowitz, B. Korenblum, and B. Pinchuk. Sampling sequences for A− ∞. Michigan Math. J., 44(2):389–398, 1997. ho09-1 [2366] R. Hoskins. Delta Functions: An Introduction to Generalised Functions 2nd Ed. Chichester: Horwood Publishing. vi, 270 p., 2009. ho43 [2367] H. Hotelling. Some new methods in matrix calculation. Ann. Math. Stat., 14:1–34, 1943. ho49 [2368] H. Hotelling. Practical problems of matrix calculation. Proc. Berkeley Sympos. Math. Statist. and Probability (August, 1945 and January, 1946), 275-293 (1949)., 1949. hoshta14 [2369] T. Hou, Z. Shi, and P. Tavallali. Convergence of a data-driven timefrequency analysis method. Appl. Comput. Harmon. Anal., (0):–, 2014. ho12-1 [2370] R. Houska. The nonexistence of shearlet scaling functions. Appl. Comput. Harmon. Anal., 32(1):28–44, 2012. ho10-2 [2371] A. Howard. Elementary Linear Algebra with Supplemental Applications: International Student Version. 2010. ho03-3 [2372] A. Howard and R. C. Busby. Contemporary Linear Algebra, Student Solutions Manual. John Wiley & Sons Inc., 2003. ho10-1 [2373] R. Howard. PDF estimation via characteristic function and an orthonormal basis set. In N. E. Mastorakis and Mladenov, editors, Proc. of the 14th WSEAS international conference on Systems: part of the 14th WSEAS CSCC multiconference, volume 1 of ICS’10, page 6, Stevens Point, Wisconsin, USA, 2010. World Scientific and Engineering Academy and Society (WSEAS). 211 hrya03 [2374] N. Hritonenko and Y. Yatsenko. Applied Mathematical Modelling of Engineering Problems. Applied Optimization. 81. Dordrecht: Kluwer Academic Publishers. xxi, 286 p., 2003. ma12-2 [2375] T. Hrycak, S. Das, and G. Matz. Inverse methods for reconstruction of channel taps in OFDM systems. IEEE Trans. Signal Process., 60(5):2666–2671, 2012. hswe98 [2376] M.-H. Hsieh and C.-H. Wei. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels. IEEE Trans. Consumer Electronics, 44(1):217–225, February 1998. huli13 [2377] L. Hu and Y. Liu. Shearlet approximations to the inverse of a family of linear operators. J. Inequal. Appl., 2013:10, 2013. huma04 [2378] Z. Hu and Z. Ma. Beurling-Deny formula of semi-Dirichlet forms. Comptes Rendus Mathematique, 338(7):521–526, 2004. huneru10 [2379] Z. Hu, M. Neufang, and Z. Ruan. Multipliers on a new class of Banach algebras, locally compact quantum groups, and topological centres. Proc. London Math. Soc., 100(2):429–458, 2010. hu12 [2380] J. Huang. The boundedness of Riesz transforms for Hermite expansions on the Hardy spaces. J. Math. Anal. Appl., 385(1):559–571, 2012. avhu06 [2381] K. Huang and S. Aviyente. Rotation invariant texture classification with ridgelet transform and Fourier transform. In Image Processing, 2006 IEEE International Conference on,, pages 2141 –2144, Atlanta, GA, oct. 2006. ashukepa10 [2382] L. Huang, Q. Kemao, B. Pan, and A. Asundi. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Optics and Lasers in Engineering, 48(2):141 – 148, 2010. cahu10 [2383] S. Huang and G. Cao. Trace class Toeplitz operators with unbounded symbols on weighted Bergman spaces. Acta Math. Sin. (Engl. Ser.), 26(8):1567–1574, 2010. 212 chhahu09 [2384] Y. Huang, Z. Cheng, and H. Han. The characterization of compact support of Fourier transform for scaling function and orthonormal wavelets of l2 ( s ). Acta Math. Sci., Ser. A, Chin. Ed., 29(4):1104– 1118, 2009. bohuxi14 [2385] Z. Huang, J. Xiao, and J. Boyd. Adaptive radial basis function and Hermite function pseudospectral methods for computing eigenvalues of the prolate spheroidal wave equation for very large bandwidth parameter. Journal of Computational Physics, 2014. humaperaru05 [2386] R. Huber, H. Ramoser, K. Mayer, H. Penz, and M. Rubik. Classification of coins using an eigenspace approach. 26(1):61–75, January 2005. huno93 [2387] N. Hubin and L. Noethe. Active optics, adaptive optics, and laser guide stars. Science, 262(5138):1390–1394, 1993. bagrhulalo05 [2388] C. Huck, M. Baake, B. Langfeld, P. Gritzmann, and K. Lord. Discrete tomography of mathematical quasicrystals: a primer. Herman, Gabor T. (ed.) et al., Proceedings of the workshop on discrete tomography and its applictions, New York, NY, USA, June 13–15, 2005. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 20, 179-191 (2005)., 2005. huklmoqirevi00 [2389] R. Huesman, G. Klein, W. Moses, J. Qi, B. Reutter, and P. Virador. List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling. Medical Imaging, IEEE Transactions on, 19(5):532–537, 2000. hu92-1 [2390] S. Huestis. Interpolation formulas for oversampled band-limited functions. SIAM Rev., 34(3):477–481, 1992. hu92-2 [2391] S. Huestis. Optimum kernels for oversampled signals. J. Acoust. Soc. Amer., 92:1172, 1992. hu92-3 [2392] S. Huestis. The Backus-Gilbert problem for sampled band-limited functions. Inverse Problems, 8(6):873–887, 1992. hupask95 [2393] T. Huffman, C. Park, and D. Skoug. Analytic Fourier-Feynman transforms and convolution. Trans. Amer. Math. Soc., 347(2):661–673, 1995. 213 hupl03 [2394] W. Huffman and V. Pless. Fundamentals of Error-correcting Codes. Cambridge University Press, Cambridge, 2003. hrast14 [2395] M. H¨ ugel, H. Rauhut, and T. Strohmer. Remote sensing via l1minimization. Found. Comput. Math., 14:115–150, 2014. hu81-2 [2396] J. Hughes. Representations of osp (2, 1) and the metaplectic representation. J. Math. Phys., 22(2):245–250, 1981. hu96 [2397] P. Hughett. A discrete-time linear shift-invariant system not representable as a convolution,. 1996. hu97-1 [2398] P. Hughett. Linearity and sigma-linearity in discrete-time linear shiftinvariant systems,. Signal processing,, 59,(3,):329–333,, 1997,. hu07 [2399] M. Huhtanen. Factoring matrices into the product of two matrices. BIT Numerical Mathematics, 47(4):793–808, 2007. hu70 [2400] A. Hulanicki. On symmetry of group algebras of discrete nilpotent groups. Studia Math., 35:207–219 (errata insert), 1970. hu70-1 [2401] A. Hulanicki. On the spectral radius in group algebras. Studia Math., 34:209–214, 1970. hu70-2 [2402] A. Hulanicki. On positive functionals on a group algebra multiplicative on a subalgebra. Studia Math., 37:163–171, 1970/71. hule09 [2403] A. Hulanicki and M. Letachowicz. Functional calculi for convolution operators on a discrete, periodic, solvable group. J. Funct. Anal., 256(3):700–717, 2009. hu66-1 [2404] R. Hunt. On L(p, q)-spaces. Enseignement Math. (2), 12:249–276, 1966. hu74 [2405] R. Hunt. Comments on Lusin’s conjecture and Carleson’s proof for L2 Fourier series. Linear Operators Approx. II, Proc. Conf. Oberwolfach 1974, ISNM 25, 235-245 (1974)., 1974. huta71 [2406] R. Hunt and M. H. Taibleson. Almost everywhere convergence of Fourier series on the ring of integers of a local field. SIAM J. Math. Anal., 2:607–625, 1971. 214 hu40 [2407] K. Husimi. Some formal properties of the density matrix. Proc. Phys.Math. Soc. Japan, III. Ser., (22):264–314, 1940. hu10 [2408] O. Hutnik. A note on wavelet subspaces. Monatsh. Math., 160(1):59– 72, 2010. hu11 [2409] O. Hutnik. On boundedness of Calderon-Toeplitz operators. Integr. Equ. Oper. Theory, 70(4):583–600, 2011. hu11-2 [2410] O. Hutnik. On Toeplitz localization operators. Archiv der Mathematik, 97:333–344, 2011. hu11-1 [2411] O. Hutnik. Wavelets from Laguerre polynomials and Toeplitz-type operators. Integr. Equ. Oper. Theory, 71(3):357–388, 2011. hu13 [2412] O. Hutnik. On weighted strong type inequalities for the generalized weighted mean operator. Arch. Math. (Basel), 100(5):449–463, 2013. hu13-1 [2413] M. Hutnikova. On the range of Stockwell transforms. Appl. Math. Comput., 219(17):8904–8909, 2013. huhu10 [2414] M. Hutnikova and O. Hutnik. An alternative description of Gabor spaces and Gabor-Toeplitz operators. Rep. Math. Phys., 66(2):237– 250, 2010. huhu12 [2415] M. Hutnikov’a and O. Hutnik. Affine coherent states and Toeplitz operators. J. Phys. A: Math. Theor, 45:24, 2012. hu06 [2416] D. Huybrechs. Multiscale and hybrid methods for the solution of oscillatory integral equations. PhD thesis, Dept. of Computer Science, Faculty of Engineering, Katholieke Universiteit Leuven. Leuven, Belgium, 2006. hu10-1 [2417] D. Huybrechs. On the Fourier extension of nonperiodic functions. SIAM J. Numer. Anal., 47(6):4326–4355, 2010. huva06 [2418] D. Huybrechs and S. Vandewalle. On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal., 44(3):1026–1048 (electronic), 2006. 215 huva07-1 [2419] D. Huybrechs and S. Vandewalle. A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput., 29(6):2305–2328 (electronic), 2007. huva07 [2420] D. Huybrechs and S. Vandewalle. The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comp., 76(260):1955–1980 (electronic), 2007. hupesivo04-1 [2421] M. Huzak, M. Perman, H. Sikic, and Z. Vondracek. Ruin probabilities and decompositions for general perturbed risk processes. Ann. Appl. Probab., 14(3):1378–1397, 2004. hupesivo04 [2422] M. Huzak, M. Perman, H. Sikic, and Z. Vondracek. Ruin probabilities for competing claim processes. J. Appl. Probab., 41(3):679–690, 2004. hyliyaya12 [2423] T. Hyt¨onen, S. Liu, D. Yang, and D. Yang. Boundedness of Calderon-Zygmund operators on non-homogeneous metric measure spaces. Canad. J. Math., 64(4):892–923, 2012. hyro13 [2424] T. Hyt¨onen and A. Rosen. On the Carleson duality. Ark. Mat., 51(2):293–313, 2013. ibmamasive10 [2425] A. Ibort, V. Man’ko, G. Marmo, A. Simoni, and F. Ventriglia. On the tomographic picture of quantum mechanics. Phys. Lett. A, 374(26):2614–2617, 2010. ib10 [2426] N. Ibragimov. A Practical Course in Differential Equations and Mathematical Modelling Classical and New methods Nonlinear Mathematical Models Symmetry and Invariance Principles. Hackensack, NJ: World Scientific and Beijing: Higher Education Press. xiv, 348 p., 2010. ig74 [2427] S. Igari. Functions of Lp -multipliers. II. Tˆohoku Math. J. (2), 26:555– 561, 1974. ig74-1 [2428] S. Igari. On the (Lp , Lp ) multipliers. In Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), pages 254–257. Lecture Notes in Math., Vol. 399. 1974. 216 igku71 [2429] S. Igari and S. Kuratsubo. A sufficient condition for Lp -multipliers. Pacific J. Math., 38(1):85–88, 1971. igsa94 [2430] S. Igari and E. Sato. Operating functions on Fourier multipliers. Tohoku Math. J., 46(3):357–366, 1994. hoig10 [2431] I. Iglewska Nowak and M. Holschneider. Frames of Poisson wavelets on the sphere. Appl. Comput. Harmon. Anal., 28(2):227–248, 2010. hoig13 [2432] I. Iglewska Nowak and M. Holschneider. Irregular Gabor frames. Kyushu J. Math., 67(1):237–247, 2013. ih98 [2433] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences. 132. New York, NY: Springer. xiv, 1998. ihva13 [2434] L. Ihnatsyeva and A. Vaehaekangas. Hardy inequalities in Triebel– Lizorkin spaces II. Aikawa dimension. Annali Mat. Pura Appl., pages 1–15, 2013. il75 [2435] R. Illner. A class of Lp -bounded pseudo-differential operators. Proc. Amer. Math. Soc., 51:347–355, 1975. il06 [2436] N. Il’yasov. Structural properties of periodic functions with absolutely convergent Fourier series. Russ. Math., 50(1):23–31, 2006. giin10 [2437] P. Indyk and A. C. Gilbert. Sparse recovery using sparse matrices. Proc. IEEE, 98(6):937 – 947, 2010. inru08 [2438] P. Indyk and M. Ruzic. Near-optimal sparse recovery in the L1 norm. In Proc. FOCS, 2008. inso10 [2439] A. Infante and F. Soria. On the maximal operator associated with certain rotational invariant measures. Acta Math. Sin. (Engl. Ser.), 26(6):993–1004, 2010. in34 [2440] A. Ingham. A note on Fourier transforms. J. London Math. Soc., 9:29–32, 1934. in36 [2441] A. Ingham. Some trigonometrical inequalities with applications to the theory of series. Math. Z., 41(1):367–379, 1936. 217 in82 [2442] I. Inglis. Weak and strong mapping properties of translation invariant operators. Boll. Unione Mat. Ital., VI. Ser., B, 1:523–533, 1982. iowi11 [2443] M. Ionescu and D. Williams. A classic Morita equivalence result for Fell bundle C ∗ -algebras. Math. Scand., 108(2):251–263, 2011. ioio69 [2444] T. Ionescu and T. Ionescu. Topics in the theory of lifting. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48. Springer-Verlag New York Inc., New York, 1969. ioli13 [2445] A. Iosevich and E. Liflyand. Decay of the Fourier Transform. Analytic and Geometric Aspects. New York, NY: Birkh¨auser/Springer, 2013. bair13 [2446] Z. Irace and H. Batatia. Motion-based interpolation to estimate spatially variant PSF in Positron Emission Tomography. In Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pages 1–5, 2013. irka93 [2447] T. Irino and H. Kawahara. Signal reconstruction from modified auditory wavelet transform. IEEE Trans. Signal Process., 41(12):3549– 3554, 1993. ir80 [2448] I. Irodova. On the properties of the scale of spaces bp , (λθ) for 0 < p < 1. Sov. Math., Dokl., 21:53–55, 1980. iska84 [2449] C. Isham and A. Kakas. A group theoretical approach to the canonical quantisation of gravity. II. Unitary representations of the canonical group. Classical and Quantum Gravity, 1(6):633, 1984. is06-1 [2450] H. Ishi. Wavelet transforms for semidirect product groups with not necessarily commutative normal subgroups. J. Fourier Anal. Appl., 12(1):37–52, 2006. is74 [2451] H. Ishii. On some Fourier multipliers and partial differential equations. Math. Jap., 19:139–163, 1974. guisXX [2452] A. Iske and M. Guillemard. On groupoid C*-algebras, persistent homology and time-frequency analysis. preprint, to appear. isna04 [2453] I. Ismail and T. Nabil. Applying wavelet recursive translationinvariant to window low-pass filtered images. Int. J. Wavelets Multiresolut. Inf. Process., 2(1):99–110, 2004. 218 akis08 [2454] D. Israfilov and R. Akg¨ un. Approximation by polynomials and rational functions in weighted rearrangement invariant spaces. J. Math. Anal. Appl., 346(2):489–500, 2008. is10 [2455] J. Isralowitz. Size estimates of Toeplitz and Hankel operators on the Bergman and Fock space. PhD thesis, 2010. is11 [2456] J. Isralowitz. Compact Toeplitz operators on the Segal-Bargmann space. J. Math. Anal. Appl., 374(2):554–557, 2011. is13-1 [2457] J. Isralowitz. Compactness and essential norm properties of operators on generalized Fock spaces. arxiv, 2013. is13 [2458] J. Isralowitz. Schatten p class commutators on the weighted Bergman space L2a (Bn , dvγ ) for 2n/(n + 1 + γ) < p < ∞. Indiana Univ. Math. J., 62(1):201–233, 2013. is14 [2459] J. Isralowitz. Invertible Toeplitz products, weighted norm inequalities, and Ap weights. J. Operator Theory, 71(2):381–410, 2014. isviwo15 [2460] J. Isralowitz, J. Virtanen, and L. Wolf. Schatten class Toeplitz operators on generalized Fock spaces. J. Math. Anal. Appl., 421(1):329–337, 2015. itkako12 [2461] S. Ito, K. Kato, and M. Kobayashi. Representation of Schr¨odinger operator of a free particle via short-time Fourier transform and its applications. Tohoku Math. J., 64(2):223–231, 2012. iv07 [2462] Y. Ivakhno. The Riemann-Lebesgue property is equivalent to the complete continuity property. Bull. Lond. Math. Soc., 39(4):583–585, 2007. ivpe14 [2463] K. Ivanov and P. Petrushev. Irregular sampling of band-limited functions on the sphere. Appl. Comput. Harmon. Anal., 37(3):545–562, 2014. ivpexu10 [2464] K. Ivanov, P. Petrushev, and Y. Xu. Sub-exponentially localized kernels and frames induced by orthogonal expansions. Math. Z., 264(2):361–397, 2010. iw10-3 [2465] T. Iwabuchi. Existence of solution for Navier-Stokes equations in modulation spaces. 2010. 219 iw10-2 [2466] T. Iwabuchi. Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices. J. Differ. Equations, 248(8):1972–2002, 2010. iw10-1 [2467] M. Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms. preprint, 2010. iwte10 [2468] M. A. Iwen and A. H. Tewfik. Adaptive group testing strategies for target detection and localization in noisy environments. preprint, 2010. izrosa05 [2469] S. H. Izen, D. P. Rohler, and S. KL A. Exploiting symmetry in fan beam CT: Overcoming third generation undersampling. SIAM J. Appl. Math., 65(3):1027–1052, 2005. iz11 [2470] K. Izuchi. Wandering subspaces and quasi-wandering subspaces in the Bergman space. New York J. Math., 17A:301–305, 2011. iziziz10-2 [2471] K. Izuchi, K. Izuchi, and Y. Izuchi. Quasi-wandering subspaces in the Bergman space. Integr. Equ. Oper. Theory, 67(2):151–161, 2010. iziziz10-1 [2472] K. Izuchi, K. Izuchi, and Y. Izuchi. Wandering subspaces and the Beurling type Theorem I. Arch. Math. (Basel), 95(5):439–446, 2010. iziziz10 [2473] K. Izuchi, K. Izuchi, and Y. Izuchi. Wandering subspaces and the Beurling type theorem. II. New York J. Math., 16:489–505, 2010. iziziz11 [2474] K. Izuchi, K. Izuchi, and Y. Izuchi. Blaschke products and the rank of backward shift invariant subspaces over the bidisk. J. Funct. Anal., 261(6):1457 – 1468, 2011. iziziz12 [2475] K.-J. Izuchi, K.-H. Izuchi, and Y. Izuchi. Wandering subspaces and the Beurling type theorem, III. J. Math. Soc. Japan, 64(2):627–658, 2012. izsa10 [2476] M. Izuki and Y. Sawano. The Haar wavelet characterization of weighted Herz spaces and greediness of the Haar wavelet basis. J. Math. Anal. Appl., 362(1):140–155, 2010. izsa12 [2477] M. Izuki and Y. Sawano. Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces. Math. Nachr., 285(1):103–126, 2012. 220 jaobve09 [2478] L. Jacob, G. Obozinski, and J. Vert. Group Lasso with overlap and graph Lasso. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 433–440, 2009. ja09-1 [2479] L. Jacques. A Short Note on Compressed Sensing with Partially Known Signal Support. Technical report, 2009. dedeja13 [2480] L. Jacques, K. Degraux, and V. De. Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing. ArXiv e-prints, may 2013. chdujape11 [2481] L. Jacques, L. Duval, C. Chaux, and G. Peyre. A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity. Signal Process., 91(12):2699–2730, 2011. babojala11 [2482] L. Jacques, J. Laska, P. Boufounos, and R. G. Baraniuk. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. Preprint, 2011. ja83-1 [2483] K. Jaenich. Analysis F¨ ur Physiker und Ingenieure. Springer-Verlag, Berlin, 1983. brbrdahujapo09 [2484] S. Jafarpour, G. Polatkan, E. Brevdo, S. Hughes, A. Brasoveanu, and I. Daubechies. Stylistic analysis of paintings using complex wavelets and random forest learning algorithm. In 17th European Signal Processing Conference (EUSIPCO 2009), Color and multispectral image acquisition and processing of artworks, pages 1220–1224, Glasgow, Scotland, UK, August 24-28, 2009. ja91-4 [2485] S. Jaffard. Wavelets and applications. In Proceedings of the Fifth European Conference on Mathematics in Industry (Lahti, 1990), volume 7 of European Consort. Math. Indust., pages 25–34. Teubner, Stuttgart, 1991. jaqu93 [2486] A. Jaffe and F. Quinn. Theoretical mathematics: Toward a cultural synthesis of mathematics and theoretical physics. Bull. Amer. Math. Soc. (N.S.), 29(1):1–13, 1993. ja04 [2487] G. J¨ager. A New Algorithm for Computing the Smith Normal Form and its Implementation on Parallel Machines. In Proceedings of 6th Workshop on Advances in Parallel and Distributed Computation 221 Models, International Parallel and Distributed Processing Symposium (IPDPS 2004) :, 2004. anja74 [2488] A. Jain and E. Angel. Image restoration, modelling, and reduction of dimensionality. IEEE Trans. Comput., 23:470–476, 1974. jaku09-1 [2489] P. Jain and S. Kumar. Boundedness of Hardy operators on generalized amalgams. Math. Inequal. Appl., 12(3):549–562, 2009. jaku09 [2490] P. Jain and S. Kumar. Weighted inequalities of Hardy-type on amalgams. Real Anal. Exchange, 34(2):483–499, 2009. ja90-3 [2491] A. Jakimovski. Spline interpolation of data of power growth, 1990. jaru79 [2492] A. Jakimovski and D. Russell. On beta-duals of matrix fields, 1979. jarust84 [2493] A. Jakimovski, D. Russell, and M. Stieglitz. Spline interpolation of power-dominated data. In P. L. Butzer and B. Sz. Nagy, editors, Approximation theory and functional analysis, Anniv. Vol., Proc. Conf., Oberwolfach 1983, ISNM 65, pages 403–414, 1984. jaru84 [2494] A. Jakimovski and D. C. Russell. Hermite spline interpolation of data of power growth. In Constructive theory of functions, Proc. Int. Conf., Varna/Bulg. 1984, pages 430–438, 1984. jaru85 [2495] A. Jakimovski and D. C. Russell. Spline interpolation of data of power growth applied to discrete and continuous Riesz means. Analysis, 5:287–299, 1985. ja51 [2496] R. James. A non-reflexive Banach space isometric with its second conjugate space. Proceedings of the National Academy of Sciences of the United States of America, 37(3):174, 1951. ja94-6 [2497] P. Jaming. Restricted invertibility, Kadison-Singer extension problem and applications to harmonic analysis. (Inversibilit´e restreinte, probl`eme d’extension de Kadison-Singer et applications `a l’analyse harmonique. (D’apr`es J. Bourgain et L. Tzafriri).). D´echamps, Myriam (ed.) et al., Cours: Analyse fonctionnelle et harmonique 19921993. Orsay: Universit´e de Paris-Sud, Publ. Math. Orsay. 94-24, 71154 (1994)., 1994. 222 ja07 [2498] P. Jaming. Nazarov’s uncertainty principles in higher dimension. J. Approx. Theory, 149(1):30–41, 2007. ja09-2 [2499] P. Jaming. A characterization of Fourier transforms. arXiv preprint arXiv:0912.3129, 2009. ja10 [2500] P. Jaming. A characterization of Fourier transforms. Colloq. Math., 118(2):569–580, 2010. jaol94 [2501] R. Jane and S. Olmos. A comparative study of adaptive algorithms for ECG data compression using Hermite models. In Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, volume 2, pages 1262–1263, 1994. ja78 [2502] S. Janson. Mean oscillation and commutators of singular integral operators. Ark. Mat., 16:263–270, 1978. ja81-6 [2503] S. Janson. Minimal and maximal methods of interpolation. J. Funct. Anal., 44:50–73, 1981. ja83 [2504] S. Janson. Minimal and maximal methods of interpolation of Banach spaces. Harmonic analysis, Conf. in Honor A. Zygmund, Chicago 1981, Vol. 2, 732-739 (1983)., 1983. janipe84 [2505] S. Janson, P. Nilsson, and J. Peetre. Notes on Wolff’s note on interpolation spaces (with appendix by Zafran, Misha). Proc. Lond. Math. Soc., III. Ser., 48:283–299, 1984. jape84 [2506] S. Janson and J. Peetre. Higher order commutators of singular integral operators. In Proc. Conf. Interpolation spaces and allied topics in analysis (Lund, 1983), volume 1070 of Lecture Notes in Math., pages 125–142. Springer, Berlin, 1984. jawo82 [2507] S. Janson and T. Wolff. Schatten classes and commutators of singular integral operators. Ark. Mat., 20:301–310, 1982. ja06-2 [2508] A. Janssen. Zak transform characterization of s0 . Sampl. Theory Signal Image Process., 5(2):141–162, 2006. 223 ja06-3 [2509] B. Janssens. Unifying decoherence and the Heisenberg principle. Arxiv preprint quant-ph/0606093, 2006. ja89-5 [2510] H. Jarchow. Factoring absolutely summing operators through HilbertSchmidt operators. Glasgow Math. J., 31(2):131–135, 1989. ja94-7 [2511] H. Jarchow. Absolutely summing composition operators. In Functional analysis (Essen, 1991), volume 150 of Lecture Notes in Pure and Appl. Math., pages 193–202. Dekker, New York, 1994. ja00-1 [2512] K. Jarosz. Uniqueness of translation invariant norms. J. Funct. Anal., 174(2):417–429, 2000. jast04 [2513] F. Jarre and J. Stoer. Optimierung. Springer, 2004. ja77-2 [2514] B. Jawerth. Some observations on Besov and Lizorkin-Triebel spaces. Math. Scand., 40(1):94–104, 1977. ja10-1 [2515] J. Jayakumari. MIMO-OFDM for 4G wireless systems. Int. J. Eng. Sc. Tech., 2:2886–2889, Jul. 2010. jeru10 [2516] A. Jencova and M. Ruskai. A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality. Rev. Math. Phys., 22(9):1099–1121, 2010. jekuposc11 [2517] F. Jensen, W. Kuperman, M. Porter, and H. Schmidt. Computational Ocean Acoustics. Springer, second edition edition, 2011. jeni96 [2518] O. R. Jensen and E. B. Nielsen. A Bose-Fock space quantization of the Witt algebra. Rep. Math. Phys., 37(1-3):157–161, 1996. chjepa00 [2519] W. Jeon, K. Paik, and Y. Cho. An efficient channel estimation technique for OFDM systems with transmitter diversity. Proc. IEEE PIMRC-00, 2:1246–1250, Sep. 2000. jewi92 [2520] J. Jeong and W. Williams. Time-varying filtering and signal synthesis. In 1990 Special Conf On Time-Frequency Analysis/International Symp On Signal Processing and its Applications (Isspa 90), pages 389–405, 1992. 224 jeneth04 [2521] A. Jeremic, T. Thomas, and A. Nehorai. OFDM channel estimation in the presence of interference. IEEE Trans. Signal Process., 52(12):3429 – 3439, December 2004. je86 [2522] D. Jerison. The Poincar´e inequality for vector fields satisfying H¨ormander’s condition. Duke Math. J., 53(2):503–523, 1986. je11 [2523] A. Jerri. Advances in The Gibbs Phenomenon. Sampling Publishing, 2011. je87-2 [2524] K. Jetter. A short survey on cardinal interpolation by box splines. Fachbereich Mathematik, UD, 1987. je87-1 [2525] K. Jetter. Uniqueness of Gauss-Birkhoff quadrature formulas. SIAM J. Numer. Anal., 24:147–154, 1987. je87-3 [2526] M. Jevtic. Bounded projections and duality in mixed-norm spaces of analytic functions. Complex Var. Theory Appl., 8:293–301, 1987. je97-1 [2527] M. Jevtic. Besov spaces on bounded symmetric domains. Mat. Vesn., 49(3-4):229–233, 1997. je98-1 [2528] M. Jevtic. Holomorphic Besov spaces B p , 0 < p < 1, on bounded symmetric domains. Filomat, 12(1):53–64, 1998. jepa13 [2529] M. Jevtic and M. Pavlovic. Besov-Lipschitz and mean Besov-Lipschitz spaces of holomorphic functions on the unit ball. Potential Anal., 38(4):1187–1206, 2013. hujishxu11 [2530] H. Ji, S. Huang, Z. Shen, and Y. Xu. Robust video restoration by joint sparse and low rank matrix approximation. SIAM J. Imaging Sci., 4(4):1122–1142, 2011. jisc96 [2531] R. Ji and L. Schweitzer. Spectral invariance of smooth crossed products, and rapid decay locally compact groups. K-theory, 10(3):283– 305, 1996. jilixi10 [2532] X. Jia, T. Xing, and W. Lin. Analysis of absolute testing based on even-odd functions by Zernike polynomials. In X. Jia, T. Xing, W. Lin, Y. Zhang, J. Sasi’an, L. Xiang, and S. To, editors, Proc. SPIE, 5th International Symposium on Advanced Optical Manufacturing and 225 Testing Technologies: Optical Test and Measurement Technology and Equipment, volume 7656 of Poster Session, page 76563E(6). SPIE, 2010. haji07 [2533] M. Jiang and L. Hanzo. Multiuser MIMO-OFDM for next-generation wireless systems. Proc. IEEE, 95:1430–1469, Jul. 2007. jiyaya12 [2534] R. Jiang, D. Yang, and D. Yang. Maximal function characterizations of Hardy spaces associated with magnetic Schr¨odinger operators. Forum Math., 24(3):471–494, 2012. jiyayu11 [2535] X. Jiang, D. Yang, and W. Yuan. Real interpolation for grand Besov and Triebel-Lizorkin spaces on RD-spaces. Ann. Acad. Sci. Fenn., Math., 36(2):509–529, 2011. jileli12 [2536] M. Jin, X. Lei, and S. Lin. Improved DFT-based channel estimation in OFDM systems based on phase compensation. Appl. Math. Inf. Sci., 6(3):629–638, August 2012. jita11 [2537] Q. Jin and U. Tautenhahn. Implicit iteration methods in Hilbert scales under general smoothness conditions. 2011. jimasp11 [2538] S. Jin, P. Markowich, and C. Sparber. Mathematical and computational methods for semiclassical Schr¨odinger equations. Acta Numer., 20:121–209, 2011. jizh12 [2539] Q. Jiu and X. Zheng. Global well-posedness of the compressible Euler with damping in Besov spaces. Math. Methods Appl. Sci., 35(13):1570–1586, 2012. jo13 [2540] J. Jo. Iterative hard thresholding for weighted sparse approximation. ArXiv e-prints, dec 2013. jo70 [2541] M. Jodeit. Restrictions and extensions of Fourier multipliers. Studia Math., 34:215–226, 1970. jopiteto12 [2542] K. Johansson, S. Pilipovic, N. Teofanov, and J. Toft. Gabor pairs, and a discrete approach to wave-front sets. Monatsh. Math., 166(2):181– 199, 2012. 226 jola88 [2543] G. Johnson and M. Lapidus. Noncommutative operations on Wiener functionals and Feynman’s operational calculus. J. Funct. Anal., 81(1):74 – 99, 1988. jola00 [2544] G. Johnson and M. Lapidus. The Feynman Integral and Feynmans Operational Calculus. Oxford Science Publications, 2000. jo97-2 [2545] M. J. Johnson. An upper bound on the approximation power of principal shift-invariant spaces. Constr. Approx., 13(2):155–176, 1997. jowa10 [2546] R. Johnson and C. Warner. The convolution algebra H 1 (R). J. Funct. Spaces Appl., 8(2):167–179, 2010. joli84 [2547] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189– 206. Amer. Math. Soc., Providence, RI, 1984. jome09 [2548] S. Jokar and V. Mehrmann. Sparse solutions to underdetermined Kronecker product systems. Linear Algebra and Its Applications, 431(12):2437–2447, 2009. jomepfys10 [2549] S. Jokar, V. Mehrmann, M. Pfetsch, and H. Yserentant. Sparse approximate solution of partial differential equations. Applied numerical mathematics, 60(4):452–472, 2010. jo10-1 [2550] L. Jolissaint. Synthetic modeling of astronomical closed loop adaptive optics. arXiv preprint arXiv:1009.1581, 2010. jomave04 [2551] L. Jolissaint, J.-P. Veran, and J. Marino. OPERA, an automatic PSF reconstruction software for Shack-Hartmann AO systems: application to Altair. In Astronomical Telescopes and Instrumentation, pages 151–163, 2004. jo05 [2552] P. Jolissaint. On property (T) for pairs of topological groups. Enseign. Math. (2), 51(1-2):31–45, 2005. jopa90 [2553] D. L. Jones and T. Parks. A high resolution data-adaptive timefrequency representation. IEEE Trans. Signal Process., 38(12):2127– 2135, 1990. 227 joosro13 [2554] P. W. Jones, A. Osipov, and V. Rokhlin. A randomized approximate nearest neighbors algorithm. Appl. Comput. Harmon. Anal., 34(3):415–444, 2013. gajole02 [2555] V. Jones, J. Leary, and J. Gardner. OFDM channel estimation in the presence of interference, 2002. jowa84 [2556] A. Jonsson and H. Wallin. Function spaces on subsets of Rn , volume 2 of Math. Rep. 1984. jo12 [2557] R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo. Deep and clear optical imaging of thick inhomogeneous samples. PLoS ONE, 7, 04 2012. jo06-1 [2558] C. Jordan. R´eduction d’un r´eseau de formes quadratiques ou bilin´eaires. Journal de Math´ematiques Pures et Appliqu´ees, pages 403–438, 1906. jomepa08 [2559] P. E. T. Jorgensen, K. D. Merrill, and J. A. Packer. Representations, Wavelets, and Frames. Applied and Numerical Harmonic Analysis. Birkh¨auser, Boston, MA, 2008. joscwe94 [2560] P. E. T. Jorgensen, L. Schmitt, and R. Werner. q-canonical commutation relations and stability of the Cuntz algebra. Pacific J. Math., 165(1):131–151, 1994. joth11 [2561] K. Jotsaroop and S. Thangavelu. Toeplitz operators with special symbols on Segal-Bargmann spaces. Integr. Equ. Oper. Theory, 69(3):317– 346, 2011. joki11 [2562] D. Joyner and J.-L. Kim. Selected Unsolved Problems In Coding Theory. Birkh¨auser, 2011. ju14 [2563] G. Jumarie. Fractional Differential Calculus via Fractional Difference theory and applications A Non-standard Fractional Calculus and its applications (to appear). Hackensack, NJ: World Scientific, 2014. juka85 [2564] O. Juneja and G. Kapoor. Analytic functions - growth aspects. Research Notes in Mathematics, 104. Pitman Advanced Publishing Program, 1985. 228 beelhljusc12 [2565] A. Jung, S. Schmutzhard, F. Hlawatsch, Y. Eldar, and Z. Ben Haim. Minimum Variance Estimation of sparse vectors within the Linear Gaussian Model: An RKHS Approach. IEEE Trans. Information Theory, 60(10):6555 – 6575, 2014. jush04 [2566] J.-H. Jung and B. Shizgal. Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon. J. Comput. Appl. Math., 172(1):131–151, 2004. jush05 [2567] J.-H. Jung and B. Shizgal. Inverse polynomial reconstruction of two dimensional Fourier images. J. Sci. Comput., 25(3):367–399, 2005. ju00 [2568] K. Jung. Phase space tunneling for operators with symbols in a Gevrey class. J. Math. Phys., 41(7):4478–4496, 2000. jume10 [2569] M. Junge and T. Mei. Noncommutative Riesz transforms—a probabilistic approach. Amer. J. Math., 132(3):611–680, 2010. juno13 [2570] K. Juschenko and P. Nowak. Uniformly bounded representations and exact groups. J. Funct. Anal., (0):–, 2013. ka11 [2571] W. Kaballo. Grundkurs Funktionalanalysis. Spektrum Akademischer Verlag, 2011. kara13 [2572] M. Kabanava and H. Rauhut. Analysis Gaussian measurements. preprint, 2013. kara14 [2573] M. Kabanava and H. Rauhut. Cosparsity in compressed sensing. preprint, 2014. kasi59 [2574] R. V. Kadison and I. M. Singer. Extensions of pure states. Amer. J. Math., 81(2):383–400, 1959. kalazh08 [2575] V. Kaftal, D. Larson, and S. Zhang. Operator-valued frames on C ∗ modules. In Frames and operator theory in analysis and signal processing, volume 451 of Contemp. Math., pages 171–185. Amer. Math. Soc., Providence, RI, 2008. kalazh09 [2576] V. Kaftal, D. Larson, and S. Zhang. Operator-valued frames. Trans. Amer. Math. Soc., 361(12):6349–6385, 2009. 229 1 -recovery with frames and ka11-3 [2577] C. Kahane. A note on the convolution theorem for the Fourier transform. Czechoslovak Math. J., 61(136)(1):199–207, 2011. ka60 [2578] J.-P. Kahane. Propri´et´es locales des fonctions a` s´eries de Fourier al´eatoires. Studia Math., 19:1–25, 1960. ka61 [2579] J.-P. Kahane. Fonctions pseudo-p´eriodiques dans rp . In Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pages 274–281. Jerusalem Academic Press, Jerusalem and Pergamon, Oxford, 1961. ka62-1 [2580] J.-P. Kahane. On the generalized almost periodic functions with void spectrum. (Sur les fonctions presque-p´eriodiques g´en´eralis´ees dont le spectre est vide.). Studia Math., 21:231–236, 1962. ka63-1 [2581] J.-P. Kahane. Transformees de Fourier des fonctions sommables. Proc. Int. Congr. Math. 1962, 114-131 (1963)., 1963. ka05-4 [2582] J.-P. Kahane. The heritage of Fourier. In Perspectives in analysis, volume 27 of Math. Phys. Stud., pages 83–95. Springer, Berlin, 2005. kaka63 [2583] J.-P. Kahane and V. Katznelson. Contribution a deux problemes, concernant les fonctions de la classe A. Israel J. Math., 1:110–131, 1963. ka10 [2584] N. Kaiblinger. On the Lehmer constant of finite cyclic groups. Acta Arith., 142(1):79–84, 2010. ka11-1 [2585] N. Kaiblinger. Cyclotomic rings with simple Euclidean algorithm. JP J. Algebra Number Theory Appl., 2011. ka01-1 [2586] A. Kain. High resolution voice transformation. PhD thesis, Rockford College, 2001. kakasova99 [2587] J. Kaipio, P. Karjalainen, E. Somersalo, and M. Vauhkonen. State Estimation in Time-Varying Electrical Impedance Tomography. Annals of the New York Academy of Sciences, 873(1):430–439, 1999. ka85-1 [2588] Y. Kakihara. A note on harmonizable and V-bounded processes. J. Multivariate Anal., 16(1):140–156, 1985. 230 ka86-1 [2589] Y. Kakihara. Strongly and weakly harmonizable stochastic processes of H-valued random variables. J. Multivariate Anal., 18:127–137, 1986. kamaro03 [2590] J. Kalifa, S. Mallat, and B. Roug’e. Deconvolution by Thresholdong in Mirror Wavelet Bases. IEEE Trans. Image Process., 12:446–457, 2003. kala07 [2591] I. Kalliomaki and J. Lampinen. On steerability of Gabor-type filters for feature detection. Pattern Recognition Lett., 28(8):904 – 911, 2007. ka14 [2592] A. Kalybay. On boundedness of the conjugate multidimensional Hardy operator from a Lebesgue space to a local Morrey-type space. Int. J. Math. Anal. (Ruse), 8(9-12):539–553, 2014. kapepi04 [2593] A. Kaminski, D. Perisic, and S. Pilipovic. On the convolution in the space of tempered ultradistributions of Beurling type. Integral Transforms Spec. Funct., 15(4):323–330, 2004. kana98 [2594] J. Kamm and J. Nagy. Kronecker product and SVD approximations in image restoration. Linear Algebra Appl., 284(1-3):177–192, 1998. kana72 [2595] W. Kammerer and M. Nashed. On the convergence of the conjugate gradient method for singular linear operator equations. SIAM J. Numer. Anal., 9(1):165–181, 1972. guka81 [2596] P. Kamthan and M. Gupta. Sequence Spaces and Series. Marcel Dekker, 1981. kami13 [2597] A. Kanaev and C. Miller. Multi-frame super-resolution algorithm for complex motion patterns. Optics express, 21(17):19850–19866, 2013. kame12 [2598] J. Kane and J. Mertz. Debunking myths about gender and mathematics performance. Notices of the American Mathematical Society, 59(1):10–21, 2012. kako07 [2599] H. Kaneko and A. Kochubei. Weak solutions of stochastic differential equations over the field of p-adic numbers. Tohoku Math. J., 59(4):547–564, 2007. kakw11 [2600] S. Kang and K. Kwon. Generalized average sampling in shift invariant spaces. J. Math. Anal. Appl., 377(1):70 – 78, 2011. 231 kascta95 [2601] E. Kaniuth, G. Schlichting, and K. F. Taylor. Minimal primal and Glimm ideal spaces of group C ∗ -algebras. J. Funct. Anal., 130(1):43– 76, 1995. kata96 [2602] E. Kaniuth and K. F. Taylor. Minimal projections in L1 -algebras and open points in the dual spaces of semi-direct product groups. J. Lond. Math. Soc. (2), 53(1):141–157, 1996. kata12 [2603] E. Kaniuth and K. F. Taylor. Induced Representations of Locally Compact Groups. Cambridge, 2012. ka91 [2604] Y. Kanjin. A transplantation theorem for Laguerre series. J. Fourier Anal. Appl., 43(4):537–555, 1991. ka99-3 [2605] Y. Kanjin. On Hardy-type inequalities and Hankel transforms. Monatsh. Math., 127(4):311–319, 1999. ka11-2 [2606] Y. Kanjin. Hardy’s inequalities for Hermite and Laguerre expansions revisited. J. Math. Soc. Japan, 63(3):753–767, 2011. ka13-2 [2607] Y. Kanjin. Laguerre and disk polynomial expansions with nonnegative coefficients. J. Fourier Anal. Appl., 19(3):495–513, 2013. kasc05 [2608] A. Kannu and P. Schniter. MSE-optimal training for linear timevarying channels. volume 3, pages 789–792, Mar. 2005. kasc08 [2609] A. Kannu and P. Schniter. Design and analysis of MMSE pilot-aided cyclic-prefixed block trans mission for doubly selective channels. IEEE Trans. Signal Process., 56:1148–1160, Mar. 2008. akka64 [2610] L. Kantorovich and G. Akilov. Functional Analysis In Normed Spaces Translated From The Russian. Pergamon Press, 1964. katk02 [2611] E. Kapanadze and G. Tkebuchava. Wavelet bases properties in some rearrangement invariant function spaces. Bull. Georgian Acad. Sci., 166(3):454–455, 2002. kamu03 [2612] L. Kaplan and R. Murenzi. Pose estimation of SAR imagery using the two dimensional continuous wavelet transform. Pattern Recognit. Lett., 24(14):2269–2280, 2003. ka49-1 [2613] I. Kaplansky. Normed algebras. Duke Math. J., 16:399–418, 1949. 232 ka49 [2614] I. Kaplansky. Primary ideals in group algebras. Proc. Natl. Acad. Sci. USA, 35:133–136, 1949. ka06-3 [2615] M. Kapovich. Triangle inequalities in path metric spaces. Arxiv preprint math/0611118, 2006. ka07-7 [2616] M. Kapovich. Energy of harmonic functions and Gromov’s proof of Stallings’ theorem. Arxiv preprint arXiv:0707.4231, 2007. ka07-6 [2617] M. Kapovich. On sequences of finitely generated discrete groups. Arxiv preprint arXiv:0708.2671, 2007. kanevo13 [2618] A. Karabegov, Y. Neretin, and T. Voronov. Felix Alexandrovich Berezin and his work. In Geometric methods in physics. XXX workshop, Bialowieza, Poland, June 26 – July 2, 2011. Selected papers based on the presentations at the workshop, pages 3–33. Basel: Birkh¨auser, 2013. ka13-1 [2619] M. Karaev. Erratum : use of reproducing kernels and Berezin symbols technique in some questions of operator theory. Forum Math., 25(5):1107, 2013. ka13 [2620] M. Karaev. Reproducing kernels and Berezin symbols techniques in various questions of operator theory. Complex Anal. Oper. Theory, 7(4):983–1018, 2013. iska13 [2621] M. Karaev and N. Iskenderov. Berezin number of operators and related questions. Methods Funct. Anal. Topol., 19(1):68–72, 2013. ka30 [2622] J. Karamata. Sur un mode de croissance r´eguli`ere des functions. Mathematica, Cluj, 4:38–53, 1930. ka33 [2623] J. Karamata. Sur un mode de croissance reguliere. Theoremes fondamentaux. Bull. Soc. Math. France, 61:55–62, 1933. atbakapo07 [2624] C. Karanikas, N. Atreas, A. Bakalakos, and P. Polychronidou. Discrete transforms on symbolic sequences for string matching, pattern recognition and grammar detection. In R. W. Ognyan Kounchev, editor, NATO science for peace and security series - D: Information and communication security, Vol.12: Scientific support for the decision making in the security sector, pages 126–137. IOS Press, 2007. 233 atka08-1 [2625] C. Karanikas and N. D. Atreas. Discrete type-Riesz products. In R. Stankovic, editor, Proceedings of the workshop: Walsh and dyadic analysis, pages 185–191, Nis, Serbia, 2008. atka08 [2626] C. Karanikas and N. D. Atreas. On a large class of non-linear coding methods based on Boolean invertible matrices. Facta Universitatis Series: Electronics and Energetics, 21(3):365–372, 2008. kana78 [2627] M. Karasev and V. Nazauikinskiui. Quantization of rapidly oscillating symbols. Mat. Sb. (N.S.), 106(148)(2):183–213, 1978. ka97-2 [2628] K. Karlander. On a property of the Fourier transform. Math. Scand., 80(2):310–312, 1997. heka13 [2629] Y. Karlovich and I. Hern´andez. Algebras of convolution type operators with piecewise slowly oscillating data. II: Local spectra and Fredholmness. Integr. Equ. Oper. Theory, 75(1):49–86, 2013. 13 [2630] Y. I. Karlovich, L. Rodino, B. Silbermann, and I. M. Spitkovsky, editors. Operator Theory, Pseudo-differential Equations, and Mathematical Physics, volume 228 of Operator Theory: Advances and Applications. Birkh¨auser/Springer Basel AG, Basel, 2013. ka10-1 [2631] A. Karoui. Uncertainty principles, prolate spheroidal wave functions, and applications. Barral, Julien (ed.) et al., Recent developments in fractals and related fields. Based on the international conference on fractals and related fields, Monastir, Tunisia, September 2007 held in honor of Jacques Peyriere. Boston, MA: Birkh¨auser. Applied and, 2010. ka11-4 [2632] A. Karoui. Unidimensional and bidimensional prolate spheroidal wave functions and applications. J. Franklin Inst., 348(7):1668–1694, 2011. kamo09-1 [2633] A. Karoui and T. Moumni. Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions. J. Comput. Appl. Math., 233(2):315–333, 2009. kaku02 [2634] B. Kashin and T. Kulikova. A note on the description of frames of general form. Math. Notes, 72(6):863–867 (2002); translation from mat. zametki 72, no., 2002. 234 kaku05 [2635] B. Kashin and T. Kulikova. On the validity for frames of a result concerning orthogonal systems. Math. Notes, 77(2):280–282, 2005. ka03-2 [2636] M. Kassmann. On Regularity for Beurling–Deny Type Dirichlet Forms. Potential Analysis, 19(1):69–87, 2003. itkako13 [2637] K. Kato, M. Kobayashi, and S. Ito. Characterization of wave front sets in Fourier-Lebesgue spaces and its application. Funkc. Ekvacioj, Ser. Int., 56(1):1–17, 2013. itkako14 [2638] K. Kato, M. Kobayashi, and S. Ito. Estimates on modulation spaces for Schr¨odinger evolution operators with quadratic and sub-quadratic potentials. J. Funct. Anal., 266(2):733 – 753, 2014. ka50 [2639] T. Kato. Upper and lower bounds of eigenvalues. Physical Review, 77(3):413–413, 1950. ka08-2 [2640] A. Katsevich. Motion compensated local tomography. 2008. kano12 [2641] G. Katz and V. Nodelman. The Shape of Algebra In the Mirrors of Mathematics A Visual, Computer-aided Exploration of Elementary Algebra and Beyond With CD-ROM. Hackensack, NJ: World Scientific. xxiv, 2012. karuot61 [2642] Y. Katznelson, W. Rudin, and o. others. The Stone-Weierstrass property in Banach algebras. Pacific J. Math, 11:253–265, 1961. kana86 [2643] S. Kaul and S. Naimpally. Local compactness in function spaces. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 120(3-4):48–54 (1987), 1986. kama13 [2644] J. Kauppi and M. Mathieu. C ∗ -Segal algebras with order unit. J. Math. Anal. Appl., 398(2):785 – 797, 2013. kaku10 [2645] S. Kaushik and V. Kumar. A note on fusion Banach frames. Arch. Math. (Brno), 46(3):203–209, 2010. kash11 [2646] S. Kaushik and S. Sharma. On unconditional atomic decompositions in Banach spaces. J. Appl. Funct. Anal., 6(4):343–355, 2011. kaposh13 [2647] S. Kaushik, S. Sharma, and K. Poumai. On Schauder frames in conjugate Banach spaces. J. Math., 2013:4, 2013. 235 kakhva14 [2648] S. Kaushik, L. Vashisht, and G. Khattar. Reconstruction property and frames in Banach spaces. Palest. J. Math., 3(1):11–26, 2014. ka49-2 [2649] T. Kawata. The Lipschitz condition of a function and Fejer means of Fourier series. K¯odai Math. Semin. Rep., 1949:1–4, 1949. ka88-1 [2650] T. Kawata. Lipschitz classes and Fourier series of stochastic processes. Tokyo J. Math., 11(2):269–280, 1988. buka04 [2651] S. Kazantsev and A. Bukhgeim. Singular value decomposition for the 2D fan-beam Radon transform of tensor fields. J. Inverse Ill-Posed Probl., 12(3):245–278, 2004. buka07 [2652] S. Kazantsev and A. Bukhgeim. Inversion of the scalar and vector attenuated X-ray transforms in a unit disc. J. Inverse Ill-Posed Probl., 15(7):735–765, 2007. keya94 [2653] B. Kedem and S. Yakowitz. Practical aspects of a fast algorithm for frequency detection. Communications, IEEE Transactions on, 42(9):2760–2767, 1994. ke06 [2654] K. Kedlaya. Fourier transforms and p-adic ‘Weil II’. Compos. Math., 142(6):1426–1450, 2006. ke10 [2655] K. Kedlaya. p-adic Differential Equations. Cambridge Studies in Advanced Mathematics 125. Cambridge: Cambridge University Press. xvii, 380 p., 2010. kekupo09 [2656] J. Keiner, S. Kunis, and D. Potts. Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 36(4):Art. 19, 30, 2009. ke04-1 [2657] F. Keinert. Wavelets And Multiwavelets. Boca Raton, FL: Chapman and Hall/CRC. xii, 2004. ke75-1 [2658] J. Keller. Closest unitary, orthogonal and Hermitian operators to a given operator. Math. Mag., 48:192–197, 1975. ke71-1 [2659] C. N. Kellogg. An extension of the Hausdorff-Young theorem. Michigan Math. J., 18:121–127, 1971. 236 kekora94-1 [2660] S. E. Kelly, M. A. Kon, and L. A. Raphael. Pointwise convergence of wavelet expansions. Bull. Amer. Math. Soc. (N.S.), 30(1):87–94, 1994. ke07 [2661] Q. Kemao. Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Optics and Lasers in Engineering, 45(2):304 – 317, 2007. gakewa08-1 [2662] Q. Kemao, W. Gao, and H. Wang. Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm. Appl. Opt, 47(29):5420– 5428, Oct 2008. gakewa08 [2663] Q. Kemao, H. Wang, and W. Gao. Windowed Fourier transform for fringe pattern analysis: theoretical analyses. Appl. Opt, 47(29):5408– 5419, Oct 2008. kevy13 [2664] H. Kempka and J. Vybiral. A note on the spaces of variable integrability and summability of Almeida and H¨ast¨o. Proc. Amer. Math. Soc., 141(9):3207–3212, 2013. kevy14 [2665] H. Kempka and J. Vybiral. Lorentz spaces with variable exponents. Math. Nachr., 287(8-9):938–954, 2014. gike11 [2666] J. Kepner and J. Gilbert. Graph algorithms in the language of linear algebra. SIAM, 2011. kekylepepi10 [2667] G. Kerkyacharian, G. Kyriazis, P. Le, P. Petrushev, and D. Picard. Inversion of noisy Radon transform by SVD based needlets. Appl. Comput. Harmon. Anal., 28(1):24–45, 2010. kengpi11 [2668] G. Kerkyacharian, T. Ngoc, and D. Picard. Localized spherical deconvolution. Ann. Statist., 39(2):1042–1068, 2011. kenipi12 [2669] G. Kerkyacharian, R. Nickl, and D. Picard. Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds. Probab. Theory Related Fields, 153(1-2):363– 404, 2012. kepe12 [2670] G. Kerkyacharian and P. Petrushev. Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. preprint, Submitted on 23 Oct 2012, 2012. 237 kepepixu09 [2671] G. Kerkyacharian, P. Petrushev, D. Picard, and Y. Xu. Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre expansions. J. Funct. Anal., 256(4):1137–1188, 2009. kephpi11 [2672] G. Kerkyacharian, N. Pham, and D. Picard. Localized spherical deconvolution. Ann. Statist., 39(2):1042–1068, 2011. ke83 [2673] R. Kerman. Convolution theorems with weights. Trans. Amer. Math. Soc., 280(1):207–219, 1983. ke03-2 [2674] D. Kerr. Matricial quantum Gromov-Hausdorff distance. J. Funct. Anal., 205(1):132–167, 2003. keli09 [2675] D. Kerr and H. Li. On Gromov-Hausdorff convergence for operator metric spaces. J. Operator Theory, 62(1):83–109, 2009. gekh04 [2676] K. Khare and N. George. Fractional finite Fourier transform. JOSA A, 21(7):1179–1185, 2004. khsh94 [2677] D. Khavinson and H. S. Shapiro. Invariant subspaces in Bergman spaces and Hedenmalm’s boundary value problem. Ark. Mat., 32(2):309–321, 1994. kh77 [2678] G. Khenkin. The Lewy equation and analysis on pseudoconvex manifolds. Russian Mathematical Surveys, 32(3):59–130, 1977. khkh11 [2679] A. Khosravi and B. Khosravi. Fusion frames and g-frames in Banach spaces. Proc. Indian Acad. Sci., Math. Sci., 121(2):155–164, 2011. khkosh12 [2680] A. Khrennikov, A. Kosyak, and V. Shelkovich. Wavelet analysis on adeles and pseudo-differential operators. J. Fourier Anal. Appl., 18(6):1215–1264, 2012. khra03 [2681] A. Khrennikov and Y. Radyno. On adelic analogue of Laplacian. Proc. Jangjeon Math. Soc., 6(1):1–18, 2003. khshsk09-1 [2682] A. Khrennikov, V. Shelkovich, and M. Skopina. p-adic orthogonal wavelet bases. p-Adic Numbers Ultrametric Anal. Appl., 1(2):145– 156, 2009. 238 khyu13 [2683] A. Khrennikov and E. Yurova. Criteria of measure-preserving for padic dynamical systems in terms of the Van der Put basis. J. Number Theory, 133(2):484–491, 2013. ravo06 [2684] A. Y. Khrennikov and Raki´c, editors. P-adic Mathematical Physics, volume 826 of AIP Conference Proceedings, Melville, NY, 2006. American Institute of Physics. khrova12 [2685] A. Y. Khrennikov, E. E. Rosinger, and A. J. van Zyl. Graded tensor products and the problem of tensor grade computation and reduction. p-Adic Numbers Ultrametric Anal. Appl., 4(1):20–26, 2012. ki09-3 [2686] M. Kibler. An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group. Journal of Physics A: Mathematical and Theoretical, 42(35):353001, 2009. kiprse97 [2687] T. Kilgore, J. Prestin, and K. Selig. Polynomial wavelets and wavelet packet bases. Studia Sci. Math. Hungar., 33(4):419–431, 1997. ki14-2 [2688] A. Kim. Generalized Riesz points for perturbations of Toeplitz operators. Commun. Korean Math. Soc., 29(2):257–262, 2014. alcakima11 [2689] D. Kim, S. Ali, C. Cafaro, and S. Mancini. Information geometry of quantum entangled Gaussian wave-packets. Arxiv preprint arXiv:1104.1250, 2011. kikili05 [2690] H. Kim, R. Kim, and J. Lim. The infimum cosine angle between two finitely generated shift-invariant spaces and its applications. Appl. Comput. Harmon. Anal., 19(2):253–281, 2005. kikw08 [2691] J. Kim and K. Kwon. Vector sampling expansion in Riesz bases setting and its aliasing error. Appl. Comput. Harmon. Anal., 25(3):315–334, 2008. kiki00 [2692] W.-Y. Kim and Y.-S. Kim. A region-based shape descriptor using Zernike moments. Signal Processing: Image Communication, 16(1):95–102, 2000. ki09-4 [2693] Y.-C. Kim. Carleson measures and the BMO space on the p-adic vector space. Math. Nachr., 282(9):1278–1304, 2009. 239 kiwa99 [2694] D. Kinderlehrer and N. Walkington. Approximation of parabolic equations using the Wasserstein metric. M2AN Math. Model. Numer. Anal., 33(4):837–852, 1999. ki09-2 [2695] E. King. Wavelet and frame theory: frame bound gaps, generalized shearlets, Grassmannian fusion frames, and p-adic wavelets. PhD thesis, 2009. ki89 [2696] J. King. A minimal error conjugate gradient method for ill-posed problems. J. Optim. Theory Appl., 60(2):297–304, 1989. ki04-2 [2697] A. Kirillov. Lectures on the Orbit Method. Providence, RI: American Mathematical Society (AMS), 2004. bekisc88 [2698] A. Kirsch, B. Schomburg, and G. Berendt. The Backus-Gilbert method. Inverse Problems, 4(3):771–783, 1988. kipo09 [2699] H. Kirshner and M. Porat. On the role of exponential splines in image interpolation. IEEE Trans. Image Process., 18(10):2198 –2208, oct. 2009. kisaun11 [2700] H. Kirshner, D. Sage, and M. Unser. 3D PSF Models for Fluorescence Microscopy in ImageJ. In Proceedings of the Twelfth International Conference on Methods and Applications of Fluorescence Spectroscopy, Imaging and Probes (MAF’11), pages 154,, 2011. ki02-1 [2701] V. Kisil. Spaces of Analytical Functions and Wavelets–Lecture Notes. arXiv, 2002. ki10-1 [2702] V. Kisil. Wavelets beyond admissibility. Progress in analysis and its applications, pages 219–225, 2010. ki12 [2703] V. Kisil. Geometry of M¨obius Transformations Elliptic, Parabolic and Hyperbolic Actions of SL2 (R) With DVD-ROM. 2012. ki12-1 [2704] V. Kisil. Hypercomplex representations of the Heisenberg group and mechanics. Internat. J. Theoret. Phys., 51(3):964–984, 2012. ki14 [2705] V. Kisil. Calculus of operators: covariant transform and relative convolutions. Banach J. Math. Anal., 8(2):156–184, 2014. 240 ki14-1 [2706] V. Kisil. The real and complex techniques in harmonic analysis from the point of view of covariant transform. Eurasian Mathematical Journal, 5(1):95–121, 2014. kiro93 [2707] J. Kitchen and D. Robbins. Integral operators on the section space of a Banach bundle. Int. J. Math. Math. Sci., 16(3):449–458, 1993. kiro94 [2708] J. Kitchen and D. Robbins. Bundles of Banach algebras. Int. J. Math. Math. Sci., 17(4):671–680, 1994. kiro94-1 [2709] J. Kitchen and D. Robbins. Bundles of Banach algebras. II. Houston J. Math., 20(3):435–451, 1994. kikuli11 [2710] P. Kittipoom, G. Kutyniok, and W.-Q. Lim. Construction of compactly supported shearlet frames. Constr. Approx., In Press, 2011. kikuli12 [2711] P. Kittipoom, G. Kutyniok, and W.-Q. Lim. Construction of compactly supported shearlet frames. Constr. Approx., 35(1):21–72, 2012. kismwi04 [2712] J. Kivinen, A. Smola, and R. Williamson. Online learning with kernels. IEEE Trans. Signal Process., 52(8):2165–2176, 2004. kita09 [2713] A. Kivinukk and G. Tamberg. Interpolating generalized Shannon sampling operators, their norms and approximation properties. Sampl. Theory Signal Image Process., 8(1):77–95, 2009. klrari11 [2714] E. Klann, R. Ramlau, and W. Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems Imaging, 5(1):137–166, 2011. klvi08 [2715] A. Klapuri and T. Virtanen. Automatic music transcription. In David Havelock, Sonoko Kuwano, and MIchael Vorl¨ander, editors, Handbook of signal processing in acoustics, Vol.1, Part IV, chapter 20, Musical acoustics, pages 277–303. Springer Science+Business Media, LLC, 2008. heklvi10 [2716] A. Klapuri, T. Virtanen, and T. Heittola. Sound source separation in monaural music signals using excitation-filter model and em algorithm. In Proc. Acoustics Speech and Signal Processing (ICASSP), IEEE International Conference on, pages 5510 –5513, march 2010. 241 klsk11 [2717] J. Klauder and B.-S. Skagerstam. Extension of Berezin-Lieb Inequalities. arXiv preprint arXiv:1106.5966, 2011. kl11 [2718] J. R. Klauder. A Modern Approach to Functional Integration. Boston, MA: Birkh¨auser. xv, 2011. kl11-1 [2719] J. R. Klauder. The utility of affine variables and affine coherent states. Arxiv preprint arXiv:1108.3380, 2011. dakl84 [2720] J. R. Klauder and I. Daubechies. Quantum mechanical path integrals with Wiener measures for all polynomials Hamiltonians. Phys. Rev. Lett., 52(14):1161–1164, 1984. kllisave08 [2721] C. Klein, P. Venema, L. Sagis, and E. Linden. Rheological discrimination and characterization of carrageenans and starches by Fourier transform-rheology in the nonlinear viscous regime. J. Non-Newton. Fluid Mech., 151(1-3):145–150, 2008. kl65-1 [2722] A. Kleppner. Multipliers on abelian groups. Math. Ann., 158:11–34, 1965. flgrkl12 [2723] V. Klien, T. Grill, and A. Flexer. On Automated Annotation of Acousmatic Music. Journal of New Music Research, 41(2):153–173, 2012. klmuro06 [2724] A. Klimov, J. L. Romero, and C. Munoz. Geometrical approach to the discrete Wigner function in prime power dimensions. J. Phys. A, Math. Gen., 39(46):14471–14497, 2006. kl12 [2725] A. Klotz. Spectral invariance of Besov-Bessel subalgebras. J. Approx. Theory, 164:268–296, 2012. brclknstue11 [2726] F. Knoll, C. Clason, K. Bredies, M. Uecker, and R. Stollberger. Parallel Imaging With Nonlinear Reconstruction Using Variational Penalties. Magnetic Resonance in Medicine, 2011. kn80 [2727] P. Knopf. Weak-type multipliers. Studia Math., 67:73–84, 1980. kn10 [2728] M. Knorrenschild. Numerische Mathematik Eine beispielorientierte Einf¨ uhrung. Hanser Verlag, 2010. kn13 [2729] S. Knudby. Semigroups of Herz-Schur multipliers. J. Funct. Anal., (0):–, 2013. 242 ankn03 [2730] H. Knutsson and M. Andersson. Loglets: generalized quadrature and phase for local spatio-temporal structure estimation. In Proceedings of the 13th Scandinavian conference on Image analysis, SCIA’03, page 8, Berlin, Heidelberg,, 2003. Springer-Verlag. dykosc11 [2731] J. Kobarg, A. Dyatlov, and S. Schiffler. MALDI data preprocessing. Technical Report 7.1, 2011. kosu11 [2732] M. Kobayashi and M. Sugimoto. The inclusion relation between Sobolev and modulation spaces. J. Funct. Anal., 260(11):3189 – 3208, June 2011. kosuto09-1 [2733] M. Kobayashi, M. Sugimoto, and N. Tomita. On the L2 -boundedness of pseudo-differential operators and their commutators with symbols in α-modulation spaces. J. Math. Anal. Appl., 350(1):157–169, 2009. kopeuno09 [2734] T. Kobayashi, B. Orsted, M. Pevzner, and A. Unterberger. Composition formulas in the Weyl calculus. J. Funct. Anal., 257(4):948–991, 2009. cakokuozot08 [2735] A. Koc, H. Ozaktas, C. Candan, A. Kutay, and o. others. Digital computation of linear canonical transforms. IEEE Trans. Signal Process., 56(6):2383–2394, June 2008. hekooz10 [2736] A. Koc, H. Ozaktas, and L. Hesselink. Fast and accurate algorithm for the computation of complex linear canonical transforms. J. Opt. Soc. Amer. A, 27(9):1896–1908, Sep 2010. kokosaso14 [2737] H. Koch, P. Koskela, E. Saksman, and T. Soto. Bounded compositions on scaling invariant Besov spaces. J. Funct. Anal., (0):–, 2014. kosi02 [2738] H. Koch and W. Sickel. Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions. Rev. Mat. Iberoam., 18(3):587–626, 2002. ko91-1 [2739] A. Kochubei. Schr¨odinger-type operator over p-adic number field. Theoretical and Mathematical Physics, 86(3):221–228, 1991. ko08-1 [2740] A. Kochubei. A non-Archimedean wave equation. Pacific J. Math., 235(2):245–261, 2008. 243 ko09-3 [2741] A. Kochubei. Analysis In Positive Characteristic. Cambridge Tracts in Mathematics 178. Cambridge: Cambridge University Press. ix, 210 p., 2009. ko09-2 [2742] A. Kochubei. p-adic spherical coordinates and their applications. 2009. ko01-2 [2743] A. N. Kochubei. Pseudo-differential equations and stochastics over non-Archimedean fields. Monographs and Textbooks in Pure and Applied Mathematics, 244. Marcel Dekker, 2001. kome08 [2744] V. Kokilashvili and A. Meskhi. On the maximal and Fourier operators in weighted Lebesgue spaces with variable exponent. Proc. A. Razmadze Math. Inst., 146:120–123, 2008. komera14 [2745] V. Kokilashvili, A. Meskhi, and H. Rafeiro. Grand BochnerLebesgue space and its associate space. J. Funct. Anal., 266(4):2125 – 2136, 2014. hiko00 [2746] B. Kolman and D. Hill. Elementary linear algebra. 7th ed. Upper Saddle River, NJ: Prentice Hall, 7th ed. edition, 2000. ko97-4 [2747] M. Kolountzakis. Lattice-tiling properties of integral self-affine functions. Appl. Math. Lett., 10(5):1–4, 1997. ko98-3 [2748] M. Kolountzakis. Lattice tilings by cubes: whole, notched and extended. Electron. J. Combin., 5:Research Paper 14, 11 pp. (electronic), 1998. ko00-1 [2749] M. Kolountzakis. On the structure of multiple translational tilings by polygonal regions. Discrete Comput. Geom., 23(4):537–553, 2000. ko00 [2750] M. Kolountzakis. Packing, tiling, orthogonality and completeness. Bull. London Math. Soc., 32(5):589–599, 2000. ko03 [2751] M. Kolountzakis. Translational tilings of the integers with long periods. Electron. J. Combin., 10:Research Paper 22, 9 pp. (electronic), 2003. ko04-2 [2752] M. Kolountzakis. The study of translational tiling with Fourier analysis. pages 131–187. 2004. 244 ko04-3 [2753] M. Kolountzakis. The study of translational tiling with Fourier analysis. In Fourier analysis and convexity, Appl. Numer. Harmon. Anal., pages 131–187. Birkh¨auser Boston, Boston, 2004. ko13-1 [2754] M. Kolountzakis. Multiple lattice tiles and Riesz bases of exponentials. arXiv, 2013. koli04 [2755] M. Kolountzakis and I. Laba. Tiling and spectral properties of nearcubic domains. Studia Math., 160(3):287–299, 2004. kola96 [2756] M. Kolountzakis and J. Lagarias. Structure of tilings of the line by a function. Duke Math. J., 82(3):653–678, 1996. koma09 [2757] M. Kolountzakis and M. Matolcsi. Algorithms for translational tiling. J. Math. Music, 3(2):85–97, 2009. kopa02 [2758] M. Kolountzakis and M. Papadimitrakis. The Steinhaus tiling problem and the range of certain quadratic forms. Illinois J. Math., 46(3):947–951, 2002. kowo99 [2759] M. Kolountzakis and T. Wolff. On the Steinhaus tiling problem. Mathematika, 46(2):253–280, 1999. kome13 [2760] V. Koltchinskii and S. Mendelson. Bounding the smallest singular value of a random matrix without concentration. ArXiv e-prints, dec 2013. ko01-3 [2761] V. I. Kolyada. Embeddings of fractional Sobolev spaces and estimates of Fourier transforms. Sbornik: Mathematics, 192(7):979, 2001. ko13 [2762] A. Komech. Quantum Mechanics: Genesis and Achievements. Dordrecht: Springer, 2013. koko13 [2763] A. Komech and A. Komech. On the Titchmarsh convolution theorem for distributions on the circle. Funct. Anal. Appl., 47(1):21–26, 2013. komanasa13 [2764] Y. Komori Furuya, K. Matsuoka, E. Nakai, and Y. Sawano. Integral operators on bσ -Morrey-Campanato spaces. Rev. Mat. Complut., 26(1):1–32, 2013. 245 koro12 [2765] W. Kong and V. Rokhlin. A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions. Appl. Comput. Harmon. Anal., 33(2):226 – 260, 2012. kolizh03 [2766] W. Kong, D. Zhang, and W. Li. Palmprint feature extraction using 2-D Gabor filters. Pattern Recognition, 36(10):2339 – 2347, 2003. koli07 [2767] Y. Koo and J. Lim. Perturbation of frame sequences and its applications to shift-invariant spaces. Linear Algebra and its Applications, 420(2-3):295 – 309, 2007. cokoliuy07 [2768] J. Kopf, M. Cohen, D. Lischinski, and M. Uyttendaele. Joint bilateral upsampling. In ACM SIGGRAPH 2007 papers, pages 96–es, 2007. kopo10 [2769] K. A. Kopotun and B. Popov. Moduli of smoothness of splines and applications in constrained approximation. Jaen J. Approx., 2(1):79 – 91, June 2010. ko81 [2770] B. Korenblum. Cyclic elements in some spaces of analytic functions,. Bull. Amer. Math. Soc., 5,(3,):317–318,, 1981. ko06-2 [2771] B. Korenblum. Blaschke sets for Bergman spaces. In Bergman spaces and related topics in complex analysis. Proceedings of a conference in honor of Boris Korenblum’s 80th birthday, Barcelona, Spain, November 20–22, 2003, pages 145–152. Providence, RI: American Mathematical Society (AMS) and Ramat Gan: Bar-Ilan University, 2006. ko11 [2772] A. Kornell. Quantum Functions. Arxiv preprint arXiv:1101.1694, 2011. ko81-1 [2773] H. Kosaki. Non-commutative Lorentz spaces associated with a semifinite von Neumann algebra and applications. Proc. Japan Acad., Ser. A, 57:303–306, 1981. ko81-2 [2774] H. Kosaki. Positive cones and Lp −spaces associated with a von Neumann algebra. J. Operator Theory, 6:13–23, 1981. kole07 [2775] P. Koskela and J. Lehrb¨ack. Quasihyperbolic growth conditions and compact embeddings of Sobolev spaces. Michigan Math. J., 55(1):183– 193, 2007. 246 koyazh10-1 [2776] P. Koskela, D. Yang, and Y. Zhou. A characterization of Hajasz Sobolev and Triebel Lizorkin spaces via grand Littlewood Paley functions. J. Funct. Anal., 258:2637–2661, 2010. kosl54-1 [2777] G. Koster and J. Slater. Wave Functions for Impurity Levels. Phys. Rev. A, 95(5):9, Sep 1954. cadujako11 [2778] V. Kostina, M. Duarte, S. Jafarpour, and R. Calderbank. The value of redundant measurement in compressed sensing. In Acoustics Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, page 4, 2011. komamo07 [2779] V. Kostrykin, K. Makarov, and A. Motovilov. Perturbation of spectra and spectral subspaces. Trans. Amer. Math. Soc., 359(1):77–89, 2007. komask07 [2780] V. Kostrykin, K. Makarov, and A. Skripka. The Birman–Schwinger principle in von Neumann algebras of finite type. J. Funct. Anal., 247(2):492–508, 2007. koze99 [2781] A. Kosyak and R. Zekri. Anti-Wick symbols on infinite tensor product spaces. Methods Funct. Anal. Topol., 5(2):29–39, 1999. ko33 [2782] V. Kotelnikov. On the transmission capacity of the ether and of cables in electrical communications. 1933. hakoliso12 [2783] I. Kotzer, S. Har Nevo, S. Sodin, and S. Litsyn. A model for OFDM signals with applications. Trans. Emerging Tel. Tech, April 2012. koqi06 [2784] K.-I. Kou and T. Qian. Shannon sampling in the Clifford analysis setting. Z. Anal. Anwend., 24(4):853–870, 2006. koxuzh12 [2785] K.-I. Kou, R.-H. Xu, and Y.-H. Zhang. Paley – Wiener theorems and uncertainty principles for the windowed linear canonical transform. Math. Methods Appl. Sci., 35(17):2122–2132, 2012. kopu10 [2786] J. Kovacevic and M. P¨ uschel. Algebraic signal processing theory: sampling for infinite and finite 1-D space. IEEE Trans. Signal Process., 58(1):242–257, January 2010. dokosi13 [2787] M. Kowalski, K. Siedenburg, and M. D¨orfler. Social Sparsity! Neighborhood Systems Enrich Structured Shrinkage Operators. IEEE Trans. Signal Process., 61(10):2498 – 2511, 2013. 247 kopf05 [2788] W. Kozek and G. E. Pfander. Identification of operators with bandlimited symbols. SIAM journal on mathematical analysis, 37(3):867–888, 2005. koni12 [2789] G. Kozma and S. Nitzan. Combining Riesz bases. arXiv, 2012. kool13 [2790] G. Kozma and A. Olevskii. Perturbing PLA. J. Anal. Math., 121:279– 298, 2013. kool13-1 [2791] G. Kozma and A. Olevskii. Singular distributions, dimension of support, and symmetry of Fourier transform. Ann. Inst. Fourier (Grenoble), 63(4):1205–1226, 2013. koya94 [2792] H. Kozono and M. Yamazaki. Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differential Equations, 19(5-6):959–1014, 1994. ko02-1 [2793] S. Kozyrev. Wavelet theory as p-adic spectral analysis. Izv. Math., 66(2):367–376, 2002. khko11 [2794] S. Kozyrev and A. Khrennikov. p-adic integral operators in wavelet bases. Dokl. Math., 83(2):209–212, 2011. fokokp09 [2795] B. A. Kpata, I. Fofana, and K. Koua. Necessary condition for measures which are (lq , lp ) multipliers. Ann. Math. Blaise Pascal, 16(2):339–353, 2009. kr72 [2796] I. Kra. Automorphic Forms and Kleinian Groups. Mathematics Lecture Note Series. Reading, Mass.: W. A. Benjamin, 1972. krmera12 [2797] F. Krahmer, S. Mendelson, and H. Rauhut. Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math., to appear. krpf14 [2798] F. Krahmer and G. E. Pfander. Local sampling and approximation of operators with bandlimited Kohn-Nirenberg symbol. Constr. Approx. krpfra09 [2799] F. Krahmer, G. E. Pfander, and P. Rashkov. Applications of the uncertainty principle for finite abelian groups to communications engineering. Bulg. J. Phys., 36(1):54–59, 2009. 248 krra14 [2800] F. Krahmer and H. Rauhut. Structured random measurements in signal processing. preprint, 2014. krwa12 [2801] F. Krahmer and R. Ward. Beyond incoherence: stable and robust sampling strategies for compressive imaging. preprint, 2012. krwaXX [2802] F. Krahmer and R. Ward. Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process., to appear. krsc01 [2803] T. Krajewski and M. Schnabl. Exact solitons on non-commutative tori. J. High Energy Phys., (8):Paper 2, 22, 2001. krry90 [2804] A. Krajka and Z. Rychlik. On the rate of convergence in the random central limit theorem in Hilbert space. Probab. Math. Stat., 11(1):97– 108, 1990. krpa02 [2805] S. Krantz and H. Parks. The Implicit Function Theorem. History, Theory, And Applications. Boston, MA: Birkh¨auser., 2002. kr78-1 [2806] S. G. Krantz. Intrinsic Lipschitz classes on manifolds with applications to complex function theory and estimates for the ∂¯ and ∂¯b equations. Manuscripta Math., 24(4):351–378, 1978. kr04 [2807] I. Krasikov. New bounds on the Hermite polynomials. East J. Approx., 10(3):355–362, 2004. kr06 [2808] I. Krasikov. Uniform bounds for Bessel functions. J. Appl. Anal., 12(1):83–91, 2006. kr08 [2809] I. Krasikov. On the Erdelyi-Magnus-Nevai conjecture for Jacobi polynomials. Constr. Approx., 28(2):113–125, 2008. alkr03 [2810] A. Krasowska and S. Ali. Wigner functions for a class of semi-direct product groups. J. Phys. A, Math. Gen., 36(11):2801–2820, 2003. krni12 [2811] D. Kreit and S. Nicolay. Some characterizations of generalized H¨older spaces. Math. Nachr., 285(17-18):2157–2172, 2012. babakrriwa11 [2812] W. Kreuzer, H. Waubke, G. Rieckh, and P. Balazs. A 3D model to simulate vibrations in a layered medium with stochastic material parameters. J. Comput. Acoust., 19(2):139 – 154, 2011. 249 krmira09 [2813] A. Kriegl, P. Michor, and A. Rainer. The convenient setting for nonquasianalytic Denjoy-Carleman differentiable mappings. J. Funct. Anal., 256(11):3510–3544, 2009. kr12 [2814] C. Kriegler. Functional calculus and dilation for C0 -groups of polynomial growth. Semigroup Forum, 84(3):393–433, 2012. kr14 [2815] C. Kriegler. H¨ormander type functional calculus and square function estimates. J. Operator Theory, 71(1):223–257, 2014. krwe14 [2816] C. Kriegler and L. Weis. Spectral multiplier theorems and Rboundedness. arXiv preprint arXiv:1407.0194, 2014. kr11 [2817] I. Krishtal. Wiener’s lemma and memory localization. J. Fourier Anal. Appl., 17(4):674–690, 2011. kr11-1 [2818] I. Krishtal. Wiener’s lemma: pictures at an exhibition. Rev. Un. Mat. Argentina, 52(2):61–79, 2011. krsk11 [2819] A. Krivoshein and M. Skopina. Approximation by frame-like wavelet systems. Appl. Comput. Harmon. Anal., 31(3):410–428, 2011. kr09-2 [2820] J. Krommweh. Bildapproximation mittels der TetroletTransformation. 19. Rhein-Ruhr-Workshop, page 33, 2009. kr10 [2821] J. Krommweh. Gerichtete Haarwavelet-Systeme in der Bildverabeitung. PhD thesis, 2010. kr10-1 [2822] J. Krommweh. Image approximation by adaptive tetrolet transform. In Laurent Fesquet and Bruno Torr´esani, editors, SAMPTA’09 - 8th international conference on Sampling Theory and Applications, volume published online, page 4, Marseille, France, 2010. kr10-2 [2823] J. Krommweh. Tetrolet transform: A new adaptive Haar wavelet algorithm for sparse image representation. Journal of Visual Communication and Image Representation, 21(4):364 – 374, 2010. krma10 [2824] J. Krommweh and J. Ma. Tetrolet shrinkage with anisotropic total variation minimization for image approximation. Signal Process., 90(8):2529–2539, 2010. 250 krmo08 [2825] B. Kr¨on and R. M¨oller. Analogues of Cayley graphs for topological groups. Math. Z., 258(3):637–675, 2008. krrisc11 [2826] K. Kroschel, G. Rigoll, and B. Schuller. Statistische Informationstechnik - Signal -und Mustererkennung, Parameter-und Signalsch¨atzung. Springer Berlin Heidelberg, 5. Auflage edition, 2011. krku05 [2827] N. Y. Kruglyak and E. Kuznetsov. Smooth and nonsmooth Calder’onZygmund type decompositions for Morrey spaces. J. Fourier Anal. Appl., 11(6):697–714, 2005. krma91 [2828] N. Y. Kruglyak and M. Mastylo. Correct interpolation functors of orbits. J. Funct. Anal., 102(2):401–413, 1991. kuta10 [2829] W. Kuang and L. Tao. Gabor representation for radar signals via real-valued discrete Gabor transform. Computer Technology and Development, 10:–, 2010. ku78 [2830] L. Kudrjavcev. On the density of compactly supported functions in weighted spaces. Sov. Math., Dokl., 19:277–281, 1978. grku14-1 [2831] R. Kueng and D. Gross. RIPless compressed sensing from anisotropic measurements. Linear Algebra Appl., 441:110–123, 2014. ku96-1 [2832] T. Kuhn. The structure of scientific revolutions. University of Chicago press, 1996. ku13 [2833] N. Kumar. Ideals with bounded approximate identities in the Fourier algebras on homogeneous spaces. Indag. Math., New Ser., 24(1):1–14, 2013. ku14 [2834] P. Kumar. Fourier restriction theorem and characterization of weak eigenfunctions of the Laplace-Beltrami operator. J. Funct. Anal., 266(9):5584 – 5597, 2014. kusasi13 [2835] S. Kumar, K. Singh, and R. Saxena. Closed-form analytical expression of fractional order differentiation in fractional Fourier transform domain. Circuits Systems Signal Process., 32(4):1875–1889, 2013. kupo08 [2836] S. Kunis and D. Potts. Time and memory requirements of the nonequispaced FFT. Sampl. Theory Signal Image Process., 7(1):77–100, 2008. 251 kuwe04 [2837] P. Kunstmann and L. Weis. Maximal lp -regularity for parabolic equations, Fourier multiplier theorems and h∞ -functional calculus. In Functional analytic methods for evolution equations, volume 1855 of Lecture Notes in Math., pages 65–311. Springer, Berlin, 2004. ku58 [2838] R. Kunze. Lp Fourier transforms on locally compact unimodular groups. Trans. Amer. Math. Soc., 89(2):pp. 519–540, 1958. ku59-1 [2839] R. Kunze. An operator theoretic approach to generalized Fourier transforms. Ann. of Math. (2), 69:1–14, 1959. ku59 [2840] R. Kunze. Recent Publications: An Introduction to Fourier Analysis and Generalized Functions. Amer. Math. Monthly, 66(3):243, 1959. kust60 [2841] R. A. Kunze and E. M. Stein. Uniformly bounded representations and harmonic analysis of the 2x2 real unimodular group. Amer. J. Math., 82(1):1–62, 1960. dogrgrku02-1 [2842] C. Kuo, R. Graf, A. Dowling, and W. Graham. On the horn effect of a tyre/road interface, Part ll: Asymptotic theories. Journal of Sound and Vibration, 256(3):433 – 445, September 2002. ku97-1 [2843] I. Kupka. G´eom´etrie sous-riemannienne. Ast´erisque, (241):Exp. No. 817, 5, 351–380, 1997. boduku11 [2844] P. Kuppinger, G. Durisi, and H. B¨olcskei. Uncertainty relations and sparse signal recovery for pairs of general signal sets. Preprint, 2011. kuoszh09 [2845] H. Kurke, D. Osipov, and A. Zheglov. Formal punctured ribbons and two-dimensional local fields. J. Reine Angew. Math., 629:133–170, 2009. ku07-3 [2846] G. Kutyniok. Homogeneous Approximation Property. Affine Density in Wavelet Analysis, pages 87–104, 2007. kula12 [2847] G. Kutyniok and D. Labate. Shearlets Multiscale Analysis for Multivariate Data. Appl. Numer. Harmon. Anal. Boston, MA: Birkh¨auser, 2012. kuli11 [2848] G. Kutyniok and W.-Q. Lim. Compactly supported shearlets are optimally sparse. J. Approx. Theory, 163(11):1564–1589, 2011. 252 kusa09 [2849] G. Kutyniok and T. Sauer. Adaptive directional subdivision schemes and shearlet multiresolution analysis. SIAM J. Math. Anal., 41(4):1436–1471, 2009. ku08-1 [2850] Y. Kuznetsova. Invariant weighted algebras √ (}). Math. Notes, √ (}) on an uncount- 84(3):529–537, 2008. ku09-2 [2851] Y. Kuznetsova. Example of a weighted algebra able discrete group. J. Math. Anal. Appl., 353(2):660–665, 2009. ku01-4 [2852] Y. N. Kuznetsova. Multiplication on Frechet spaces. Mosc. Univ. Math. Bull., 56(1):38–40, 2001. ku06-2 [2853] Y. N. Kuznetsova. Weighted Lp -algebras on groups. Funct. Anal. Appl., 40(3):234–236, 2006. ku09-1 [2854] Y. N. Kuznetsova. Constructions of regular algebras √ (}). Sb. Math., 200(2):229–241, 2009. ku12 [2855] Y. N. Kuznetsova. On continuity of measurable group representations and homomorphisms. Studia Math., 210(3):197–208, 2012. kumo12 [2856] Y. N. Kuznetsova and C. Molitor Braun. Harmonic analysis of weighted Lp -algebras. Exposition. Math., 30(2):124–153, 2012. kwpe80 [2857] S. Kwapien and A. Pelczynski. Absolutely summing operators and translation invariant spaces of functions on compact abelian groups. Math. Nachr., 94:303–340, 1980. chky00 [2858] A. Kyatkin and G. Chirikjian. Algorithms for fast convolutions on motion groups. Appl. Comput. Harmon. Anal., 9(2):220–241, 2000. kypexu08 [2859] G. Kyriazis, P. Petrushev, and Y. Xu. Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces. Studia Math., 186(2):161–202, 2008. ceky14 [2860] A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. J. Math. Imaging Vis, 48:235–265, 2014. lamane12 [2861] D. Labate, L. Mantovani, and P. Negi. Shearlet smoothness spaces, 2012. 253 lath97 [2862] M. Lacey and C. Thiele. Lp estimates on the bilinear Hilbert transform for 2 < p < ∞. Ann. Math. (2), 146(3):693–724, 1997. laonristto14 [2863] H. Lachambre, B. Ricaud, G. Stempfel, B. Torresani, C. Wiesmeyr, and D. M. Onchis. Optimal window and lattice in Gabor transform. Application to Audio Analysis. ArXiv e-prints, 2014. la96-4 [2864] J. Lagarias. Meyer’s concept of quasicrystal and quasiregular sets. Comm. Math. Phys., 179(2):365–376, 1996. la99-4 [2865] J. Lagarias. Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom., 21(2):161–191, 1999. la99-3 [2866] J. Lagarias. Geometric models for quasicrystals. II. Local rules under isometries. Discrete Comput. Geom., 21(3):345–372, 1999. la00-2 [2867] J. Lagarias. Mathematical quasicrystals and the problem of diffraction. In Directions in mathematical quasicrystals, volume 13 of CRM Monogr. Ser., pages 61–93. 2000. lapl03 [2868] J. Lagarias and P. Pleasants. Repetitive Delone sets and quasicrystals. Ergodic Theory Dynam. Systems, 23(3):831–867, 2003. lash94 [2869] J. Lagarias and P. Shor. Cube-tilings of rn and nonlinear codes. Discrete Comput. Geom., 11(4):359–391, 1994. lawa96-1 [2870] J. Lagarias and Y. Wang. Tiling the line with translates of one tile. Invent. Math., 124(1-3):341–365, 1996. lamamo95 [2871] P. Laguna, G. Moody, and R. Mark. Power spectral density of unevenly sampled heart rate data. In Engineering in Medicine and Biology Society, 1995., IEEE 17th Annual Conference, volume 1, pages 157–158, 1995. cajalavi92 [2872] P. Laguna, D. Vigo, R. Jane, and P. Caminal. Automatic wave onset and offset determination in ECG signals: Validation with the CSE database. In Computers in Cardiology 1992, Proceedings of, pages 167–170, 1992. lana11 [2873] E. Lagunas and M. Najar. Sparse Channel Estimation based on Compressed Sensing for Ultra WideBand Systems. pages 365–369, Sep. 2011. 254 la71-3 [2874] H.-C. Lai. On the multipliers of Ap (G)-algebras. Tohoku Math. J., 23:641–662, 1971. la72 [2875] H.-C. Lai. A characterization of the multipliers of Banach algebras. Yokohama Math. J., 20:45–50, 1972. la74-2 [2876] H.-C. Lai. Multipliers of a Banach algebra in the second conjugate algebra as an idealizer. Tohoku Math. J., 26:431–452, 1974. la85-3 [2877] H.-C. Lai. Multipliers for some spaces of Banach algebra valued functions. Rocky Mountain J. Math., 15:157–166, 1985. la85-2 [2878] H.-C. Lai. Multipliers of Banach valued function spaces. J. Austral. Math. Soc. Ser. A, 39:51–62, 1985. la85-1 [2879] H.-C. Lai. Translation invariant operators and multipliers of vector valued functions. Math. Res. Cent. Rep., Symp. Taipei/Taiwan 1985, 244-256 (1985), 1985. chla88 [2880] H.-C. Lai and T.-K. Chang. Translation invariant operators and multipliers of Banach-valued function spaces. In Analysis, Proc. Conf., Singapore 1986, volume 150 of Math. Stud., pages 151–162. NorthHolland, 1988. laye86 [2881] H.-C. Lai and Y. Yeh. On the multipliers of the p-class Banach algebras in an H ∗ -algebra. Tamkang J. Math., 17(2):71–85, 1986. lary02 [2882] D. Lakew and J. Ryan. Complete function systems and decomposition results arising in Clifford analysis. Comput. Methods Funct. Theory, 2(1):215–228, 2002. lary03 [2883] D. Lakew and J. Ryan. Complete function systems and decomposition results arising in Clifford analysis. Computational Methods and Function Theory, 2(1):215–228, 2003. la86 [2884] W. Lamb. Fourier multipliers on spaces of distributions. Proc. Edinburgh Math. Soc. (2), 29:309–327, 1986. lati85 [2885] P. Lancaster and M. Tismenetsky. The theory of matrices. 2nd ed., with applications. Computer Science and Applied Mathematics. Orlando etc.: Academic Press (Harcourt Brace Jovanovich, Publishers). XV, 570 p. $ 59.00 (1985)., 1985. 255 la94-1 [2886] E. Lance. Unitary operators on Hilbert C*-modules. Bulletin of the London Mathematical Society, 26(4):363–366, 1994. la77-2 [2887] H. J. Landau. The notion of approximate eigenvalues applied to an integral equation of laser theory. Q. Appl. Math., 35:165–172, 1977. la98-4 [2888] H. J. Landau. Maximum entropy and maximum likelihood in spectral estimation. IEEE Trans. Inform. Theory, 44(3):1332–1336, 1998. la06-3 [2889] G. Landi. On harmonic maps in noncommutative geometry. In Noncommutative Geometry and Number Theory, pages 217–234. Springer, 2006. la02-4 [2890] M. Landstad. Traces on noncommutative homogeneous spaces. J. Funct. Anal., 191(2):211–223, 2002. lara97 [2891] M. Landstad and I. Raeburn. Equivariant deformations of homogeneous spaces. J. Funct. Anal., 148(2):480–507, 1997. la72-1 [2892] M. Lane. Kategorien. Begriffssprache und mathematische Theorie. Hochschultexte. Berlin-Heidelberg-New York: Springer-Verlag., 1972. la72-2 [2893] M. Lane. Kategorien. Begriffssprache und mathematische Theorie. Hochschultexte. Berlin-Heidelberg-New York: Springer-Verlag., 1972. laratawa08 [2894] J. Lang, R. Tao, Q. Ran, and Y. Wang. The multiple-parameter fractional Fourier transform. Science in China Series F: Information Sciences, 51(8):1010–1024, 2008. latawa10 [2895] J. Lang, R. Tao, and Y. Wang. The discrete multiple-parameter fractional Fourier transform. SCIENCE CHINA Information Sciences, 53(11):2287–2299, 2010. la09-3 [2896] D. Langemann. Total ponderomotive force on an extended test body. Int. J. Math. Math. Sci., 2009. lapr10 [2897] D. Langemann and J. Prestin. Multivariate periodic wavelet analysis. Appl. Comput. Harmon. Anal., 28(1):46–66, 2010. lata08 [2898] D. Langemann and M. Tasche. Phase reconstruction by a multilevel iteratively regularized Gauss-Newton method. 2008. 256 lata09 [2899] D. Langemann and M. Tasche. Multilevel phase reconstruction for a rapidly decreasing interpolating function. Result. Math., 53(3-4):333– 340, 2009. la13 [2900] M. Langenbruch. Convolution operators on spaces of real analytic functions. Mathematische Nachrichten, 286(8-9):908–920, 2013. lalo04 [2901] G. Langwagen and A. Lopes. Sampled continuous time filter banks and frame theory. In M. H. Rashid, editor, Proceedings of the Second IASTED International Conference on Circuits, Signals, and Systems, Clearwater Beach, FL, USA, November 28, 2004 - December 1, 2004, pages 64–68. IASTED/ACTA Press, 2004. calaro87-1 [2902] A. Lannes, M. Casanove, and S. Roques. Stabilized Reconstruction in Signal and Image Processing: II. Iterative Reconstruction with and Without Constraint–Interactive Implementation. Journal of Modern Optics, 34(3):321–370, 1987. lalelisost11 [2903] D. Lantzberg, R. Levie, F. Lieb, N. Sochen, and H.-G. Stark. Deliverable 2.1: Comprehensive Construction Schemes of Uncertainty Minimizers. Technical report, 2011. lamasc07 [2904] F. Lanzara, V. Maz’ya, and G. Schmidt. Approximate approximations on nonuniform grids. Matematiche, 62(2):303–318, 2007. lamasc07-1 [2905] F. Lanzara, V. G. Maz’ya, and G. Schmidt. Approximate approximations from scattered data. 145(2):141–170, April 2007. lasc09-1 [2906] F. Lanzara and G. Schmidt. Cubature of integral operators by approximate quasi-interpolation. Cialdea, Alberto (ed.) et al., Analysis, partial differential equations and applications. The Vladimir Maz’ya anniversary volume. Selected papers of the international workshop, Rome, Italy, June 30–July 3, 2008. Basel: Birkh¨auser. Operator Theory: Advanc, 2009. la96-3 [2907] M. Lapidus. The Feynman integral and Feynman’s operational calculus: A heuristic and mathematical introduction. Ann. Math. Blaise Pascal, 3(1):89–102, 1996. la99-2 [2908] J. Lapsley Miller. The role of the bandwidth-duration product WT in the detectability of diotic signals. PhD thesis, 1999. 257 lascspta06 [2909] D. Larson, E. Schulz, D. Speegle, and K. F. Taylor. Explicit crosssections of singly generated group actions. Heil, Christopher (ed.), Harmonic analysis and applications. In Honor of John J. Benedetto. Basel: Birkh¨auser. Applied and Numerical Harmonic Analysis, 2006. edla91 [2910] R. Larson and B. Edwards. Elementary linear algebra. 2nd ed. Lexington, MA etc.: D.C. Heath and Company, 2nd ed. edition, 1991. brlale04 [2911] B. Larsson, T. Levitina, and E. Br¨andas. Eigenfunctions of the 2D finite Fourier transform. J. Comput. Methods Sci. Eng., 4(1-2):135– 148, 2004. aahala08 [2912] E. Larsson, K. Aahlander, and A. Hall. Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform. J. Comput. Appl. Math., 222(1):175–192, 2008. bala12 [2913] J. N. Laska and R. G. Baraniuk. Regime change: Bit-depth versus measurement-rate in compressive sensing. IEEE Transactions on Signal Processing, 60:3496–3505, 2012. babodala11 [2914] J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. G. Baraniuk. Democracy in action: Quantization, saturation, and compressive sensing. Appl. Comput. Harmon. Anal., 31(3):429–443, 2011. la03 [2915] R. Lasuriya. Characterization of φ-strong summability points of the Fourier-Laplace series for functions from class lp (sm ), p > 1. Ukrain. Mat. Zh., 55(1):45–54, 2003. la96-2 [2916] R. Latala. Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Math., 118(3):301–304, 1996. la12-1 [2917] F. Latremoliere. Quantum locally compact metric spaces. J. Funct. Anal., (0):–, 2012. lapa11 [2918] F. Latremoliere and J. Packer. Noncommutative solenoids. Submitted on 28 Oct 2011, Not yet published (06/03/13):30, 2011. la12 [2919] A. J. Laub. Computational matrix analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. 258 lasi11 [2920] R. Laugesen and B. Siudeja. Sums of Laplace eigenvalues: rotations and tight frames in higher dimensions. J. Math. Phys., 52(9):093703, 13, 2011. la83-1 [2921] R. Laughlin. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Physical Review Letters, 50(18):1395–1398, 1983. la87 [2922] G. Laumon. Transformation de Fourier, constantes d’´equations fonctionnelles et conjecture de Weil. (Fourier transformation, constants of the functional equations and Weil conjecture). Publ. Math., Inst. Hautes tud. Sci., 65:131–210, 1987. la00-1 [2923] D. Lawrence. A stability property of nonlinear sampled-data systems with slowly varying inputs. IEEE Trans. Automat. Control, 45(3):592–596, 2000. la61 [2924] C. Lawson. Contributions to the Theory of Linear Least Maximum Approximation. PhD thesis, 1961. la11 [2925] W. Lawton. The Feichtinger conjecture for exponentials. J. Nonlinear Anal. Optim., 2(1):131–140, 2011. la02-3 [2926] P. Lax. Functional analysis. Wiley-Interscience Series in Pure and Applied Mathematics. Chichester: Wiley. xx, 580 p., 2002. lasito05 [2927] A. Lazar, E. Simonyi, and L. T´oth. Time encoding of bandlimited signals, an overview. Technical report, Columbia University, New York, 2005. le09-4 [2928] T. Le. Finite-rank products of Toeplitz operators in several complex variables. Integr. Equ. Oper. Theory, 63(4):547–555, 2009. le10-3 [2929] T. Le. A refined Luecking’s theorem and finite-rank products of Toeplitz operators. Complex Anal. Oper. Theory, 4(2):391–399, 2010. leslwe10 [2930] Q. T. Le Gia, I. H. Sloan, and H. Wendland. Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal., 48(6):2065– 2090, 2010. le11 [2931] V. Lebedev. Absolutely convergent Fourier series. An improvement of the Beurling-Helson theorem. to be published, 2011. 259 lepr14 [2932] E. Lebedeva and J. Prestin. Periodic wavelet frames and timefrequency localization. Appl. Comput. Harmon. Anal., (0):–, 2014. le05-2 [2933] H. Lebesgue. Recherches sur la convergence des s’eries de it Fourier. Math. Ann., 61:251–280, 1905. le91-1 [2934] J. Lechleider. A new interpolation theorem with application to pulse transmission. Communications, IEEE Transactions on, 39(10):1438– 1444, 1991. leme14 [2935] G. Lecu´e and S. Mendelson. Sparse recovery under weak moment assumptions. ArXiv e-prints, jan 2014. leva11 [2936] J. Lederer and S. van de Geer. The Bernstein-Orlicz norm and deviation inequalities. preprint, 2011. le03-2 [2937] M. Ledoux. On improved Sobolev embedding theorems. Math. Res. Lett., 10(5-6):659–669, 2003. lemumusm00 [2938] J.-P. Leduc, F. Mujica, R. Murenzi, and M. Smith. Spatiotemporal wavelets: a group-theoretic construction for motion estimation and tracking. SIAM J. Appl. Math., 61(2):596–632 (electronic), 2000. leresasrtr10 [2939] J. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and J. A. Tropp. Practical large-scale optimization for max-norm regularization. In Advances in Neural Information Processing Systems 23 (NIPS), pages 1297–1305, Vancouver, December 2010. lesasu12 [2940] J. Lee, Y. Sun, and M. Saunders. Proximal Newton-type methods for convex optimization. preprint, 2012. leve07 [2941] J. Lee and M. Verleysen. Springer, 2007. Nonlinear Dimensionality Reduction. le12 [2942] M.-Y. Lee. Boundedness of Riesz transforms on weighted Carleson measure spaces. Studia Math., 209(2):169–187, 2012. le89-1 [2943] P.-Y. Lee. Lanzhou Lectures on Henstock Integration. Series in Real Analysis, 2. London etc.: World Scientific. viii, 1989. 260 lese12 [2944] S. Lee and A. Seeger. Lebesgue space estimates for a class of Fourier integral operators associated with wave propagation. Mathematische Nachrichten, pages n/a–n/a, 2012. esle11 [2945] R. Legarda Saenz and A. Espinosa Romero. Wavefront reconstruction using multiple directional derivatives and Fourier transform. Opt. Eng., 50(4):040501(4), 2011. lesh14 [2946] J. Lehrb¨ack and N. Shanmugalingam. Quasiadditivity of variational capacity. Potential Analysis, 40(3):247–265, 2014. aidukolesituzw08 [2947] J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F. X. Sillion, and T. Aila. A meshless hierarchical representation for light transport. ACM Trans. Graph., 27(3), August 2008. chhule08 [2948] C. Lei, Y. Huang, and Z. Cheng. The characterization of compact support of Fourier transform for scaling function and orthonormal wavelets of l2 ( s ). Curr. Dev. Theory Appl. Wavelets, 2(3):253–276, 2008. chlelixi11 [2949] N. Lei, J. Chai, P. Xia, and Y. Li. A fast algorithm for the multivariate Birkhoff interpolation problem. J. Comput. Appl. Math., 236(6):1656 – 1666, 2011. chleparota08 [2950] G. Leibon, D. Rockmore, W. Park, R. Taintor, and G. Chirikjian. A fast Hermite transform. Theoret. Comput. Sci., 409(2):211–228, 2008. le89-2 [2951] B. Lemaire. The proximal algorithm. In New methods in optimization and their industrial uses (Pau/Paris, 1987), volume 87 of Internat. Schriftenreihe Numer. Math., pages 73–87. Birkh¨auser, Basel, 1989. le12-1 [2952] P. Lemari´e Rieusset. The role of Morrey spaces in the study of NavierStokes and Euler equations. Eurasian Math. J., 3(3):62–93, 2012. le09-2 [2953] J. Lemvig. Constructing pairs of dual bandlimited framelets with desired time localization. Adv. Comput. Math., 30(3):231–247, 2009. hale11 [2954] J. Leng and D. Han. Optimal dual frames for erasures. II. Linear Algebra Appl., 435(6):1464–1472, 2011. 261 hale12 [2955] J. Leng and D. Han. Orthogonal projection decomposition of matrices and construction of fusion frames. Adv. Comput. Math., Online first:1– 13, 2012. hahule11 [2956] J. Leng, D. Han, and T. Huang. Optimal dual frames for communication coding with probabilistic erasures. IEEE Trans. Signal Process., 59(11):5380 –5389, nov. 2011. lelelo82 [2957] A. Lenstra, H. Lenstra, and L. Lov´asz. Factoring polynomials with rational coefficients. Math. Ann., 261:515–534, 1982. le87 [2958] H. Lenstra. Factoring integers with elliptic curves. Ann. Math. (2), 126:649–673, 1987. le90-1 [2959] S. Leon. Linear algebra with applications. 3rd ed. New York: Macmillan Publishing Company, 3rd ed. edition, 1990. le06-3 [2960] S. Leon. Linear Algebra with Applications. 7th Edition. Pearson Education Inc., 2006. fahele03 [2961] S. Leon, E. Herman, and R. Faulkenberry. ATLAST Computer Exercises for Linear Algebra. Pearson Education Inc., 2nd edition, 2003. lesp11 [2962] G. Leoni and D. Spector. Characterization of Sobolev and BV spaces. J. Funct. Anal., 261(10):2926 – 2958, 2011. lesp14 [2963] G. Leoni and D. Spector. Corrigendum to “Characterization of Sobolev and BV spaces”. J. Funct. Anal., 266(2):1106–1114, 2014. lesk11 [2964] H.-G. Leopold and L. Skrzypczak. Entropy numbers of embeddings of some 2-microlocal Besov spaces. J. Approx. Theory, 163(4):505–523, 2011. le66 [2965] H. Leptin. Faltungen von Borelschen Maßen mit Lp -Funktionen auf lokal kompakten Gruppen. Math. Ann., 163:111–117, 1966. lepo79 [2966] H. Leptin and D. Poguntke. Symmetry and nonsymmetry for locally compact groups. J. Funct. Anal., 33(2):119–134, 1979. le04 [2967] A. Lerner. Weighted norm inequalities for the local sharp maximal function. J. Fourier Anal. Appl., 10(5):465–474, 2004. 262 le05-1 [2968] A. Lerner. A new approach to rearrangements of maximal operators. Bull. Lond. Math. Soc., 37(5):771–777, 2005. le14 [2969] N. Lerner. A Course on Integration Theory. Including more than 150 Exercises with detailed answers (to appear). New York, NY: Birkh¨auser/Springer, 2014. le99 [2970] M. Lesch. On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols. Annals of global analysis and geometry, 17(2):151–187, 1999. le09-3 [2971] M. Lesch. Pseudodifferential operators and regularized traces. arXiv preprint arXiv:0901.1689, 2009. le10-1 [2972] M. Lesch. Pseudodifferential Operators and Regularized Traces. In Motives, Quantum Field Theory, and Pseudodifferential Operators: Conference on Motives, Quantum Field Theory, and Pseudodifferential Operators, June 2-13, 2008, Boston University, Boston, Massachusetts, volume 12, page 37, 2010. jile10 [2973] M. Lesch and C. Jim’enez. Classification of traces and hypertraces on spaces of classical pseudodifferential operators. arXiv preprint arXiv:1011.3238, 2010. leqi10 [2974] S. Leung and J. Qian. The backward phase flow and FBI-transformbased Eulerian Gaussian beams for the Schr¨odinger equation. J. Comput. Phys., 229(23):8888–8917, 2010. le04-1 [2975] G. Leus. On the estimation of rapidly varying channels. volume 4, pages 2227–2230, Sep. 2004. leseus02 [2976] B. Lev, A. Semenov, and C. Usenko. Scalar charged particle in Weyl– Wigner–Moyal phase space. Constant magnetic field. Journal of Russian Laser Research, 23(4):347–368, 2002. le12-2 [2977] N. Lev. Riesz bases of exponentials on multiband spectra. Proc. Amer. Math. Soc., 140(9):3127–3132, 2012. leol08 [2978] N. Lev and A. Olevskii. No characterization of generators in p (1 < p < 2) by zero set of Fourier transform. C. R., Math., Acad. Sci. Paris, 346(11-12):645–648, 2008. 263 leol11 [2979] N. Lev and A. Olevskii. Wiener’s closure of translates problem and Piatetski-Shapiro’s uniqueness phenomenon. Ann. of Math. (2), 174(1):519–541, 2011. leol13 [2980] N. Lev and A. Olevskii. Measures with uniformly discrete support and spectrum. C. R. Math. Acad. Sci. Paris, 351(15-16):599–603, 2013. lese08 [2981] T. Levajkovic and D. Selesi. Chaos expansion of generalised random processes on fractional white noise space. Novi Sad J. Math., 38(3):137–146, 2008. lele09 [2982] R. Levanda and A. Leshem. Radio astronomical image formation using sparse reconstruction techniques. In Electrical and Electronics Engineers in Israel, 2008. IEEEI 2008. IEEE 25th Convention of, pages 716–720, 2009. le06-2 [2983] R. LeVeque. Wave propagation software, computational science, and reproducible research. Sanz-Sol´e, Marta (ed.) et al., Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume III: Invited lectures. Z¨ urich: European Mathematical Society (EMS). 1227-1253 (2006)., 2006. leve12 [2984] E. Levina and R. Vershynin. Partial estimation of covariance matrices. Probab. Theory Relat. Fields, 153:405–419, 2012. brle03 [2985] T. Levitina and E. Br¨andas. Multitaper techniques and filter diagonalization methods - a comparison. Internat. J. Theoret. Phys., 42(10):2531–2544, 2003. brle03-1 [2986] T. Levitina and E. Br¨andas. Numerical quadrature performed on the generalized prolate spheroidal functions. In Computational methods in sciences and engineering 2003 (ICCMSE 2003). Proceedings of the international conference, Kastoria, Greece, September 12-16, 2003, pages 360–364. World Scientific, 2003. brle06-2 [2987] T. Levitina and E. J. Br¨andas. Filter diagonalization with finite Fourier transform eigenfunctions. J. Math. Chem., 40(1):43–47, 2006. brle08 [2988] T. Levitina and E. J. Br¨andas. Sampling formula for convolution with a prolate. Int. J. Comput. Math., 85(3-4):487–496, 2008. 264 le83 [2989] R. Lewitt. Reconstruction algorithms: transform methods. Proceedings of the IEEE, 71(3):390–408, 1983. le00-1 [2990] R. Lewitt. Alternatives to voxels for image representation in iterative reconstruction algorithms. Physics in Medicine and Biology, 37(3):705, 2000. boliya14 [2991] B. Li, M. Bownik, and D. Yang. Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J. Funct. Anal., 266(5):2611 – 2661, 2014. doliva10 [2992] B. Li, M. Dong, and M. Vai. Modelling cardiovascular physiological signals using adaptive hermite and wavelet basis functions. Signal Processing, IET, 4(5l):588 –597, oct. 2010. litawaxu09 [2993] B.-Z. Li, R. Tao, T.-Z. Xu, and Y. Wang. The Poisson sum formulae associated with the fractional Fourier transform. Signal Process., 89(5):851 – 856, 2009. limcqi94 [2994] C. Li, A. McIntosh, and T. Qian. Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoam., 10(3):665–721, 1994. li12-1 [2995] C.-Y. Li. Operator frames for Banach spaces. Complex Anal. Oper. Theory, 6(1):1–21, 2012. liwuzh11 [2996] D. Li, G. Wu, and X. Zhang. Two sufficient conditions in frequency domain for Gabor frames. Appl. Math. Lett., 24(4):506–511, April 2011. li06-1 [2997] H. Li. Order-unit quantum Gromov-Hausdorff distance. J. Funct. Anal., 231(2):312–360, 2006. li09-1 [2998] H. Li. Metric aspects of noncommutative homogeneous spaces. J. Funct. Anal., 257(7):2325–2350, 2009. lisuxu08 [2999] H. Li, J. Sun, and Y. Xu. Discrete Fourier analysis, cubature, and interpolation on a hexagon and a triangle. SIAM J. Numer. Anal., 46(4):1653–1681, 2008. 265 liya11 [3000] H. Li and C. Yang. Two-dimensional multiscale windowed Fourier transform based on two-dimensional wavelet transform for fringe pattern demodulation. Optics & Laser Technology, 43(1):72 – 81, 2011. liqi14 [3001] H.-Q. Li and B. Qian. Centered Hardy-Littlewood maximal functions on Heisenberg type groups. Trans. Amer. Math. Soc., 366(3):1497– 1524, 2014. lisu12 [3002] K. Li and W. Sun. Convergence of wavelet frame operators as the sampling density tends to infinity. Appl. Comput. Harmon. Anal., 33(1):140 – 147, 2012. lilisu09 [3003] M. Li, H. Li, and J. Sun. Nonequispaced fast Fourier transform on parallel hexagon. J. Numer. Methods Comput. Appl., 30(1):58–69, 2009. leliqi11 [3004] P. Li, I. Leong, and T. Qian. A class of Fourier multipliers on starlike Lipschitz surfaces. J. Funct. Anal., 261(6):1415 – 1445, 2011. li96-2 [3005] S. Li. Scaled Gabor representation: a refined time-frequency decomposition. In Michael A. Unser, A. Aldroubi, and A. F. Laine, editors, Proc. SPIE, Wavelet Applications in Signal and Image Processing IV: Frames and Gabor, volume 2825, pages 140–151, Denver, CO — August 04, 1996, 1996. lixi07-1 [3006] S. Li and J. Xian. Biorthogonal multiple wavelets generated by vector refinement equation. Sci. China Ser. A, 50(7):1015–1025, 2007. lizh12 [3007] S. Li and Z. Zhou. Theories on Morrey spaces and Campanato spaces on metric measure spaces. J. Huazhong Norm. Univ., Nat. Sci., 46(1):5–8, 2012. li02-2 [3008] Y. Li. Simplified channel estimation for OFDM systems with multiple transmit antennas. IEEE Trans. Wireless Comm., 1:67–75, Jan. 2002. ciliso98 [3009] Y. Li, L. Cimini, and N. Sollenberger. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Trans. Comm., 46:902–915, Jul. 1998. calilixu03 [3010] Y. Li, Z. Li, Y. Cai, and Y. Xu. An improved channel estimation scheme for OFDM systems by tracking the subspace. volume 2, pages 1109–1113, 2003. 266 lili11 [3011] Y. Li and Q. Lian. Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets. SCIENCE CHINA Mathematics, 54(5):987–1010, 2011. arlise99 [3012] Y. Li, N. Seshadri, and S. Ariyavisitakul. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE J. Sel. Areas Comm., 17:461–471, Mar. 1999. lizh13 [3013] Y.-Z. Li and Y. Zhang. Discrete Subspace Multiwindow Gabor Frames and Their Duals. Abstract and Applied Analysis, 2013, 2013. lizh11 [3014] Y.-Z. Li and F.-Y. Zhou. GMRA-based construction of framelets in reducing subspaces of L2(Rd). 9(2):237–268, 2011. hali10-1 [3015] Z. Li and D. Han. Constructing super Gabor frames: the rational time-frequency lattice case. Sci. China, Math., 53(12):3179–3186, 2010. goliyo13 [3016] Q.-F. Lian, J. Gong, and M.-H. You. Time-domain characterization of multiwindow Gabor systems on discrete periodic sets. Indian Journal of Pure and Applied Mathematics, 44(1):47–76, 2013. lipa96 [3017] J. Liang and T. Parks. A translation-invariant wavelet representation algorithm with applications. IEEE Trans. Signal Process., 44(2):225– 232, 1996. lisaulyayu12 [3018] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, and W. Yuan. A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces. Preprint, pages 1–122, 2012. lisaulyayu12-1 [3019] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, and W. Yuan. New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl., 18(5):1067–1111, 2012. lisaulyayu13 [3020] Y. Liang, D. Yang, W. Yuan, Y. Sawano, and T. Ullrich. A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces. Dissertationes Math. (Rozprawy Mat.), 489:114, 2013. li12-2 [3021] P. Liardet. G’erard Rauzy (1938–2010). Uniform Distribution Theory, 7(1):1–9, 2012. 267 lios10 [3022] E. Lieb and Y. Ostrover. Localization of multidimensional Wigner distributions. J. Math. Phys., 51(10):102101, 6, 2010. liso91 [3023] E. Lieb and J. Solovej. Quantum coherent operators: a generalization of coherent states. Lett. Math. Phys., 22(2):145–154, 1991. liso14 [3024] E. Lieb and J. Solovej. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations. Acta Mathematica, 212(2):379– 398, 2014. lith05 [3025] E. Lieb and W. Thirring. Inequalities for the moments of the eigenvalues of the Schr¨odinger Hamiltonian and their relation to Sobolev inequalities. In The stability of matter: from atoms to stars. Selecta of Elliott H. Lieb. Fourth edition, volume Part III, pages 205–239. Springer, 2005. lisa14 [3026] J. Lierl and L. Saloff Coste. The Dirichlet heat kernel in inner uniform domains: Local results, compact domains and non-symmetric forms. J. Funct. Anal., 266(7):4189 – 4235, 2014. li96-1 [3027] E. Liflyand. Fourier transforms of radial functions. Integral Transforms Spec. Funct., 4(3):279–300, 1996. li13 [3028] E. Liflyand. Fourier transforms on an amalgam type space. Monatsh. Math., 172(3-4):345–355, 2013. litr98 [3029] E. Liflyand and W. Trebels. On asymptotics for a class of radial Fourier transforms. Z. Anal. Anwendungen, 17(1):103–114, 1998. litr11 [3030] E. Liflyand and R. Trigub. Conditions for the absolute convergence of Fourier integrals. J. Approx. Theory, 163(4):438–459, 2011. li12 [3031] M. Lifshits. Lectures on Gaussian Processes. Springer Briefs in Mathematics. Springer, 2012. li86-2 [3032] E. Ligocka. On the orthogonal projections onto spaces of pluriharmonic functions and duality. Studia Math., 84(3):279–295, 1986. li86-4 [3033] E. Ligocka. The H¨older duality for harmonic functions. Studia Math., 84(3):269–77, 1986. 268 li86-3 [3034] E. Ligocka. The Sobolev spaces of harmonic functions. Studia Math., 84(1):79–87, 1986. li87-1 [3035] E. Ligocka. Estimates in Sobolev norms |·|sp for harmonic and holomorphic functions and interpolation between Sobolev and H¨older spaces of harmonic functions. Studia Math., 86(3):255–271, 1987. li87 [3036] E. Ligocka. On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in rn . Studia Math., 87(1):23–32, 1987. li92-2 [3037] E. Ligocka. Corrigendum to the paper: [li87] : On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in rn [Studia Math. 87 (1987), no. 1, 23-32; MR0924758 (89f:46054a)]. Studia Math., 101(3):319, 1992. li80 [3038] J. Lim. Image restoration by short space spectral subtraction. Acoustics, Speech and Signal Processing, IEEE Transactions on, 28(2):191– 197, 1980. li98-1 [3039] J. Lim. Neumann series expansion of the inverse of a frame operator. Commun. Korean Math. Soc., 13(4):791–800, 1998. liwa11 [3040] C.-C. Lin and K. Wang. Equivalency between the generalized Carleson measure spaces and Triebel-Lizorkin-type spaces. Taiwanese J. Math., 15(2):919–926, 2011. liro93 [3041] P. Lin and R. Rochberg. The essential norm of Hankel operator on the Bergman space. Integr. Equ. Oper. Theory, 17(3):361–372, 1993. liro95 [3042] P. Lin and R. Rochberg. Hankel operators on the weighted Bergman spaces with exponential type weights. Integr. Equ. Oper. Theory, 21(4):460–483, 1995. liro96 [3043] P. Lin and R. Rochberg. Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights. Pacific J. Math., 173(1):127–146, 1996. li07 [3044] Y. Lin. Strongly singular Calderon–Zygmund operator and commutator on Morrey type spaces. Acta Mathematica Sinica, English Series, 23(11):2097–2110, 2007. 269 li14 [3045] M. Lind. On functions of bounded lambda-variation and integral smoothness. 2014. li74 [3046] G. Lindblad. Expectations and entropy inequalities for finite quantum systems. Comm. Math. Phys., 39:111–119, 1974. li59 [3047] D. Linden. A discussion of sampling theorems. Proceedings of the IRE, 47(7):1219–1226, 1959. li00 [3048] N. Lindholm. Sampling and Fourier-Laplace transforms in several complex variables. PhD thesis, G¨oteborg: G¨oteborg Univ., Chalmers Univ. of Technology, vi, 15 p., 2000. li01-1 [3049] N. Lindholm. Sampling in weighted Lp spaces of entire functions in C n and estimates of the Bergman kernel. J. Funct. Anal., 182(2):390–426, 2001. li02-3 [3050] N. Lindholm. A Paley-Wiener theorem for convex sets in Cn . Bull. Sci. Math., 126(4):289–314, 2002. li91-1 [3051] P. Linnell. Zero divisors and group von Neumann algebras. Pacific J. Math., 149(2):349–363, 1991. li92-1 [3052] P. Linnell. Zero divisors and L2 (G + y). C. R. Acad. Sci. Paris S´er. I Math., 315(1):49–53, 1992. li63 [3053] J. Lions. Theoremes de trace et d’interpolation. IV. Math. Ann., 151:42–56, 1963. li58 [3054] J.-L. Lions. Espaces intermediaires entre espaces hilbertiens et applications. Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2 (50):419–432, 1958. li61 [3055] J.-L. Lions. Equations differentielles operationnelles et problemes aux limites. Die Grundlehren der mathematischen Wissenschaften, Bd. 111. Springer-Verlag, Berlin, 1961. lima68 [3056] J.-L. Lions and E. Magenes. Problemes aux limites non homogenes et applications. Vol. 1. Travaux et Recherches Mathematiques, No. 17. Dunod, 1968. 270 lima72-1 [3057] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York-Heidelberg, 1972. lima72 [3058] J.-L. Lions and E. Magenes. Non-homogeneous Boundary Value Problems and Applications. Vol. II. Springer-Verlag, New YorkHeidelberg, 1972. lima73 [3059] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. III. Springer-Verlag, New YorkHeidelberg, 1973. li85-3 [3060] P. Lions. Remarques sur les ’equations lin’eaires elliptiques du second ordre sous forme divergence dans les domaines non born’es. (Remarks on linear second order elliptic equations in divergence form on unbounded domains). Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 79:178–183, 1985. li85-2 [3061] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam., 1(1):145–201, 1985. li85-1 [3062] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam., 1(2):45–121, 1985. lime79 [3063] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal., 16:964–979, 1979. dali11 [3064] Y. Lipman and I. Daubechies. Conformal Wasserstein distances: comparing surfaces in polynomial time. Adv. Math., 227(3):1047–1077, 2011. lima10 [3065] S. Lisini and A. Marigonda. On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals. Manuscripta Math., 133(1-2):197–224, 2010. li85 [3066] R. G. Littlejohn. Symplectically invariant WKB wave functions. Phys. Rev. Lett., 54(16):1742–1745, 1985. 271 li86-1 [3067] R. G. Littlejohn. Wave-packet evolution and quantization. Phys. Rev. Lett., 56(19):2000–2003, 1986. li65 [3068] W. Littman. Multipliers in lp and interpolation. Bull. Amer. Math. Soc., 71:764–766, 1965. galizh10 [3069] C. Liu, W. Gaetz, and H. Zhu. The Stockwell transform in studying the dynamics of brain functions, 2010. liwayozh11 [3070] G. Liu, S. Yousefi, Z. Zhi, and R. Wang. Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach. Optics express, 19(19):18135–18148, 2011. ellisa05 [3071] K. Liu, G. El, and A. Sayeed. On optimal parametric field estimation in sensor networks. In Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on,, pages 1170 –1175, Bordeaux, july 2005. lizh10 [3072] R. Liu and B. Zheng. A characterization of Schauder frames which are near-Schauder bases. J. Fourier Anal. Appl., 16(5):791–803, 2010. lishxizhzh14 [3073] X. Liu, J. Shi, W. Xiang, Q. Zhang, and N. Zhang. Sampling expansion for irregularly sampled signals in fractional Fourier transform domain. Digit. Signal Process., 34:74–81, 2014. li01-2 [3074] Y. Liu. A characterization for windowed Fourier orthonormal basis with compact support. Acta Math. Sin. (Engl. Ser.), 17(3):501–506, 2001. li11 [3075] Y. Liu. Universal low-rank matrix recovery from Pauli measurements. preprint, 2011. limo09 [3076] Y. Liu and A. Mohammed. Lp (R) boundedness and compactness of localization operators associated with the Stockwell transform. Rend. Semin. Mat. Univ. Politec. Torino, 67(2):203–214, 2009. lisuto09 [3077] Y. Liu, D. Sun, and K. Toh. An implementable proximal point algorithmic framework for nuclear norm minimization. preprint, 2009. hokoli10 [3078] Y.-L. Liu, K.-I. Kou, and I.-T. Ho. New sampling formulae for nonbandlimited signals associated with linear canonical transform and nonlinear Fourier atoms. Signal Process., 90(3):933–945, 2010. 272 baliro11 [3079] M. Liuni, P. Balazs, and A. R¨obel. Sound Analysis and Synthesis Adaptive in Time and Two Frequency Bands. In Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, volume accepted, September 2011. limaro13 [3080] M. Liuni, A. R¨obel, and E. Matusiak. Automatic adaptation of the time-frequency resolution for sound analysis and re-synthesis. IEEE Trans. Audio Speech Lang. Process., 21(5):959–970, May 2013. limarororo13 [3081] M. Liuni, A. Robel, E. Matusiak, M. Romito, and X. Rodet. Automatic Adaptation of the Time-Frequency Resolution for Sound Analysis and Re-Synthesis. Audio, Speech, and Language Processing, IEEE Transactions on, 21(5):959–970, 2013. lirororo11 [3082] M. Liuni, A. R¨obel, M. Romito, and X. Rodet. R´enyi information measures for spectral change detection. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pages 3824 – 3827, May 2011. li63-1 [3083] P. Lizorkin. Generalized Liouville differentiation and the functional spaces lp r (en ). Imbedding theorems. (Russian). Mat. Sb. (N.S.), 60(102):325–353, 1963. li79-1 [3084] P. Lizorkin. Interpolation of lp -spaces with a weight. Translation from Tr. Mat. Inst. Steklov 140, 201-211 (1976). Proc. Steklov Inst. Math., 140:221–232, 1979. lili99 [3085] P. Lizorkin and X. Liu. The generalized Moore-Penrose inverse of a morphism. Qufu Shifan Daxue Xuebao Ziran Kexue Ban, 25(2):31–32, 1999. lini89 [3086] P. Lizorkin and S. Nikol’skii. Functional spaces of mixed smoothness from decompositional point of view. Trudy Matematicheskogo Instituta im. VA Steklova, 187:143–161, 1989. li72 [3087] P. I. Lizorkin. Operators connected with fractional differentiation, and classes of differentiable functions (Russian). Trudy Mat. Inst. Steklov., 117:212–243, 1972. 273 grllmova10 [3088] A. Llagostera Casanovas, G. Monaci, P. Vandergheynst, and R. Gribonval. Blind audiovisual source separation based on sparse redundant representations. IEEE Trans. Multimed., 12(5):358–371, August 2010. ll59 [3089] S. Lloyd. A sampling theorem for stationary (wide sense) stochastic processes. Trans. Amer. Math. Soc, 92:1–12, 1959. felo00 [3090] K. W. Lo and B. G. Ferguson. Broadband passive acoustic technique for target motion parameter estimation. Aerospace and Electronic Systems, IEEE Transactions on, 36(1):163 –175, jan 2000. lo57 [3091] S. Lojasiewicz. Sur la valeur et la limite d’une distribution en un point. Studia Math., 16:1–36, 1957. biloluzh10 [3092] M. Long, L. Biao, W. Lu ping, and S. Zhen kang. Optical flow field estimation in noise environment. In Computer Application and System Modeling (ICCASM), 2010 International Conference on, volume 10, pages V10–274 –V10–277, oct. 2010. lolu10 [3093] M. Long and W. Lu ping. Optical flow field estimation of nature scene images. In Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on, volume 3, pages V3–294 –V3– 297, aug. 2010. lourXX [3094] I. LOPEZ and W. URBINA. ON SOME FUNCTIONS OF THE LITTLEWOOD PALEY THEORY FOR gammad AND A CHARACTERIZATION OF GAUSSIAN SOBOLEV SPACES OF INTEGER ORDER. Rev. Un. Mat. Argentina, 45:2. lo09 [3095] J. Lopez. Optimal dual frames for erasures and discrete Gabor frames. PhD thesis, 2009. lalo11 [3096] A.-J. L´opez Moreno and J.-M. Latorre Palacios. Localization results for generalized Baskakov/Mastroianni and composite operators,. J. Math. Anal. Appl., 380,(2,):425 – 439,, 2011,. hulomope04 [3097] R. Lopez Valcarce, D. Hurtado, C. Mosquera, and F. Perez Gonzalez. Bias analysis and removal of a microphone array based road traffic speed estimator. In Proc.EUSIPCO, XII. European Signal Processing 274 Conference , September 6-10, 2004, Vienna, Austria, pages 609–612, 2004. lomope04 [3098] R. Lopez Valcarce, C. Mosquera, and F. Perez Gonzalez. Estimation of road vehicle speed using two omnidirectional microphones: A maximum likelihood approach. EURASIP J. Appl. Signal Process., 2004(8):1059–1077, 2004. lora11 [3099] A. Lorbert and P. Ramadge. The Rotational Lasso. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 3896 –3899, may 2011. loreva12 [3100] S. Lord, A. Rennie, and J. Varilly. Riemannian manifolds in noncommutative geometry. J. Geom. Phys., 62(7):1611–1638, 2012. lo86 [3101] G. Lorentz. Approximation of Functions. Chelsea Publishing Co., New York, Second edition, 1986. lopfti11 [3102] D. Lorenz, M. Pfetsch, and A. Tillmann. Solving Basis Pursuit: Heuristic optimality check and solver comparison. preprint, 2011. lo08-1 [3103] I. Loris. L1Packv2: a Mathematica package in minimizing an 1 penalized functional. Comput. Phys. Comm., 179(12):895–902, 2008. lomu13 [3104] V. Los and A. Murach. Parabolic problems and interpolation with a function parameter. Methods Funct. Anal. Topology, 19(2):146–160, 2013. lo98 [3105] P. Loughlin. Do bounded signals have bounded amplitudes? Multidimensional Syst. Signal Process., 9(4):419–424, 1998. lo12 [3106] P. Loughlin. Denoising and time-frequency analysis of signals. In Classical, semi-classical and quantum noise. Papers based on the presentations at the “Middleton meeting”, Princeton, NJ, USA, November 2–3, 2007., pages 119–129. New York, NY: Springer, 2012. colo08 [3107] P. Loughlin and L. Cohen. Approximate wave function from approximate non-representable Wigner distributions. J. Modern Opt., 55(1920):3379–3387, 2008. 275 atlopi93 [3108] P. Loughlin, J. Pitton, and L. Atlas. Bilinear time-frequency representations: New insights and properties. IEEE Trans. Signal Process., 41(2):750–767, 1993. lota97 [3109] P. Loughlin and B. Tacer. Instantaneous frequency and the conditional mean frequency of a signal. Signal Process., 60(2):153–162, 1997. lo55 [3110] P.-O. L¨owdin. Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Physical Review, 97(6):1474, 1955. lo70 [3111] P.-O. L¨owdin. On the nonorthogonality problem. Adv. in Quantum Chemistry, 5:185–199, 1970. lo04 [3112] P.-O. L¨owdin. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics, 18(3):365–375, 2004. ll70 [3113] P.-O. L¨owdin and P.-O. L¨owdin. on the nonorthogonality problem. Adv. in Quantum Chemistry, 5:185–199, 1970. loze03 [3114] G. Loy and A. Zelinsky. Fast radial symmetry for detecting points of interest. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(8):959 – 973, aug. 2003. ablosw09 [3115] A. Lozano, G. Swirszcz, and N. Abe. Group orthogonal matching pursuit for variable selection and prediction. Dec. 2009. lilu11 [3116] D. Lu and D. Li. A characterization of orthonormal wavelet families in Sobolev spaces. Acta Math. Sci. Ser. B Engl. Ed., 31(4):1475–1488, 2011. luts07 [3117] L.-T. Lu and K.-J. Tsai. Channel estimation in a proposed IEEE802.11n OFDM MIMO WLAN system. pages 1–5, Princeton, USA, 2007. lupeta10 [3118] S. Lu, S. Pereverzev, and U. Tautenhahn. Regularized total least squares: computational aspects and error bounds. SIAM J. Matrix Anal. Appl., 31(3):918–941, 2010. 276 luva10-1 [3119] W. Lu and N. Vaswani. Modified basis pursuit denoising (modifiedBPDN) for noisy compressive sensing with partially known support. pages 3926–3929, Dallas, TX, Mar. 2010. lu02 [3120] Y. Lu. Commuting of Toeplitz operators on the Bergman spaces of the bidisc. Bull. Austral. Math. Soc., 66(2):345–351, 2002. luyayu14 [3121] Y. Lu, D. Yang, and W. Yuan. Interpolation of Morrey spaces on metric measure spaces. Canad. Math. Bull., 57(3):598–608, 2014. lu99-1 [3122] D. Lubinsky. On converse Marcinkiewicz-Zygmund inequalities in L p ,p¿1. Constr. Approx., 15(4):577–610, 1999. lu99-2 [3123] D. Luecking. The dual of Bergman metric VMO. Rocky Mountain J. Math., 29(4):1413–1428, 1999. lu00-2 [3124] D. Luecking. Bounded composition operators with closed range on the Dirichlet space. Proc. Amer. Math. Soc., 128(4):1109–1116, 2000. lu11-1 [3125] F. Luef. A property of symplectic lattices and applications to Gabor analysis and noncommutative tori. preprint, 2011. lu11-3 [3126] F. Luef. Rieffel projections in rotation algebras and the Walnut representation. preprint, 2011. lu11-2 [3127] F. Luef. The Theorem of Stone-von Neumann, revisited. preprint, 2011. lu82 [3128] J. Luetzen. The Prehistory of the Theory of Distributions. Studies in the History of Mathematics and Physical Sciences, Vol. 7. New York - Heidelberg - Berlin: Springer-Verlag. VIII, 1982. blluunvo10 [3129] F. Luisier, C. Vonesch, T. Blu, and M. Unser. Fast interscale wavelet denoising of Poisson-corrupted images. Signal Process., 90(2):415– 427, February 2010. lu03-2 [3130] S. Lukomskii. Convergence of Fourier series in Lorentz spaces. East J. Approx., 9(2):229–238, 2003. lu07 [3131] S. Lukomskii. Convergence of Walsh–Fourier series in Orlicz spaces L(ϕ) ⊂ L(ex ). J. Math. Anal. Appl., 330(1):322–333, 2007. 277 lu10 [3132] S. Lukomskii. Multiresolution analysis on zero-dimensional abelian groups and wavelets bases. Sb. Math., 201(5):669–691, 2010. lu12-1 [3133] S. Lukomskii. Multiresolution analysis on product of zero-dimensional Abelian groups. J. Math. Anal. Appl., 385(2):1162–1178, 2012. lu72 [3134] G. Lumer. Normes invariantes et caract´erisations des transform´ees de Fourier des mesures. (Invariant norms and characterizations of Fourier transforms of measures). 1972. lu11-4 [3135] A. Lunardi. Compactness and asymptotic behavior in nonautonomous linear parabolic equations with unbounded coefficients in d . In Parabolic problems, volume 80 of Progr. Nonlinear Differential Equations Appl., pages 447–461. Birkh¨auser/Springer Basel AG, Basel, 2011. luso13 [3136] D. Lundholm and J. Solovej. Hardy and Lieb-Thirring inequalities for anyons. Comm. Math. Phys., 322(3):883–908, 2013. luqi11 [3137] N.-L. Luo and X.-F. Qiang. Invariance of shift-invariant spaces in L2 (Rd ). Far East J. Math. Sci. (FJMS), 49(2):209–222, 2011. lu00-1 [3138] S. Luo. Deforming Gabor frames by quadratic Hamiltonians. Integral Transforms Spec. Funct., 9(1):69–74, 2000. galilusw06 [3139] Z. Luo, M. Gaspar, J. Liu, and A. Swarni. Distributed signal processing in sensor networks. IEEE Sign. Process. Mag., 23(4):14–15, Jun. 2006. luta10 [3140] W. Lusky and J. Taskinen. On weighted spaces of holomorphic functions of several variables. Isr. J. Math., 176:381–399, 2010. dolupa07 [3141] M. Lustig, D. Donoho, and J. Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med., 58(6):1182–1195, 2007. lusa98 [3142] J. Luukkainen and E. Saksman. Every complete doubling metric space carries a doubling measure. Proc. Amer. Math. Soc., 126(2):531–534, 1998. lupa10 [3143] K. Lux and H. Pahlings. Representations of Groups - A Computational Approach. Cambridge Univ. Press, 2010. 278 luza71-1 [3144] W. Luxemburg and A. Zaanen. Riesz Spaces Vol I. North-Holland Mathematical Library. Amsterdam-London: North-Holland Publishing Company. XI, 514 p. Hfl. 100.00 and ca. 31.25, 1971. falv10 [3145] C.-H. Lv and H.-Y. Fan. Adaption of optical Fresnel transform to optical Wigner transform. Phys. Scr., 82(2):5, 2010. ly12 [3146] M. Lyon. Sobolev smoothing of SVD-based Fourier continuations. Applied Mathematics Letters, 25(12):2227 – 2231, December 2012. lyma08 [3147] Y. Lyubarskii and W. Madych. Irregular Poisson type summation. Sampl. Theory Signal Image Process., 7(2):173, 2008. lyma12 [3148] Y. Lyubarskii and E. Malinnikova. Radial oscillation of harmonic functions in the Korenblum class. Bull. Lond. Math. Soc., 44(1):68– 84, 2012. lyne11 [3149] Y. Lyubarskii and P. Nes. Gabor frames with rational density. Arxiv preprint arXiv:1108.2684, 2011. lyor14 [3150] Y. Lyubarskii and J. Ortega Cerd`a. Bandlimited Lipschitz functions. Appl. Comput. Harmon. Anal., (0):–, 2014. lyse97-1 [3151] Y. Lyubarskii and K. Seip. Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s (ap ) condition. Rev. Mat. Iberoam., 13(2):361–376, 1997. lyse99 [3152] Y. Lyubarskii and K. Seip. Convergence and summability of Gabor expansions at the Nyquist density. J. Fourier Anal. Appl., 5(2-3):127– 157, 1999. lyse02 [3153] Y. Lyubarskii and K. Seip. Weighted Paley-Wiener spaces. J. Amer. Math. Soc., 15(4):979–1006, 2002. wo14 [3154] W. M. Partial differential equations. Topics in Fourier analysis. Boca Raton, FL: CRC Press, 2014. masuyazh07 [3155] J. Ma, Y. Zhang, X. Su, and Y. Yao. Maximal Ratio Combining in Cellular MIMO-CDMA Downlink Systems. pages 4243–4248, Jun. 2007. 279 mawu09 [3156] L. Ma and Z. Wu. Kernel based approximation in Sobolev spaces with radial basis functions. Appl. Math. Comput., 215(6):2229–2237, 2009. cachmawazh07 [3157] S. Ma, X. Zhu, G. Chen, J. Wang, and J. Cao. Parametric adaptive time-frequency representation based on time-sheared Gabor atoms. J. Syst. Eng. Electron., 18(1):1–7, 2007. matr12 [3158] R. Maalaoui and K. Trim‘eche. A family of generalized windowed transforms associated with the Dunkl operators on Rd . Integral Transforms Spec. Funct., 23(3):191–206, 2012. matr12-1 [3159] R. Maalaoui and K. Trimeche. Generalized windowed transforms on Chebli-Trimeche hypergroups. Mediterr. J. Math., 9(2):305–326, 2012. codima11 [3160] E. Maalouf, B. Colicchio, and A. Dieterlen. Fluorescence microscopy three-dimensional depth variant point spread function interpolation using Zernike moments. JOSA A, 28:1864–1870, 2011. mapuwe09 [3161] H. Maas, T. Putze, and P. Westfeld. Recent developments in 3D-PTV and Tomo-PIV. Imaging Measurement Methods for Flow Analysis, pages 53–62, 2009. komath11 [3162] P. Maass, J. Kobarg, and H. Thiele. Deliverable 7.1: A phase space concept for MALDI data. Technical report, 2011. ma10-5 [3163] A. Macdonald. Linear and Geometric Algebra. Alan Macdonald, 2010. maseto92 [3164] R. Macias, C. Segovia, and J.-L. Torrea. Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type. Adv. Math., 93(1):25–60, 1992. maXX-1 [3165] G. Mackey. Unitary Group Representatitions In Physics, Probability, And Number Theory. Mathematics Lecture Note Series. ma65-1 [3166] G. Mackey. Some remarks on symplectic automorphisms. Proc. Amer. Math. Soc., 16:393–397, 1965. chfajomatr12 [3167] L. Mackey, M. Jordan, R. Chen, B. Farrell, and J. A. Tropp. Matrix concentration inequalities via the method of exchangeable pairs. preprint, 2012. 280 mape98 [3168] P. MacManus and C. P´erez. Generalized Poincar´e inequalities: sharp self-improving properties. Internat. Math. Res. Notices, (2):101–116, 1998. mapatu02 [3169] Y. Maday, A. Patera, and G. Turinici. A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. In Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), volume 17, pages 437–446, 2002. ma99-5 [3170] J. Madore. An introduction to noncommutative differential geometry and its physical applications. London Mathematical Society lecture note series. Cambridge University Press, 1999. mase10 [3171] N. Madras and D. Sezer. Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances. Bernoulli, 16(3):882–908, 2010. mamh08 [3172] M. Maggioni and H. Mhaskar. Diffusion polynomial frames on metric measure spaces. Appl. Comput. Harmon. Anal., 24(3):329–353, 2008. mamena11 [3173] S. Maghsoudi, M. Mehdipour, and R. Nasr Isfahani. Compact right multipliers on a Banach algebra related to locally compact semigroups. Semigroup Forum, 83(2):205–213, 2011. mana11 [3174] S. Maghsoudi and R. Nasr Isfahani. Strict topology as a mixed topology on Lebesgue spaces. Bull. Austral. Math. Soc., 84(3):504–515, 2011. mana11-1 [3175] S. Maghsoudi and R. Nasr Isfahani. The strict topology on the discrete Lebesgue spaces. Bull. Austral. Math. Soc., 83(2):241–255, 2011. mana12 [3176] S. Maghsoudi and R. Nasr Isfahani. On the maximal and minimal left ideals of certain Banach algebras on locally compact groups. Result. Math., 62(1-2):157–165, 2012. ma94 [3177] V. Mahajan. Zernike circle polynomials and optical aberrations of systems with circular pupils. Applied optics, 33(34):8121–8124, 1994. MaVi94 [3178] V. Mahajan. Zernike Circle Polynomials and Optical Aberrations of Systems with Circular Pupils. Applied Optics., 33(34):8121–8124, 1994. 281 ma03-4 [3179] V. Mahajan. Zernike polynomials and aberration balancing. In V. N. Mahajan, P. Z. Mouroulis, W. J. Smith, and R. B. Johnson, editors, Proc. SPIE, Current Developments in Lens Design and Optical Engineering IV; Optical Design, volume 5173, pages 1–17, San Diego, CA, USA, August 2003. SPIE. ma86-3 [3180] J. Maillard. On the twisted convolution product and the Weyl transformation of tempered distributions. Journal of Geometry and Physics, 3(2):231–261, 1986. badokrma11 [3181] P. Majdak, P. Balazs, W. Kreuzer, and M. D¨orfler. Increasing the Signal-to-Noise Ratio in system Identification with Exponential Sweeps by Thresholding in the Time-Frequency Domain. In ICASSP 2011, Prag, 2011. mari97 [3182] V. Majernik and L. Richterek. Entropic uncertainty relations. European Journal of Physics, 18:79, 1997. mapo05 [3183] N. Makarov and A. Poltoratski. Meromorphic inner functions, Toeplitz kernels and the uncertainty principle. Benedicks, Michael (ed.) et al., Perspectives in analysis. Essays in honor of Lennart Carleson’s 75th birthday. Proceedings of the conference, Stockholm, Sweden, May 26–28, 2003. Berlin: Springer. Math. Phys. Stud. 27, 185-252 (2005)., 2005. mapo10-1 [3184] N. Makarov and A. Poltoratski. Beurling-Malliavin theory for Toeplitz kernels. Invent. Math., 180(3):443–480, 2010. ma09-9 [3185] A. Maleki. Convergence analysis of iterative thresholding algorithms. In Proc. of Allerton Conference on Communication, Control, and Computing, 2009. ma02-4 [3186] F. Malgouyres. A framework for image deblurring using wavelet packet bases. Appl. Comput. Harmon. Anal., 12:309–331, 2002. drma95 [3187] N. Malik and T. Dracos. Interpolation schemes for three-dimensional velocity fields from scattered data using Taylor expansions. Journal of Computational Physics, 119(2):231–243, 1995. ma10-7 [3188] R. Malikiosis. An optimization problem related to Minkowski’s successive minima. Discrete Comput. Geom., 43(4):784–797, 2010. 282 ma12-3 [3189] R.-D. Malikiosis. A discrete analogue for Minkowski’s second theorem on successive minima. Adv. Geom., 12(2):365–380, 2012. ma13 [3190] R.-D. Malikiosis. A note on Gabor frames in finite dimensions. arXiv preprint arXiv:1304.7709, 2013. ma10-6 [3191] E. Malinnikova. Orthonormal sequences in L2 (Rd ) and time frequency localization. J. Fourier Anal. Appl., 16(6):983–1006, 2010. ma08-3 [3192] S. Mallat. A Wavelet Tour of Signal Processing - The Sparse Way. Third Edition. 2008. ma12-1 [3193] S. Mallat. Group invariant scattering. Comm. Pure Appl. Math., 65(10):1331–1398, 2012. bomamaof06 [3194] J. Mallett, V. Bove, G. Officer, and J. Mallett. The Role of Groups in Smart Camera Networks. Technical report, 2006. ma10-1 [3195] M. Malloy. Back-projection using sub-sampled Fourier matrices for spectrum sensing. preprint, 2010. ma99-6 [3196] H. S. Malvar. A modulated complex lapped transform and its applications to audio processing. In Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, page 14211424, Phoenix, AZ , USA, 15-19 Mar 1999, March 1999. flma03 [3197] H. S. Malvar and D. A. F. Florencio. Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Trans. Signal Process., 51(4):898–905, 2003. mast89 [3198] H. S. Malvar and D. Staelin. The LOT: Transform coding without blocking effects. Acoustics, Speech and Signal Processing, IEEE Transactions on, 37(4):553–559, 1989. mapi02 [3199] J. Maly and L. Pick. An elementary proof of sharp Sobolev embeddings. Proc. Amer. Math. Soc., 130(2):555–563, 2002. agma50 [3200] S. Mandelbrojt and S. Agmon. Une generalisation du theoreme tauberien de Wiener. Acta Sci. Math. Szeged, (Leopoldo Fejer et Frederico Riesz LXX annos natis dedic):167–176, 1950. 283 ma89-2 [3201] Y. Manin. Reflections on arithmetical physics. In Conformal invariance and string theory (Poiana Brasov, 1987), Perspect. Phys., pages 293–303. Academic Press, Boston, MA, 1989. ma99-7 [3202] Y. Manin. Frobenius Manifolds, quantum Cohomology, and Moduli spaces. Colloquium Publications. American Mathematical Society (AMS). 47. Providence, RI: American Mathematical Society (AMS). xiii, 1999. ma10-2 [3203] M. Mantoiu. Modulation and Hilbert space representations for Rieffel’s pseudodifferential calculus. Arxiv preprint arXiv:1010.0411, 2010. ma12 [3204] M. Mantoiu. Quantization Rules, Hilbert algebras and coorbit spaces for families of bounded operators I. The abstract theory. Arxiv preprint arXiv:1203.6347, 2012. mapa14 [3205] M. Mantoiu and D. Parra. Compactness criteria in Banach spaces in the setting of continuous frames. Banach J. Math. Anal., 8(2):30–48, 2014. mapu11 [3206] M. Mantoiu and R. Purice. Abstract composition laws and their modulation spaces. Arxiv preprint arXiv:1107.3344, 2011. mapu14 [3207] M. Mantoiu and R. Purice. On Frechet-Hilbert Algebras. arXiv preprint arXiv:1406.7208, 2014. mama07 [3208] A. Manzano and M. Mastylo. Duality for coorbit interpolation functors generated by operator ideals. In Interpolation theory and applications. A conference in honor of Michael Cwikel on the occasion of his 59th birthday, March 29–31, 2006 and AMS special session on interpolation theory and applications, AMS sectional meeting, Miami, FL, USA, April 1–2, 20, pages 225–235. 2007. mazh05 [3209] H. Mao and D. Zhao. The kurtosis parametric characterization of the passage of a standard Hermite-Gaussian beam and an elegant Hermite-Gaussian beam through a fractional Fourier transformation system with a spherically aberrated lens. J. Modern Opt., 52(1):147– 161, 2005. 284 ma39 [3210] J. Marcinkiewicz. Sur la sommabilit´e forte de s´eries de Fourier. J. London Math. Soc., 14:162–168, 1939. ma39-1 [3211] J. Marcinkiewicz. Sur les multiplicateurs des s´eries de Fourier. Studia Math., 8:78–91, 1939. ma39-2 [3212] J. Marcinkiewicz. Sur une m´ethode remarquable de sommation des s´eries doubles de Fourier. Ann. Sc. Norm. Super. Pisa, II. Ser., 8:149– 160, 1939. ma40 [3213] J. Marcinkiewicz. Sur la convergence absolue des s´eries de Fourier. Mathematica, Cluj, 16:66–73, 1940. mazy39 [3214] J. Marcinkiewicz and A. Zygmund. On the summability of double Fourier series. Fundam. Math., 32:122–132, 1939. mamaor03 [3215] N. Marco, X. Massaneda, and J. Ortega Cerda. Interpolating and sampling sequences for entire functions. Geom. Funct. Anal., 13(4):862– 914, 2003. mamape12 [3216] A. Marcoci, L. Marcoci, and L. Persson. Besov-Schatten spaces. J. Funct. Spaces Appl., pages Art. ID 693251, 13, 2012. maspsr13 [3217] A. Marcus, D. Spielman, and N. Srivastava. Interlacing families I: Bipartite Ramanujan graphs of all degrees. Submitted on 15 Apr 2013, preprint:16, 2013. maspsr15 [3218] A. Marcus, D. Spielman, and N. Srivastava. Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem. Ann. of Math., 2015. mash72 [3219] M. Marcus and L. Shepp. Sample behavior of Gaussian processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pages 423–441, Berkeley, Calif., 1972. Univ. California Press. dogigrhelama03 [3220] G. F. Margrave, L. Dong, P. Gibson, J. Grossman, D. Henley, and M. Lamoureux. Gabor deconvolution: extending Wieners method to nonstationarity. Recorder, 28:5–12, 2003. 285 lama02 [3221] G. F. Margrave and M. Lamoureux. Gabor deconvolution. In 2002 CSEG annual meeting, expanded abstracts, 2002. grillamaot02 [3222] G. F. Margrave, M. Lamoureux, J. Grossman, V. Iliescu, and o. others. Gabor deconvolution of seismic data for source waveform and Q correction. In 72nd Annual International Meeting, SEG Expanded Abstracts, pages 2190–2193, 2002. maru03 [3223] M. Marias and E. Russ. H 1 -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds. Arkiv f¨or Matematik, 41(1):115–132, 2003. mape11 [3224] D. Marinucci and G. Peccati. Random fields on the sphere. Representation, limit theorems and cosmological applications, volume 389 of London mathematical society. Lecture Note Series 389. Cambridge University Press, Cambridge, 2011. bacakemanapipivi08 [3225] D. Marinucci, D. Pietrobon, A. Balbi, P. Baldi, P. Cabella, G. Kerkyacharian, P. Natoli, D. Picard, and N. Vittorio. Spherical needlets for cosmic microwave background data analysis. Monthly Notices of the Royal Astronomical Society, 383(2):539–545, 2008. ma70 [3226] B. Martinet. R´egularisation d’in´equations variationnelles par approximations successives. Rev. Fran¸caise Informat. Recherche Op´erationnelle, 4(Ser. R-3):154–158, 1970. mato11 [3227] P. Martinetti and L. Tomassini. Noncommutative geometry of the Moyal plane: translation isometries and spectral distance between coherent states. Arxiv preprint arXiv:1110.6164, 2011. mato12 [3228] P. Martinetti and L. Tomassini. Length and distance on a quantum space. Arxiv preprint arXiv:1205.2908, 2012. manaso02 [3229] A. Martinez, S. Nakamura, and V. Sordoni. Phase space tunneling in multistate scattering. J. Funct. Anal., 191(2):297–317, 2002. manaso09 [3230] A. Martinez, S. Nakamura, and V. Sordoni. Analytic wave front set for solutions to Schr¨odinger equations. Adv. Math., 222(4):1277–1307, 2009. 286 matr02 [3231] D. Martinez and J. Trout. Asymptotic spectral measures, quantum mechanics, and E-theory. Communications in mathematical physics, 226(1):41–60, 2002. chma90 [3232] F. Marvasti and L. Chuande. Parseval relationship of nonuniform samples of one-and two-dimensional signals. Acoustics, Speech and Signal Processing, IEEE Transactions on, 38(6):1061–1063, 1990. maXX-2 [3233] D. Mary. cosamp.m. ma07-8 [3234] J. Marzo. Marcinkiewicz-Zygmund inequalities and interpolation by spherical harmonics. J. Funct. Anal., 250(2):559–587, 2007. mase11 [3235] J. Marzo and K. Seip. l∞ to lp constants for Riesz projections. Bull. Sci. Math., 135(3):324–331, 2011. mani89 [3236] P. Masani and H. Niemi. The integration theory of Banach space valued measures and the Tonelli- Fubini theorems. I: Scalar-valued measures on δ-rings. Adv. Math., 73(2):204–241, 1989. mani89-1 [3237] P. Masani and H. Niemi. The integration theory of Banach space valued measures and the Tonelli- Fubini theorems. II: Pettis integration. Adv. Math., 75(2):121–167, 1989. mani92 [3238] P. Masani and H. Niemi. The integration of Banach space valued measures and the Tonelli-Fubini theorems. III: Vectorial extensions of product measures and the slicing, Fubini and Tonelli theorems. Ric. Mat., 41(2):195–282, 1992. frma13 [3239] J. Mashreghi and E. Fricain. Blaschke Products and Their Applications. Springer, 2013. hamana06 [3240] J. Mashreghi, F. Nazarov, and V. P. Havin. Beurling-Malliavin multiplier theorem: the seventh proof. St. Petersburg Math. J., 17(5):699– 744, 2006. hama03 [3241] J. Mason and D. Handscomb. Chebyshev polynomials. Chapman & Hall/CRC, Boca Raton, 2003. ma07-7 [3242] P. Massart. Concentration Inequalities and Model Selection, volume 1896 of Lecture Notes in Mathematics. Springer, Berlin, 2007. 287 masc66 [3243] J. Massera and J. Sch¨affer. Linear Differential Equations and Function Spaces. Pure and Applied Mathematics, 21. Academic Press Inc., 1966. maru08 [3244] P. Massey and M. Ruiz. Tight frame completions with prescribed norms. Sampl. Theory Signal Image Process., 7(1):1–13, 2008. maru10 [3245] P. Massey and M. Ruiz. Minimization of convex functionals over frame operators. Adv. Comput. Math., 32(2):131–153, 2010. marust09 [3246] P. Massey, M. Ruiz, and D. Stojanoff. The structure of minimizers of the frame potential on fusion frames. J. Fourier Anal. Appl., pages 1–30, 2009. marust10 [3247] P. Massey, M. Ruiz, and D. Stojanoff. The structure of minimizers of the frame potential on fusion frames. J. Fourier Anal. Appl., 16(4):514–543, 2010. marust12 [3248] P. Massey, M. Ruiz, and D. Stojanoff. Duality in reconstruction systems. Linear Algebra Appl., 436(3):447–464, 2012. marust13 [3249] P. Massey, M. Ruiz, and D. Stojanoff. Optimal dual frames and frame completions for majorization. Appl. Comput. Harmon. Anal., 34(2):201–223, 2013. ma12-4 [3250] M. Mastylo. Lattice structures on some Banach spaces. Proc. Amer. Math. Soc., 140(4):1413–1422, 2012. maml09 [3251] M. Mastylo and P. Mleczko. Absolutely summing multipliers on abstract Hardy spaces. Acta Math. Sin. (Engl. Ser.), 25(6):883–902, 2009. mame08 [3252] B. Matei and Y. Meyer. Quasicrystals are sets of stable sampling. C. R. Math. Acad. Sci. Paris, 346(23-24):1235–1238, 2008. mame10 [3253] B. Matei and Y. Meyer. Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ., 55(8-10):947–964, 2010. ma99-4 [3254] C. Math. Interpolation of bilinear operators between Banach function spaces. Collect. Math, 50(3):311–321, 1999. 288 mari07 [3255] M. Mathieu and W. Ricker. The Weyl calculus: finite dimensional aspects. Math. Proc. R. Ir. Acad., 107(2):171–181 (electronic), 2007. ma10-4 [3256] J. Matousek. Thirty-three Miniatures Mathematical and Algorithmic Applications of Linear Algebra. Student Mathematical Library 53. Providence, RI: American Mathematical Society (AMS). x, 2010. ma13-1 [3257] J. Mattas. Segal algebras, approximate identities and norm irregularity in C0 (X, A). Studia Math., 215(2):99–112, 2013. mariru03 [3258] R. Matthes, O. Richter, and G. Rudolph. Spectral triples and differential calculi related to the Kronecker foliation. J. Geom. Phys., 46(1):48–73, 2003. elma12 [3259] E. Matusiak and Y. Eldar. Sub-Nyquist sampling of short pulses. IEEE Trans. Signal Process., 60(3):1134–1148, March 2012. bohlma13 [3260] G. Matz, H. B¨olcskei, and F. Hlawatsch. Time-frequency foundations of communications. IEEE Signal Processing Magazine, 30(6):87–96, nov 2013. hlma06 [3261] G. Matz and F. Hlawatsch. Time-varying communication channels: Fundamentals, recent developments, and open problems. Proc. EUSIPCO-06, Florence, Italy, September 2006. mameva09 [3262] G. Mauceri, S. Meda, and M. Vallarino. Estimates for functions of the Laplacian on manifolds with bounded geometry. Math. Res. Lett., 16(5-6):861–879, 2009. mameva11 [3263] G. Mauceri, S. Meda, and M. Vallarino. Hardy-type spaces on certain noncompact manifolds and applications. J. Lond. Math. Soc. (2), 84(1):243–268, 2011. ma95-3 [3264] K. Maurin. Mathematik als Leben von Ideen. Rep. Math. Phys., 35(2-3):145–172, 1995. ma08-2 [3265] A. Mayeli. Shannon multiresolution analysis on the Heisenberg group. J. Math. Anal. Appl., 348(2):671–684, 2008. ma11 [3266] A. Mayeli. Paley-Wiener description of K-spherical Besov spaces on the Heisenberg group. :1111.4573, 2011. 289 maou14 [3267] A. Mayeli and V. Oussa. Regular representations of time-frequency groups. Math. Nachr., 2014. mapeXX [3268] A. Mayeli and I. Pesenson. Space-frequency localized wavelets for spherical Besov spaces on the Heisenberg group. Submitted. maro10 [3269] V. Maz’ya and J. Rossmann. Elliptic Equations in Polyhedral Domains, volume 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010. mash09 [3270] V. Maz‘ya and T. Shaposhnikova. Theory of Sobolev Multipliers. Springer Berlin / Heidelberg, 2009. mash79 [3271] V. G. Mazya and T. O. Shaposhnikova. On multipliers in function spaces with fractional derivatives. Sov. Math. Dokl., 20:160–165, 1979. ma02-3 [3272] A. L. Mazzucato. Besov-Morrey spaces: function space theory and applications to non-linear PDE. Transactions of the American Mathematical Society, 355(4):1297–1364, 2002. ma05-4 [3273] V. Mazya. Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev-type imbeddings. J. Funct. Anal., 224(2):408–430, 2005. mc78-1 [3274] P. McCarthy. Lifting of projective representations of the BondiMetzner-Sachs group. Proc. Roy. Soc. London Ser. A, 358(1693):141– 171, 1978. mcpa72 [3275] J. McClellan and T. Parks. Eigenvalues and eigenvectors of the discrete Fourier transformation. IEEE Trans. Audio and Electroacoustics, 20(1), 1972. mcoxsi09 [3276] J. McDermott, A. Oxenham, and E. Simoncelli. Sound texture synthesis via filter statistics. In Applications of Signal Processing to Audio and Acoustics, 2009. WASPAA’09. IEEE Workshop on, pages 297– 300, 2009. mc98 [3277] C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics, volume 16 of Algorithms Combin., pages 195–248. Springer, Berlin, 1998. 290 mcputhvavawi13 [3278] J. McEwen, G. Puy, J.-P. Thiran, P. Vandergheynst, D. Van, and Y. Wiaux. Sparse image reconstruction on the sphere: implications of a new sampling theorem. IEEE Trans. Image Process., 22(6):2275– 2285, 2013. mc79 [3279] O. McGehee. Lipschitz classes and restrictions of Fourier transforms. Math. Ann., 239:223–227, 1979. mcprri88 [3280] A. McIntosh, A. Pryde, and W. Ricker. Systems of operator equations and perturbation of spectral subspaces of commuting operators. Michigan Math. J., 35(1):43–65, 1988. mc05-1 [3281] S. McKillup. Statistics Explained An Introductory Guide for Life Scientists. Cambridge Univ Press, 2005. mc10 [3282] P. McNamara. Whittaker functions on metaplectic groups. 2010. mc11 [3283] P. McNamara. Metaplectic Whittaker functions and crystal bases. Duke Math. J., 156(1):1–31, 2011. mc12 [3284] P. McNamara. Principal series representations of metaplectic groups over local fields. In Multiple Dirichlet series, L-functions and automorphic forms, volume 300 of Progr. Math., pages 299–327. Birkh¨auser/Springer, New York, 2012. mcst97 [3285] J. McNeal and E. M. Stein. The Szeg¨o projection on convex domains. Math. Z., 224(4):519–553, 1997. humc94 [3286] S. McNown and B. Hunt. Approximate shift-invariance by warping shift-variant systems. In SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, pages 156–167, 1994. mesjva08 [3287] S. Meda, P. Sj¨ogren, and M. Vallarino. On the h1 − l1 boundedness of operators. Proc. Amer. Math. Soc., 136(8):2921–2931, 2008. mesjva09 [3288] S. Meda, P. Sj¨ogren, and M. Vallarino. Atomic decompositions and operators on Hardy spaces. Rev. Uni´on Mat. Argent., 50(2):15–22, 2009. meva10 [3289] S. Meda and M. Vallarino. Weak type estimates for spherical multipliers on noncompact symmetric spaces. Trans. Amer. Math. Soc., 362(6):2993–3026, 2010. 291 mepo12 [3290] A. Medghalchi and H. Pourmahmood Aghababa. FigaTalamancaHerz algebras for restricted inverse semigroups and Clifford semigroups. J. Math. Anal. Appl., 395(2):473 – 485, 2012. jomesh06 [3291] B. Mehri, D. Shadman, and S. Jokar. Least Square Approximation by Linear Combination of Exponential Functions. Journal of Mathematics and Statistics, 2(2):391–394, 2006. menara92 [3292] R. Mehrotra, K. Namuduri, and N. Ranganathan. Gabor filter-based edge detection. Pattern Recognition, 25(12):1479 – 1494, 1992. mevizu99 [3293] E. Meijering, K. Zuiderveld, and M. Viergever. Image reconstruction by convolution with symmetrical piecewise nth-order polynomial kernels. IEEE Trans. Image Process., 8(2):192–201, 1999. me00 [3294] E. H. W. Meijering. Spline interpolation in medical imaging: comparison with other convolution-based approaches. IV:1989–1996, 2000. mesc54 [3295] J. Meixner and F. Sch¨afke. Mathieusche Funktionen und Sph¨aroidfunktionen mit Anwendungen auf physikalische und technische Probleme. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber¨ ucksichtigung der Anwendungsgebiete, Band LXXI. Springer-Verlag, Berlin, 1954. memescsc54 [3296] J. Meixner, F. Sch¨afke, J. Meixner, and F. Sch¨afke. Mathieusche Funktionen und Sph¨aroidfunktionen mit Anwendungen auf physikalische und technische Probleme. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber¨ ucksichtigung der Anwendungsgebiete, Band LXXI. Springer-Verlag, Berlin, 1954. mesr08 [3297] H. Mejjaoli and N. Sraieb. Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform. Mediterranean Journal of Mathematics, 5(4):443–466, 2008. bame96 [3298] J. Melenk and I. Babuska. The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg., 139(1-4):289–314, 1996. bame97 [3299] J. Melenk and I. Babuska. Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comput. Assist. Mech. Eng. Sci., 4(3-4):607–632, 1997. 292 memo75 [3300] P. Mello and M. Moshinsky. Nonlinear canonical transformations and their representations in quantum mechanics. J. Math. Phys.(NY), v. 16, no. 10, pp. 2017-2028, 16(10), 1975. me04-4 [3301] C. Melot. Oscillating singularities in Besov spaces. J. Math. Pures Appl., IX. S´er., 83(3):367–416, 2004. me74 [3302] O. Melsheimer. Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory. Journal of Mathematical Physics, 15:902, 1974. me07-1 [3303] F. Memoli. Symposium on Point Based Graphics. pages 81–90, 2007. me09 [3304] F. Memoli. Spectral Gromov-Wasserstein distances for shape matching. In Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment (ICCV workshop, NORDIA’09), ¨october 2009. me11 [3305] F. M´emoli. A spectral notion of Gromov-Wasserstein distance and related methods. Appl. Comput. Harmon. Anal., 30(3):363 – 401, 2011. me11-1 [3306] F. Memoli. GromovWasserstein distances and the metric approach to object matching. Foundations of Computational Mathematics, In Press:1–71, April 2011. me14 [3307] F. Memoli. The Gromov–Wasserstein Distance: A Brief Overview. Axioms, 3(3):335–341, 2014. me10-1 [3308] S. Mendelson. Empirical processes with bounded ψ1 diameter. Geom. Funct. Anal., 20(4):988–1027, 2010. me12-1 [3309] S. Mendelson. preprint, 2012. me14-1 [3310] S. Mendelson. Learning without Concentration. ArXiv e-prints, jan 2014. mepato07 [3311] S. Mendelson, A. Pajor, and N. Tomczak Jaegermann. Reconstruction and subgaussian operators in asymptotic geometric analysis. Geom. Funct. Anal., 17(4):1248–1282, 2007. Oracle inequalities and the isomorphic method. 293 me08 [3312] M. Mendicute. Effects of channel estimation and implementation on the performance of MIMO wireless systems. PhD thesis, 2008. meol12 [3313] V. Menegatto and C. Oliveira. Eigenvalue and singular value estimates for integral operators: a unifying approach. Mathematische Nachrichten, to appear:–, 2012. femeol09 [3314] V. Menegatto, C. Oliveira, and J. Ferreira. On the nuclearity of integral operators. Positivity, 13(3):519–541, 2009. halimengyi12 [3315] J. Meng, W. Yin, Y. Li, N. T. Nguyen, and Z. Han. Compressive sensing based high-resolution channel estimation for OFDM system. IEEE J. Sel. Topics Sign. Process., 6(1):15–25, February 2012. meov05 [3316] E. Mengi and M. Overton. Algorithm for the computation of the pseudospectral radius and the numerical radius of a matrix. IMA J. Numer. Anal., 25(4):648–669, 2005. meul72 [3317] D. Men’shov and P. Ul’yanov. The problem of representing functions by series. Mosc. Univ. Math. Bull., 25(1-2):61–68, 1972. me99-2 [3318] C. Merdy. Finite rank approximation and semidiscreteness for linear operators. Ann. Inst. Fourier (Grenoble), 49(6):1869–1901, 1999. me84-1 [3319] C. Merucci. Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. 1984. andimeoh11 [3320] A. Meyer, J. Diepenbrock, F. Ohl, and J. Annem¨ uller. Evaluation and comparison of different machine learning approaches to auditory spectro-temporal receptive field estimation. BMC Neuroscience, 12(Suppl 1):P4, 2011. me72-1 [3321] Y. Meyer. Algebraic numbers and harmonic analysis. North-Holland Mathematical Library. Vol. 2. Amsterdam-London: North- Holland Publishing Co mpany. X, 274 p. Hfl. 52.50; $ 16.50 (1972)., 1972. me85-2 [3322] Y. Meyer. Les nouveaux op´erateurs de Calder´on-Zygmund. Ast’erisque, (131):237–254, 1985. me92-1 [3323] Y. Meyer. Wavelets and operators, volume 2. Cambridge Univ Press, 1992. 294 me95-2 [3324] Y. Meyer. Quasicrystals, Diophantine approximation and algebraic numbers. In Beyond quasicrystals (Les Houches, 1994), pages 3–16. Springer, Berlin, 1995. me12 [3325] Y. Meyer. Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling. Afr. Diaspora J. Math., 13(1):1– 45, 2012. come97-2 [3326] Y. Meyer and R. Coifman. Wavelets: Calder’on-Zygmund and multilinear operators. 48, 1997. meve12 [3327] M. Meyries and M. Veraar. Traces and embeddings of anisotropic function spaces. Math. Ann., pages 1–36, 2012. mhti12 [3328] H. Mhaskar and S. Tikhonov. Wiener type theorems for Jacobi series with nonnegative coefficients. Proc. Amer. Math. Soc., 140(3):977– 986, 2012. mi96 [3329] T. Miao. Compactness of a locally compact group G and geometric properties of Ap (G). Canad. J. Math., 48(6):1273–1285, 1996. mipi77 [3330] C. Micchelli and A. Pinkus. On n-widths in L∞ . Trans. Amer. Math. Soc., 234(1):139–174, 1977. mipi78 [3331] C. Micchelli and A. Pinkus. Some problems in the approximation of functions of two variables and n-widths of integral operators. J. Approx. Theory, 24(1):51–77, 1978. mirust12 [3332] N. Michalowski, D. Rule, and W. Staubach. Weighted Lp boundedness of pseudodifferential operators and applications. Canad. Math. Bull., 55(3):555–570, 2012. mi13 [3333] V. Michel. Lectures on Constructive Approximation. Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkh¨auser, 2013. mi87-1 [3334] D. Middleton. Channel Modeling and Threshold Signal Processing in Underwater Acoustics: An Analytical Overview. IEEE J. Oceanic Eng., 12(1):4–28, 1987. 295 mirast11 [3335] M. Mihailescu, V. Radulescu, and D. Stancu Dumitru. A CaffarelliKohnNirenberg-type inequality with variable exponent and applications to PDEs. Complex Variables and Elliptic Equations, 56(7-9):659–669, 2011. bemi96-1 [3336] W. Mikhael and A. Berg. Image representation using nonorthogonal basis images with adaptive weight optimization. Signal Processing Letters, IEEE, 3(6):165 –167, jun 1996. misp88 [3337] W. Mikhael and A. Spanias. A fast frequency-domain adaptive algorithm. Proceedings of the IEEE, 76(1):80 –82, jan 1988. misp89 [3338] W. Mikhael and A. Spanias. Accurate representation of time-varying signals using mixed transforms with applications to speech. Circuits and Systems, IEEE Transactions on, 36(2):329 –331, feb 1989. misp89-1 [3339] W. Mikhael and A. Spanias. Efficient modeling of dominant transform components representing time-varying signals. IEEE Trans. Circuits and Systems, 36(2):331–334, 1989. mi10 [3340] P. Milanfar. Super-resolution Imaging, volume 1. CRC Press, 2010. pe10 [3341] P. Milanfar. Super-Resolution Imaging, volume 1. CRC Press, 2011. miro95 [3342] d. Milheiro and M. Roubaud. Discrete-time piecewise linear filtering with small observation noise. IEEE Trans. Automat. Control, 40(12):2149–2152, 1995. fogogomisu10 [3343] B. Miller, J. Goodman, K. Forsythe, J. Sun, and V. K. Goyal. A multi-sensor compressed sensing receiver: Performance bounds and simulated results. In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on, pages 1571– 1575, 2010. mi78-3 [3344] M. Milman. Embeddings of Lorentz-Marcinkiewicz spaces with mixed norms. Anal. Math., 4:215–223, 1978. mi81-1 [3345] M. Milman. On interpolation of 2n Banach spaces and Lorentz spaces with mixed norms. J. Funct. Anal., 41:1–7, 1981. miyu02 [3346] I. Mineyev and G. Yu. The Baum-Connes conjecture for hyperbolic groups. Invent. Math., 149(1):97–122, 2002. 296 almi06 [3347] H. Minn and N. Al Dhahir. Optimal training signals for MIMO OFDM channel estimation. IEEE Trans. Wireless Comm., 5:1158 – 1168, May 2006. mipoot12 [3348] D. Miraut, J. Portilla, and o. others. Efficient shift-variant image restoration using deformable filtering (Part I). EURASIP J. Adv. Sig. Proc., 2012:100, 2012. elmi09-2 [3349] M. Mishali and Y. Eldar. Blind multi-band signal reconstruction: Compressed sensing for analog signals. IEEE Trans. Signal Process., 57:993–1009, Mar. 2009. mi12 [3350] A. Missbauer. Gabor Frames and the Fractional Fourier Transform. Master’s thesis, University of Vienna, 2012. hami76 [3351] J. Mitchell and K. Hahn. Representation of linear functionals in H p spaces over bounded symmetric domains in C N . J. Math. Anal. Appl., 56(2):379–396, 1976. mi10-1 [3352] M. Mitkovski. Spaces of Analytic Functions and Their Applications. ProQuest LLC, Ann Arbor, 2010. mi11 [3353] M. Mitkovski. On a connection between Naimark’s dilation theorem, spectral representations, and characteristic functions. Indiana Univ. Math. J., 60(2):507–515, 2011. mipo10 [3354] M. Mitkovski and A. Poltoratski. Polya sequences, Toeplitz kernels and gap theorems. Adv. Math., 224(3):1057–1070, 2010. misuwi13 [3355] M. Mitkovski, D. Su´arez, and B. Wick. The essential norm of operators on A pα (Bn ). Integr. Equ. Oper. Theory, 75(2):197–233, 2013. miwi14 [3356] M. Mitkovski and B. Wick. A reproducing kernel thesis for operators on Bergman-type function spaces. J. Funct. Anal., 267(7):2028–2055, 2014. mimimimo13 [3357] D. Mitrea, I. Mitrea, M. Mitrea, and S. Monniaux. Groupoid Metrization Theory With applications to Analysis on Quasi-metric Spaces and Functional Analysis. Applied and Numerical Harmonic Analysis. Basel: Birkh¨auser. xii, 479 p., 2013. 297 mimi13 [3358] I. Mitrea and M. Mitrea. Multi-layer Potentials and Boundary Problems for Higher-order Elliptic Systems in Lipschitz Domains. Lecture Notes in Mathematics 2063. Berlin: Springer. x, 424 p., 2013. mi84-1 [3359] B. Mityagin. An interpolation theorem for modular spaces. In Interpolation spaces and allied topics in analysis (Lund, 1983), volume 1070 of Lecture Notes in Math., pages 10–23. Springer, 1984. mish64 [3360] B. Mityagin and A. Shvarts. Functors in categories of Banach spaces. Russian Math. Surveys, 19(2):65–127, 1964. miniritato09 [3361] A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco, and N. Tomita. Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Amer. Math. Soc., 137(11):3869–3883, 2009. mi91-1 [3362] Y. Miyazaki. Application of interpolation spaces with a function parameter to the eigenvalue distribution of compact operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38(2):319–338, 1991. mi91-2 [3363] T. Mizuhara. Boundedness of some classical operators on generalized Morrey spaces. In ICM-90 Satellite Conference Proceedings, pages 183–189, 1991. mi13-1 [3364] Y. Mizuta. Morrey capacity and vanishing integrability for Riesz potentials in Morrey spaces. In Topics in finite or infinite dimensional complex analysis. Proceedings of the 19th international conference on finite or infinite dimensional complex analysis and applications (ICFIDCAA), Hiroshima, Japan, December 11–15, 2011, pages 187–195. Sendai: Tohoku University Press, 2013. minaohsh08 [3365] Y. Mizuta, E. Nakai, T. Ohno, and T. Shimomura. An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces L1,ν,β (G). Hiroshima Math. J., 38(3):425–436, 2008. minaohsh11 [3366] Y. Mizuta, E. Nakai, T. Ohno, and T. Shimomura. Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents. Complex Variables and Elliptic Equations, 56(7-9):671–695, 2011. limo11 [3367] Q. Mo and S. Li. New bounds on the restricted isometry constant δ2k . Appl. Comput. Harmon. Anal., in press, 2011. 298 mo96 [3368] G. Mockenhaupt. Bounds in Lebesgue spaces of oscillatory integral operators. PhD thesis, Siegen: Univ.-GHS Siegen, Fachbereich Mathematik (Habil.), 52 p., 1996. mookri10 [3369] G. Mockenhaupt, S. Okada, and W. Ricker. Optimal extension of Fourier multiplier operators in Lp (G). Integr. Equ. Oper. Theory, 68(4):573–599, 2010. mosh14 [3370] P. Mohanty and S. Shrivastava. Fourier multipliers and LittlewoodPaley for modulation spaces. Math. Nachr., 287(2-3):324–338, 2014. mopf13 [3371] S. Molahajloo and G. E. Pfander. Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces. Mathematical Modelling of Natural Phenomena, 8:18, 0 2013. mowo09 [3372] S. Molahajloo and M. Wong. Square-integrable group representations and localization operators for modified Stockwell transforms. Rend. Semin. Mat. Univ. Politec. Torino, 67(2):215–227, 2009. mowo11 [3373] S. Molahajloo and M. Wong. Diagonalization of Weyl transforms and heat equations for time-dependent Hermite operators. Complex Anal. Oper. Theory, 5(1):283–298, 2011. mowo13 [3374] S. Molahajloo and M. Wong. The heat kernel and Green function of a sub-Laplacian on the hierarchical Heisenberg group. In Pseudodifferential operators, generalized functions and asymptotics, volume 231 of Oper. Theory Adv. Appl., pages 85–102. Birkh¨auser/Springer Basel AG, Basel, 2013. chmonapaso98 [3375] V. Molebny, I. Chyzh, V. Sokurenko, I. Pallikaris, and L. Naoumidis. Eye aberration analysis with Zernike polynomials. In V. V. Molebny, I. H. Chyzh, V. M. Sokurenko, I. G. Pallikaris, L. P. Naoumidis, P. O. Rol, K. M. Joos, and F. Manns, editors, Proc. SPIE, Ophthalmic Technologies VIII, volume 3246 of Eye Modeling, pages 228–237. SPIE, 1998. mo01 [3376] A. F. Molisch, editor. Wideband Wireless Digital Communications. Prentice Hall, Englewood Cliffs (NJ), 2001. mo10-1 [3377] A. F. Molisch, editor. Wireless Communications. John Wiley and Sons, Ltd., 2nd edition, 2010. 299 mamoot05 [3378] C. Monta na, G. F. Margrave, and o. others. Phase correction in Gabor deconvolution. In 75th Annual International Meeting, SEG, Expanded Abstracts, pages 2173–2176, 2005. axmemo04 [3379] A. Montillo, D. Metaxas, and L. Axel. Extracting tissue deformation using Gabor filter banks. In Proc. SPIE: Physiology, Function, and Structure from Medical Images, volume 5369 of Cardiac Imaging, page 9 pages, San Diego, CA, USA, 2004. momo03 [3380] B. Moore. An introduction to the psychology of hearing, volume 4. Academic press San Diego, 2003. glmo83 [3381] B. Moore and B. R. Glasberg. Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J. Acoust. Soc. Amer., 74(3):750–753, September 1983. memo11 [3382] C. Moore and S. Mertens. The Nature of Computation. Oxford: Oxford University Press. xvii, 985 p., 2011. camo04 [3383] I. Moore and M. Cada. Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Appl. Comput. Harmon. Anal., 16(3):208–230, 2004. avmo00 [3384] B. Moran and S. Avdonin. Sampling of multi-band signals. In ICIAM 99. Proceedings of the 4th international congress on industrial & applied mathematics, Edinburgh, GB, July 5–9, 1999, pages 163–174. 2000. memo01 [3385] M. Morelli and U. Mengali. A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Trans. Signal Process., 49(12):3065–3073, December 2001. ardimo10 [3386] S. Moreno Picot, M. Arevalillo Herraez, and W. Diaz Villanueva. A linear cost algorithm to compute the discrete gabor transform. IEEE Trans. Signal Process., 58(5):2667–2674, May 2010. mo69 [3387] C. Morette. L’int’egrale fonctionnelle de Feynman. Une introduction. In Annales de l’institut Henri Poincar’e (A) Physique th’eorique, volume 11, pages 153–206, 1969. 300 dulimoristya12 [3388] V. Morgenshtern, E. Riegler, W. Yang, G. Durisi, S. Lin, B. Sturmfels, and H. B¨olcskei. Capacity Pre-Log of Noncoherent SIMO Channels via Hironaka’s Theorem. Arxiv preprint arXiv:1204.2775, 2012. mo01-1 [3389] S. Morita. Geometry of differential forms. Translations of mathematical monographs. American Mathematical Society, 2001. moniso06 [3390] S. Moritoh, M. Niwa, and T. Sobukawa. Interpolation theorem on Lorentz spaces over weighted measure spaces. Proc. Amer. Math. Soc., 134(8):2329–2334, 2006. arfogimo82 [3391] J. Morlet, G. Arens, E. Fourgeau, and D. Giard. Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media. Geophys. J. Internat., 47(2-SEISMIC):203–221, 1982. arfogimo82-1 [3392] J. Morlet, G. Arens, E. Fourgeau, and D. Giard. Wave propagation and sampling theory-Part II: Sampling theory and complex waves. Geophys. J. Internat., 47(2-SEISMIC):222–236, 1982. moxi94 [3393] J. M. Morris and H. Xie. Fast algorithms for generalized discrete Gabor expansions. Signal Process., 39(3):317–331, 1994. mo62 [3394] J. Morrison. On the commutation of finite integral operators, with difference kernels and linear self-adjoint differential operators. Notices Amer. Math. Soc, (9,), 1962. mo94 [3395] N. Morrison. Introduction To Fourier Analysis. John Wiley and Sons, Ltd., 1994. femo53 [3396] P. Morse and H. Feshbach. Methods of theoretical physics. 2 volumes. McGraw-Hill Book Co., Inc., New York, 1953. camo80 [3397] M. Moshinsky and G. Carcia Calderon. Wigner distribution functions and the representation of canonical transformations in quantum mechanics. Journal of Physics A: Mathematical and General, 13:L185, 1980. moqu71 [3398] M. Moshinsky and C. Quesne. Linear canonical transformations and their unitary representations. Journal of Mathematical Physics, 12:1772, 1971. 301 mose78 [3399] M. Moshinsky and T. Seligman. Canonical transformations to action and angle variables and their representations in quantum mechanics. Annals of Physics, 114(1-2):243–272, September 1978. mose79-1 [3400] M. Moshinsky and T. Seligman. Canonical transformations to action and angle variables and their representation in quantum mechanics. II. The Coulomb problem. Ann. Physics, 120(2):402–422, August 1979. mose79 [3401] M. Moshinsky and T. Seligman. Canonical transformations to action and angle variables and their representations. Journal of Physics A: Mathematical and General, 12(6):L135–L139, 1979. mosewo72 [3402] M. Moshinsky, T. Seligman, and K. Wolf. Canonical transformations and the radial oscillator and Coulomb problems. J. Math. Phys., 13(6):901–907, 1972. mosh00 [3403] M. Moshinsky and A. Sharma. Canonical transformations for time evolution and their representation in Wigner distribution phase space. Annals of Physics, 282(1):138–153, 2000. moza14 [3404] T. Moumni and A. Zayed. A generalization of the prolate spheroidal wave functions with applications to sampling. Integral Transforms Spec. Funct., 25(6):433–447, 2014. mo07 [3405] S. Moura. On some characterizations of Besov spaces of generalized smoothness. Math. Nachr., 280(9-10):1190–1199, 2007. motr98 [3406] M. Mourou and K. Trim`eche. Inversion of the Weyl integral transform and the Radon transform on Rn using generalized wavelets. Monatsh. Math., 126(1):73–83, 1998. hamo04-1 [3407] N. Movshovitz Hadar and O. Hazzan. How to present it? On the rhetoric of an outstanding lecturer. International Journal of Mathematical Education in Science and Technology, 35(6):813–827, 2004. mrro13 [3408] Y. Mroueh and L. Rosasco. q-ary Compressive Sensing. ArXiv eprints, 2013. must65 [3409] B. Muckenhoupt and E. M. Stein. Classical expansions and their relation to conjugate harmonic functions. Trans. Amer. Math. Soc., 118:17–92, 1965. 302 chmamusiza05 [3410] N. Mukunda, G. Marmo, A. Zampini, S. Chaturvedi, and R. Simon. Wigner–Weyl isomorphism for quantum mechanics on Lie groups. Journal of Mathematical Physics, 46:012106, 2005. mu98-1 [3411] C. M¨ uller. Analysis of Spherical Symmetries in Euclidean Spaces. Applied Mathematical Sciences. 129. New York, NY: Springer., 1998. muva10 [3412] D. M¨ uller and M. Vallarino. Wave equation and multiplier estimates on Damek-Ricci spaces. J. Fourier Anal. Appl., 16(2):204–232, 2010. muya09 [3413] D. M¨ uller and D. Yang. A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces. Forum Math., 21(2):259–298, 2009. msc09 [3414] S. M¨ uller and R. Schaback. A Newton basis for kernel spaces. J. Approx. Theory, 161(2):645–655, 2009. mu94 [3415] D. Mumford. Pattern theory: A unifying perspective. Joseph, A. (ed.) et al., First European Congress of Mathematics (ECM), Paris, France, July 6-10, 1992. Volume I: Invited lectures (Part 1). Basel: Birkh¨auser. Prog. Math. 119, 187-224 (1994)., 1994. gimu01 [3416] D. Mumford and B. Gidas. Stochastic models for generic images. Quarterly of applied mathematics, 59:85–112, 2001. mu12 [3417] I. Munive. Boundary behavior of non-negative solutions of the heat equation in sub-Riemannian spaces. Potential Anal., 37(4):333–352, 2012. ermuun02 [3418] A. Munoz, R. Ertl´e, and M. Unser. Continuous wavelet transform with arbitrary scales and O(N ) complexity. Signal Process., 82(5):749–757, May 2002. mu06-2 [3419] H. Munthe Kaas. On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A, Math. Gen., 39(19):5563–5584, 2006. mude99 [3420] B. Muquet and C. de. Blind and Semi-Blind Channel Identification Methods using Second Order Statistics for OFDM Systems. volume 5, page 27452748, Mar. 1999. 303 dumude02 [3421] B. Muquet, C. de, and P. Duhamel. Subspace-based blind and semiblind channel estimation for OFDM systems. IEEE Trans. Signal Process., 50(7):1699–1712, July 2002. muna07 [3422] G. Muraz and M. Navarro. Existence of invariant subspace for certain commutative Banach algebras of operators. Taiwanese Journal of Mathematics, 11(1):pp–135, 2007. muoz12 [3423] G. Muraz and S. Oztop. Presque p´eriodicit´e avec poids. Bull. Math. Soc. Sci. Math. Roum., Nouv. S´er., 55(3):295–310, 2012. aldekelumuva12 [3424] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, and M. Lustig. Fast ell1 -SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime. IEEE Trans. Image Process., 31(6):1250 –1262, 2012. aldekelumuvaXX [3425] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, and M. Lustig. Fast 1 -SPIRiT compressed sensing parallel imaging MRI: Scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging, to appear. mu01 [3426] M. Murty. Quadratic reciprocity via linear algebra. Bona Math., 12(4):75–80, 2001. musc13 [3427] C. Muscalu and W. Schlag. Classical and Multilinear Harmonic Analysis Volume I. Cambridge Studies in Advanced Mathematics 137. Cambridge: Cambridge University Press. 387 p., 2013. musc13-1 [3428] C. Muscalu and W. Schlag. Classical and Multilinear Harmonic Analysis Volume II. Cambridge Studies in Advanced Mathematics 133. Cambridge: Cambridge University Press. 339 p., 2013. mutath02-1 [3429] C. Muscalu, T. Tao, and C. Thiele. Uniform estimates on multi-linear operators with modulation symmetry. J. Anal. Math., 88:255–309, 2002. mu14 [3430] J. Muscat. Functional analysis. An introduction to metric spaces, Hilbert spaces, and Banach algebras. Springer, 2014. mu79 [3431] K. Musial. The weak Radon-Nikod´ ym property in Banach spaces. Studia Math., 64(2):151–173, 1979. 304 mu12-1 [3432] R. Mustafayev. On boundedness of sublinear operators in weighted Morrey spaces. Azerb. J. Math., 2(1):66–79, 2012. mu06-3 [3433] D. Muzzulini. Genealogie der Klangfarbe, volume 5. Peter Lang Publishing, 2006. grrapfXX [3434] G. N., G. E. Pfander, and R. P. A density criterion for operator identification. na99 [3435] R. Nabben. Decay rates of the inverse of nonsymmetric tridiagonal and band matrices. SIAM J. Matrix Anal. Appl., 20(3):820–837, 1999. naol98-4 [3436] J. Nagy and D. O’Leary. Fast iterative image restoration with a spatially-varying psf. 1998. naol98 [3437] J. Nagy and D. O’Leary. Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput., 19(4):1063–1082, 1998. naol97 [3438] J. Nagy and D. P. O’Leary. Fast iterative image restoration with a spatially varying PSF. In Optical Science, Engineering and Instrumentation’97, pages 388–399, 1997. napape04 [3439] J. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: a Matlab object-oriented approach. Numer. Algorithms, 36(1):73–93, 2004. na11 [3440] A. Naidu. Centrality of L¨owdin orthogonalizations. Arxiv preprint arXiv:1105.3571, pages 1–6, 2011. na51 [3441] M. Naimark. On a problem of the theory of rings with involution. Uspehi Matem. Nauk (N.S.), 6(6(46)):160–164, 1951. na08-2 [3442] E. Nakai. Calder´on-Zygmund operators on Orlicz-Morrey spaces and modular inequalities. In Banach and function spaces II, pages 393– 410. 2008. na08-3 [3443] E. Nakai. Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Studia Math., 188(3):193–221, 2008. nasa14 [3444] E. Nakai and G. Sadasue. Pointwise multipliers on martingale Campanato spaces. Studia Math., 220(1):87–100, 2014. 305 na11-1 [3445] M. Nakai. An application of capacitary functions to an inverse inclusion problem. Hiroshima Math. J., 41(2):223–233, 2011. na13 [3446] S. Nam. An Uncertainty Principle for Discrete Signals. ArXiv e-prints, jul 2013. daelgrna11 [3447] S. Nam, M. Davies, M. Elad, and R. Gribonval. The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal., 34(1):30–56, 2013. na78 [3448] N. Namboodiri. Survey sampling and measurement. Papers presented at the 2nd symposium on survey sampling held at the Chapel Hill campus of the University of North Carolina, April 14-17, 1977. Quantitative Studies in Social Relations. New York etc.: Academic Press. XXI, 364 p., 1978. napa12 [3449] T. Nambudiri and K. Parthasarathy. Generalised Weyl-Heisenberg frame operators. Bull. Sci. Math., 136(1):44–53, 2012. nasc13 [3450] K. Namngam and E. Schulz. Equivalence of the metaplectic representation with sums of wavelet representations for a class of subgroups of the symplectic group. J. Fourier Anal. Appl., pages 1–38, 2013. menara94 [3451] K. Namuduri, R. Mehrotra, and N. Ranganathan. Efficient computation of Gabor filter based multiresolution responses. Pattern Recognition, 27(7):925 – 938, 1994. napr03 [3452] V. Narayanan and K. Prabhu. The fractional Fourier transform: theory, implementation and error analysis. Microprocessors and Microsystems, 27(10):511 – 521, 2003. na12 [3453] G. Narimani. Smooth pointwise multipliers of modulation spaces. An. Stiint. Univ. Ovidius Constanta, 20(1):317–328, 2012. nasu10 [3454] M. Nashed and Q. Sun. Sampling and reconstruction of signals in a reproducing kernel subspace of Lp (Rd ). J. Funct. Anal., 258(7):2422– 2452, 2010. nasu13 [3455] M. Nashed and Q. Sun. Function spaces for sampling expansions. In A. I. Z. Xiaoping Shen, editor, Multiscale signal analysis and modeling, volume Part I: Sampling- Chapter 4, pages 81–104. Springer, 2013. 306 nawa75 [3456] M. Nashed and G. Wahba. Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations. SIAM J. Math. Anal., pages 974–987, 1975. nawa95 [3457] M. Nashed and G. G. Walter. Reproducing kernel Hilbert spaces from sampling expansions. Ismail, Mourad E. H. (ed.) et al., Mathematical analysis, wavelets, and signal processing. An international conference on mathematical analysis and signal processing, Cairo University, Cairo, Egypt, January 3-9, 1994. Providence, RI: American Mathematical, 1995. naobth10 [3458] F. Nazarov, R. Oberlin, and C. Thiele. A Calderon-Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain. Math. Res. Lett., 17(3):529–545, 2010. narevo11 [3459] F. Nazarov, A. Reznikov, and A. Volberg. The proof of a2 conjecture in a geometrically doubling metric space. Submitted on 7 Jun 2011, to be published, 2011. natrvo98 [3460] F. Nazarov, S. Treil, and A. Volberg. Weak type estimates and Cotlar inequalities for Calder´on-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices, 1998(9):463–487, 1998. nata10 [3461] S. Nazarov and J. Taskinen. On essential and continuous spectra of the linearized water-wave problem in a finite pond. Math. Scand., 106(1):141–160, 2010. bahoneso13 [3462] T. Necciari, P. Balazs, N. Holighaus, and P. Sondergaard. The ERBlet transform: An auditory-based time-frequency representation with perfect reconstruction. In Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), pages 498–502, 2013. nest04 [3463] M. Necker and G. Stuber. Totally blind channel estimation for OFDM on fast varying mobile radio channels. IEEE Trans. Wireless Comm., 3:1512–1525, Sep. 2004. neve08 [3464] D. Needell and R. Vershynin. Greedy signal recovery and uncertainty principles. In Proc. SPIE, volume 6814, February 2008. 307 newa12 [3465] D. Needell and R. Ward. Stable image reconstruction using total variation minimization. SIAM J. Imag. Sci., 6(2):1035–1058, 2013. nevewe07 [3466] J. Neerven, M. Veraar, and L. Weis. Conditions for stochastic integrability in UMD Banach spaces. In Banach spaces and their applications in analysis, pages 125–146. Walter de Gruyter, Berlin, 2007. cine98 [3467] R. Negi and J. Cioffi. Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Trans. Consumer Electronics, 44(3):1122–1128, August 1998. ne02-3 [3468] A. Nekvinda. Equivalence of pn norms and shift operators. Math. Inequal. Appl., 5(4):711–723, 2002. ne10 [3469] A. Nekvinda. A note on one-sided maximal operator in Lp(.) (R). Math. Inequal. Appl., 13(4):887–897, 2010. nepi10 [3470] A. Nekvinda and L. Pick. Optimal estimates for the Hardy averaging operator. Math. Nachr., 283(2):262–271, 2010. ne74 [3471] E. Nelson. Notes on non-commutative integration. J. Funct. Anal., 15:103–116, 1974. neyu79 [3472] A. Nemirovskii and D. Yudin. Complexity of Problems and Efficiency of Optimization Methods, 1979. neyu83 [3473] A. Nemirovsky and D. Yudin. Problem complexity and method efficiency in optimization. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York, 1983. ne11 [3474] Y. Neretin. Lectures on Gaussian Integral operators and Classical Groups. EMS Series of Lectures in Mathematics. Z¨ urich: European Mathematical Society (EMS). xii, 559 p. EUR 58.00, 2011. ne07 [3475] Y. A. Neretin. On adelic model of boson Fock space. In Moscow Seminar on Mathematical Physics. II, volume 221 of Amer. Math. Soc. Transl. Ser. 2, pages 193–202. Amer. Math. Soc., Providence, RI, 2007. ne11-1 [3476] P. Nes. Gabor analysis for non-rectangular lattices and the fractional Fourier-transform. Sampl. Theory Signal Image Process., 10(3):285– 300, 2011. 308 nest06 [3477] S. Neshveyev and E. Stormer. Dynamical entropy in operator algebras. Number Bd. 50 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 2006. ne83-1 [3478] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k 2 ). Dokl. Akad. Nauk SSSR, 269(3):543– 547, 1983. ne05-2 [3479] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1, Ser. A):127–152, 2005. nene94 [3480] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms in Convex Programming. SIAM Studies Appl. Math., Philadelphia, PA, 1994. nescst11 [3481] V. Nestoridis, S. Schmutzhard, and V. Stefanopoulos. Universal series induced by approximate identities and some relevant applications. J. Approx. Theory, 163(12), 2011. ne12 [3482] A. Neubauer. On the Shack-Hartmann based wavefront reconstruction: stability and convergence rates of finite-dimensional approximations. J. Inverse Ill-Posed Probl., 20(4):591–614, 2012. ne02-4 [3483] J. Neves. Lorentz–Karamata spaces, Bessel and Riesz potentials and embeddings. Diss. Math., 405:46, 2002. bahene10 [3484] G. Newstadt, E. Bashan, and A. Hero. Adaptive search for sparse targets with informative priors. In IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pages 3542–3545, Dallas, TX, March 2010. ngweyu10 [3485] M. Ng, P. Weiss, and X. Yuan. Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods. SIAM J. Sci. Comput., 32(5):2710–2736, 2010. ng11 [3486] H. Nguyen. Inverse Littlewood-Offord problems and the singularity of random symmetric matrices. preprint, 2011. ming00 [3487] N. Nguyen and P. Milanfar. A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution). Circuits, Systems and Signal Processing, 19(4):321–338, 2000. 309 ni08 [3488] B. Nica. Relatively spectral morphisms and applications to K-theory. J. Funct. Anal., 255(12):3303–3328, 2008. ni10-2 [3489] B. Nica. On the degree of rapid decay. Amer. Math. Soc., 138(7):2341– 2347, 2010. ni11 [3490] B. Nica. Homotopical stable ranks for Banach algebras. J. Funct. Anal., 2011. nipo07 [3491] R. Nickl and B. P¨otscher. Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov-and Sobolevtype. Journal of Theoretical Probability, 20(2):177–199, 2007. ni14-2 [3492] F. Niederst¨atter. Non-Orthogonal Option Pricing. 2014. ni14-1 [3493] L. Nielsen. A distributional approach to Feynman’s operational calculus. New York J. Math., 20:377–398, 2014. ni10-1 [3494] M. Nielsen. Trigonometric bases for matrix weighted lp -spaces. J. Math. Anal. Appl., 371:784–792, 2010. ni13 [3495] M. Nielsen. On traces of general decomposition spaces. Monatsh. Math., 171(3-4):443–457, 2013. ni14 [3496] M. Nielsen. Frames for decomposition spaces generated by a single function. Collect. Math., 65(2):183–201, 2014. nira12 [3497] M. Nielsen and K. Rasmussen. Compactly supported frames for decomposition spaces. J. Fourier Anal. Appl., 18(1):87–117, 2012. ni91 [3498] T. Nielsen. Bose algebras: the complex and real wave representations. Lecture Notes in Mathematics 1472. Springer-Verlag, 1991. ni75-2 [3499] S. Nikolskii. Approximation of functions of several variables and imbedding theorems. Die Grundlehren der Mathematischen Wissenschaften. Band 205. Springer, 1975. ni89 [3500] R. Niland. Optimum oversampling. J. Acoust. Soc. Amer., 86:1805, 1989. ni82-2 [3501] P. Nilsson. Reiteration theorems for real interpolation and approximation spaces. Ann. Mat. Pura Appl. (4), 132(1):291–330, 1982. 310 ni83 [3502] P. Nilsson. Interpolation of Calderon and Ovchinnikov pairs. Ann. Mat. Pura Appl. (4), 134(1):201–232, 1983. nisuya09 [3503] M. Nishio, N. Suzuki, and M. Yamada. Weighted Berezin transformations with application to Toeplitz operators of Schatten class on parabolic Bergman spaces. Kodai Math. J., 32(3):501–520, 2009. nisuya12 [3504] M. Nishio, N. Suzuki, and M. Yamada. Schatten class Toeplitz operators on the parabolic Bergman space II. Kodai Mathematical Journal, 35(1):52–77, 2012. ni78 [3505] P. Nitsche. Klangfarbe und Schwingungsform, volume 13. Katzbichler, 1978. niol12 [3506] S. Nitzan and A. Olevskii. Revisiting Landau’s density theorems for Paley-Wiener spaces. C. R., Math., Acad. Sci. Paris, 350(9-10):509– 512, 2012. niol11 [3507] S. Nitzan and J.-F. Olsen. From exact systems to Riesz bases in the Balian-Low theorem. J. Fourier Anal. Appl., 17(4):567–603, 2011. niol12-1 [3508] S. Nitzan and J.-F. Olsen. A quantitative Balian-Low theorem. preprint, submitted on 1 May 2012:11, 2012. niol13 [3509] S. Nitzan and J.-F. Olsen. A quantitative Balian-Low theorem. J. Fourier Anal. Appl., 19(5):1078–1092, 2013. nowr06 [3510] J. Nocedal and S. Wright. Numerical optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York, Second edition, 2006. no12 [3511] T. Noi. Duality of variable exponent Triebel-Lizorkin and Besov spaces. 2012. nosa12 [3512] T. Noi and Y. Sawano. Complex interpolation of Besov spaces and Triebel-Lizorkin spaces with variable exponents. J. Math. Anal. Appl., 387(2):676–690, 2012. No67 [3513] R. J. Noll. Zernike polynomials and atmospheric turbulence. JOSA, 66(3):207–211, 1967. 311 no76-1 [3514] R. J. Noll. Zernike polynomials and atmospheric turbulence. JOsA, 66(3):207–211, 1976. nosjzw11 [3515] S. Nonnenmacher, J. Sj¨ostrand, and M. Zworski. From open quantum systems to open quantum maps. Comm. Math. Phys., 304(1):1–48, 2011. nozw09 [3516] S. Nonnenmacher and M. Zworski. Quantum decay rates in chaotic scattering. Acta Math., 203(2):149–233, 2009. chnovi08 [3517] A. Nordio, C.-F. Chiasserini, and E. Viterbo. Reconstruction of Multidimensional Signals from Irregular Noisy Samples. IEEE Transactions on Signal Processing, 56:4274–4285, 2008. dono09 [3518] C. Nothegger and P. Dorninger. 3D filtering of high-resolution terrestrial laser scanner point clouds for cultural heritage documentation. PFG Photogrammetrie, Fernerkundung, Geoinformation, 2009(1):53– 63, March 2009. no97 [3519] S. Novikov. Singularities of embedding operators between symmetric function spaces on [0, 1]. Mathematical Notes, 62(4):457–468, 1997. nory09 [3520] S. Novikov and I. Ryabtsov. Optimization of frame representations for compressed sensing and Mercedes-Benz frame. Proc. Steklov Inst. Math., 265:199–207, 2009. heno12 [3521] L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge university press, 2012. nost13 [3522] A. Nowak and K. Stempak. Sharp estimates of the potential kernel for the harmonic oscillator with applications. Nagoya Math. J., 212:1–17, 2013. nosz12 [3523] A. Nowak and T. Szarek. Calderon-Zygmund operators related to Laguerre function expansions of convolution type. J. Math. Anal. Appl., 388(2):801–816, 2012. mano02 [3524] K. Nowak and F. DeMari. Canonical subgroups of 1 sl(2, ). Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8), 5(2):405–430, 2002. nosa12-1 [3525] H. Nozaki and M. Sawa. Note on cubature formulae and designs obtained from group orbits. Canad. J. Math., 64(6):1359–1377, 2012. 312 aunu13 [3526] E. Nursultanov and T. Aubakirov. Interpolation methods for stochastic processes spaces. Abstr. Appl. Anal., 2013:12, 2013. nutl14 [3527] E. Nursultanov and N. Tleukhanova. On reconstruction of multiplicative transformations of functions in anisotropic spaces. Siberian Math. J., 55(3):482–497, 2014. nu81-1 [3528] A. Nuttall. Some windows with very good sidelobe behavior. Acoustics, Speech and Signal Processing, IEEE Transactions on, 29(1):84– 91, 1981. ny28 [3529] H. Nyquist. Certain Topics in Telegraph Transmission Theory. Trans. Am. Inst. El. Eng. (AIEE), 47:617–644, April 1928. od98 [3530] A. Odzijewicz. Quantum algebras and q-special functions related to coherent states maps of the disc. Comm. Math. Phys., 192(1):183–215, 1998. oe00 [3531] S. Oeztop. Multipliers of Banach valued weighted function spaces. Int. J. Math. Math. Sci., 24(8):511–517, 2000. oe00-1 [3532] S. Oeztop. Multipliers on some weighted Lp -spaces. Int. J. Math. Math. Sci., 23(9):651–656, 2000. oe03 [3533] S. Oeztop. A note on multipliers of Lp (G, A). J. Aust. Math. Soc., 74(1):25–34, 2003. oh09 [3534] T. Ohta. Hilbertian matrix cross normed spaces arising from normed ideals. Illinois Journal of Mathematics, 53(1):1–24, 2009. ohpe04 [3535] M. Ohya and D. Petz. Quantum entropy and its use. Texts and monographs in physics. Springer, 2004. ohvo11 [3536] M. Ohya and I. Volovich. Mathematical Foundations of Quantum Information and Computation and its Applications to Nano- and Biosystems. Theoretical and Mathematical Physics. New York, NY: Springer. xix, 2011. okrisa08 [3537] S. Okada, W. Ricker, and P. S´anchez. Optimal Domain and Integral Extension of Operators: Acting in Function Spaces, volume 180 of Operator Theory: Advances and Applications. Birkh¨auser Verlag, Basel, 2008. 313 ok06 [3538] R. Okayasu. Gromov hyperbolic groups and the Macaev norm. Pacific J. Math., 223(1):141–157, 2006. ok81-1 [3539] G. Okikiolu. Multiple and function space parameter interpolation theorems for positive and maximal operators. I. Bull. Math., (4):1– 16, 1981/82. ok81 [3540] G. Okikiolu. Multiple and function space parameter interpolation theorems for positive and maximal operators. II. Bull. Math., (4):17– 39, 1981/82. ok66 [3541] E. Oklander. Lpq interpolators and the theorem of Marcinkiewicz. Bull. Amer. Math. Soc., 72:49–53, 1966. ngokra09 [3542] U. Okonkwo, R. Ngah, and T. Rahman. Affine group linear operatorbased channel characterization for mobile radio systems. WSEAS TRANSACTIONS on SYSTEMS, 8(2):288–301, 2009. okpfzhXX [3543] O. Oktay, G. E. Pfander, and P. Zheltov. Scattering Function Estimation for Overspread Radar Targets. okpfzh11 [3544] O. Oktay, G. E. Pfander, and P. Zheltov. Reconstruction and estimation of scattering functions of overspread radar targets. ArXiv e-prints, jun 2011. okoz09 [3545] F. Oktem and H. Ozaktas. Exact relation between continuous and discrete linear canonical transforms. IEEE Signal Processing Letters, 16(8):727–730, August 2009. okoz10 [3546] F. S. Oktem and H. M. Ozaktas. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space–bandwidth product. JOSA A, 27(8):1885–1895, 2010. ol11 [3547] G. Olafsson. The Segal-Bargmann transform on Euclidean space and generalizations. An introduction to harmonic analysis and Hilbert spaces of holomorphic functions (to appear). Hackensack, NJ: World Scientific. 300 p., 2011. leolsc83 [3548] D. Oldenburg, T. Scheuer, and S. Levy. Recovery of the acoustic impedance from reflection seismograms. Geophys. J. Internat., 48:1318–1337, Oct. 1983. 314 leol14 [3549] A. Olevskii and N. Lev. Quasicrystals and Poisson’s summation formula. Invent. Math., 2014. olul10 [3550] A. Olevskii and A. Ulanovskii. On Ingham-type interpolation in Rn . C. R. Math. Acad. Sci. Paris, 348(13-14):807–810, 2010. olul11 [3551] A. Olevskii and A. Ulanovskii. Uniqueness sets for unbounded spectra. C. R. Math. Acad. Sci. Paris, 349(11-12):679–681, 2011. olul12 [3552] A. Olevskii and A. Ulanovskii. On multi-dimensional sampling and interpolation. Anal. Math. Phys., 2(2):149–170, 2012. ol09 [3553] R. Oliveira. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. preprint, 2009. ol10 [3554] R. Oliveira. Sums of random Hermitian matrices and an inequality by Rudelson. preprint, 2010. ol05 [3555] A. Olofsson. Wandering subspace theorems. Integr. Equ. Oper. Theory, 51(3):395–409, 2005. olwi13 [3556] A. Olofsson and J. Wittsten. Poisson integrals for standard weighted Laplacians in the unit disc. Journal of the Mathematical Society of Japan, 65(2):447–486, 2013. ol10-1 [3557] J.-F. Olsen. Modified zeta functions as kernels of integral operators. J. Funct. Anal., 259(2):359–383, 2010. ol11-1 [3558] J.-F. Olsen. Local properties of Hilbert spaces of Dirichlet series. J. Funct. Anal., 261(9):2669–2696, 2011. olre13 [3559] J.-F. Olsen and M. Reguera. On a sharp estimate for Hankel operators and Putnam’s inequality. arxiv, 2013. olse08 [3560] J.-F. Olsen and K. Seip. Local interpolation in Hilbert spaces of Dirichlet series. Proc. Amer. Math. Soc., 136(1):203–212, 2008. ol95 [3561] P. Olsen. Fractional integration, Morrey spaces and a Schr¨odinger equation. Comm. Partial Differential Equations, 20(11-12):2005– 2055, 1995. 315 ol96 [3562] P. Olsen. Negative eigenvalues of the Schroedinger equation: An approach through fractional integration and Morrey spaces. PhD thesis, 1996. olsh05 [3563] P. Olver and C. Shakiban. Applied Linear Algebra: Student Solutions Manual. Pearson Education Inc., 2005. olsh06 [3564] P. Olver and C. Shakiban. Applied Linear Algebra. Pearson Education Inc., 2006. on09 [3565] D. Onchis. Note about the dual atoms in spline-type spaces. 2009. on14 [3566] D. M. Onchis. Increasing the image resolution using multi-windows spline-type spaces. Signal Process., 103:195–200, 2014. milekaonsa08 [3567] N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka, and S. Sagayama. Separation of a monaural audio signal into harmonic/percussive components by complementary diffusion on spectrogram. In 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008. on75 [3568] E. Onofri. A note on coherent state representations of Lie groups. J. Math. Phys., 16:1087–1089, 1975. on80 [3569] E. Onofri. Path integrals over coherent states. Functional integration, Theory Appl., Proc. Colloq., Louvain-la- Neuve/Belgium 1979, 121124 (1980)., 1980. oo00 [3570] P. Oonincx. Mathematical Signal Analysis: Wavelets, Wigner Distribution and a Seismic Application. PhD thesis, Universiteit van Amsterdam, 2000. op95 [3571] E. Opdam. Harmonic analysis for certain representations of graded Hecke algebras. Acta Math., 175(1):75–121, 1995. op06-1 [3572] E. Opdam. Hecke algebras and harmonic analysis. In Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures, pages 1227–1259. 2006. 316 op12 [3573] B. Opic. Continuous and compact embeddings of Bessel-potentialtype spaces. In Spectral theory, function spaces and inequalities. New techniques and recent trends. Dedicated to David Edmund and Des Evans to their 80th and 70th birthdays, pages 157–196. Berlin: Springer, 2012. orpe02 [3574] J. Orobitg and C. P´erez. ap weights for nondoubling measures in n and applications. Trans. Amer. Math. Soc., 354(5):2013–2033, 2002. orzh94 [3575] B. Orsted and G. Zhang. Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ. Math. J., 43(2):551–583, 1994. faor94 [3576] J. Ortega and J. Fabrega. Mixed-norm spaces and interpolation. Studia Math., 109(3):233–254, 1994. orra10 [3577] S. Ortega and T. Ramirez. Hardy operators on weighted amalgams. Proc. Roy. Soc. Edinburgh Sect. A, 140(1):175–188, 2010. or98 [3578] J. Ortega Cerda. Sampling measures. Publ. Mat., Barc., 42(2):559– 566, 1998. or08 [3579] J. Ortega Cerda. Interpolating and sampling sequences in finite Riemann surfaces. Bull. Lond. Math. Soc., 40(5):876–886, 2008. orpr12 [3580] J. Ortega Cerda and B. Pridhnani. Beurling-Landau’s density on compact manifolds. J. Funct. Anal., 263(7):2102–2140, 2012. orpr13 [3581] J. Ortega Cerda and B. Pridhnani. Carleson measures and Logvinenko-Sereda sets on compact manifolds. Forum Math., 25(1):151–172, 2013. orsa07 [3582] J. Ortega Cerd`a and J. Saludes. Marcinkiewicz-Zygmund inequalities. J. Approx. Theory, 145(2):237 – 252, April 2007. orscva06 [3583] J. Ortega Cerda, A. Schuster, and D. Varolin. Interpolation and sampling hypersurfaces for the Bargmann-Fock space in higher dimensions. Math. Ann., 335(1):79–107, 2006. orse04 [3584] J. Ortega Cerda and K. Seip. Harmonic measure and uniform densities. Indiana Univ. Math. J., 53(3):905–923, 2004. 317 or10 [3585] N. Ortner. On convolvability conditions for distributions. Monatsh. Math., 160(3):313–335, 2010. orwa14 [3586] N. Ortner and P. Wagner. On the spaces of John Horv´ath. J. Math. Anal. Appl., (0):–, 2014. or73 [3587] M. Orton. Hilbert transforms, Plemelj relations, and Fourier transforms of distributions. SIAM J. Math. Anal., 4:656–670, 1973. or75 [3588] M. Orton. Harmonic representations of distributions. J. Differ. Equations, 18:235–243, 1975. os85 [3589] M. Osborne. Finite Algorithms in Optimization and Data Analysis. John Wiley & Sons., 1985. os14 [3590] M. Osborne. Locally Convex Spaces. Springer, 2014. civa08 [3591] Oscar Ciaurri and Juan Luis Varona. Dunkl transformations and sampling theorems. Bol. Soc. Esp. Mat. Apl., 2008. osro14 [3592] A. Osipov and V. Rokhlin. On the evaluation of prolate spheroidal wave functions and associated quadrature rules. Appl. Comput. Harmon. Anal., 36(1):108–142, 2014. osroxi13 [3593] A. Osipov, V. Rokhlin, and H. Xiao. Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximation. Berlin: Springer, 2013. os83 [3594] P. Oswald. On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc. 1983. bomeot10 [3595] J. O’Toole, M. Mesbah, and B. Boashash. Improved discrete definition of quadratic time-frequency distributions. IEEE Trans. Signal Process., 58(2):906–911, 2010. otva14 [3596] A. Ottazzi and M. Vallarino. Spectral multipliers for Laplacians with drift on DamekRicci spaces. Math. Nachr., 287(16):1837–1847, 2014. ot95 [3597] J. Ottesen. Projective representations of the loop group and the boson-fermion correspondence. Rep. Math. Phys., 35(1):39–61, 1995. 318 ouso11 [3598] S. Ouaro and S. Soma. Weak and entropy solutions to nonlinear Neumann boundary-value problems with variable exponents. Complex Variables and Elliptic Equations, 56(7-9):829–851, 2011. ou05 [3599] E. Ouhabaz. Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31. Princeton, NJ: Princeton University Press. xi, 2005. ov76 [3600] V. I. Ovchinnikov. Interpolation theorems resulting from an inequality of Grothendieck. Funct. Anal. Appl., 10(4):287–294, 1976. ow06 [3601] B. Owen. Detectability of periodic gravitational waves by initial interferometers. 2006. oy10 [3602] O. Oyerinde. Channel Estimation for SISO and MIMO OFDM Communication Systems. PhD thesis, 2010. elfajaoy12 [3603] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi. Simultaneously structured models with application to sparse and low-rank matrices. ArXiv e-prints, dec 2012. fahamooy11 [3604] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi. A simplified approach to recovery conditions for low-rank matrices. In Proc. IEEE Int. Symp. Inform. Theory (ISIT) 2011, 2011. oyyu09 [3605] H. Oyono Oyono and G. Yu. K-theory for the maximal Roe algebra of certain expanders. J. Funct. Anal., 257(10):3239–3292, 2009. oz96 [3606] H. Ozaktas. Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering. Signal Process., 54(1):81–84, 1996. arbokuoz96 [3607] H. Ozaktas, O. Arikan, M. Kutay, and G. Bozdagt. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process., 44(9):2141–2150, 1996. ayoz95 [3608] H. Ozaktas and O. Ayt¨ ur. Fractional Fourier domains. Signal Process., 46(1):119–124, 1995. ozsu06 [3609] H. Ozatkas and U. Sumbul. Interpolating between periodicity and discreteness through the fractional Fourier transform. IEEE Trans. Signal Process., 54(11):4233 –4243, nov. 2006. 319 oz06 [3610] N. Ozawa. Boundary amenability of relatively hyperbolic groups. Topology Appl., 153(14):2624–2630, 2006. ozri05 [3611] N. Ozawa and M. A. Rieffel. Hyperbolic group C ∗ -algebras and freeproduct C ∗ -algebras as compact quantum metric spaces. Canad. J. Math., 57(5):1056–1079, 2005. ruspoz12 ¨ [3612] S. Oztop, V. Runde, and N. Spronk. Beurling-Figa-Talamanca-Herz algebras. Studia Math., 210(2):117–135, 2012. oupa99 [3613] J. Packer and M. Ouyang. The form of the Moore-Penrose inverse of a morphism. J. Central China Normal Univ. Natur. Sci., 33(2):165–167, 1999. kilepa98 [3614] H. Paek, R.-C. Kim, and S.-U. Lee. On the POCS-based postprocessing technique to reduce the blocking artifacts in transform coded images. Circuits and Systems for Video Technology, IEEE Transactions on, 8(3):358–367, 1998. pa86-1 [3615] A. Paeth. A fast algorithm for general raster rotation. In Graphics Interface, volume 86, pages 77–81, 1986. cofopasa05 [3616] J. Pages, J. Salvi, C. Collewet, and J. Forest. Optimised De Bruijn patterns for one-shot shape acquisition. Image and Vision Computing, 23(8):707 – 720, 2005. pa09-8 [3617] V. Palamodov. Quantum shape of compact domains in phase plane. Aytuna, Aydin (ed.) et al., Functional analysis and complex analysis. International conference, Istanbul, Turkey, September 17–21, 2007. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 481, 117-136 (2009)., 2009. cilapa03 [3618] D. Palomar, J. Cioffi, and M. Lagunas. Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization. IEEE Trans. Signal Process., 51:2381–2401, Sep. 2003. pasiwexi01 [3619] M. Paluszynski, H. Sikic, G. Weiss, and S. Xiao. Generalized low pass filters and MRA frame wavelets. J. Geom. Anal., 11(2):311–342, 2001. 320 pasiwexi03 [3620] M. Paluszynski, H. Sikic, G. Weiss, and S. Xiao. Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv. Comput. Math., 18(2-4):297–327, 2003. pa91-1 [3621] Y. Pan. Uniform estimates for oscillatory integral operators. J. Funct. Anal., 100(1):207–220, 1991. pa96-3 [3622] I. Paolo. Singular values and eigenvalues of non-hermitian block Toeplitz matrices. Calcolo, 33(1-2):59–69, 1996. pa97-4 [3623] M. Pap. Properties of certain integral operators. 39(62)(1):83–94, 1997. pa97-5 [3624] M. Pap. Some criteria for starlikeness and convexity of a given order. 39(2):299–303, 1997. pa98-1 [3625] M. Pap. Integral operators which preserve the subordination. Math. Pannon., 9(2):235–242, 1998. pa98 [3626] M. Pap. On certain subclasses of meromorphic m-valent close-toconvex functions. PU.M.A., Pure Math. Appl., 9(1-2):155–163, 1998. pa99-2 [3627] M. Pap. Starlikeness properties of meromorphic m-valent functions. Publ. Math., 54(3-4):281–294, 1999. pa03-3 [3628] M. Pap. Properties of discrete rational orthonormal systems. pages 374–379, 2003. pa03-4 [3629] M. Pap. Some simple conditions of strongly-starlikeness and spirallikeness of a given order. Mathematica, 45(68)(2):161–166, 2003. pa04-8 [3630] M. Pap. Discrete approximation of the solution of the Dirichlet problem by discrete means. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis.New Series, 20(2), 2004. pa11-1 [3631] M. Pap. Frame and wavelet system on the sphere. Int. J. Appl. Math. Anal. Appl., 1(1):26, January 2011. pa11-4 [3632] M. Pap. Frame and wavelet systems on the sphere. Int. J. of Mathematical Sciences and Applications, 1(1), 2011. 321 Mathematica, pa11-2 [3633] M. Pap. Hyperbolic wavelets and multiresolution in H 2 (T ). J. Fourier Anal. Appl., 17(5):755–776, 2011. pa11 [3634] M. Pap. Multiresolution in the Bergman space, 2011. pa12 [3635] M. Pap. Properties of the voice transform of the Blaschke group and connections with atomic decomposition results in the weighted Bergman spaces. J. Math. Anal. Appl., 389(1):340–350, 2012. pasc01 [3636] M. Pap and F. Schipp. Malmquist-Takenaka systems and equilibrium conditions. Math. Pannon., 12(2):185–194, 2001. pasc03 [3637] M. Pap and F. Schipp. Discrete approximation on the sphere. Ann. Univ. Sci. Budapest. Sect. Comput., 22:299–315, 2003. pasc04-1 [3638] M. Pap and F. Schipp. Interpolation by rational functions. Ann. Univ. Sci. Budapest. Sect. Comput., 24:223–237, 2004. pasiwe99 [3639] M. Papadakis, H. Sikic, and G. Weiss. The characterization of low pass filters and some basic properties of wavelets, scaling functions and related concepts. J. Fourier Anal. Appl., 5(5):495–521, 1999. capape07 [3640] G. Papari, N. Petkov, and P. Campisi. Artistic edge and corner enhancing smoothing. IEEE Trans. Image Process., 16(10):2449–2462, 2007. chpa79 [3641] A. Papoulis and C. Chamzas. Improvement of range resolution by spectral extrapolation. Ultrasonic Images, 1:121–135, Feb. 1979. path13 [3642] A. Paprotny and M. Thess. Realtime Data Mining. Self-learning Techniques for Recommendation Engines. Cham: Birkh¨auser/Springer, 2013. arpawa07 [3643] J. Paredes, G. Arce, and Z. Wang. Ultra-Wideband Compressed Sensing: Channel Estimation. IEEE J. Sel. Topics Sign. Process., 1(3):383–395, Oct. 2007. pa88-4 [3644] O. G. Parfenov. Estimates of the singular numbers of the Carleson imbedding operator. Math. USSR-Sb., 59(2):497–514, 1988. pask00 [3645] C. Park and D. Skoug. Fourier-Feynman transforms and a Feynman integral equation. Panam. Math. J., 10(3):71–81, 2000. 322 pask01 [3646] C. Park and D. Skoug. Conditional Fourier-Feynman transforms and conditional convolution products. J. Korean Math. Soc., 38(1):61–76, 2001. chleparo09 [3647] W. Park, G. Leibon, D. N. Rockmore, and G. Chirikjian. Accurate image rotation using Hermite expansions. IEEE Trans. Image Process., 18(9):1988–2003, 2009. pa98-2 [3648] B. Parlett. The symmetric eigenvalue problem. Classics in Applied Mathematics. SIAM, 1998. pa10-2 [3649] A. Parmeggiani. Spectral theory of non-commutative harmonic oscillators: an introduction. Lecture notes in mathematics. Springer, 2010. pawa02 [3650] A. Parmeggiani and M. Wakayama. A remark on systems of differential equations associated with representations of germsl2 (bbbr) and their perturbations. Kodai Math. J., 25(3):254–277, 2002. pawa02-1 [3651] A. Parmeggiani and M. Wakayama. Non-commutative harmonic oscillators. I. Forum Math., 14(4):539–604, 2002. pawa03 [3652] A. Parmeggiani and M. Wakayama. Corrigenda and remarks to “Noncommutative harmonic oscillators. I. . Forum Math., 15(6):955–963, 2003. papr07-1 [3653] K. Parthasarathy and R. Prakash. Spectral subspaces for the Fourier algebra. Colloq. Math., 108(2):179–182, 2007. pa97-3 [3654] J. R. Partington. Interpolation, Identification, and Sampling. London Mathematical Society Monographs. New Series. 17. Oxford: Clarendon Press. xii, 1997. hamipavi08 [3655] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi. Recovering sparse signals using sparse measurement matrices in compressed DNA microarrays. IEEE J. Sel. Topics Sign. Process., 2:275–285, Jun. 2008. pa00-1 [3656] A. Pasquale. A Paley-Wiener theorem for the inverse spherical transform. Pacific J. Math., 193(1):143–176, 2000. 323 pa11-6 [3657] S. Pastukhova. Zhikov’s hydromechanical lemma on compensated compactness: its extension and application to generalized stationary NavierStokes equations. Complex Variables and Elliptic Equations, 56(7-9):697–714, 2011. pa99-3 [3658] A. L. Paterson. Groupoids, inverse semigroups, and their operator algebras. Progress in mathematics. Birkh¨auser, 1999. kupapr11 [3659] R. Pathak, A. Prasad, and M. Kumar. n-dimensional Sobolev type spaces involving Hankel transformation. Appl. Math. Comput., 218(3):899–905, 2011. pa06 [3660] Y. Pati. Frames Generated By subspace Addition. Technical report, 2006. mcpa78 [3661] R. Patterson and J. McClellan. Fixed-point error analysis of Winograd Fourier transform algorithms. IEEE Trans. Acoustics, Speech and Signal Processing, 26:447–455, 1978. pa08-1 [3662] J. Pau. Bounded M¨obius invariant QK spaces. J. Math. Anal. Appl., 338(2):1029–1042, 2008. pa09-7 [3663] J. Pau. Composition operators between Bloch-type spaces and M¨obius invariant Qk spaces. Rocky Mountain J. Math., 39(6):2051–2065, 2009. pape09 [3664] J. Pau and J. A. Pelaez. Multipliers of M¨obius invariant Qs spaces. Math. Z., 261(3):545–555, 2009. pa07-2 [3665] T. Paul. Discrete-continuous and classical-quantum. Math. Structures Comput. Sci., 17(2):177–183, 2007. pase92 [3666] T. Paul and K. Seip. Wavelets and quantum mechanics. Ruskai, Mary Beth (ed.) et al., Wavelets and their applications. Boston, MA etc.: Jones and Bartlett Publishers. 303-321 (1992)., 1992. kapa93 [3667] A. Paulraj and T. Kailath. Increasing capacity in wireless broadcast Systems using distributed transmission/directional reception (DTDR), Feb. 1993. gonapa03 [3668] A. Paulraj, R. Nabar, and D. Gore. Introduction to Space-Time Wireless Communications. Cambridge Univ. Press, Cambridge (UK), 2003. 324 pa08-2 [3669] V. Paulsen. A dynamical systems approach to the Kadison–Singer problem. J. Funct. Anal., 255(1):120–132, 2008. pa11-3 [3670] V. I. Paulsen. Syndetic sets, paving and the Feichtinger conjecture. Proc. Amer. Math. Soc., 139(3):1115–1120, 2011. pa11-5 [3671] E. Pauwels. Pseudodifferential Operators, Wireless Communications and Sampling Theorems. PhD thesis, December 2011. pa08-3 [3672] M. Pavlovic. On the Holland-Walsh characterization of Bloch functions. Proc. Edinburgh Math. Soc. (2), 51(2):439–441, 2008. pa14 [3673] M. Pavlovic. Function Classes on the Unit Disc. An Introduction. De Gruyter, 2014. pasc11 [3674] M. Pazouki and R. Schaback. Bases for kernel-based spaces. J. Comput. Appl. Math., 236(4):575 – 588, 2011. pe05-1 [3675] R. Pearson. Mining imperfect data: Dealing with contamination and incomplete records. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. pe89-1 [3676] N. Pedersen. Geometric quantization and the universal enveloping algebra of a nilpotent Lie group. Trans. Amer. Math. Soc., 315(2):511– 563, 1989. pe94-1 [3677] N. Pedersen. Matrix coefficients and a Weyl correspondence for nilpotent Lie groups. Invent. Math., 118(1):1–36, 1994. pe67-1 [3678] J. Peetre. On interpolation of lp spaces with weight functions. Acta Math. Sci., 28:61–69, 1967. pe68-1 [3679] J. Peetre. -entropie, -capacite et espaces d’interpolation. Ric. Mat., 17:216–220, 1968. pe68 [3680] J. Peetre. On the value of a distribution at a point. Port. Math., 27:149–159, 1968. pe71-3 [3681] J. Peetre. Interpolation functors and Banach couples. Actes Congr. internat. Math. 1970, 2, 373-378 (1971)., 1971. 325 pe72-1 [3682] J. Peetre. The Weyl transform and Laguerre polynomials. Matematiche (Catania), 27:301–323 (1973), 1972. pe73-1 [3683] J. Peetre. The Weyl transform and Laguerre polynomials. pages 301–323, 1973. pe83-1 [3684] J. Peetre. Recent progress in real interpolation spaces. In Methods of functional analysis and theory of elliptic equations, Proc. Int. Meet. dedic. mem. C. Miranda, Naples/Italy 1982, pages 231–263, 1983. pe84-3 [3685] J. Peetre. The theory of interpolation spaces -its origin, prospects for the future. In Interpolation spaces and allied topics in analysis (Lund, 1983), volume 1070 of Lecture Notes in Math., pages 1–9. Springer, 1984. pe90 [3686] J. Peetre. Fourier analysis of a space of Hilbert-Schmidt operators — new Ha-plitz type operators. Publ. Mat., Barc., 34(1):181–197, 1990. pe92 [3687] J. Peetre. Moebius invariant function spaces: the case of hyperbolic space. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, pages 243–265, 1992. pe02-2 [3688] J. Peetre. On Fourier’s discovery of Fourier series and Fourier integrals. Normat, 50(1):1–11, 2002. peqi94 [3689] J. Peetre and T. Qian. M¨obius covariance of iterated Dirac operators. J. Austral. Math. Soc. Ser. A, 56(3):403–414, 1994. pethwa96 [3690] J. Peetre, S. Thangavelu, and N.-O. Wallin. Generalized Fock spaces, interpolation, multipliers, circle geometry. Rev. Mat. Iberoam., 12(1):63–110, 1996. dipe02 [3691] S. Pei and J. Ding. Eigenfunctions of linear canonical transform. IEEE Trans. Signal Process., 50(1):11–26, 2002. dipe02-1 [3692] S. Pei and J. Ding. Relations between fractional operations and timefrequency distributions, and their applications. IEEE Trans. Signal Process., 49(8):1638–1655, 2002. dipewawe10 [3693] S.-C. Pei, P.-W. Wang, J.-J. Ding, and C.-C. Wen. Elimination of the discretization side-effect in the S transform using folded windows. Signal Process., In Press, Corrected Proof:–, 2010. 326 peye98 [3694] S.-C. Pei and M.-H. Yeh. Two dimensional discrete fractional Fourier transform. Signal Process., 67(1):99 – 108, May 1998. peru80 [3695] A. Peled and A. Ruiz. Frequency domain data transmission using reduced computational complexity algorithms. volume 5, pages 964– 967, Denver, CO, April 1980. perowu92 [3696] L. Peng, R. Rochberg, and Z. Wu. Orthogonal polynomials and middle Hankel operators on Bergman spaces. Studia Math., 102(1):57–75, 1992. pe02-3 [3697] R. Penner. On Hilbert, Fourier, and wavelet transforms. Commun. Pure Appl. Anal., 55(6):772–814, 2002,. pe91-1 [3698] A. Pentland. Spatial and temporal surface interpolation using wavelet bases. In Baba C. Vemuri, editor, Proc. SPIE, Geometric Methods in Computer Vision: Energy-based methods for shape estimation I, volume 1570, pages 43–62, San Diego, CA — July 21, 1991, September 1991. SPIE. petavi11 [3699] A. Per¨al¨a, J. Taskinen, and J. Virtanen. New results and open problems on Toeplitz operators in Bergman spaces. New York J. Math., 17a:147–164, 2011. petavi11-1 [3700] A. Per¨al¨a, J. Taskinen, and J. Virtanen. Toeplitz operators with distributional symbols on Bergman spaces. Proc. Edinburgh Math. Soc. (2), 54(2):505–514, 2011. pe08-3 [3701] D. Percival. Analysis of geophysical time series using discrete wavelet transforms: an overview, 2008. pe95-2 [3702] A. Perelomov. On the completeness of some subsystems of q-deformed coherent states. Helv. Phys. Acta, 68(6):554–576, 1995. pe08-4 [3703] L. Perez. Embeddings for anisotropic Besov spaces. Acta Math. Hungar., 119(1-2):25–40, 2008. bapeph95 [3704] V. Perrier, T. Philipovitch, and C. Basdevant. Wavelet spectra compared to Fourier spectra. J. Math. Physics, 36(3):1506–1519, 1995. pe79-2 [3705] I. Pesenson. Interpolation spaces on Lie groups. Dokl. Akad. Nauk SSSR, 246(6):1298–1303, 1979. 327 pe83-2 [3706] I. Pesenson. Nikolskii-Besov spaces connected with representations of Lie groups. Soviet Math. Dokl., 28:577–581, 1983. pe91 [3707] I. Pesenson. The Bernstein inequality in representations of Lie groups. Sov. Math., Dokl., 42(1):87–90, 1991. pe98-3 [3708] I. Pesenson. Sampling of Paley-Wiener functions on stratified groups. J. Fourier Anal. Appl., 4(3):271–281, 1998. pe00 [3709] I. Pesenson. A sampling theorem on homogeneous manifolds. Trans. Amer. Math. Soc., 352(9):4257–4269, 2000. pe04-1 [3710] I. Pesenson. An approach to spectral problems on Riemannian manifolds. Pacific J. Math., 215(1):183–199, 2004. pe04-2 [3711] I. Pesenson. Poincare-type inequalities and reconstruction of PaleyWiener functions on manifolds. J. Geom. Anal., 14(1):101–121, 2004. pe06-2 [3712] I. Pesenson. Frames for spaces of Paley-Wiener functions on Riemannian manifolds. In Integral geometry and tomography, AMS Special Session Tomography and Integral Geometry, Rider University, Lawrenceville, New Jersey, April 17-18, 2004, volume 405 of Contemp. Math., pages 135–148. AMS, Providence, RI, 2006. pe08-6 [3713] I. Pesenson. A discrete Helgason-Fourier transform for Sobolev and Besov functions on noncompact symmetric spaces. In Radon transforms, geometry, and wavelets: Ams Special Session January 7-8, 2007, New Orleans, Louisiana Workshop January 4-5, 2007 Baton Rouge, Louisiana, volume 464 of Contemp. Math., pages 231–247. AMS, Providence, RI, 2008. pe12 [3714] I. Pesenson. Localized bandlimited nearly tight frames and Besov spaces on domains. preprint, submitted: latest version 25 Dec 2012 (v3):16, 2012. pe13 [3715] I. Pesenson. Paley-Wiener-Schwartz nearly Parseval frames and Besov spaces on noncompact symmetric spaces. Submitted on 8 Aug 2013 (v1), last revised 31 Aug 2013 (v3), 2013. 328 gepe13 [3716] I. Pesenson and D. Geller. Cubature formulas and discrete Fourier transform on compact manifolds. In From Fourier analysis and number theory to radon transforms and geometry, volume 28 of Dev. Math., pages 431–453. Springer, New York, 2013. pepe12 [3717] I. Pesenson and M. Z. Pesenson. Approximation of Besov vectors by Paley-Wiener vectors in Hilbert spaces. In Marian Neamtu and Larry Schumaker, editors, Approximation theory XIII: San Antonio 2010. Selected papers based on the presentations at the conference, San Antonio, TX, USA, March 7-10, 2010, volume 13 of Springer Proceedings in Mathematics, pages 249–262. Springer, 2012. pe13-4 [3718] I. Z. Pesenson. Shannon Sampling and Parseval Frames on Compact Manifolds. ArXiv e-prints, dec 2013. mcpero08 [3719] M. Pesenson, W. Roby, and B. McCollum. Multiscale astronomical image processing based on nonlinear partial differential equations. The Astrophysical Journal, 683(1):566–576, 2008. pe13-2 [3720] L. Pessoa. Dzhuraev’s formulas and poly-Bergman kernels on domains M¨obius equivalent to a disk. Complex Anal. Oper. Theory, 7(1):193– 220, 2013. pe13-3 [3721] L. Pessoa. Toeplitz operators and the essential boundary on polyanalytic functions. Int. J. Math., 24(6):23, 2013. pe13-1 [3722] L. Pessoa. True poly-Bergman and poly-Bergman kernels for the complement of a closed disk. Complex Anal. Oper. Theory, 7(5):1569– 1581, 2013. pe14-1 [3723] L. Pessoa. Planar Beurling transform and Bergman type spaces. Complex Anal. Oper. Theory, 8(2):359–381, 2014. pe11 [3724] S. Peszat. L´evy-Ornstein-Uhlenbeck transition semigroup as second quantized operator. J. Funct. Anal., 260(12):3457 – 3473, 2011. pe14 [3725] K. Peter. The Radon Transform and Medical Imaging. SIAM-Society for Industrial and Applied Mathematics (January 1, 2014), 2014. bokapevo01 [3726] T. Petermann, S. Vogeler, K.-D. Kammeyer, and D. Boss. Blind Turbo Channel Estimation in OFDM Receivers. volume 2, pages 1489–1493, Nov. 2001. 329 pe13-5 [3727] J. Peterson. Fusion frame constructions and frame partitions. PhD thesis, University of Missouri–Columbia, 2013. krlope93 [3728] N. Petkov, T. Lourens, and P. Kruzinga. Lateral inhibition in cortical filters. In C. Pattichis, A. Constantinides, V. Cappellini, and C. N. Schizas, editors, Proc. of Int. Conf. on Digital Signal Processing and Int. Conf. on Computer Applications to Engineering Systems, page 9, Nicosia, Cyprus, July 14-16. pe11-1 [3729] J. Petrillo. Counting Subgroups in a Direct Product of Finite Cyclic Groups. The College Mathematics Journal, 42(3):215–222, 2011. pe75 [3730] V. Petrov. Sums of independent random variables. Translated from the Russian by A. A. Brown. Berlin: Akademie-Verlag. X, 348 S. M 92.00 (1975)., 1975. pepo11 [3731] P. Petrushev and V. Popov. Rational approximation of real functions. Reprint of the 1987 hardback edition. Encyclopedia of Mathematics and its Applications 28. Cambridge: Cambridge University Press. xi, 371 p., 2011. pexu05 [3732] P. Petrushev and Y. Xu. Localized polynomial frames on the interval with Jacobi weights. J. Fourier Anal. Appl., 11(5):557–575, 2005. pexu08 [3733] P. Petrushev and Y. Xu. Decomposition of spaces of distributions induced by Hermite expansions. J. Fourier Anal. Appl., 14(3):372– 414, 2008. pe94 [3734] D. Petz. A survey of certain trace inequalities. In Functional analysis and operator theory (Warsaw, 1992), volume 30 of Banach Center Publ., pages 287–298. Polish Acad. Sci., Warsaw, 1994. pe08-5 [3735] D. Petz. Quantum information theory and quantum statistics. Theoretical and mathematical physics. Springer, 2008. pezh02 [3736] A. Pevnyi and V. Zheludev. Construction of wavelet analysis in the space of discrete splines using Zak transform. J. Fourier Anal. Appl., 8(1):59–83, 2002. pesa10 [3737] N. Peyerimhoff and E. Samiou. Spherical spectral synthesis and tworadius theorems on Damek-Ricci spaces. Ark. Mat., 48(1):131–147, 2010. 330 fapest10 [3738] G. Peyre, J. Fadili, and J.-L. Starck. Learning the morphological diversity. SIAM J. Imaging Sci., 3(3):646–669, 2010. pfXX [3739] G. E. Pfander. Sampling of Operators. pf13 [3740] G. E. Pfander. Gabor Frames in Finite Dimensions. In G. E. Pfander, P. G. Casazza, and G. Kutyniok, editors, Finite Frames. Theory and Applications., Applied and Numerical Harmonic Analysis, pages 193– 239. Boston, MA: Birkh¨auser, 2013. pf13-1 [3741] G. E. Pfander. Sampling of operators. 19(3):612–650, 2013. J. Fourier Anal. Appl., pf13-2 [3742] G. E. Pfander. Sampling of operators. 19(3):612–650, 2013. J. Fourier Anal. Appl., p.pfXX [3743] G. E. Pfander and R. P. Remarks on multivariate Gaussian Gabor frames. pfra13 [3744] G. E. Pfander and P. Rashkov. Remarks on multivariate Gaussian Gabor frames. Monatsh. Math., 172(2):179–187, 2013. pfrawa12 [3745] G. E. Pfander, P. Rashkov, and Y. Wang. A geometric construction of tight multivariate Gabor frames with compactly supported smooth windows. J. Fourier Anal. Appl., 18(2):223–239, 2012. pfratrXX [3746] G. E. Pfander, H. Rauhut, and J. Tropp. The restricted isometry property for time-frequency structured random matrices. pfratr11 [3747] G. E. Pfander, H. Rauhut, and J. A. Tropp. The restricted isometry property for time-frequency structured random matrices. Probab. Theory Relat. Fields, (156):707–737, 2013. pfwaXX [3748] G. E. Pfander and D. Walnut. Sampling and reconstruction of operators. pfzhXX-1 [3749] G. E. Pfander and P. Zheltov. Identification of stochastic operators. pfzhXX [3750] G. E. Pfander and P. Zheltov. Sampling of stochastic operators. pfzh14 [3751] G. E. Pfander and P. Zheltov. Identification of stochastic operators. Appl. Comput. Harmon. Anal., 36(2):256 – 279, 2014. 331 pfti12 [3752] M. Pfetsch and A. Tillmann. The computational complexity of the restricted isometry property, the nullspace property, and related concepts in Compressed Sensing. preprint, 2012. pi01 ´ [3753] E. Picard. L’œuvre scientifique de Charles Hermite. Ann. Sci. Ec. Norm. Sup´er, III. S´er, 18:9–34, 1901. pi91 [3754] R. Picard. Hilbert spaces of tempered distributions, Hermite expansions and sequence spaces. Proc. Edinburgh Math. Soc. (2), 34(2):271–293, 1991. pi10-3 [3755] R. Picard. An elementary Hilbert space approach to evolutionary partial differential equations. Rend. Ist. Mat. Univ. Trieste, 42:185–204, 2010. mcpi11 [3756] R. Picard and D. McGhee. Partial Differential Equations. A Unified Hilbert Space Approach. Berlin: de Gruyter, 2011. pi69 [3757] L. Piccinini. Inclusioni tra spazi di Morrey. Boll. Un. Mat. Ital., 2:95–99, 1969. piro14 [3758] B. Piccoli and F. Rossi. Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal., 211(1):335–358, 2014. piru01 [3759] L. Pick and M. Ruzicka. An example of a space of lp(x) on which the Hardy-Littlewood maximal operator is not bounded. Exposition. Math., 19(4):369–371, 2001. pi08 [3760] V. Pierfelice. Weighted Strichartz estimates for the Schr¨odinger and wave equations on Damek-Ricci spaces. Math. Z., 260(2):377–392, 2008. pi06 [3761] W. Pietruszka. MATLAB und Simulink in der Ingenieurpraxis: Modellbildung, Berechnung und Simulation, 2. Auflage. B. G. Teubner Verlag, 2006. pi88 [3762] S. Pilipovic. Tempered ultradistributions. Boll. Unione Mat. Ital., VII. Ser., B, 2(2):235–251, 1988. 332 pi93 [3763] S. Pilipovic. Multipliers, convolutors and hypoelliptic convolutors for tempered ultradistributions. In Generalized functions and their applications. Proceedings of the international symposium, held December 23-26, 1991 in Varanasi, India, pages 183–195. 1993. pi10-1 [3764] S. Pilipovic. Contributions to local and microlocal analysis, an overview. Bull., Cl. Sci. Math. Nat., Sci. Math., 141(35):79–95, 2010. piravi11 [3765] S. Pilipovic, D. Rakic, and J. Vindas. Tauberian theorems for the wavelet transform. J. Fourier Anal. Appl., 17(1):65–95, 2011. piravi12 [3766] S. Pilipovic, D. Rakic, and J. Vindas. New classes of weighted H¨olderZygmund spaces and the wavelet transform. J. Funct. Spaces Appl., 2012(Article ID 815475):18, 2012. pise07 [3767] S. Pilipovic and D. Selesi. Expansion theorems for generalized random processes, Wick products and applications to stochastic differential equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10(1):79–110, 2007. pise07-1 [3768] S. Pilipovic and D. Selesi. Structure theorems for generalized random processes. Acta Math. Hungar., 117(3):251–274, 2007. si10 [3769] S. Pilipovic and S. Simic. Fr´echet frames for shift invariant weighted spaces. Mediterr. J. Math., 40(1):19–28, 2010. pisi10 [3770] S. Pilipovic and S. Simic. Frechet frames for shift invariant weighted spaces. Mediterr. J. Math., 40(1):19–28, 2010. pisi12 [3771] S. Pilipovic and S. Simic. Frames for weighted shift-invariant spaces. Mediterr. J. Math., 9(4):897–912, 2012. pisi13 [3772] S. Pilipovic and S. Simic. Construction of frames for shift-invariant spaces. J. Funct. Spaces Appl., 2013:7, 2013. pisi13-1 [3773] S. Pilipovic and S. Simic. Erratum to “Frames for weighted shiftinvariant spaces”. Mediterr. J. Math., 10(1):609–610, 2013. pist93 [3774] S. Pilipovic and B. Stankovic. Wiener Tauberian theorems for distributions. J. Lond. Math. Soc. (2), 47(3):507–515, 1993. 333 pistvi11 [3775] S. Pilipovic, B. Stankovic, and J. Vindas. Asymtotic Behavior of Generalized Functions. Series on Analysis, Applications and Computation 5. Hackensack, 2011. pist11 [3776] S. Pilipovic and D. T. Stoeva. Series expansions in Frechet spaces and their duals, construction of Frechet frames. J. Approx. Theory, 163(11):1729–1747, 2011. pist14 [3777] S. Pilipovic and D. T. Stoeva. Fr’echet frames, general definition and expansions. Analysis and Applications, 12(2), March 2014. piteto10 [3778] S. Pilipovic, N. Teofanov, and J. Toft. Micro-local analysis in Fourier Lebesgue and modulation spaces. II. J. Pseudo-Differ. Oper. Appl., 1(3):341–376, 2010. piteto11 [3779] S. Pilipovic, N. Teofanov, and J. Toft. Micro-local analysis with Fourier Lebesgue spaces. I. J. Fourier Anal. Appl., 17(3):374–407, 2011. piur09 [3780] E. Pineda and W. Urbina. Some results on Gaussian Besov-Lipschitz spaces and Gaussian Triebel-Lizorkin spaces. J. Approx. Theory, 161(2):529–564, 2009. fipiprsc09 [3781] M. Pinheiro, P. Prats, R. Scheiber, and J. Fischer. Multi-path correction model for multi-channel airborne SAR. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009, volume 3, pages III–729, 2009. pi81-2 [3782] A. Pinkus. Best approximations by smooth functions. J. Approx. Theory, 33:147–178, 1981. pi12 [3783] A. Pinkus. On best rank n matrix approximations. Linear Algebra and its Applications, 437(9):2179 – 2199, 2012. mapi04 [3784] C. Pinnegar and L. Mansinha. Time-frequency localization with the Hartley S-transform. Signal Process., 84(12):2437 – 2442, 2004. pi14 [3785] J.-C. Pinoli. Mathematical Foundations of Image Processing and Analysis, volume 2. John Wiley & Sons, 2014. 334 pi83-2 [3786] G. Pisier. Some applications of the metric entropy condition to harmonic analysis. In Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981), volume 995 of Lecture Notes in Math., pages 123–154. Springer, Berlin, 1983. pi96 [3787] G. Pisier. The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Amer. Math. Soc., 585:103, 1996. pi10-2 [3788] G. Pisier. Complex interpolation between Hilbert, Banach and operator spaces. Mem. Amer. Math. Soc., 978:i–v + 78, 2010. pi11 [3789] G. Pisier. Real interpolation between row and column spaces. Bull. Pol. Acad. Sci., Math., 59(3):237–259, 2011. pi12-1 [3790] G. Pisier. Completely co-bounded Schur multipliers. Oper. Matrices, 6(2):263–270, 2012. plve12 [3791] Y. Plan and R. Vershynin. Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach. preprint, 2012. plve14 [3792] Y. Plan and R. Vershynin. Dimension reduction by random hyperplane tessellations. Discrete Comput. Geom., 51:438–461, 2014. plve11 [3793] Y. Plan and R. Vershynin. One-bit compressed sensing by linear programming. Comm. Pure Appl. Math., to appear. klpl07 [3794] J. Plasberg and W. Kleijn. The sensitivity matrix: Using advanced auditory models in speech and audio processing. Audio, Speech, and Language Processing, IEEE Transactions on, 15(1):310–319, 2007. gepl09 [3795] R. Platte and A. Gelb. A hybrid Fourier-Chebyshev method for partial differential equations. J. Sci. Comput., 39(2):244–264, 2009. plscta08 [3796] G. Plonka, H. Schumacher, and M. Tasche. Numerical stability of biorthogonal wavelet transforms. Adv. Comput. Math., 29(1):1–25, 2008. plta92 [3797] G. Plonka and M. Tasche. Efficient algorithms for periodic Hermite spline interpolation. Math. Commun., 58(198):693–703, 1992. 335 plta94 [3798] G. Plonka and M. Tasche. A unified approach to periodic wavelets. pages 137–151, 1994. plta94-1 [3799] G. Plonka and M. Tasche. Cardinal Hermite spline interpolation with shifted nodes. Math. Commun., 63(208):645–659, 1994. plta95 [3800] G. Plonka and M. Tasche. On the computation of periodic spline wavelets. Appl. Comput. Harmon. Anal., 2(1):1–14, 1995. plta05 [3801] G. Plonka and M. Tasche. Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl., 394:309–345, 2005. isplrote10 [3802] G. Plonka, S. Tenorth, A. Iske, and D. Rosca. Adaptive methods for the effcient approximation of images. page 20, 2010. plrote09 [3803] G. Plonka, S. Tenorth, and D. Rosca. Image approximation by a hybrid method based on the Easy Path Wavelet Transform. In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on, pages 442 –446, nov. 2009. pl07 [3804] P. Pluch. Quantum mechanics: Bell and quantum entropy for the classroom. Submitted on 10 Jan 2007, page 10, 2007. abbldapl06 [3805] M. D. Plumbley, S. A. Abdallah, T. Blumensath, and M. Davies. Sparse representations of polyphonic music. Signal Process., 86(3):417–431, 2006. chpo11-1 [3806] T. Pock and A. Chambolle. Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In IEEE International Conference Computer Vision (ICCV) 2011, pages 1762 –1769, nov., 2011. bichcrpo09 [3807] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for minimizing the Mumford-Shah functional. In ICCV Proceedings. Springer, 2009. po92-1 [3808] D. Poguntke. Rigidly symmetric L1 -group algebras. Sem. Sophus Lie, 2(2):189–197, 1992. po94-3 [3809] D. Poguntke. Unitary representations of Lie groups and operators of finite rank. Ann. of Math. (2), 140(3):503–556, 1994. 336 mapo10 [3810] K.-K. Poh and P. Marzillano. Compressive sampling of EEG signals with finite rate of innovation. EURASIP J. Adv. Signal Process., 2010:1–12, 2010. bopo09 [3811] V. Pohl and H. Boche. Advanced Topics in System and Signal Theory a Mathematical Approach. Berlin: Springer, 2009. faizmcpo14 [3812] J. Polans, R. McNabb, J. Izatt, and S. Farsiu. Compressed wavefront sensing. Optics letters, 39(5):1189–1192, 2014. brdahujapo09 [3813] G. Polatkan, S. Jafarpour, A. Brasoveanu, S. Hughes, and I. Daubechies. Detection of forgery in paintings using supervised learning. In Image Processing (ICIP), 2009 16th IEEE International Conference on, pages 2921 –2924, Cairo, 7-10 Nov. 2009, nov. 2009. po99 [3814] R. Polikar. The story of wavelets. Physics and modern topics in mechanical and electrical engineering, pages 192–197, 1999. po04-3 [3815] A. Polishchuk. Analogues of the exponential map associated with complex structures on noncommutative two-tori. arXiv preprint math/0404056, 2004. po04-2 [3816] A. Polishchuk. Classification of holomorphic vector bundles on noncommutative two-tori. Doc. Math, 9:163–181, 2004. posc03 [3817] A. Polishchuk and A. Schwarz. Categories of holomorphic vector bundles on noncommutative two-tori. Communications in mathematical physics, 236(1):135–159, 2003. po53-1 [3818] H. Pollard. The harmonic analysis of bounded functions. Duke Math. J., 20:499–512, 1953. po27 [3819] S. Pollard. On the approximation of an arbitrary bounded function. Journal L. M. S., 2:222–227, 1927. po01-2 [3820] L. Polterovich. The Geometry of the Group of Symplectic Diffeomorphism. Lectures in Mathematics, ETH Z¨ urich. Basel: Birkh¨auser. xii, 2001. po12 [3821] A. Poltoratski. Spectral gaps for sets and measures. Acta Math., 208(1):151–209, 2012. 337 po46 [3822] L. Pontrjagin. Topological Groups. Princeton, N.J., 1946. Princeton University Press, po83-1 [3823] S. Poornima. An embedding theorem for the Sobolev space w(1,1) . Bull. Sci. Math. (2), 107:253–259, 1983. porasi98 [3824] Z. Pop Stojanovic, M. Rao, and H. Sikic. Brownian potentials and Besov spaces. J. Math. Soc. Japan, 50(2):331–337, 1998. po03-3 [3825] D. Popov. Gazeau-Klauder quasi-coherent states for the Morse oscillator. Phys. Lett. A, 316(6):369–381, 2003. posuto15 [3826] D. Potapov, F. Sukochev, and A. Tomskova. On the Arazy conjecture concerning Schur multipliers on Schatten ideals. Advances in Mathematics, 268(0):404 – 422, 2015. ceerpapo10 [3827] L. Potter, E. Ertin, J. Parker, and M. Cetin. Sparsity and compressed sensing in radar imaging,. Proc. IEEE, 98(6):1006 –1020, 2010. po98-2 [3828] D. Potts. Schnelle Polynomtransformationen und Vorkonditionierer f¨ ur Toeplitz Matrizen. PhD thesis, 1998. po98-3 [3829] D. Potts. Schnelle Polynomtransformationen und Vorkonditionierer f¨ ur Toeplitz Matrizen. PhD thesis, 1998. pota10 [3830] D. Potts and M. Tasche. Parameter estimation for exponential sums by approximate prony method. Signal Process., 90(5):1631–1642, 2010. po03-5 [3831] A. M. Powell. The Uncertainty Principle in Harmonic Analysis and Bourgain’s Theorem. PhD thesis, UMD College Park, 2003. kupr10 [3832] A. Prasad and M. Kumar. Continuity of pseudo-differential operator hµ,a involving Hankel translation and Hankel convolution on some Gevrey spaces. Integral Transforms Spec. Funct., 21(5-6):465–477, 2010. kupr11 [3833] A. Prasad and M. Kumar. Product of two generalized pseudodifferential operators involving fractional Fourier transform. J. Pseudo-Differ. Oper. Appl., 2(3):355–365, 2011. 338 dimapr11 [3834] A. Prasad, A. Mahato, and M. Dixit. The Bessel wavelet transform. Int. J. Math. Anal., Ruse, 5(1-4):87–97, 2011. prru89 [3835] A. Prata and W. Rusch. Algorithm for computation of Zernike polynomials expansion coefficients. Applied Optics, 28(4):749–754, 1989. bebocaprza12 [3836] M. Prato, R. Cavicchioli, L. Zanni, P. Boccacci, and M. Bertero. Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes. Astronomy & Astrophysics/Astronomie et Astrophysique, 539, 2012. bolapr14 [3837] M. Prato, C. La, and S. Bonettini. An alternating minimization method for blind deconvolution from Poisson data. In Journal of Physics: Conference Series, volume 542, pages 12006–12011, 2014. prrasp12 [3838] D. Pravica, N. Randriampiry, and M. Spurr. Reproducing kernel bounds for an advanced wavelet frame via the theta function. Appl. Comput. Harmon. Anal., 33(1):79 – 108, 2012. prsascto10 [3839] S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak. Software for bead-based registration of selective plane illumination microscopy data. Nature methods, 7:418–419, 2010. copr04 [3840] C. Preza and J.-A. Conchello. Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy. JOSA A, 21:1593–1601, 2004. pr85-1 [3841] J. Price. Uncertainty principles and interference patterns. In Miniconference on linear analysis and function spaces (Canberra, 1984), volume 9 of Proc. Centre Math. Anal. Austral. Nat. Univ., pages 241– 258, Canberra, October 18-20, 1984, 1985. Austral. Nat. Univ. pr87 [3842] J. Price. Sharp local uncertainty inequalities. Studia Math., 85(1):37– 45, 1987. prra85 [3843] J. Price and P. Racki. Local uncertainty inequalities for Fourier series. Proc. Amer. Math. Soc., 93(2):245–251, 1985. prro90 [3844] J. Primot, G. G. Rousset, and J. Fontanella. Deconvolution from wave-front sensing: a new technique for compensating turbulencedegraded images. JOSA A, 7(9):1598–1608, 1990. 339 gumipr12 [3845] I. Protopopov, D. Gutman, and A. Mirlin. Luttinger liquids with multiple Fermi edges: Generalized Fisher-Hartwig conjecture and numerical analysis of Toeplitz determinants. 2012. pt74 [3846] V. Ptak. A theorem of the closed graph type. Manuscripta Math., 13(2):109–130, 1974. puro07 [3847] M. P¨ uschel and M. R¨otteler. Algebraic signal processing theory: 2-D spatial hexagonal lattice. IEEE Trans. Image Process., 16(6):1506– 1521, 2007. puro11 [3848] A. Pushnitski and G. Rozenblum. On the spectrum of BargmannToeplitz operators with symbols of a variable sign. J. Anal. Math., 114:317–340, 2011. puwo77 [3849] W. Pusz and S. Woronowicz. Form convex functions and the WYDL and other inequalities. Lett. Math. Phys., 2(6):505–512, 1977/78. grmaputhvavawi12 [3850] G. Puy, J. Marques, R. Gruetter, J. Thiran, D. Van, P. Vandergheynst, and Y. Wiaux. Spread spectrum magnetic resonance imaging. Medical Imaging, IEEE Transactions on, 31(3):586–598, 2012. puvawi11 [3851] G. Puy, P. Vandergheynst, and Y. Wiaux. On variable density compressive sampling. Signal Processing Letters, IEEE, 18(10):595–598, 2011. puro84 [3852] R. Puystjens and D. Robinson. The Moore-Penrose inverse of a morphism in an additive category. Comm. Algebra, 12(3-4):287–299, 1984. py74 [3853] T. Pytlik. Nuclear spaces on a locally compact group. Studia Math., 50:225–243, 1974. py82 [3854] T. Pytlik. Symbolic calculus on weighted group algebras. Studia Math., 73(2):169–176, 1982. py84 [3855] T. Pytlik. A construction of convolution operators on free groups. Studia Math., 79(1):73–76, 1984. chdoqi02 [3856] B. Qi, H. Chen, and N. Dong. Wavefront fitting of interferograms with Zernike polynomials. Opt. Eng., 41(7):1565–1569, 2002. 340 chdomaqi04 [3857] B. Qi, H. Chen, J. Ma, and N. Dong. Regression analysis for wavefront fitting with Zernike polynomials. In B. Qi, H. Chen, J. Ma, and H. P. Stahl, editors, Proc. SPIE, Optical Manufacturing and Testing V, volume 5180 of Optical Testing VII: Algorithms and Interferometers, pages 429–436, San Diego, CA, USA, 2004. SPIE. qiyi10-1 [3858] J. Qian and L. Ying. Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation. Multiscale Model. Simul., 8(5):1803–1837, 2010. qi07-2 [3859] K. Qian. Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Optics and Lasers in Engineering, 45(2):304 – 317, 2007. qi05 [3860] T. Qian. Characterization of boundary values of functions in Hardy spaces with applications in signal analysis. J. Integral Equations Appl., 17(2):159–198, 2005. qi06 [3861] T. Qian. Analytic signals and harmonic measures. J. Math. Anal. Appl., 314(2):526–536, 2006. liqist13 [3862] T. Qian, H. Li, and M. Stessin. Comparison of adaptive monocomponent decompositions. Nonlinear Anal. Real World Appl., 14(2):1055–1074, 2013. qispwa12 [3863] T. Qian, W. Spr¨ossig, and J. Wang. Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Mathematical Methods in the Applied Sciences, 35(1):43–64, 2012. qixuyayayu09 [3864] T. Qian, Y. Xu, D. Yan, L. Yan, and B. Yu. Fourier spectrum characterization of Hardy spaces and applications. Proc. Amer. Math. Soc., 137(3):971–980, 2009. qi05-1 [3865] X. Qiang. Reconstruction of bandlimited signal from its non-uniform integral samples. Appl. Anal., 84(10):1041–1050, 2005. qi06-1 [3866] X. Qiang. Localized frames in shift-invariant spaces. Acta Sci. Nat. Univ. Sunyatseni, 45(1):5–8, 2006. doliqiwu14 [3867] T. Qiao, B. Wu, W. Li, and A. Dong. A new reweighted l1 minimization algorithm for image deblurring. J. Inequal. Appl., pages 2014:238, 11, 2014. 341 qisu07-1 [3868] X. Qin and Y. Su. Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl., 329(1):415–424, 2007. niquta10 [3869] C. Quan, H. Niu, and C. Tay. An improved windowed Fourier transform for fringe demodulation. Optics & Laser Technology, 42(1):126 – 131, 2010. qu93 [3870] X. Quan. Cyclic vectors for Hilbert algebras. Acta Appl. Math., 32(1):89–98, 1993. qu02 [3871] C. Quesne. New q-deformed coherent states with an explicitly known resolution of unity. J. Phys. A, Math. Gen., 35(43):9213–9226, 2002. moqu71-1 [3872] C. Quesne and M. Moshinsky. Canonical transformations and matrix elements. Journal of Mathematical Physics, 12:1780, 1971. qu83 [3873] B. Qui. On Besov, Hardy and Triebel spaces for 0 < p ≤ 1. Ark. Mat., 21:169–184, 1983. qu95 [3874] B. Quinn. Doppler speed and range estimation using frequency and amplitude estimates. J. Acoust. Soc. Amer., 98(5):2560–2566, 1995. quXX [3875] F. Quinn. Contributions to a science of contemporary mathematics. preprint. qura05 [3876] J. Quinonero Candela and C. Rasmussen. A Unifying View of Sparse Approximate Gaussian Process Regression. J. Machine Learn. Res., 6:1939–1959, Dec. 2005. ratr03 [3877] L. Rachdi and K. Trim`eche. Weyl transforms associated with the spherical mean operator. Anal. Appl. (Singap.), 1(2):141–164, 2003. ra07-5 [3878] G. Racher. Some remarks on a paper by Liu and van Rooij. Indag. Math., New Ser., 18(4):601–609, 2007. rasc46 [3879] H. Rademacher and I. Schoenberg. An iteration method for calculation with Laurent series. Q. Appl. Math., 4:142–159, 1946. ra95-3 [3880] R. Radha. Multipliers for the pair (L1 (G, A), Lp (G, A)). Acta Sci. Math. (Szeged), 61(1-4):357–365, 1995. 342 nara10 [3881] R. Radha and D. Naidu. Frames in generalized Fock spaces. J. Math. Anal. Appl., In Press, Corrected Proof:–, 2010. nara11 [3882] R. Radha and D. Naidu. Frames in generalized Fock spaces. J. Math. Anal. Appl., 378(1):140–150, 2011. nara11-1 [3883] R. Radha and D. Naidu. Generalized Bargmann transform and a group representation. Bull. Sci. Math., 135(2):206–214, 2011. rath98-2 [3884] R. Radha and S. Thangavelu. Weyl multipliers for invariant Sobolev spaces. Proc. Indian Acad. Sci. Math. Sci., 108(1):31–40, 1998. raun91 [3885] R. Radha and K. Unni. The class of multipliers M (S(G), Lp (G)). Vikram Math. J., 11:1–6, 1991. ra94-1 [3886] C. Radin. The pinwheel tilings of the plane. Ann. of Math. (2), 139(3):661–702, 1994. rasi07-1 [3887] Y. Radyno and A. Sidorik. Characterization of Hilbert spaces using the Fourier transform on the field of p-adic numbers. Dokl. Nats. Akad. Nauk Belarusi, 51(5):17–22, 2007. ra77 [3888] I. Raeburn. The relationship between a commutative Banach algebra and its maximal ideal space. J. Funct. Anal., 25(4):366–390, 1977. rasasa13 [3889] H. Rafeiro, N. Samko, and S. Samko. Morrey-Campanato spaces: an overview. In Operator theory, pseudo-differential equations, and mathematical physics, volume 228 of Oper. Theory Adv. Appl., pages 293–323. 2013. harasa07 [3890] V. Raghavan, G. Hariharan, and A. Sayeed. Capacity of sparse multipath channels in the ultra-wideband regime. IEEE J. Sel. Areas Comm., 1:357–371, Oct. 2007. ra72 [3891] D. Ragozin. Central measures on compact simple Lie groups. J. Funct. Anal., 10:212–229, 1972. fapera11 [3892] H. Raguet, J. Fadili, and G. Peyre. A generalized forward-backward splitting. preprint, 2011. ra12 [3893] M. Ragusa. Operators in Morrey type spaces and applications. Eurasian Math. J., 3(3):94–109, 2012. 343 fera13 [3894] A. Rahimi and A. Fereydooni. Controlled G-Frames and their GMultipliers in Hilbert spaces. Analele Universitatii Ovidius ConstantaSeria Matematica, 21(2):223–236, 2013. denara06 [3895] A. Rahimi, A. Najati, and Y. Dehghan. Continuous frames in Hilbert spaces. Methods Funct. Anal. Topology, 12(2):170–182, 2006. ra00 [3896] R. Raimondo. Toeplitz operators on the Bergman space of the unit ball. Bull. Austral. Math. Soc., 62(2):273–285, 2000. chra95 [3897] A. Rajagopalan and S. Chaudhuri. A block shift-variant blur model for recovering depth from defocused images. In Image Processing, 1995. Proc. Int. Conf., volume 3, pages 636–639, 1995. rate12 [3898] D. Rakic and N. Teofanov. Progressive Gelfand-Shilov spaces and wavelet transforms. J. Funct. Spaces Appl., 2012(Article ID 951819):19, 2012. cira98 [3899] G. Raleigh and J. Cioffi. Spatio-temporal coding for wireless communication. IEEE Trans. Comm., 46:357–366, Mar. 1998. ra13 [3900] P. Rambour. Maximal eigenvalue and norm of a product of Toeplitz matrices. Study of a particular case. Bull. Sci. Math., 137(8):1072– 1086, 2013. rari05 [3901] P. Rambour and J.-M. Rinkel. Application of the exact inverse of the Toeplitz matrix with singular rational symbol to random walks. Probab. Math. Statist., 25(1, Acta Univ. Wratislav. No. 2784):183– 195, 2005. heorraxi97 [3902] K. Ramchandran, Z. Xiong, C. Herley, and M. Orchard. Flexible Tree-structured Signal Expansions Using Time-varying Wavelet Packets. IEEE Trans. Signal Process., 45:233–245, 1997. rava96 [3903] E. Ramirez de Arellano and N. Vasilevski. Toeplitz operators on the Fock space with presymbols discontinuous on a thick set. Math. Nachr., 180(1):299–315, 1996. ra10-1 [3904] R. Ramlau. An SVD based wavefront reconstruction for adaptive optics. In T. E. Simos, G. Psihoyios, and C. Tsitouras, editors, AIP Conference Proceedings, ICNAAM 2010: International Conference of 344 Numerical Analysis and Applied Mathematics 2010, 1925 September 2010, Rhodes (Greece), volume 1281, pages 1982–1982. AIP, 2010. raro12 [3905] R. Ramlau and M. Rosensteiner. An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration. Inverse Problems, 28(9), 2012. rate10 [3906] R. Ramlau and G. Teschke. Sparse recovery in inverse problems. In Theoretical foundations and numerical methods for sparse recovery, volume 9 of Radon Ser. Comput. Appl. Math., pages 201–262. Walter de Gruyter, Berlin, 2010. anravi11 [3907] E. P. R. G. Ramos, R. Vio, and P. Andreani. Detection of new point sources in WMAP cosmic microwave background maps at high Galactic latitude. A new technique to extract point sources from CMB maps. aap, 528:A75, apr 2011. rashzhzh09 [3908] Q. Ran, H. Zhang, Z. Zhang, and X. Sha. The analysis of the discrete fractional Fourier transform algorithms. In Electrical and Computer Engineering, 2009. CCECE’09. Canadian Conference on, pages 979– 982, 2009. ra92-1 [3909] R. Ranga. The Maslov index on the simply connected covering group and the metaplectic representation. J. Funct. Anal., 107(1):211–233, 1992. ra81-2 [3910] B. Rao. A non-uniform estimate of the rate of convergence in the central limit theorem for m-dependent random fields. Z. Wahrscheinlichkeitstheor. Verw. Geb., 58:247–256, 1981. bera93-2 [3911] K. Rao and J. Ben Arie. Lattice architectures for multiple-scale Gaussian convolution, image processing, sinusoid-based transforms and Gabor filtering. Analog Integrated Circuits and Signal Processing, 4(2):141–160, 1993. rasi06 [3912] M. Rao and H. Sikic. Potential-theoretic nature of Hardy’s inequality for Dirichlet forms. J. Math. Anal. Appl., 318(2):781–786, 2006. rasosi94 ˇ [3913] M. Rao, H. Sikic, and R. Song. Application of Carleson’s theorem to wavelet inversion. Control Cybern., 23(4):761–771, 1994. 345 rasiso94 [3914] M. Rao, H. Sikic, and R. Song. Application of Carleson’s theorem to wavelet inversion. Control Cybern., 23(4):761–771, 1994. ra61 [3915] R. Rao. On the central limit theorem in rk . Bull. Amer. Math. Soc., 67:359–361, 1961. ra01 [3916] C. Raphael. Automated rhythm transcription. In Proceedings of the International Symposium on Music Information Retrieval, pages 99– 107, 2001. nara14 [3917] M. Rashidi and A. Nazari. Extension of shift-invariant frames for locally compact abelian groups. Journal of Mathematical Extension, 8:41–48, 2014. ra11 [3918] K. N. Rasmussen. Orthonormal bases for anisotropic α-modulation spaces. page 15, 2011. nira10-1 [3919] K. N. Rasmussen and M. Nielsen. Compactly supported curvelet type systems. page 18, 2010. nira11 [3920] K. N. Rasmussen and M. Nielsen. Compactly supported frames for decomposition spaces. page 32, 2011. rasc14 [3921] H. Rauhut and C. Schwab. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. ArXiv e-prints, oct 2014. rawa11 [3922] H. Rauhut and R. Ward. Sparse recovery for spherical harmonic expansions. In Proc. SampTA 2011, Singapore, 2011. rawa13 [3923] H. Rauhut and R. Ward. Interpolation via weighted l1 minimization. ArXiv e-prints, aug 2013. rasa10 [3924] S. K. Ray and R. P. Sarkar. A theorem of Beurling and H¨ormander on Damek-Ricci spaces. Adv. Pure Appl. Math., 1(1):65–79, 2010. dura06 [3925] V. Raykar and R. Duraiswami. Fast optimal bandwidth selection for kernel density estimation. In Proceedings of the Sixth SIAM International Conference on Data Mining, pages 524–528, Philadelphia, PA, 2006. SIAM. 346 ra92-2 [3926] Y. Raynaud. On Lorentz-Sharpley spaces. In Interpolation spaces and related topics. Proceedings of a workshop held at the Technion in Haifa, Israel, June 27-July 3, 1990, pages 207–228. Bar-Ilan: Bar-Ilan University, 1992. re85-1 [3927] J. Reade. On the sharpness of Weyl’s estimate for eigenvalues of smooth kernels. SIAM J. Math. Anal., 16(3):548–550, May 1985. re09-1 [3928] L. Rebollo Neira. Measurements design and phenomena discrimination. Journal of Physics A: Mathematical and Theoretical, 42:165210, 2009. care98 [3929] D. Redfern and C. Campbell. The Matlab 5 handbook. Springer, 1998. reshtrtuyiyu90 [3930] I. Reed, D. Tufts, X. Yu, T. Truong, M. Shih, and X. Yin. Fourier analysis and signal processing by use of the M¨obius inversion formula. IEEE Trans. Acoust. Speech Signal Process., 38(3):458–470, 1990. resi72 [3931] M. Reed and B. Simon. Methods of modern mathematical physics. I. Functional analysis. Academic Press, New York, 1972. biboreti06 [3932] F. Reichenbach, A. Born, D. Timmermann, and R. Bill. A distributed linear least squares method for precise localization with low complexity in wireless sensor networks. In F. Reichenbach, A. Born, D. Timmermann, R. Bill, P. Gibbons, T. Abdelzaher, J. Aspnes, and R. Rao, editors, Distributed Computing in Sensor Systems, volume 4026 of Lecture Notes in Computer Science, pages 514–528. Springer Berlin / Heidelberg, 2006. re70 re96-1 [3933] C. Reid. Hilbert. Springer, 1970. [3934] C. Reid. Hilbert. 2nd ed. New York, NY: Copernicus, 1996. re95 [3935] R. Reid. A class of Riesz-Fischer sequences. Proc. Amer. Math. Soc., 123(3):827–829, 1995. re09 [3936] H. Reimann. Uncertainty principles for the affine group. Funct. Approx. Comment. Math., 40(part 1):45–67, 2009. 347 mare09-1 [3937] G. Reise and G. Matz. Distributed sampling and reconstruction of non-bandlimited fields in sensor networks based on shift-invariant spaces. In IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2061–2064, Taipei, Taiwan, April 2009. mare10 [3938] G. Reise and G. Matz. Reconstruction of time-varying fields in wireless sensor networks using shift-invariant spaces: Iterative algorithms and impact of sensor localization errors. In IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Marrakech, Morocco, June 2010. grmare12 [3939] G. Reise, G. Matz, and K. Gr¨ochenig. Distributed field reconstruction in wireless sensor networks based on hybrid shift-invariant spaces. IEEE Trans. Signal Process., 60(10):5426–5439, 2012. re82 [3940] S. Reisner. On the duals of Lorentz function and sequence spaces. Indiana Univ. Math. J., 31:65–72, 1982. re87 [3941] H. Reiter. Sur le groupe metaplectique et l’algebre de Segal associee. (On the metaplectic group and the associated Segal algebra). C. R. Acad. Sci., Paris, S´er. I, 305:241–243, 1987. rero11 [3942] H. Remling and M. R¨osler. The heat semigroup in the compact Heckman-Opdam setting and the Segal-Bargmann transform. Int. Math. Res. Not. IMRN, (18):4200–4225, 2011. cechkare11 [3943] G. Ren, Q. Chen, P. Cerejeiras, and U. K¨ahler. Chirp transforms and chirp series. J. Math. Anal. Appl., 373(2):356–369, 2011. kare02 [3944] G. Ren and U. K¨ahler. Weighted H¨older continuity of hyperbolic harmonic Bloch functions. Z. Anal. Anwend., 21(3):599–610, 2002. kare05 [3945] G. Ren and U. K¨ahler. Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball. Proc. Edinburgh Math. Soc. (2), 48(3):743–755, 2005. rewe83 [3946] H. L. Resnikoff and R. O. J. Wells. Mathematik im Wandel der Kulturen. Friedr. Vieweg and Sohn, Braunschweig, 1983. 348 digimorete03 [3947] S. Restaino, S. Teare, M. DiVittorio, G. Gilbreath, and D. Mozurkewich. Analysis of the Naval Observatory Flagstaff Station 1-m telescope using annular Zernike polynomials. Opt. Eng., 42(9):2491–2495, 2003. re75 [3948] J. Retherford. Applications of Banach ideals of operators. Bull. Amer. Math. Soc., 81:978–1012, 1975. resa08 [3949] S. G. R´ev´esz and A. San Antolin. Equivalence of A-approximate continuity for self-adjoint expansive linear maps. Linear Algebra and Appl., 429(7):1504–1521, October 2008. repafi11 [3950] M. Revrabek, P. Pata, and K. Fiegel. Enhancement of the accuracy of the astronomical measurements carried on the wide-field astronomical image data. In SPIE Optical Engineering+ Applications, pages 81351M–81351M, 2011. re85-2 [3951] M. Rezola. A theorem of density for translation invariant subspaces of Lp (G). Boll. Un. Mat. Ital. A (6), 4:43–47, 1985. rh11 [3952] J. Rhee. Gibbs phenomenon and certain nonharmonic Fourier series. Commun. Korean Math. Soc., 26(1):89–98, 2011. bagogrrerhtyvo02 [3953] T. Rhoadarmer, J. Barchers, J. Gonglewski, M. Vorontsov, M. Gruneisen, S. Restaino, and R. Tyson. Noise analysis for complex field estimation using a self-referencing interferometer wave front sensor. In T. A. Rhoadarmer, J. D. Barchers, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, editors, Proc. SPIE, High-Resolution Wavefront Control: Methods, Devices, and Applications IV; Wavefront Sensing, volume 4825, pages 215–227, Seattle, WA, USA, July 2002. SPIE. herhsh09 [3954] W. T. Rhodes, J. J. Healy, and J. Sheridan. Wigner cross-terms in sampled and other periodic signals. In Frontiers in Optics, page FWW1, 2009. herhsh10 [3955] W. T. Rhodes, J. J. Healy, and J. Sheridan. Cross terms of the Wigner distribution function and aliasing in numerical simulations of paraxial optical systems. Opt. Lett., 35(8):1142–1144, 2010. 349 riwo13 [3956] L. Riba and M. Wong. Continuous inversion formulas for multidimensional Stockwell transforms. Math. Model. Nat. Phenom., 8(1):215–229, 2013. laonristtowi14 [3957] B. Ricaud, G. Stempfel, B. Torr´esani, C. Wiesmeyr, H. Lachambre, and D. Onchis. An optimally concentrated Gabor transform for localized time-frequency components. Adv. Comput. Math., 40(3):683– 702, 2014. rito12 [3958] B. Ricaud and B. Torr´esani. A survey of uncertainty principles and some signal processing applications. arXiv preprint, arXiv:1211.5914, 2012. rito13 [3959] B. Ricaud and B. Torr´esani. A survey of uncertainty principles and some signal processing applications. Adv. Comput. Math., pages 1–22, 2013. ri09-1 [3960] F. Ricci. Schwartz functions on the Heisenberg group, spectral multipliers and Gelfand pairs. Rev. Uni´on Mat. Argent., 50(2):175–186, 2009. ri90-2 [3961] M. Richards. A functional minimization interpretation of fast iterative reconstruction algorithms. In Proc. of the ICASSP-90 - 1990 International Conference on Acoustics, Speech, and Signal Processing, volume 3, pages 1543 –1546. IEEE, apr 1990. parish98 [3962] M. Richman, T. Parks, and R. Shenoy. Discrete-time, discretefrequency, time-frequency analysis. IEEE Trans. Signal Process., 46(6):1517–1527, 1998. ri98 [3963] M. Richter. Use of box splines in computer tomography. Computing, 61(2):133–150, 1998. ri50 [3964] C. Rickart. The uniqueness of norm problem in Banach algebras. Ann. Math. (2), 51:615–628, 1950. ri97-1 [3965] W. Ricker. The Weyl functional calculus and two-by-two selfadjoint matrices. Bull. Austral. Math. Soc., 55(2):321–325, 1997. ri67-1 [3966] N. Rickert. Convolution of Lp functions. Proc. Amer. Math. Soc., 18:762–763, 1967. 350 ri68-1 [3967] N. Rickert. Convolution of L2 -functions. Colloq. Math., 19:301–303, 1968. bakrriwa11 [3968] G. Rieckh, W. Kreuzer, H. Waubke, and P. Balazs. A 2.5DFourier-BEM-model for vibrations in a tunnel running through layered anisotropic soi. Engineering Analysis with Boundary Elements, 36:960–968, 2012. pori11 [3969] E. Rieffel and W. Polak. Quantum Computing: A Gentle Introduction. MIT Press, 2011. ri76-1 [3970] M. A. Rieffel. Commutation theorems and generalized commutation relations. Bull. Soc. Math. France, 104(2):205–224, 1976. ri99 [3971] M. A. Rieffel. Metrics on state spaces. Doc. Math., 4:559–600 (electronic), 1999. ri01-1 [3972] M. A. Rieffel. Matrix algebras converge to the sphere for quantum Gromov–Hausdorff distance. Arxiv preprint math/0108005, 2001. ri10-1 [3973] M. A. Rieffel. Distances between matrix algebras that converge to coadjoint orbits. In Superstrings, geometry, topology, and C ∗ algebras, volume 81 of Proc. Sympos. Pure Math., pages 173–180. Amer. Math. Soc., Providence, RI, 2010. ri10-2 [3974] M. A. Rieffel. Vector bundles and Gromov Hausdorff distance. J. K-Theory, 5(1):39–103, 2010. ri03 [3975] P. Riera. Computation of the circle polynomials of Zernike. In P. R. Riera, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, editors, Proc. SPIE, Advanced Wavefront Control: Methods, Devices, and Applications, volume 5162 of Wavefront Sensing and Analysis II, pages 120–128, San Diego, CA, USA, 2003. SPIE. parito02 [3976] P. Riera, G. Pankretz, and D. M. Topa. Efficient computation with special functions like the circle polynomials of Zernike. In P. R. Riera, G. S. Pankretz, D. M. Topa, and R. C. Juergens, editors, Proc. SPIE, Optical Design and Analysis Software II, volume 4769, pages 130–144, Seattle, WA, USA, 2002. SPIE. 351 ri13 [3977] L. Rifford. Ricci curvatures in Carnot groups. Math. Control Relat. Fields, 3(4):467–487, 2013. rishsu12 [3978] K. Rim, C. Shin, and Q. Sun. Stability of localized integral operators on weighted Lp spaces. Numer. Funct. Anal. Optim., 33(7-9):1166– 1193, 2012. ri14 [3979] F. Rindler. A local proof for the characterization of Young measures generated by sequences in BV. J. Funct. Anal., 266(11):6335–6371, 2014. rish13 [3980] F. Rindler and G. Shaw. Strictly continuous extensions of functionals with linear growth to the space BV. arXiv, 2013. ri95 [3981] E. Rio. A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws. The Annals of Probability, 23(2):918–937, 1995. ri76-2 [3982] B. Ripley. The second-order analysis of stationary point processes. Journal of applied probability, pages 255–266, 1976. ri49 [3983] J. Riss. Transformation de Fourier des distributions. C. R. Acad. Sci., Paris, 229:12–14, 1949. brri03 [3984] C. Rivero Moreno and S. Bres. Conditions of similarity between Hermite and Gabor filters as models of the human visual system. In Nicolai Petkov and Michel A. Westenberg, editors, CAIP 2003, Proc. Computer analysis of images and patterns, 10th International Conference, volume 2756 of Lecture Notes in Comput. Sci., pages 762–769, Groningen, The Netherlands, August 25-27, 2003. Springer. brri04 [3985] C. Rivero Moreno and S. Bres. Texture feature extraction and indexing by Hermite filters. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on,, volume 1, pages 684 – 687, aug. 2004. rosa96 [3986] J. Robbin and D. Salamon. Feynman path integrals on phase space and the metaplectic representation. Math. Z., 221(2):307–335, 1996. famiro09 [3987] D. Robinson, S. Farsiu, and P. Milanfar. Optimal registration of aliased images using variable projection with applications to superresolution. The Computer Journal, 52(1):31–42, 2009. 352 rosasi11 [3988] S. Roch, P. Santos, and B. Silbermann. Non-commutative Gelfand Theories. A Tool-kit for Operator Theorists and Numerical Analysts. Springer, 2011. ro84 [3989] R. Rochberg. Function theoretic results for complex interpolation families of Banach spaces. Trans. Amer. Math. Soc., 284(2):745–758, 1984. ro88-1 [3990] R. Rochberg. The work of Coifman and Semmes on complex interpolation, several complex variables, and PDEs. In Function spaces and applications (Lund, 1986), volume 1302 of Lecture Notes in Math., pages 74–90. Springer, Berlin, 1988. ro76-5 [3991] R. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control Optimization, 14(5):877–898, 1976. rosiwawawe11 [3992] L. Rockstroh, S. Wahl, Z. Wang, P. Werner, and S. Simon. AN IMAGE FILTER TECHNIQUE TO RELAX PARTICLE IMAGE VELOCIMETRY. 2011. ro90-1 [3993] N. Roddier. Atmospheric wavefront simulation using Zernike polynomials. Opt. Eng., 29(10):1174–1180, Oct, 1990. ro92-2 [3994] V. Rodin. Rectangular oscillation of a sequence of partial sums of multiple Fourier series and absence of the BMO property. Math. Notes, 52(2):863–865, 1992. rowa14 [3995] L. Rodino and P. Wahlberg. The Gabor wave front set. Monatsh. Math., 173(4):625–655, 2014. alcaro09 [3996] J. Rodrigo, T. Alieva, and M. Calvo. Programmable two-dimensional optical fractional Fourier processor. Opt. Express, 17(7):4976–4983, Mar 2009. rote11 [3997] J. Rodrigues and R. Teymurazyan. On the two obstacles problem in OrliczSobolev spaces and applications. Complex Variables and Elliptic Equations, 56(7-9):769–787, 2011. rozu08 [3998] J. J. Rodriguez Vega and W. A. Zuniga Galindo. Taibleson operators, p-adic parabolic equations and ultrametric diffusion. Pacific J. Math., 237(2):327–347, 2008. 353 ro07-1 [3999] F. Rodriguez Villegas. Experimental number theory. Oxford University Press, 2007. ro89-2 [4000] J. Roe. Partitioning non-compact manifolds and the dual Toeplitz problem. Operator algebras and applications, 1:187–228, 1989. rosc96 [4001] J. Roe. Index theory, coarse geometry, and topology of manifolds. Number 90. Amer Mathematical Society, 1996. ro05-2 [4002] J. Roe. Band-dominated Fredholm operators on discrete groups. Integr. Equ. Oper. Theory, 51(3):411–416, 2005. bebrdiro10 [4003] Y. Rogovchenko, L. Berezansky, E. Braverman, and J. Diblik. Recent advances in oscillation theory. 2010:634238(3), 2010. ro00-1 [4004] J. Rohn. Computing the norm A ∞,1 is NP-hard. Linear and Multilinear Algebra, 47(3):195–204, 2000. haro06 [4005] P. Rojo and J. Harrington. A method to remove fringes from images using wavelets. The Astrophysical Journal, 649(1):553, 2006. rosusz08 [4006] A. Rokob, A. Szabados, and P. Surjan. A Note on the Symmetry Properties of L¨owdin’s Orthogonalization Schemes. Collection of Czechoslovak Chemical Communications, 73(6-7):937–944, 2008. duroth10 [4007] J. Rolland, C. Dunn, and K. Thompson. An analytic expression for the field dependence of FRINGE Zernike polynomial coefficients in rotationally symmetric optical systems. In J. P. Rolland, C. Dunn, K. P. Thompson, C. E. Towers, J. Schmit, and K. Creath, editors, Proc. SPIE, Interferometry XV: Techniques and Analysis, volume 7790 of Optical Surface Testing, page 77900M(11), San Diego, California, USA, 2010. SPIE. jalememuparoth08 [4008] J. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. Thompson, and K.-S. Lee. Gabor domain optical coherence microscopy. In Proc. SPIE, 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, volume 7139 of OCT Microscopy, page 9, 2008. kalememuparoth09 [4009] J. Rolland, P. Meemon, S. Murali, I. Kaya, N. Papp, K. Thompson, and K.-S. Lee. Gabor domain optical coherence microscopy. In Optical Coherence Tomography and Coherence Techniques IV, volume 7372 of Novel OCT Technology, page 7, Munich, Germany, 2009. 354 ro08-2 [4010] S. Roman. Advanced Linear Algebra 3rd ed. Graduate Texts in Mathematics 135. New York, NY: Springer. xviii, 2008. ro03-2 [4011] G. Rombouts. Adaptive filtering algorithms for acoustic echo and noise cancellation. PhD thesis, 2003. ro12 [4012] J. L. Romero. Characterization of coorbit spaces with phase-space covers. J. Funct. Anal., 262(1):59–93, 2012. rosc96-1 [4013] J. Ronghui and L. Schweitzer. Spectral invariance of smooth crossed products, and rapid decay locally compact groups. K-theory, 10(3):283–305, 1996. ro10-1 [4014] D. Rosca. New uniform grids on the sphere. Astronomy & Astrophysics, 520:A63, 2010. ro06-3 [4015] J. Rosenberg. Non-commutative harmonic analysis. In A panorama of Hungarian mathematics in the twentieth century. I, volume 14 of Bolyai Soc. Math. Stud., pages 193–209. 2006. ro08-3 [4016] J. Rosenberg. Noncommutative variations on Laplace’s equation. Anal. PDE, 1(1):95–114, 2008. ro13 [4017] J. Rosenberg. Levi-Civita’s Theorem for Noncommutative Tori. arXiv preprint arXiv:1307.3775, 2013. ro97-2 [4018] S. Rosenberg. The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds. London Mathematical Society student texts. Cambridge University Press, 1997. bero98-1 [4019] J. Rosenblatt and S. Bell. Mathematical Analysis for Modeling. CRC Mathematical Modeling Series. Boca Raton, FL: CRC Press. 860 p., 1998. ro94 [4020] M. Rosenblum. Generalized Hermite polynomials and Bose-like oscillator calculus. Feintuch, A. (ed.) et al., Nonselfadjoint operators and related topics. Workshop on Operator theory and its applications, Beersheva, Israel, February 24-28, 1992. Basel: Birkh¨auser Verlag. Oper. Theory, Adv. Appl. 73, 369-396 (1994)., 1994. 355 raro13 [4021] M. Rosensteiner and R. Ramlau. Kaczmarz algorithm for multiconjugated adaptive optics with laser guide stars. JOSA A, 30(8):1680– 1686, 2013. ro13-1 [4022] M. Rosenthal. Local means, wavelet bases and wavelet isomorphisms in Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Math. Nachr., 286(1):59–87, 2013. rotr14 [4023] M. Rosenthal and H. Triebel. Calderon-Zygmund operators in Morrey spaces. Rev. Mat. Complut., 27(1):1–11, 2014. khro11 [4024] E. E. Rosinger, A. Khrennikov, G. Jaeger, A. Khrennikov, M. Schlosshauer, and G. Weihs, editors. Beyond archimedean spacetime structure, volume 1327. AIP, 2011. ro10 [4025] M. R¨osler. Positive convolution structure for a class of HeckmanOpdam hypergeometric functions of type BC. J. Funct. Anal., 258(8):2779–2800, 2010. ro14 [4026] K. Ross. A Trip from Classical to Abstract Fourier Analysis. Notices Amer. Math. Soc., 61(9):1032–1039, 2014. ro98-1 [4027] M. Rossini. 2D-discontinuity detection from scattered data. Computing, 61(3):215–234, 1998. ro97-3 [4028] G. Rota. Ten lessons I wish I had been taught. Notices of the AMS, 44(1):22–25, 1997. firo08 [4029] V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In Proceedings of the 25th international conference on Machine learning, pages 848–855, 2008. chnyro02 [4030] E. Rothwell, K. Chen, and D. Nyquist. An adaptive-window-width short-time Fourier transform for visualization of radar target substructure resonances. Antennas and Propagation, IEEE Transactions on, 46(9):1393–1395, 2002. ro03-3 [4031] F. Rouviere. Damek-Ricci spaces: Geometry and analysis (Espaces de Damek-Ricci, geometrie et analyse). In Analysis on Lie groups and representation theory. Proceedings of the summer school. Kenitra, 356 France, 1999, volume 7, pages 45–100. Paris: Soci´et´e Math´ematique de France, 2003. rosa00 [4032] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323, 2000. ro11-1 [4033] K. Roysland. Frames generated by actions of countable discrete groups. Trans. Amer. Math. Soc, 363:95–108, 2011. ro11-2 [4034] G. Rozenblum. On lower eigenvalue bounds for Toeplitz operators with radial symbols in Bergman spaces. J. Spectr. Theory, 1(3):299–325, 2011. ro12-1 [4035] G. Rozenblum. Finite rank Bargmann-Toeplitz operators with noncompactly supported symbols. Bull. Math. Sci., 2(2):331–341, 2012. rusi83 [4036] L. A. Rubel and A. Siskakis. A net of exponentials converging to a nonmeasurable function. Amer. Math. Monthly, 90:394–396, 1983. ruti79 [4037] L. A. Rubel and R. M. Timoney. An extremal property of the Bloch space. Proc. Amer. Math. Soc., 75(1):45–49, 1979. klru95 [4038] A. Rubin and J. R. Klauder. The comparative roles of connected and disconnected trajectories in the evaluation of the semiclassical coherent-state propagator. Annals of Physics, 241(1):212–234, 1995. elruzi10 [4039] R. Rubinstein, M. Zibulevsky, and M. Elad. Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Process., 58(3, part 2):1553–1564, 2010. ru89 [4040] J. L. Rubio de Francia. Transference principles for radial multipliers. Duke Math. J., 58(1):1–19, 1989. guruto00 [4041] Y. Rubner, C. Tomasi, and L. Guibas. The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis., 40(2):99–121, 2000. ru67 [4042] W. Ruckle. Symmetric coordinate spaces and symmetric bases. Canad. J. Math., 19:828–838, 1967. ru81-1 [4043] W. Ruckle. Sequence Spaces. Research Notes in Mathematics 49. Pitman, 1981. 357 ru91-1 [4044] W. Ruckle. Modern analysis. Measure Theory and Functional Analysis with Applications. Boston, MA: PWS-Kent Publishing Company, 1991. ruve06 [4045] M. Rudelson and R. Vershynin. Analysis of orthogonal matching pursuit using the restricted isometry property. pages 207–212, Princeton, NJ, Mar. 2006. ruve10-1 [4046] M. Rudelson and R. Vershynin. Non-asymptotic theory of random matrices: extreme singular values. In Proceedings of the International Congress of Mathematicians, volume III, pages 1576–1602. Hindustan Book Agency, 2010. ru59 [4047] W. Rudin. Measure algebras on abelian groups. Bull. Amer. Math. Soc, 65:227–247, 1959. ru88 [4048] K. Rudol. Atomic-type decompositions in the Segal-Bargmann space. Proc. Roy. Irish Acad. Sect. A, 88:85–90, 1988. ru11 [4049] K. Rudol. Matrices related to some Fock space operators. Opuscula Math., 31(2):289–296, 2011. rusc13 [4050] G. Rudolph and M. Schmidt. Differential Geometry and Mathematical Physics Part I. Theoretical and Mathematical Physics. Springer, Dordrecht, 2013. ru10 [4051] M. Rumin. Spectral density and Sobolev inequalities for pure and mixed states. Geom. Funct. Anal., 20(3):817–844, 2010. ru11-1 [4052] M. Rumin. An entropic uncertainty principle for positive operator valued measures. Letters in Mathematical Physics, pages 1–18, 2011. ru07-1 [4053] V. Runde. Cohen-Host type idempotent theorems for representations on Banach spaces and applications to Fig`a-Talamanca-Herz algebras. J. Math. Anal. Appl., 329(1):736–751, 2007. ruto10 [4054] J. Ruoff and M. Totzeck. Using orientation Zernike polynomials to predict the imaging performance of optical systems with birefringent and partly polarizing components. In J. Ruoff, M. Totzeck, J. Bentley, A. Gupta, and R. N. Youngworth, editors, Proc. SPIE, International Optical Design Conference 2010, volume 7652 of Polarization in Optical Design, page 76521T(14), Jackson Hole, WY, USA, 2010. SPIE. 358 rusm10 [4055] M. Ruzhansky and J. Smith. Dispersive and Strichartz Estimates for Hyperbolic Equations with Constant Coefficients. Mathematical Society of Japan, Volume 22 edition, 2010. rusu06-2 [4056] M. Ruzhansky and M. Sugimoto. Global boundedness theorems for Fourier integral operators associated with canonical transformations. Miyachi, Akihiko (ed.) et al., Harmonic analysis and its applications. Proceedings of the international conference on harmonic analysis and its applications, Osaka, Japan, November 15–17, 2004. Yokohama: Yokohama Publishers. 65-75 (2006)., 2006. rusu12 [4057] M. Ruzhansky and M. Sugimoto. Smoothing properties of evolution equations via canonical transforms and comparison principle. 2012. rusutoto11 [4058] M. Ruzhansky, M. Sugimoto, J. Toft, and N. Tomita. Changes of variables in modulation and Wiener amalgam spaces. Math. Nachr., 284(16):2078–2092, 2011. rusuwa12 [4059] M. Ruzhansky, M. Sugimoto, and B. Wang. Modulation spaces and nonlinear evolution equations. Evolution Equations of Hyperbolic and Schr¨odinger Type, pages 267–283, 2012. rutu10 [4060] M. Ruzhansky and V. Turunen. Quantization of pseudo-differential operators on the torus. J. Fourier Anal. Appl., 16(6):943–982, 2010. 14 [4061] M. Ruzhansky and V. Turunen, editors. Fourier analysis Pseudodifferential Operators, Time-frequency analysis and partial Differential equations (to appear). New York, NY: Birkh¨auser/Springer, 2014. ruwi11 [4062] M. Ruzhansky and J. Wirth. Modern Aspects of The Theory of Partial Differential Equations (to Appear). Operator Theory: Advances and Applications 216. Basel: Birkh¨auser. 400 p., 2011. ry80 [4063] C. Ryavec. The Poisson summation formula. Aequationes Math., 21:246–250, 1980. ry84 [4064] Z. Rychlik. Non-uniform central limit bounds with applications to probabilities of deviations. Theory Probab. Appl., 28:681–687, 1984. 359 ry85 [4065] Z. Rychlik. A remainder term estimate in a random-sum central limit theorem. Bull. Pol. Acad. Sci., Math., 33:57–63, 1985. rysz03 [4066] Z. Rychlik and K. S. Szuster. On strong versions of the central limit theorem. Stat. Probab. Lett., 61(4):347–357, 2003. kilelery13 [4067] S.-J. Ryu, M. Kirchner, M.-J. Lee, and H.-K. Lee. Rotation invariant localization of duplicated image regions based on zernike moments. Information Forensics and Security, IEEE Transactions on, 8(8):1355– 1370, 2013. klparyvi08 [4068] M. Ryynanen, T. Virtanen, J. Paulus, and A. Klapuri. Accompaniment separation and karaoke application based on automatic melody transcription. In Proc. Multimedia and Expo, 2008 IEEE International Conference on, pages 1417 –1420, Hannover, 23 2008-april 26 2008. abdeelhasa08 [4069] E. Saad, M. Hadhoud, M. Dessouky, M. Elhalawany, and A. Abbas. Fusion of Zernike moments and Fourier-Mellin transform for invariant image resolution. Opt. Eng., 47(1):017002 (12 pages), January 2008. sa92 [4070] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, 1992. sa11-2 [4071] Y. Saad. Numerical Methods for Large Eigenvalue Problems, Revised Edition. SIAM, 2011. sava00 [4072] Y. Saad and d. van. Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math., 123(1-2):1–33, 2000. sa02-4 [4073] F. Sady. Projective limit of a sequence of Banach function algebras as a Fr´echet function algebra. Bull. Korean Math. Soc., 39(2):259–267, 2002. sa90 [4074] S. Saeki. The Lp -conjecture and Young’s inequality. Ill. J. Math., 34(3):614–627, 1990. kasa04-1 [4075] A. Safapur and R. Kamyabi Gol. A necessary condition for WeylHeisenberg frames. Bull. Iranian Math. Soc., 30(2):13, 2004. 360 sa03-3 [4076] B. Sagir. Multipliers and tensor products of vector valued Lp (G, A) spaces. Taiwanese J. Math., 7(3):493–501, 2003. sasowo88 [4077] P. Sahoo, S. Soltani, and A. Wong. A survey of thresholding techniques* 1. Computer vision, graphics, and image processing, 41(2):233–260, 1988. sa83 [4078] S. Saitoh. Hilbert spaces induced by Hilbert space valued functions. Proc. Amer. Math. Soc., 89:74–78, 1983. asmasa03 [4079] S. Saitoh, T. Matsuura, and M. Asaduzzaman. Operator equations and best approximation problems in reproducing kernel Hilbert spaces. J. Anal. Appl., 1(3):131–142, 2003. sa88 [4080] K. Saka. Besov spaces on Riemannian manifolds and its application to lp −lq estimates for wave equations. Mem. Coll. Educ., Akita Univ., Nat. Sci., 39:81–86, 1988. sa95 [4081] K. Saka. The trace theorem for Triebel-Lizorkin spaces and Besov spaces on certain fractal sets. I: The restriction theorem. Mem. Coll. Educ., Akita Univ., Nat. Sci., 48:1–17, 1995. sa96-1 [4082] K. Saka. The trace theorem for Triebel-Lizorkin spaces and Besov spaces on certain fractal sets. II: The extension theorem. Mem. Coll. Educ., Akita Univ., Nat. Sci., 49:1–27, 1996. sa11 [4083] K. Saka. A new generalization of Besov-type and Triebel-Lizorkintype spaces and wavelets. Hokkaido Math. J., 40(1):111–147, 2011. sa94-1 [4084] H. Sakai. Recursive least-squares algorithms of modified GramSchmidt type for parallel weight extraction. IEEE Trans. Signal Process., 42(2):429–433, 1994. sase09 [4085] E. Saksman and K. Seip. Integral means and boundary limits of Dirichlet series. Bull. Lond. Math. Soc., 41(3):411–422, 2009. armisa09 [4086] R. Sakuma, T. Miyake, and F. Aryasetiawan. Effective quasiparticle Hamiltonian based on L¨owdins orthogonalization. Physical Review B, 80(23):235128, 2009. sa63 [4087] R. Salem. Algebraic Numbers and Fourier Analysis. Boston: D. C. Heath and Company. 66 p., 1963. 361 sazy46 [4088] R. Salem and A. Zygmund. Capacity of sets and Fourier series. Trans. Amer. Math. Soc., 59:23–41, 1946. sa13 [4089] P. Sally. Fundamentals of mathematical Analysis. Pure and Applied Undergraduate Texts 20. Providence, RI: American Mathematical Society (AMS). xiii, 2013. saoz14 ¨ [4090] S. Saltan and Y. Ozel. Maximal ideal space of some Banach algebras and related problems. Banach J. Math. Anal., 8(2):16–29, 2014. sa02-3 [4091] S. Samko. Hypersingular integrals and their applications, volume 5 of Analytical methods and special functions. Taylor & Francis, London, 2002. sa11-1 [4092] S. Samko. Weighted estimates of truncated potential kernels in the variable exponent setting. Complex Variables and Elliptic Equations, 56(7-9):813–828, 2011. kimasa87 [4093] S. Samko, A. A. Kilbas, and O. I. Marichev. Integrals and derivatives of fractional order and some of their applications. (Russian). Minsk: Nauka i Tekhnika, 1987. sa93 [4094] C. Samuel. Bounded approximate identities in the agebra of compact operators on a Banach space. Proceedings of the American Mathematical Society, 117(4):1093–1096, 1993. sa09-2 [4095] A. San Antolin. Characterization of low pass filters in a multiresolution analysis. 190(2):99–116, 2009. sasa05 [4096] C. Sanchez Avila and R. Sanchez Reillo. Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation. Pattern Recognition, 38(2):231 – 240, 2005. sa99-1 [4097] I. Sandberg. Comments on Representation theorems for semilocal and bounded linear shift-invariant operators on sequences. Signal Process., 74(3):323 – 325, 1999. sa01-3 [4098] I. Sandberg. A note on the convolution scandal. Signal Processing Letters, IEEE, 8(7):210–211, 2001. 362 hasa10 [4099] J. Sandberg and M. Hansson Sandsten. Optimal stochastic discrete time–frequency analysis in the ambiguity and time-lag domain. Signal Process., 90(7):2203–2211, 2010. sa65 [4100] B. Sanders. On the existence of (Schauder) decompositions in Banach spaces. Proc. Amer. Math. Soc., 16:987–990, 1965. gusa11 [4101] A. Sandikci and A. Gurkanli. m(p, q, w)( d ) and s(p, q, r, w, ω)( Ed., 31(1):141–158, 2011. d Gabor analysis of the spaces ). Acta Math. Sci. Ser. B Engl. gusa13 [4102] A. Sandikci and A. G¨ urkanli. Generalized Sobolev-Shubin spaces, boundedness and Schatten class properties of Toeplitz operators. Turk. J. Math., 37(4):676–692, 2013. sa12 [4103] A. Sandiki. On Lorentz mixed normed modulation spaces. J. PseudoDiffer. Oper. Appl., 3(3):263–281, 2012. kopusa12 [4104] A. Sandryhaila, J. Kovacevic, and M. P¨ uschel. Algebraic signal processing theory: 1-D nearest neighbor models. IEEE Trans. Signal Process., 60(5):2247 –2259, may 2012. kopusasa12 [4105] A. Sandryhaila, S. Saba, M. P¨ uschel, and J. Kovacevic. Efficient compression of QRS complexes using Hermite expansion. IEEE Trans. Signal Process., 60(2):947–955, 2012. deghsa04 [4106] S. Sanyal, A. Ghosh, and K. Dey. Fractional Fourier transform in optics - a new perspective. Optik - International Journal for Light and Electron Optics, 115(2):77 – 85, 2004. arbesa10 [4107] G. Saracco, A. Arneodo, and G. Beylkin. Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part I. Appl. Comput. Harmon. Anal., 28(2):129–130, 2010. arbesa10-2 [4108] G. Saracco, A. Arneodo, and G. Beylkin. Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part II. Appl. Comput. Harmon. Anal., 28(3):249–250, 2010. sa75-1 [4109] D. Sarason. Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 207:391–405, 1975. 363 duecsasaye07 [4110] Z. Sara, S. Yerdelen, A. Dursun, H. Sara, and F. N. Ecevit. Processing of thermal lens fringes by S-transform. Optics Communications, 271(2):349 – 352, 2007. depusa06 [4111] C. Sastry, A. Pujari, and B. Deekshatulu. A Fourier-radial descriptor algorithm for invariant feature extraction. Int. J. Wavelets Multiresolut. Inf. Process., 4(1):197–212, 2006. alsa87 [4112] K. Sauer and J. P. Allebach. Iterative reconstruction of bandlimited images from nonuniformly spaced samples. Circuits and Systems, IEEE Transactions on, 34(12):1497–1506, 1987. sa12-1 [4113] T. Sauer. Shearlet multiresolution and multiple refinement. In Shearlets. Multiscale analysis for multivariate data., pages 199–237. 2012. rosa04 [4114] L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res., 4(2):119–155, 2004. kuokpasa95 [4115] V. Savchenko, A. Pasko, O. Okunev, and T. Kunii. Function representation of solids reconstructed from scattered surface points and contours. In Computer Graphics Forum, volume 14, pages 181–188, 1995. sast10 [4116] A. Savin and B. Sternin. Noncommutative elliptic theory. Examples. Proceedings of the Steklov Institute of Mathematics, 271(1):193–211, 2010. sa10-1 [4117] Y. Sawano. Maximal operator for pseudodifferential operators with homogeneous symbols. Michigan Math. J., 59(1):119–142, 2010. sata07 [4118] Y. Sawano and H. Tanaka. Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Math. Z., 257(4):871–905, 2007. sata09 [4119] Y. Sawano and H. Tanaka. Besov-Morrey spaces and TriebelLizorkin-Morrey spaces for nondoubling measures. Math. Nachr., 282(12):1788–1810, 2009. sata09-1 [4120] Y. Sawano and H. Tanaka. Predual spaces of Morrey spaces with non-doubling measures. Tokyo J. Math., 32(2):471–486, 2009. 364 sata14 [4121] Y. Sawano and H. Tanaka. FATOU PROPERTY OF PREDUAL MORREY SPACES WITH NON-DOUBLING MEASURES. International Journal of Applied Mathematics, 27(3):283–296, 2014. sayo08 [4122] Y. Sawano and T. Yoneda. Quarkonial decomposition suitable for functional-differential equations of delay type. Math. Nachr., 281(12):1810–1822, 2008. sa72 [4123] A. Sawchuk. Space-variant image motion degradation and restoration. Proceedings of the IEEE, 60(7):854–861, 1972. sa74 [4124] A. Sawchuk. Space-variant image restoration by coordinate transformations. JOSA, 64(2):138–144, 1974. sasi05 [4125] R. Saxena and A. K. Singh. Fractional Fourier transform: A novel tool for signal processing. J. Indian Inst. Sci, 85:11–26, 2005. saul90 [4126] V. Sazonov and V. Ulyanov. Speed of convergence in the central limit theorem in Hilbert space under weakened moment conditions. Probability theory and mathematical statistics, Proc. 5th Vilnius Conf., Vilnius/Lith. 1989, Vol. II, 394-410 (1990)., 1990. bagisc99 [4127] A. Scaglione, G. Giannakis, and S. Barbarossa. Redundant filterbank precoders and equalizers, Parts I and II. IEEE Trans. Signal Process., pages 19882006, and 20072022, Jul. 1999. sc70-2 [4128] J. Sch¨affer. Norms and determinants of linear mappings. Math. Z., 118:331–339, 1970. hlmasc03 [4129] D. Schafhuber, G. Matz, and F. Hlawatsch. Kalman tracking of timevarying channels in wireless MIMO-OFDM systems. volume 2, pages 1261–1265, Pacific Grove, CA, Nov. 2003. sc08-6 [4130] B. Schapira. Contributions to the hypergeometric function theory of Heckman and Opdam: Sharp estimates, Schwartz space, heat kernel. Geom. Funct. Anal., 18(1):222–250, 2008. sc13-2 [4131] B. Scharf. Atomic representations in function spaces and applications to pointwise multipliers and diffeomorphisms, a new approach. Math. Nachr., 286(2-3):283–305, 2013. 365 sc98-2 [4132] W. Schempp. Wavelet modelling of high resolution radar imaging and clinical magnetic resonance tomography. Proceedings of the 3rd international conference on functional analysis and approximation theory, Acquafredda di Maratea (Potenza), Italy, September 23–28, 1996. Vols. I and II. Palermo: Circolo Matem`atico di Palermo. Suppl. Rend. Circ. Mat. Palermo, II, 1998. sc10-2 [4133] A. Schep. Products and factors of Banach function spaces. Positivity, 14(2):301–319, 2010. sc11-3 [4134] O. Scherzer. Image Restoration and Analysis. Springer, 2011. sc00-5 [4135] O. Schiffmann. The Hall algebra of a cyclic quiver and canonical bases of Fock spaces. International Mathematics Research Notices, 2000(8):413–440, 2000. scsovo10 [4136] R. Schilling, R. Song, and Z. Vondracek. Bernstein Functions. Theory and Applications. de Gruyter Studies in Mathematics 37. Berlin: Walter de Gruyter. xii, 313 p., 2010. scwe09 [4137] F. Schipp and F. Weisz. Multi-dimensional discrete summability. Acta Math. Sci., 75(1-2):219–231, 2009. sc09-6 [4138] J. Schira. Statistische Methoden der VWL und BWL. Deutschland GmbH, 2009. sc11-1 [4139] L. Schlaffer. PISA-Studie versus Realit¨at Schule. Master’s thesis, University of Vienna, 2011. sc13 [4140] M. Schlichenmaier. Berezin’s coherent states, symbols and transform for compact K¨ahler manifolds. In Geometric methods in physics. XXX workshop, Bialowieza, Poland, June 26 – July 2, 2011. Selected papers based on the presentations at the workshop, pages 101–116. Basel: Birkh¨auser, 2013. bascsi11 [4141] T. Schlumprecht, N. Sivakumar, and B. A. Bailey. Nonuniform sampling and recovery of multidimensional bandlimited functions by Gaussian radial-basis functions. J. Fourier Anal. Appl., 17(3):519–533, 2011. 366 Pearson sc90-2 [4142] J. Schmeelk. A guided tour of new tempered distributions. Foundations of Physics Letters, 3(5):403–423, 1990. sc65 [4143] L. Schmetterer. Some theorems on the Fourier analysis of positive definite functions. Proc. Amer. Math. Soc., 16:1141–1146, 1965. sc10-4 [4144] J. Schmidt. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB. SPIE, 2010. sc09-5 [4145] K. Schmidt. Maß und Wahrscheinlichkeit. Springer Berlin, 2009. sc94 [4146] R. Schmidt. Subgroup lattices of groups, volume 14. Walter de Gruyter, 1994. sc93-1 [4147] C. Schmoeger. Relatively regular operators and a spectral mapping theorem. J. Math. Anal. Appl., 175(1):315–320, 1993. sc08-5 [4148] C. Schmoeger. Characterizations of some classes of relatively regular operators. Linear Algebra Appl., 429(1):302–310, 2008. sc08-4 [4149] C. Schmoeger. On pseudo-inverses of Fredholm operators. Turk. J. Math., 32(4):467–474, 2008. sc12-1 [4150] S. Schmutzhard. Galerkin methods for the numerical evaluation of the prolate spheroidal wave functions. PhD thesis, University of Vienna, 2012. hljusc12 [4151] S. Schmutzhard and F. Hlawatsch. The RKHS Approach to Minimum Variance Estimation Revisited: Variance Bounds, Sufficient Statistics, and Exponential Families. IEEE Trans. Information Theory, 60(7):4050 – 4065, Oct. 2014. fehrsc13 [4152] S. Schmutzhard, T. Hrycak, and H. G. Feichtinger. A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions. submitted, 2013. fehrsc14 [4153] S. Schmutzhard, T. Hrycak, and H. G. Feichtinger. A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions. Numerical Algorithms, pages 1–20, 2014. 367 hljusc11 [4154] S. Schmutzhard, A. Jung, and F. Hlawatsch. Minimum Variance Estimation for the Sparse Signal in Noise Model. Proc. ISIT 2011, 2011. grsc10 [4155] K. Schnass and R. Gribonval. Dictionary identification - sparse matrix-factorisation via l1 -minimisation. IEEE Trans. Inform. Theory, 56(7):3523–3539, 2010. sc09-4 [4156] C. Schneider. On dilation operators in Besov spaces. Rev. Mat. Complut., 22(1):111–128, 2009. sc10-3 [4157] C. Schneider. Trace operators in Besov and Triebel-Lizorkin spaces. Z. Anal. Anwend., 29(3):275–302, 2010. scvy12 [4158] C. Schneider and J. Vybiral. Homogeneity property of Besov and Triebel-Lizorkin spaces. 2012. scsc09 [4159] G. Schneider and K. Schneider. Generalized Hankel operators on the Fock space. Math. Nachr., 282(12):1811–1826, 2009. scsm98 [4160] B. Schoelkopf and A. Smola. From regularization operators to support vector kernels. In Advances in Neural information processing systems, 10:343–349, 1998. scwh53 [4161] I. Schoenberg and A. Whitney. On Polya frequence functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Amer. Math. Soc., 74:246– 259, 1953. scst71 [4162] A. Schoenhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292, 1971. besc87 [4163] B. Schomburg and G. Berendt. On the convergence of the BackusGilbert algorithm. Inverse Problems, 3:341–346, 1987. sc96-2 [4164] F. Schroeck. Quantum mechanics on phase space. Dordrecht: Kluwer Academic Publishers, 1996. mosc03 [4165] D. Schuch and M. Moshinsky. Coherent states and dissipation for the motion of a charged particle in a constant magnetic field. J. Phys. A, Math. Gen., 36(23):6571–6585, 2003. 368 mosc08-1 [4166] D. Schuch and M. Moshinsky. Wigner distribution functions and the representation of canonical transformations in time-dependent quantum mechanics. 4(Paper 54 (electronic only)):12, 2008. scst96 [4167] R. Schultz and R. Stevenson. Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process., 5(6):996 –1011, jun 1996. scta99 [4168] E. Schulz and K. F. Taylor. Extensions of the Heisenberg group and wavelet analysis in the plane. Dubuc, Serge (ed.) et al., Spline functions and the theory of wavelets. Providence, RI: AMS, American Mathematical Society. CRM Proc. Lect. Notes 18, 217-225 (1999)., 1999. scta04 [4169] E. Schulz and K. F. Taylor. Projections in L1 -algebras and tight frames. Lau, Anthony To-Ming (ed.) et al., Banach algebras and their applications. Proceedings of the 16th international conference, University of Alberta, Edmonton, Canada, July 27–August 9, 2003. Providence, RI: American Mathematical Society (AMS). Contemporar, 2004. scva12 [4170] A. Schuster and D. Varolin. Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces. Integr. Equ. Oper. Theory, 72(3):363–392, 2012. scto03 [4171] C. Schwab and R. Todor. Sparse finite elements for stochastic elliptic problems—higher order moments. Computing, 71(1):43–63, 2003. clkasc00 [4172] M. Schwab, N. Karrenbach, and J. Claerbout. Making scientific computations reproducible. Computing in Science & Engineering, 2(6):61– 67, 2000. sc69 [4173] A. Schwartz. An inversion theorem for Hankel transforms. Proc. Amer. Math. Soc., pages 713–717, 1969. sc98-3 [4174] A. Schwarz. Morita equivalence and duality. Nuclear Physics B, 534(3):720–738, 1998. sc10-1 [4175] S. Scott. Traces and determinants of pseudodifferential operators. Oxford University Press, USA, 2010. 369 se05-1 [4176] S. Searle. Efficient matched processing for localisation of a moving acoustic source. Signal Process., 85(9):1787–1804, September 2005. se84 [4177] A. Sedletskii. Approximation by shifts and completeness of weighted systems of exponentials in l2 (r) (English translation: Math. USSR-Sb. 51 (1985), no. 1, 92107). Mat. Sb. (N.S.), 123(165)(1):92–107, 1984. se65 [4178] G. Seever. A peculiar Banach function space. Proc. Amer. Math. Soc., 16:662–664, 1965. iwse12 [4179] I. Segal and M. Iwen. Improved sparse Fourier approximation results: Faster implementations and stronger guarantees. preprint, 2012. sewi99 [4180] N. Seiberg and E. Witten. String theory and noncommutative geometry. Journal of High Energy Physics, 1999(9):93, September 1999. dolasestta06 [4181] B. Seifert, H. Stolz, M. Donatelli, D. Langemann, and M. Tasche. Multilevel Gauss-Newton methods for phase retrieval problems. J. Phys. A, Math. Gen., 39(16):4191–4206, 2006. se91 [4182] K. Seip. Reproducing formulas and double orthogonality in Bargmann and Bergman spaces. SIAM J. Math. Anal., 22(3):856–876, 1991. se95 [4183] K. Seip. On Korenblum’s density condition for the zero sequences of Aα . J. Anal. Math., 67:307–322, 1995. se11 [4184] K. Seip. Interpolation and sampling in small Bergman spaces, 2011. se13 [4185] K. Seip. Interpolation and sampling in small Bergman spaces. Collect. Math., 64(1):61–72, 2013. seyo13 [4186] K. Seip and E. Youssfi. Hankel operators on Fock spaces and related Bergman kernel estimates. Journal of Geometric Analysis, 23(1):170– 201, 2013. djjise09 [4187] E. Sejdic, I. Djurovic, and J. Jiang. Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1):153–183, 2009. djsest11 [4188] E. Sejdic, I. Djurovic, and L. Stankovic. Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process., 6(91):1351–1369, 2011. 370 se07-2 [4189] D. Selesi. Hilbert space valued generalized random processes. I. Novi Sad J. Math., 37(1):129–154, 2007. se07-3 [4190] D. Selesi. Hilbert space valued generalized random processes. II. Novi Sad J. Math., 37(2):93–108, 2007. base09 [4191] I. W. Selesnick and I. Bayram. Frequency-domain design of overcomplete rational-dilation wavelet transforms. IEEE Trans. Signal Process., 57(8):2957–2972, 2009. seXX-1 [4192] A. Semyon. A characterization of the Fourier transform and related topics. chduse09 [4193] S. Senay, L. Chaparro, and L. Durak. Reconstruction of nonuniformly sampled time-limited signals using prolate spheroidal wave functions. Signal Process., 89(12):2585–2595, 2009. seso11-1 [4194] M. Sepp¨al¨a and T. Sorvali. Geometry of Riemann Surfaces and Teichm¨ uller spaces. Elsevier, 2011. seso11 [4195] A. Serdyuk and I. Sokolenko. Asymptotic behavior of best approximations of classes of Poisson integrals of functions from hω . J. Approx. Theory, 163(11):1692–1706, 2011. bocajajomasevi10 [4196] D. Serre, E. Villeneuve, H. Carfantan, L. Jolissaint, V. Mazet, S. Bourguignon, and A. Jarno. Modeling the spatial PSF at the VLT focal plane for MUSE WFM data analysis purpose. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade, pages 773649–773649, 2010. se09-1 [4197] S. Setzer. Split Bregman Algorithm, Douglas-Rachford splitting and frame shrinkage. In X.-C. Tai and Morken, editors, Scale space and variational methods in computer vision, volume 5567 of Lecture notes in computer science, pages 464–476. Springer Berlin Heidelberg, 2009. se09-2 [4198] S. Setzer. Splitting methods in image processing. PhD thesis, 2009. se11-1 [4199] S. Setzer. Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis., 92(3):265–280, 2011. 371 sest09 [4200] S. Setzer and G. Steidl. Combined l2 data and gradient fitting in conjunction with l1 regularization. In Approximation theory XII: Proceedings of the 12th international conference, San Antonio, TX, USA, March 4-8, 2007, volume 30 of Mod. Methods Math., pages 79–99. Springer, 2009. sh87 [4201] V. Shakhmurov. Theorems on the embedding of abstract function spaces and their applications. Mat. Sb. (N.S.), 134(176)(2):260–273, 288, 1987. shza03 [4202] V. Shakhmurov and A. Zayed. Fractional Wigner distribution and ambiguity functions. Fract. Calc. Appl. Anal., 6(4):473–490, 2003. shsh61 [4203] H. S. Shapiro and A. Shields. On some interpolation problems for analytic functions. Amer. J. Math., 83:513–532, 1961. sh85-1 [4204] T. Shaposhnikova Olegovna. On the spectrum of multipliers in Bessel potential spaces. Chas. pro pestovany matematiky, 110, 1985. agchsh08 [4205] A. Sharma, D. Chhachhia, and A. Aggarwal. Moire pattern encoded extended fractional Fourier transform security hologram. J. Modern Opt., 55(3):351–359, 2008. sh10 [4206] K. Sharma. New inequalities for signal spreads in linear canonical transform domains. Signal Process., 90(3):880–884, 2010. josh08 [4207] K. Sharma and S. Joshi. Uncertainty principle for real signals in the linear canonical transform domains. IEEE Trans. Signal Process., 56(7):2677–2683, 2008. rashzhXX [4208] I. Shatokhina, M. Zhariy, and R. Ramlau. Wavefront reconstruction for XAO. beelsh14 [4209] Y. Shechtman, A. Beck, and Y. Eldar. GESPAR: Efficient Phase Retrieval of Sparse Signals. IEEE Trans. Signal Process., 62(4):928– 938, Feb 2014. elseshsz11 [4210] Y. Shechtman, Y. Eldar, A. Szameit, and M. Segev. Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing. Optics Express, 19(16):14807–14822, 2011. 372 chcoelsesh14 [4211] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase Retrieval with Application to Optical Imaging. preprint, feb 2014. bash08 [4212] L. Shen and L. Bai. 3D Gabor wavelets for evaluating SPM normalization algorithm. Medical Image Analysis, 12(3):375 – 383, 2008. chshwa94 [4213] W. Shen, M.-W. Chang, and D.-S. Wan. Wavefront estimate from wavefront slope measurement by comparing their Zernike polynomials fitting coefficients. In W. Shen, M.-W. Chang, D.-S. Wan, R. E. Fischer, and W. J. Smith, editors, Proc. SPIE, Current Developments in Optical Design and Optical Engineering IV, volume 2263 of Optical System Fabrication and Testing I, pages 186–197, San Diego, CA, USA, 1994. SPIE. digrmeposh08 [4214] X. Shen, C. Dietlein, E. Grossman, Z. Popovic, and F. Meyer. Detection and segmentation of concealed objects in terahertz images. IEEE trans. on IP, 17:12, 2008. mash06 [4215] Y. Shen and E. Martinez. Channel estimation in OFDM systems, Feb. 2006. shtoyu11 [4216] Z. Shen, K.-C. Toh, and S. Yun. An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach. SIAM J. Imaging Sci., 4(2):573–596, 2011. sh12 [4217] B. Sheng. Blind timing synchronization in OFDM systems by exploiting cyclic structure. Trans. Emerging Tel. Tech, August 2012. luroshsz93 [4218] Y. Sheng, H. Szu, T. Lu, and D. Roberge. Optical wavelet matched filters for shift-invariant pattern recognition. Optics letters, 18(4):299– 301, 1993. sh04 [4219] C. Sheppard. Three topics in Zernike polynomials. In C. Sheppard and F. Wyrowski, editors, Proc. SPIE, Photon Management, volume 5456 of Modeling II, pages 68–74. SPIE, 2004. sh99 [4220] B. E. Shi. Real-time Gabor-type filtering using analog focal plane image processors. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.,, volume 1, pages 507–513, Fort Collins, CO , USA, 1999. 373 lishzh12 [4221] J. Shi, X. Liu, and N. Zhang. On uncertainty principle for signal concentrations with fractional Fourier transform. Signal Process., 92(12):2830 – 2836, 2012. mash05-4 [4222] X. Shi and R. Manduchi. On Rotational Invariance for Texture Recognition. In Proceedings of the IEEE International Workshop on Texture Analysis and Synthesis, Bejing, China, 2005. shzh01 [4223] Y. Shi and X. Zhang. A Gabor atom network for signal classification with application in radar target recognition. IEEE Transactions on Signal Processing, 49(12):2994–3004, 2001. shwi71 [4224] A. Shields and D. Williams. Bonded projections, duality, and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc., 162:287–302, 1971. sh10-1 [4225] F. Shih. Image Processing and Pattern Recognition: Fundamentals and Techniques. Wiley-IEEE Press, 2010. anposh07 [4226] C. Shin, J. Andrews, and E. Powers. An efficient design of doubly selective channel estimation for OFDM systems. IEEE Trans. Wireless Comm., 6:3790–3802, Oct. 2007. sh59 [4227] R. Shiraishi. On the definition of convolutions for distributions. J. Sci. Hiroshima Univ., Ser. A, 23:19–32, 1959. jush03 [4228] B. Shizgal and J.-H. Jung. Towards the resolution of the Gibbs phenomena. J. Comput. Appl. Math., 161(1):41–65, 2003. kush05 [4229] S. Shkarin and Y. N. Kuznetsova. Multiplicative spectra of Banach spaces. J. Math. Sci., New York, 131(6):6112–6119, 2005. sh13 [4230] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations, volume 49. American Mathematical Soc., 2013. sh10-2 [4231] I. Shparlinski. Open problems on exponential and character sums. Aoki, Takashi (ed.) et al., Number theory. Dreaming in dreams. Proceedings of the 5th China-Japan seminar, Higashi-Osaka, Japan, August 27–31, 2008. Hackensack, NJ: World Scientific. Series on Number Theory and Its Applications 6, 222-242 (2010)., 2010. 374 frsh11 [4232] Y. Shrot and L. Frydman. Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications. J. Magn. Reson., 209(2):352–358, 2011. sh92 [4233] M. Shubin. Spectral theory of elliptic operators on noncompact manifolds. Ast´erisque, (207):5, 35–108, 1992. frnaorshva13 [4234] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. Signal Processing Magazine, IEEE, 30(3):83–98, 2013. hoshvawi13 [4235] D. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst. Spectrum-adapted tight graph wavelet and vertex-frequency frames. ArXiv e-prints, 2013. sh94-3 [4236] A. Shustorovich. A subspace projection approach to feature extraction: The two-dimensional Gabor transform for character recognition. Neural Networks, 7(8):1295 – 1301, 1994. asbrbumopish11 [4237] A. M. Shuvavev, G. V. Astakhov, A. Pimenov, C. Br¨ une, H. Buhmann, and L. W. Molenkamp. Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range. Phys. Rev. Lett., 106-107404(10):4, 2011. si11-2 [4238] W. Sickel. Radial subspaces of Besov-Lizorkin-Triebel spaces. 9:169– 215, 2011. si12-2 [4239] W. Sickel. Smoothness spaces related to Morrey spaces: a survey. I. Eurasian Math. J., 3(3):110–149, 2012. si13 [4240] W. Sickel. Smoothness spaces related to Morrey spaces—a survey. II. Eurasian Math. J., 4(1):82–124, 2013. siskvy12 [4241] W. Sickel, L. Skrzypczak, and J. Vybiral. On the interplay of regularity and decay in case of radial functions I: Inhomogeneous spaces. Commun. Contemp. Math., 14(1):1250005, 60 p., 2012. siskvy14 [4242] W. Sickel, L. Skrzypczak, and J. Vybiral. Complex interpolation of weighted Besov and Lizorkin-Triebel spaces. Acta Math. Sin. (Engl. Ser.), 30(8):1297–1323, 2014. 375 si11-1 [4243] A. Sidi. Asymptotic expansions of Legendre series coefficients for functions with interior and endpoint singularities. Math. Commun., 80(275):1663–1684, 2011. si81-1 [4244] E. Siebert. Fourier analysis and limit theorems for convolution semigroups on a locally compact group. Adv. in Math., 39(2):111–154, 1981. si11-3 [4245] K. Siedenburg. Structured Sparsity in Time-Frequency Analysis. Master’s thesis, Humboldt University Berlin, 2011. dokosi13-1 [4246] K. Siedenburg, M. Doerfler, and M. Kowalski. Audio Inpainting with Social Sparsity. Proceedings of Spars2013, Lausanne, Switzerland, July 2013. dosi11 [4247] K. Siedenburg and M. D¨orfler. Structured sparsity for audio signals. Proceedings of DAFX11, 2011. dosi12 [4248] K. Siedenburg and M. D¨orfler. Audio denoising by generalized timefrequency thresholding. Proceedings of the AES 45th Conference on Applications of Time-Frequency Processing, Helsinki, Finland, 2012. dosi13 [4249] K. Siedenburg and M. D¨orfler. Persistent Time-Frequency Shrinkage for Audio Denoising. J. Audio Eng. Soc., 61(1/2), 2013. dokosi14 [4250] K. Siedenburg, M. Kowalski, and M. D¨orfler. Audio Declipping with Social Sparsity. In Proc. ICASSP14, volume accepted, 2014. si35 ¨ [4251] C. Siegel. Uber die analytische Theorie der quadratischen Formen. Ann. Math. (2), 36:527–606, 1935. si67 ¨ [4252] C. Siegel. Transzendente Zahlen. Ubersetzung aus dem Englischen von B. Fuchssteiner und D. Laugwitz. B. I. Hochschultaschenb¨ ucher, Band 137*. Bibliographisches Institut, Mannheim, 1967. si52-1 [4253] W. Sierpinski. General Topology. Mathematical Expositions, No. 7. University of Toronto Press, Toronto, 1952. sito11 [4254] M. Signahl and J. Toft. Remarks on mapping properties for the Bargmann transform on modulation spaces. Integral Transforms Spec. Funct., 22(4-5):359–366, 2011. 376 si96-2 ˇ [4255] H. Sikic. Wavelets: convergence almost everywhere. Math. Commun., 1(2):143–145, 1996. si00 [4256] H. Sikic. Zero-one law for some Brownian functionals. J. Theor. Probab., 13(2):571–574, 2000. sisi01 [4257] H. Sikic and T. Sikic. A note on Ostrowski’s inequality. Math. Inequal. Appl., 4(2):297–299, 2001. sisovo06 [4258] H. Sikic, R. Song, and Z. Vondracek. Potential theory of geometric stable processes. Probab. Theory Relat. Fields, 135(4):547–575, 2006. sisp07 [4259] H. Sikic and D. Speegle. Dyadic PFW’s and wo -bases. In J. H.-J. G. Muic, editor, Functional analysis IX (Proceedings of the postgraduate school and conference, Dubrovnik, Croatia, June 15-23, 2005), volume 48 of Various Publications Series, pages 85–90. University of Aarhus, Department of Mathematical Sciences, 2007. sispwe08 [4260] H. Sikic, D. Speegle, and G. Weiss. Structure of the set of dyadic PFW’s. In David Royal Larson, editor, Frames and operator theory in analysis and signal processing (AMS-SIAM special session, San Antonio, TX, USA, January 12-15, 2006), volume 451 of Contemporary Mathematics, pages 263–291. American Mathematical Society (AMS), 2008. sita02 [4261] H. Sikic and M. H. Taibleson. Elementary proof of the non-tangential characterization of Lipschitz spaces. In D. Bakic, editor, Functional analysis VII (Proceedings of the postgraduate school and conference, Dubrovnik, Croatia, September 17-26, 2001), volume 46 of Various Publications Series, pages 181–186. University of Aarhus, Department of Mathematical Sciences, 2002. sita05 [4262] H. Sikic and M. H. Taibleson. Brownian motion characterization of some Besov-Lipschitz spaces on domains. J. Geom. Anal., 15(1):137– 180, 2005. siwi01 [4263] H. Sikic and M. V. Wickerhauser. Information cost functions. Appl. Comput. Harmon. Anal., 11(2):147–166, 2001. siwi11 [4264] H. Sikic and E. Wilson. Lattice invariant subspaces and sampling. Appl. Comput. Harmon. Anal., 31(1):26 – 43, 2011. 377 siza06 [4265] B. Silbermann and O. Zabroda. Asymptotic behavior of generalized convolutions: an algebraic approach. J. Integral Equations Appl, 18(2):169–196, 2006. si86 [4266] B. Silverman. Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1986. basisp04 [4267] O. Simeone, Y. Bar Ness, and U. Spagnolini. Pilot-based channel estimation for OFDM systems by tracking the delay-subspace. IEEE Trans. Wireless Comm., 3:315–325, Jan. 2004. merusize11 [4268] M. Simko, C. Mehlf¨ uhrer, T. Zemen, and M. Rupp. Inter-Carrier Interference Estimation in MIMO OFDM Systems with Arbitrary Pilot Structure. Budapest, Hungary, May 2011. si05 [4269] B. Simon. Functional Integration and Quantum Physics 2nd ed. Providence, RI: AMS Chelsea Publishing. xiv, 2005. si11 [4270] B. Simon. Convexity: An Analytic Viewpoint, volume 187. Cambridge Univ Pr, 2011. siwo00 [4271] R. Simon and K. Wolf. Fractional Fourier transforms in two dimensions. JOSA A, 17(12):2368–2381, 2000. si12-1 [4272] D. Simovici. Linear algebra tools for data mining. Hackensack, NJ: World Scientific, 2012. si94 [4273] C. C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. cosi08 [4274] A. Singer and R. R. Coifman. Non-linear independent component analysis with diffusion maps. Appl. Comput. Harmon. Anal., 25(2):226–239, 2008. hashsizh11 [4275] A. Singer, Z. Zhao, Y. Shkolnisky, and R. A. Haddad. Viewing angle classification of cryo-electron microscopy images using eigenvectors. SIAM J. Imaging Sci., 4(2):723–759, 2011. 378 si12 [4276] A. Singh. TIME ENCODED COMPRESSION AND CLASSIFICATION USING THE INTEGRATE AND FIRE SAMPLER. PhD thesis, University of Florida, 2012. sasi10 [4277] A. Singh and R. Saxena. Development of convolution theorem in FRFT domain. In Signal processing and communications (SPCOM), 2010 International conference on, pages 1–3, Bangalore, 2010. sasi12 [4278] A. Singh and R. Saxena. On convolution and product theorems for FRFT. Wireless Personal Communications, 65(1):189–201, 2012. siup12 [4279] C. Singh and R. Upneja. Fast and accurate method for high order Zernike moments computation. Appl. Math. Comput., 218(15):7759– 7773, 2012. siwa10 [4280] C. Singh and E. Walia. Fast and numerically stable methods for the computation of Zernike moments. Pattern Recognition, 43(7):2497– 2506, 2010. siupwa13 [4281] C. Singh, E. Walia, and R. Upneja. Accurate calculation of Zernike moments. Inf. Sci., 233:255–275, 2013. kukusi11 [4282] G. Singh, R. Kumar, and U. Kumar. On shrinking retro Banach frames. Int. J. Pure Appl. Math., 70(4):425–432, 2011. kusivi10 [4283] G. Singh, Virender, and U. Kumar. On atomic decompositions in Banach spaces. Int. J. Math. Anal., Ruse, 4(9-12):481–488, 2010. siXX [4284] R. Singh. Invertible Composition Operators on l2 (λ). Proc. Amer. Math. Soc. sj97-1 [4285] P. Sj¨ogren. Operators associated with the Hermite semigroup - a survey. 1997. sjva08 [4286] P. Sj¨ogren and M. Vallarino. Boundedness from h1 to l1 of Riesz transforms on a Lie group of exponential growth. Ann. Inst. Fourier (Grenoble), 58(4):1117–1151, 2008. sjva11 [4287] P. Sj¨ogren and M. Vallarino. Heat maximal function on a Lie group of exponential growth. to be published, 2011. 379 sk85 [4288] B.-S. Skagerstam. Quasi-coherent states for unitary groups. J. Phys. A, 18(1):1–13, 1985. sk83 [4289] B. Sklar. A structured overview of digital communications-A tutorial review-part I. Communications Magazine, IEEE, 21(5):4–17, 1983. sk01-1 [4290] B. Sklar. Digital Communications: Fundamentals and Applications. Prentice Hall PTR, 2 edition, 2001. sk14 [4291] M. Skopina. Band-limited scaling and wavelet expansions. Appl. Comput. Harmon. Anal., 36(1):143 – 157, 2014. sk93 [4292] L. Skrzypczak. Besov spaces and function series on Lie groups. Commentat. Math. Univ. Carol., 34(1):139–147, 1993. sk93-1 [4293] L. Skrzypczak. Besov spaces and function series on Lie groups II. Collect. Math., 44(1-3):269–277, 1993. sk97 [4294] L. Skrzypczak. Besov spaces on symmetric manifolds – the atomic decomposition. Studia Math., 124(3):215–238, 1997. sk98 [4295] L. Skrzypczak. Atomic decompositions on manifolds with bounded geometry. Forum Math., 10(1):19–38, 1998. sk98-1 [4296] L. Skrzypczak. Spherical transform and Besov spaces on semisimple Lie groups. Funct. Approx. Comment. Math., 26:181–187, 1998. sk99 [4297] L. Skrzypczak. Heat and harmonic extensions for function spaces of Hardy-Sobolev-Besov type on symmetric spaces and Lie groups. J. Approx. Theory, 96(1):149–170, 1999. sk03 [4298] L. Skrzypczak. Heat extensions, optimal atomic decompositions and Sobolev embeddings in presence of symmetries on manifolds. Math. Z., 243(4):745–773, 2003. kosl54 [4299] J. Slater and G. Koster. Simplified LCAO method for the periodic potential problem. Physical Review, 94(6):1498, 1954. sl62 [4300] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J., 41:463–501, 1962. 380 sl64 [4301] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J., 43:3009–3057, 1964. sl65 [4302] D. Slepian. Some asymptotic expansions for prolate spheroidal wave functions. J. Math. and Phys., 44:99–140, 1965. sl38 [4303] E. Slutsky. Sur les fonctions al´eatoires presque p´eriodiques et sur la d´ecomposition des fonctions al´eatoires stationnaires en composantes. Actual. sci. industr. 738, 33-55. (Conf´er. internat. Sci. math. Univ. Gen`eve. Th´eorie des probabilit´es. V: Les fonctions al´eatoires.) (1938)., 1938. sm97-1 [4304] D. Smalley. Spectromorphology: explaining sound-shapes. Organised Sound, 2(2), August 1997. sm98-1 [4305] H. F. Smith. A parametrix construction for wave equations with C 1,1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998. sm08 [4306] J. Smith. Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications. W3K, 2008. sm04 [4307] M. Smith. The reproducing kernel thesis for Toeplitz operators on the Paley-Wiener space. Integr. Equ. Oper. Theory, 49(1):111–122, 2004. sm05 [4308] M. Smith. The spectral theory of Toeplitz operators applied to approximation problems in Hilbert spaces. Constr. Approx., 22(1):47–65, 2005. sm06 [4309] M. Smith. From the DFT to wavelet transforms. In Proc. SPIE 6247, Wavelet pioneer award; Independent component analyses, wavelets, unsupervised smart sensors, and neural networks IV, volume 6247, pages 624702–1624702–8, Orlando (Kissimmee), FL — April 17, 2006, 2006. SPIE. sm91 [4310] R. Smith. Toeplitz operators and algebras of bounded analytic functions on the disk. Glasgow Math. J., 33(2):181–185, 1991. sm85 [4311] W. Smith. BM O(ρ) and Carleson measures. Trans. Amer. Math. Soc., 287(1):107–126, 1985. 381 muscsm98 [4312] A. Smola, B. Sch¨olkopf, and K.-R. M¨ uller. The connection between regularization operators and support vector kernels. Neural networks, 11(4):637–649, 1998. smtotr02 [4313] O. Smolyanov, A. Tokarev, and A. Truman. Hamiltonian Feynman path integrals via the Chernoff formula. J. Math. Phys., 43(10):5161– 5171, 2002. sn08 [4314] J. Sniatycki. Geometric quantization, reduction and decomposition of group representations. J. Fixed Point Theory Appl., 3(2):307–315, 2008. so97 [4315] P. Soardi. Wavelet bases in rearrangement invariant function spaces. Proc. Amer. Math. Soc., 125(12):3669–3673, 1997. sowe98 [4316] P. Soardi and D. Weiland. Single wavelets in n-dimensions. J. Fourier Anal. Appl., 4(3):299–315, 1998. so64 [4317] S. Sobolev. Partial Differential Equations of Mathematical Physics. Oxford-London-New York-Paris-Frankfurt: Pergamon Press. X, 430 p., 1964. so13 [4318] F. Soltani. Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd . Bull. Austral. Math. Soc., 87(2):316–325, 2013. caelso14 [4319] M. Soltanolkotabi, E. Elhamifar, and E. Cand`es. Robust subspace clustering. Ann. Statist., 42(2):669–699, 2014. so12-1 [4320] M. Soltys. An introduction to the analysis of algorithms. (to appear in june 2012). 2nd ed. World Scientific, Hackensack, NJ, 2012. so12 [4321] P. Sondergaard. Efficient algorithms for the discrete Gabor transform with a long FIR window. J. Fourier Anal. Appl., 18(3):456–470, 2012. basoto12 [4322] P. Sondergaard, B. Torr´esani, and P. Balazs. The Linear Time Frequency Analysis Toolbox. International Journal of Wavelets, Multiresolution and Information Processing, 10(4):1250032, 2012. geso13 [4323] G. Song and A. Gelb. Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal., 35(1):94 – 110, 2013. 382 sozh02 [4324] T.-Q. Song and Y.-J. Zhu. n-particle entangled states in the n-mode Fock space. Mod. Phys. Lett. B, 16(17):631–636, 2002. so13-1 [4325] S. Sontz. Paragrassmann Algebras as Quantum Spaces Part I: Reproducing Kernels. In Geometric Methods in Physics, pages 47–63. Springer, 2013. elkaso01 [4326] B. Soon, P. Eloe, and D. Kammler. The fast Fourier transform method and ill-conditioned matrices. Appl. Math. Comput., 117(23):117–129, 2001. so92-2 [4327] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl, 13(1):357–385, 1992. chso89 [4328] M. Soumekh and J.-H. Choi. Reconstruction in diffraction imaging. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 36(1):93 –100, jan. 1989. fapascso10 [4329] A. Soumelidis, Z. Fazekas, F. Schipp, and M. Pap. Discrete orthogonality of Zernike functions and its application to corneal measurements. In A. Soumelidis, Z. Fazekas, M. Pap, F. Schipp, S.-I. Ao, and L. Gelman, editors, Electronic Engineering and Computing Technology, volume 60 of Lecture Notes in Electrical Engineering, pages 455–469. Springer Netherlands, 2010. bopascso02 [4330] A. Soumelidis, M. Pap, F. Schipp, and J. Bokor. Frequency domain identification of partial fraction models. In 15th Triennial World Congress of the International Federation of Automatic Control, page 6, Barcelona, Spain, July 2002. so46 [4331] R. Southwell. Relaxation methods in Theoretical physics. Oxford: At the Clarendon Press. VII, 248 p., 1946. sp62 [4332] H. Spang. A review of minimization techniques for nonlinear functions. SIAM Rev., 4(4):343–365, 1962. sp78-1 [4333] G. Sparr. Interpolation of weighted Lp -spaces. Studia Math., 62:229– 271, 1978. sp72 [4334] E. Spence. m-symplectic matrices. Trans. Amer. Math. Soc., 170:447– 457, 1972. 383 kusp77 [4335] V. Spevakov and A. Kudrjavcev. Absolute summability of orthogonal series by Euler’s method. Math. Notes, 21:29–32, 1977. spsrXX [4336] D. Spielman and N. Srivastava. An elementary proof of the restricted invertibility theorem. Israel J. Math., to appear. sp86 [4337] M. Spivak. The joy of TeX. A gourmet guide to typesetting with the AMS-TeX macro package. Providence, RI: American Mathematical Society (AMS), 1986. sq78 [4338] W. Squire. Numerical Fourier transformation: singularity expansions and product integration. Int. J. Numer. Methods Eng., 12:1473–1477, 1978. jaklnisr10 [4339] S. Srinivasan, K. Janse, M. Nilsson, and W. Kleijn. Two-channel speech denoising through minimum tracking. Electronics letters, 46(2):177–179, 2010. bhonsr93 [4340] V. Srinivasan, P. Bhatia, and S. Ong. A fast implementation of the discrete 2-D Gabor transform. Signal Process., 31(2):229 – 233, 1993. ahsr12 [4341] A. Srivastava and M. Ahmad. Integral transforms and Fourier series. New Delhi: Narosa Publishing House and Oxford: Alpha Science International. 176 p., 2012. srve13 [4342] N. Srivastava and R. Vershynin. Covariance estimation for distributions with 2+epsilon moments. Ann. Probab., 41, 2013. rasr06 [4343] V. Srivastava and N. Ramesh. New classes of orthogonal polynomials. International journal of quantum chemistry, 106(5):1258–1266, 2006. crflsr07 [4344] F. Sroubek, G. Cristobal, and J. Flusser. A unified approach to superresolution and multichannel blind deconvolution. IEEE Trans. Image Process., 16(9):2322–2332, 2007. flsr03 [4345] F. Sroubek and J. Flusser. Multichannel blind iterative image restoration. IEEE Trans. Image Process., 12(9):1094–1106, 2003. flsr05 [4346] F. Sroubek and J. Flusser. Multichannel blind deconvolution of spatially misaligned images. IEEE Trans. Image Process., 14(7):874–883, 2005. 384 misr12 [4347] F. Sroubek and P. Milanfar. Robust multichannel blind deconvolution via fast alternating minimization. IEEE Trans. Image Process., 21(4):1687–1700, 2012. st70-2 [4348] J. Stafney. Analytic interpolation of certain multiplier spaces. Pacific J. Math., 32:241–248, 1970. st88 [4349] I. Stan. Interpolation of 2n Banach spaces with a function parameter. In Proceedings of the Seminar on Mathematics and Physics (Romanian) (Timi¸soara, 1988), pages 31–36. Inst. Politehnic “Traian Vuia”, Timi¸soara, 1988. st95-3 [4350] L. Stankovic. A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-Wigner distribution. IEEE Trans. Signal Process., 43(5):1262–1268, 1995. st97 [4351] R. Stanley. Enumerative Combinatorics, Volume I. Cambridge University Press, 1997. sost11 [4352] H.-G. Stark and N. Sochen. Square Integrable Group Representations andtheUncertainty Principle. J. Fourier Anal. Appl., 17:916– 931, 2011. hast10 [4353] W.-H. Steeb and Y. Hardy. Quantum Mechanics Using Computer algebra Includes Sample Programs In t C++, Symbolic C++, Maxima, Maple, and Mathematica 2nd Ed. Hackensack, NJ: World Scientific. x, 2010. hast11 [4354] W.-H. Steeb and Y. Hardy. Matrix Calculus And Kronecker Product A Practical Approach To Linear And Multilinear algebra (to Appear) 2nd Ed. Hackensack, NJ: World Scientific. 320 p., 2011. gerest10 [4355] W. Stefan, R. Renaut, and A. Gelb. Improved total variation-type regularization using higher order edge detectors. SIAM J. Imaging Sci., 3(2):232–251, 2010. shst11 [4356] E. M. Stein and R. Shakarchi. Functional Analysis: Introduction to further Topics in Analysis. 2011. stza14 [4357] H. Steinacker and J. Zahn. An extended standard model and its Higgs geometry from the matrix model. Progress of Theoretical and Experimental Physics, 2014,(8,), 2014. 385 st13 [4358] S. Steinberger. A Geometric Uncertainty Principle with an Application to Pleijel’s Estimate. Ann. Henri Poincar´e, December 2013. st80-4 [4359] A. Steiner. Plancherel’s theorem and the Shannon series derived simultaneously. Amer. Math. Monthly, 87:193–197, 1980. stta14 [4360] K. Stempak and X. Tao. Local Morrey and Campanato spaces on quasimetric measure spaces. J. Funct. Spaces, pages Art. ID 172486, 15, 2014. st93-3 [4361] F. Stenger. Numerical methods based on Sinc and analytic functions. Springer New York, 1993. st25 [4362] W. Stepanoff. Uber einige Verallgemeinerungen der fast periodischen Funktionen. Mathematische Annalen, 95:473–498,, 1925. st81 [4363] V. D. Stepanov. On multipliers of Fourier integrals. Sov. Math., Dokl., 23:645–647, 1981. st82-2 [4364] V. D. Stepanov. On a criterion of approximation of the identitiy in Lp (En ) by convolution transforms of dilation type. Anal. Math., 8:233–238, 1982. st82-1 [4365] V. D. Stepanov. On periodic multipliers of Fourier integrals. Mat. Zametki, 32:141–150, 1982. st92-3 [4366] V. D. Stepanov. Weighted inequalities for a class of Volterra convolution operators. J. London Math. Soc. (2), 45(2):232–242, 1992. st07-3 [4367] A. Stern. Sampling of compact signals in offset linear canonical transform domains. Signal, Image and Video Processing, 1(4):359–367, 2007. st08-1 [4368] A. Stern. Uncertainty principles in linear canonical transform domains and some of their implications in optics. JOSA A, 25(3):647– 652, 2008. st78-3 [4369] S. Sternberg. Some recent results on the metaplectic representation. In Group theoretical methods in physics (Sixth Internat. Colloq., T¨ ubingen, 1977), volume 79 of Lecture Notes in Phys., pages 117– 143. Springer, Berlin-New York, 1978. 386 st04-4 [4370] R. Stevenson. On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal., 35(5):1110–1132, 2004. st10-4 [4371] S. Stevic. On operator from the logarithmic Bloch-type space to the mixed-norm space on the unit ball. Appl. Math. Comput., 215(12):4248–4255, 2010. st12-1 [4372] E. G. Steward. Fourier Optics: An Introduction. Dover Publications, 2012. st93-4 [4373] G. Stewart. On the early history of the singular value decomposition. SIAM Rev., 35(4):551–566, 1993. st96-2 [4374] G. Stewart. Afternotes on numerical analysis A series of Lectures on Elementary numerical analysis Presented At the University of Maryland At College Park and Recorded After the Fact. Philadelphia, PA: SIAM, 1996. st98-2 [4375] G. Stewart. Afternotes goes to Graduate School Lectures on Advanced Numerical Analysis. Philadelphia, PA: SIAM, 1998. st55 [4376] W. Stinespring. Positive functions on C ∗ -algebras. Proc. Amer. Math. Soc., 6:211–216, 1955. stto10 [4377] P. Stinga and J.-L. Torrea. Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential Equations, 35(10-12):2092–2122, 2010. stto11 [4378] P. R. Stinga and J.-L. Torrea. Regularity theory for the fractional harmonic oscillator. J. Funct. Anal., 260(10):3097 – 3131, 2011. st07-4 [4379] R. G. Stockwell. A basis for efficient representation of the Stransform. Digital Signal Processing, 17(1):371 – 393, 2007. bast12 [4380] D. T. Stoeva and P. Balazs. Invertibility of multipliers. Appl. Comput. Harmon. Anal., 33(2):292–299, 2012. bast13 [4381] D. T. Stoeva and P. Balazs. Canonical forms of unconditionally convergent multipliers. J. Math. Anal. Appl., 399:252–259, 2013. 387 st99-6 [4382] M. Stojanovic. Underwater Acoustic Communications. In M. Stojanovic and J. G. Webster, editors, Encyclopedia of Electrical and Electronics Engineering, volume 22, pages 688–698. John Wiley & Sons, 1999. st09-6 [4383] M. Stojnic. Various thresholds for ell 1-optimization in compressed sensing. ArXiv e-prints, jul 2009. hapast09 [4384] M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process., 57:3075–3085, Aug. 2009. st11 [4385] R. Stokke. Homomorphisms of convolution algebras. J. Funct. Anal., 261(12):3665 – 3695, 2011. st14 [4386] M. Stoll. Littlewood-Paley theory for subharmonic functions on the unit ball in RN . J. Math. Anal. Appl., (0):–, 2014. st10 [4387] P. Stollmann. A dual characterization of length spaces with application to Dirichlet metric spaces. Studia Math., 198(3):221–233, 2010. st93-2 [4388] G. Strang. The fundamental theorem of linear algebra. Amer. Math. Monthly, 100(9):848–855, 1993. st10-3 [4389] G. Strang. Banded matrices with banded inverses and A= LPU. In Proceedings of ICCM2010 (International Congress of Chinese Mathematicians, Beijing, 2010. st10-2 [4390] G. Strang. Fast transforms: Banded matrices with banded inverses. Proceedings of the National Academy of Sciences, 107(28):12413, 2010. st11-1 [4391] G. Strang. Groups of banded matrices with banded inverses. 139:4255– 4264, 2011. st01-3 [4392] G. Strecker. 10 Rules for Surviving as a Mathematician and Teacher. Categorical Perspectives, page 91, 2001. st83-3 [4393] R. S. Strichartz. Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal., 52(1):48–79, 1983. 388 st89-2 [4394] R. S. Strichartz. Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal., 87(1):51–148, 1989. st89-1 [4395] R. S. Strichartz. Uncertainty principles in harmonic analysis. J. Funct. Anal., 84(1):97–114, 1989. st00-7 [4396] R. S. Strichartz. Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math., 81:209–238, 2000. st06-5 [4397] R. S. Strichartz. Convergence of mock Fourier series. J. Anal. Math., 99:333–353, 2006. st00-6 [4398] T. Strohmer. OFDM, Laurent operators, and time-frequency localization. In Proc. SPIE 4119, 48, 2000. arst10 [4399] T. Strohmer and P. Arogyaswami. Method for pulse shape design for OFDM. feb 2010. frst12 [4400] T. Strohmer and B. Friedlander. Analysis of sparse MIMO radar. Appl. Comput. Harmon. Anal., to appear. stwa13 [4401] T. Strohmer and H. Wang. Accurate detection of moving targets via random sensor arrays and Kerdock codes. preprint, 2013. st11-2 [4402] J. Strom. Modern classical homotopy theory. Graduate Studies in Mathematics 127. Providence, RI: American Mathematical Society (AMS). xxi, 2011. st12 [4403] M. Stroppel. Kernels of linear representations of Lie groups, locally compact groups, and pro-Lie groups. J. Group Theory, 15(3):407–437, 2012. st74 [4404] R. Struble. Representations of Fourier transforms for distributions. Bull. Inst. Math. Acad. Sinica, 2:191–206, 1974. st08-2 [4405] M. Struwe. Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, Fourth edition, 2008. 389 bainlimcprst04 [4406] G. Stuber, J. Barry, S. McLaughlin, Y. Li, M. Ingram, and T. Pratt. Broadband mimo-ofdm wireless communications. Proc. IEEE, 92:271– 294, Feb. 2004. blst00 [4407] H. St¨ uer and S. Blaser. Interpolation of scattered 3D PTV data to a regular grid. Flow, turbulence and combustion, 64(3):215–232, 2000. st95-4 [4408] K.-T. Sturm. Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math., 32(2):275–312, 1995. st14-1 [4409] K.-T. Sturm. A monotone approximation to the Wasserstein diffusion. In Singular phenomena and scaling in mathematical models, pages 25–48. 2014. chsu01 [4410] X. Su and W. Chen. Fourier transform profilometry: a review. Optics and Lasers in Engineering, 35(5):263 – 284, 2001. su04 [4411] D. Su´arez. Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev. Mat. Iberoam., 20(2):563–610, 2004. su04-1 [4412] D. Su´arez. The Toeplitz algebra on the Bergman space coincides with its commutator ideal. J. Operator Theory, 51(1):105–114, 2004. su05-2 [4413] D. Su´arez. Approximation and the n-Berezin transform of operators on the Bergman space. J. Reine Angew. Math., 581:175–192, 2005. su07-1 [4414] D. Su´arez. The essential norm of operators in the Toeplitz algebra on Ap (Bn ). Indiana Univ. Math. J., 56(5):2185–2232, 2007. su08-2 [4415] D. Su´arez. The eigenvalues of limits of radial Toeplitz operators. Bull. Lond. Math. Soc., 40(4):631–641, 2008. su08-1 [4416] K. Subramanian. Higher-order Gabor spectra a mathematical model for signal processing, 2008. bhchsu95 [4417] E. Sudarshan, C. Chiu, and G. Bhamathi. Generalized uncertainty relations and characteristic invariants for the multimode states. Phys. Rev. A (3), 52(1):43–54, 1995. 390 sutowa11 [4418] M. Sugimoto, N. Tomita, and B. Wang. Remarks on nonlinear operations on modulation spaces. Integral Transforms Spec. Funct., 22(45):351–358, 2011. su90 [4419] M. Sugiura. Unitary Representations and Harmonic Analysis, volume 44 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam and Kodansha, Ltd., Second edition, 1990. suto12 [4420] F. Sukochev and A. Tomskova. Schur multipliers associated with symmetric sequence spaces. Math. Notes, 92(6):830–833, 2012. su13-2 [4421] C. S¨ umeyye. Polynomials and Fast Fourier Transform. Master’s thesis, University of Vienna, 2013. gosu09 [4422] J. Sun and V. K. Goyal. Optimal quantization of random measurements in compressed sensing. In Information Theory, 2009. ISIT 2009. IEEE International Symposium on, pages 6–10, 2009. su11 [4423] Q. Sun. Localized nonlinear functional equations and two sampling problems in signal processing. preprint, 2011. su11-1 [4424] Q. Sun. Wieners lemma for infinite matrices II. Constr. Approx., 34(2):209–235, 2011. su13 [4425] Q. Sun. Localized nonlinear functional equations and two sampling problems in signal processing. Adv. Comput. Math., Revised proof:1– 44, 2013. suzh96 [4426] S. Sun and D. Zheng. Toeplitz operators on the polydisk. Proceedings of the American Mathematical Society, pages 3351–3356, 1996. suzh09-1 [4427] S. Sun and D. Zheng. Beurling type theorem on the Bergman space via the Hardy space of the bidisk. Sci. China Ser. A, 52(11):2517–2529, 2009. lisuwaxiyo14 [4428] T. Sun, F. Xing, Z. You, X. Wang, and B. Li. Smearing model and restoration of star image under conditions of variable angular velocity and long exposure time. Optics express, 22(5):6009–6024, 2014. su10-3 [4429] W. Sun. Homogeneous approximation property for wavelet frames with matrix dilations. Math. Nachr., 283(10):1488–1505, 2010. 391 su12 [4430] W. Sun. Inversion formula for the windowed Fourier transform. Math. Nachr., 285(7):914–921, 2012. suya11 [4431] W. Sun and X. Yang. Nonrigid image registration based on control point matching and shifting. Opt. Eng., 50(2, Article 027006):10, February 2011. suza11 [4432] W. Sun and L. Zang. Invertible sequences of bounded linear operators. Acta Mathematica Scientia, 31(5):1939 – 1944, 2011. susu10 [4433] X. Sun and W. Sun. Inversion formula for the windowed Fourier transform, II. Adv. Comput. Math., pages 1–14, 2010. lisuwezh06 [4434] Y. Sun, Y. Zhou, S.-G. Li, and G. Wei. A windowed Fourier pseudospectral method for hyperbolic conservation laws. J. Comput. Phys., 214(2):466–490, 2006. suzh10 [4435] C. Sundberg and D. Zheng. The spectrum and essential spectrum of Toeplitz operators with harmonic symbols. Indiana Univ. Math. J., 59(1):385–394, 2010. su51 [4436] M. Suzuki. On the lattice of subgroups of finite groups. Transactions of the American Mathematical Society, 70(2):345–371, 1951. sv78 [4437] A. Sveshnikov. Problems in probability theory, mathematical statistics and theory of random functions. Dover Publications Inc., New York, 1978. sw62 [4438] R. Swan. Vector bundles and projective modules. Transactions of the American Mathematical Society, 105(2):264–277, 1962. sw77 [4439] R. Swan. Topological examples of projective modules. Trans. Amer. Math. Soc., 230, 1977. mysw71 [4440] C. Swartz and D. Myers. Random functionals on K{Mp } spaces. Studia Math., 39:233–240, 1971. mysw72 [4441] C. Swartz and D. Myers. Correction to the paper ”Random functionals on K{Mp } spaces”. Studia Math., 43:273, 1972. 392 sw77-1 sw04 [4442] P. Swarztrauber. The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev., 19(3):490–501, 1977. [4443] C. Sweezy. Subspaces of L1 (Rd ). 132(12):3599–3606, 2004. Proc. Amer. Math. Soc., pisw09 [4444] E. Swiercz and A. Pieniezny. Detection-recognition algorithm based on the Gabor transform for unknown signals embedded in unknown noise. Math. Comput. Simul., 80(2):270–293, 2009. hasy08 [4445] K. Sydsaeter and P. Hammond. Mathematik f¨ ur Wirtschaftswissenschaftler. Pearson Deutschland GmbH, 2008. sy71 [4446] J. Synge. Geometrical approach to the Heisenberg uncertainty relation and its generalization. Proc. Roy. Soc. London Ser. A, 325:151–156, 1971. bofesz99 [4447] Z. Szabo, J. Bokor, and F. Schipp. Identification of rational approximate models in h∞ using generalized orthonormal basis. IEEE Trans. Automat. Control, 44(1):153–158, 1999. sz79 [4448] A. Szaz. Discrete Fourier analysis for quotient multipliers. Math. Nachr., 93:233–238, 1979. mrsz12 [4449] D. Szczepanik and J. Mrozek. Electron population analysis using a reference minimal set of atomic orbitals. Computational and Theoretical Chemistry, 996(0):103 – 109, 2012. mrsz13 [4450] D. Szczepanik and J. Mrozek. On several alternatives for L¨owdin orthogonalization. Computational and Theoretical Chemistry, 1008(0):15 – 19, 2013. sz06 [4451] R. Szeliski. Image alignment and stitching: a tutorial. Found. Trends Comput. Graph. Vis., 2(1):109 p., 2006. casz84 [4452] H. Szu and H. Caulfield. The mutual time-frequency content of two signals. Proceedings of the IEEE, 72(7):902 – 908, july 1984. hehejeta11 [4453] C. Taal, R. Hendriks, R. Heusdens, and J. Jensen. An Evaluation of Objective Measures for Intelligibility Prediction of Time-Frequency 393 Weighted Noisy Speech (In Press). Journal of the Acoustical Society of America, 2011. napota99 [4454] A. Tabernero, J. Portilla, and R. Navarro. Duality of log-polar image representations in the space and spatial-frequency domains. IEEE Trans. Signal Process., 47:2469–2479, 1999. hoosta07 [4455] X.-C. Tai, S. Osher, and R. Holm. Image inpainting using a TVStokes equation. In K.-A. L. Xue-Cheng Tai, editor, Image processing based on partial differential equations. Part I: Digital image inpainting, image dejittering, and optical flow estimation, Mathematics and Visualization, pages 3–22, CMA, Oslo, 2007. Springer. ta68-1 [4456] M. H. Taibleson. Harmonic analysis on n-dimensional vector spaces over local fields. I. Basic results on fractional integration. Math. Ann., 176:191–207, 1968. mita10 [4457] H. Takeda and P. Milanfar. Locally adaptive kernel regression for space-time super-resolution. Super-Resolution Imaging, 1:63, 2010. mita11 [4458] H. Takeda and P. Milanfar. Locally adaptive Kernel regression for space-time super-resolution. from the book: Super-Resolution Imaging (edited by Peyman Milanfar). CRC Press (Taylor & and amp and Francis Group), 2011. ta69-1 [4459] M. Takesaki. A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem. Amer. J. Math., 91:529–564, 1969. ta84-1 [4460] M. Talagrand. Pettis integral and measure theory. Mem. Amer. Math. Soc., 51(307):ix+224, 1984. ta85 [4461] M. Talagrand. Classes de Donsker et ensembles pulv´eris´es (Donsker classes and shattered sets). C. R. Acad. Sci., Paris, S´er. I, 300:161– 163, 1985. ta87 [4462] M. Talagrand. Regularity of Gaussian processes. Acta Math., 159(12):99–149, 1987. ta96-4 [4463] M. Talagrand. A new look at independence. Ann. Probab., 24(1):1– 34, 1996. 394 ta96-3 [4464] M. Talagrand. Majorizing measures: the generic chaining. Ann. Probab., 24(3):1049–1103, 1996. ta01-2 [4465] M. Talagrand. Majorizing measures without measures. Ann. Probab., 29(1):411–417, 2001. ta10 [4466] M. Talagrand. Mean Field Models for Spin Glasses. Volume I: Basic Examples. Springer, 2010. cata98 [4467] A. Talukder and D. Casasent. Multiscale Gabor wavelet fusion for edge detection in microscopy images. In Proc. SPIE: Wavelet Applications V, volume 3391 of Pattern Recognition, page 12, Orlando, FL, USA, 1998. ta32 [4468] J. Tamarkin. On the compactness of the space Lp . Bull. Amer. Math. Soc., 38:79–84, 1932. ta09-1 [4469] E. Tam´asi. Eigenvalue distribution of semi-elliptic operators in anisotropic Sobolev spaces. Z. Anal. Anwend., 28(2):233–248, 2009. tazh14 [4470] C. Tan and X. Zhuang. The common Hardy space and BMO space for singular integral operators associated with isotropic and anisotropic homogeneity. J. Math. Anal. Appl., 414(1):480–487, 2014. hutaya09 [4471] L. Tan, L. Yang, and D. Huang. Necessary and sufficient conditions for the Bedrosian identity. J. Integral Equations Appl., 21(1):77–94, 2009. hutaya10 [4472] L. Tan, L. Yang, and D. Huang. Construction of periodic analytic signals satisfying the circular Bedrosian identity. IMA J. Appl. Math., 75(2):246–256, 2010. ta12-2 [4473] K. Tanaka. Atomic decomposition of harmonic Bergman functions. Hiroshima Mathematical Journal, 42(2):143–160, 2012. ta12-3 [4474] L. Tang. Weighted local Hardy spaces and their applications. Illinois J. Math., 56(2):453–495, 2012. noreta12 [4475] Z. Tang, R. Remis, and M. Nordenvaad. On preconditioned conjugate gradient method for time-varying OFDM channel equalization. pages 3197 – 3200, March 2012. 395 tawe13 [4476] J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion. SIAM J. Sci. Comput., 59(11):7491–7508, 2013. kwta01 [4477] L. Tao and H. K. Kwan. Real-valued discrete Gabor transform for image representation. In Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on, volume 2, pages 589– 592, 2001. kwta08-1 [4478] L. Tao and H. K. Kwan. Novel DCT-based real-valued discrete Gabor transform. In Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, pages 1164 –1167, Seattle, WA, may 2008. kwta09 [4479] L. Tao and H. K. Kwan. Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform. IEEE Trans. Image Process., 18(12):2790–2796, 2009. kwta09-1 [4480] L. Tao and H. K. Kwan. Novel DCT-based real-valued discrete Gabor transform and its fast algorithms. IEEE Trans. Signal Process., 57(6):2151–2164, 2009. gukwta10 [4481] L. Tao, H. K. Kwan, and J.-J. Gu. Filterbank-based fast parallel algorithms for real-valued discrete Gabor expansion and transform. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 2674 –2677, 30 2010-june 2 2010. detawa06-1 [4482] R. Tao, B. Deng, and Y. Wang. Research progress of the fractional Fourier transform in signal processing. Science in China Series F: Information Sciences, 49(1):1–25, 2006. aglitawa08 [4483] R. Tao, B. Li, Y. Wang, and G. Aggrey. On sampling of band-limited signals associated with the linear canonical transform. IEEE Trans. Signal Process., 56(11):5454–5464, 2008. lilitawa09 [4484] R. Tao, X.-M. Li, Y.-L. Li, and Y. Wang. Time-delay estimation of chirp signals in the fractional Fourier domain. IEEE Trans. Signal Process., 57(7):2852–2855, 2009. ta10-1 [4485] T. Tao. An Epsilon of Room, I: Real analysis Pages from Year Three of a mathematical Blog. Graduate Studies in Mathematics 117. Providence, RI: American Mathematical Society (AMS). xi, 2010. 396 ta11-3 [4486] T. Tao. An Introduction to Measure Theory, volume 126. AMS, 2011. ta12-1 [4487] T. Tao. Higher Order Fourier Analysis. Providence, RI: American Mathematical Society (AMS), 2012. tavu12 [4488] T. Tao and V. Vu. The Littlewood-Offord problem in high dimensions and a conjecture of Frankl and F¨ uredi. Combinatorica, 32(3):363–372, 2012. ta13-1 [4489] T. V. Tararykova. Comments on definitions of general local and global Morrey-type spaces. Eurasian Math. J., 4(1):125–134, 2013. ta10-3 [4490] M. Tarnauceanu. An arithmetic method of counting the subgroups of a finite abelian group. Bull. Math. Soc. Sci. Math. Roumanie (NS), 53(101):373–386, 2010. caseta98 [4491] V. Tarokh, N. Seshadri, and R. Calderbank. Space-time Codes for High Data Rate Wireless Communications: Performance Criterion and Code Construction. IEEE Trans. Inform. Theory, 44:744–765, Mar. 1998. ta11-4 [4492] A. R. Tarrida. Springer, 2011. Affine Maps, Euclidean Motions and Quadrics. ta07-1 [4493] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana 3. Berlin: Springer. xxvi, 218 p., 2007. ta09-2 [4494] H. Tasaki. Convergence rates of approximate sums of Riemann integrals. J. Approx. Theory, 161(2):477–490, 2009. tavi08 [4495] J. Taskinen and J. Virtanen. Spectral theory of Toeplitz and Hankel operators on the Bergman space a1 . New York J. Math., 14:305–323, 2008. tavi10 [4496] J. Taskinen and J. Virtanen. Toeplitz operators on Bergman spaces with locally integrable symbols. Rev. Mat. Iberoam., 26(2):693–706, 2010. 397 ta13 [4497] E. Tatulli. Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures. JOSA A, 30(4):726–732, 2013. ta11-5 [4498] C. Taubes. Differential Geometry: Bundles, Connections, Metrics and Curvature, volume 23. Oxford University Press, USA, 2011. grhahlmasvta11 [4499] G. Taub¨ock, M. Hampejs, P. Svac, G. Matz, F. Hlawatsch, and K. Gr¨ochenig. Signal Processing, IEEE Transactions on, title=LowComplexity ICI/ISI Equalization in Doubly Dispersive Multicarrier Systems Using a Decision-Feedback LSQR Algorithm, 59(5):2432 – 2436, may 2011. ta10-2 [4500] D. Tausk. A locally compact non divisible abelian group whose character group is torsion free and divisible. Arxiv preprint arXiv:1002.4164, 2010. ta99-2 [4501] U. Tautenhahn. On a general regularization scheme for nonlinear ill-posed problems. Inverse Problems, 13(5):1427, 1999. ta12 [4502] J. Taylor. Foundations of Analysis. Pure and Applied Undergraduate Texts 18. Providence, RI: American Mathematical Society (AMS). x, 2012. gotawo07 [4503] J. Taylor, K. Worsley, and F. Gosselin. Maxima of discretely sampled random fields, with an application to ‘bubbles’. Biometrika, 94(1):1– 18, 2007. ta08-1 [4504] K. F. Taylor. Groups with atomic regular representation. Jorgensen, Palle E.T. (ed.) et al., Representations, wavelets, and frames. A celebration of the mathematical work of Lawrence W. Baggett. Basel: Birkh¨auser. Applied and Numerical Harmonic Analysis, 3345 (2008)., 2008. ta11 [4505] M. Taylor. Partial differential equations. I: Basic theory. 2nd ed. Applied Mathematical Sciences. Volume 115. New York, NY: Springer, 2011. ta11-1 [4506] M. Taylor. Partial differential equations. II: Qualitative studies of linear equations. 2nd ed. Applied Mathematical Sciences. Volume 116. New York, NY: Springer, 2011. 398 ta11-2 [4507] M. Taylor. Partial Differential Equations. III: Nonlinear Equations. 2nd ed. Applied Mathematical Sciences. Volume 117. New York, NY: Springer, 2011. ozsete92 [4508] A. Tekalp, M. Ozkan, and M. Sezan. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration. In Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, volume 3, pages 169 –172, mar 1992. te61 [4509] S. Teleman. Sur les ensembles compacts de fonctions sommables. 1961. te88-1 [4510] S. Telyakovskii. Work on the theory of approximation of functions carried out at the V. A Steklov Institute of Mathematics. Trudy Mat. Inst. Steklov., 182:128–79, 1988. brbudrocrote11 [4511] M. Temerinac Ott, O. Ronneberger, P. Ochs, W. Driever, T. Brox, and H. Burkhardt. Multiview deblurring for 3-d images from light sheet based fluorescence microscopy. IEEE Trans. Image Process., 2011. te93-1 [4512] V. Temlyakov. On approximate recovery of functions with bounded mixed derivative. J. Complexity, 9(1):41–59, 1993. te08-2 [4513] V. Temlyakov. Greedy approximation. Acta Numerica, 17:235–409, 2008. te11 [4514] V. Temlyakov. Greedy approximation. Cambridge Monographs on Applied and Computational Mathematics (No. 20). Cambridge University Press, 2011. te03-2 [4515] V. N. Temlyakov. Nonlinear methods of approximation. Found. Comput. Math., 3(1):33–107, 2003. andemate11 [4516] L. Tenorio, F. Andersson, H. De, and P. Ma. Data analysis tools for uncertainty quantification of inverse problems. Inverse Problems, 27(4):22, 2011. oote02 [4517] M. ter and P. Oonincx. On the integral representations for metaplectic operators. J. Fourier Anal. Appl., 8(3):245–258, 2002. 399 te02 [4518] P. Terekhin. Riesz bases generated by contractions and translations of a function on an interval. Math. Notes, 72(4):505–518, 2002. te04-1 [4519] P. Terekhin. Representation systems and projections of bases. Math. Notes, 75(6):881–884, 2004. te10-1 [4520] P. Terekhin. Frames in Banach spaces. 44(3):199–208, 2010. Funct. Anal. Appl., te13 [4521] P. Terekhin. Affine Quantum Frames and Their Spectrum. Izvestiya Saratovskogo Universiteta. New series. Series Mathematics. Mechanics. Informatics, 13(1):32–36, 2013. te90 [4522] J. Tervo. On realizations related to Weyl operators. Aequationes Math., 40(2-3):201–234, 1990. te09-1 [4523] D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (4):413–424, 2009. lete10 [4524] G. Teschke and V. Lehmann. Statistical significance of Gabor frames expansions: simple filtering principles for radar wind profiler data. In J. N. Alistair D. Fitt, editor, Progress in industrial mathematics at ECMI 2008. Proceedings of the 15th European conference on mathematics for industry, volume 15 of Mathematics in Industry, pages 311–316. Berlin: Springer, London, UK, June 30 - July 4, 2008, 2010. tete06 [4525] G. Teschl and S. Teschl. Mathematik f¨ ur Informatiker Band 1 Diskrete Mathematik und Lineare Algebra. Springer Berlin Heidelberg, 2 edition, 2006. tete07 [4526] G. Teschl and S. Teschl. Mathematik f¨ ur Informatiker Band 2 Analysis und Statistik. Springer, 2. Auflage edition, 2007. te10 [4527] R. Tessera. Left inverses of matrices with polynomial decay. J. Funct. Anal., 259(11):2793–2813, 2010. te11-1 [4528] R. Tessera. The inclusion of the Schur algebra in B( 2 ) is not inverseclosed. Monatsh. Math., 164(1):115–118, 2011. 400 chte05 [4529] U. Tewari and P. Chaurasia. Isometric multipliers of Lp (G, X). Proc. Indian Acad. Sci., Math. Sci., 115(1):103–109, 2005. te04 [4530] U. B. Tewari. Vector-valued multipliers. J. Anal., 12:99–105, 2004. duteva81 [4531] U. B. Tewari, M. Dutta, and D. Vaidya. Multipliers of group algebras of vector-valued functions. Proc. Amer. Math. Soc., 81:223–229, 1981. pate83 [4532] U. B. Tewari and K. Parthasarathy. Compact multipliers of Segal algebras. Indian J. Pure Appl. Math., 14(2):194–201, 1983. thwu10 [4533] G. Thakur and H. Wu. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. Arxiv preprint arXiv:1006.2533, 2010. th09 [4534] S. Thangavelu. Hermite-Sobolev spaces and the Feichtinger’s algebra. J. Anal., 17:101–106, 2009. th99 [4535] D. Theret. A Lagrangian camel. Comment. Math. Helv., 74(4):591– 614, 1999. riscth10 [4536] R. Theunissen, F. Scarano, and M. Riethmuller. Spatially adaptive PIV interrogation based on data ensemble. Experiments in fluids, 48(5):875–887, 2010. blthun00 [4537] P. Th´evenaz, T. Blu, and M. Unser. Image interpolation and resampling, pages 393–420. Academic Press, 2000. furoth10 [4538] K. Thompson, K. Fuerschbach, and J. Rolland. An analytic expression for the field dependence of FRINGE Zernike polynomial coefficients in optical systems that are rotationally nonsymmetric. In K. P. Thompson, K. Fuerschbach, J. P. Rolland, Y. Wang, J. Bentley, C. Du, K. Tatsuno, and H. P. Urbach, editors, Proc. SPIE, Optical Design and Testing IV, volume 7849 of Fabrication and Testing, page 784906(11), Beijing, China, 2010. SPIE. th76 [4539] R. Thompson. The behavior of eigenvalues and singular values under perturbations of restricted rank. Linear Algebra Appl., 13:69–78, 1976. mati11 [4540] J. Tian and K. Ma. A survey on super-resolution imaging. Signal, Image and Video Processing, pages 1–14, 2011. 401 tiwo09 [4541] J. Tie and M. Wong. The heat kernel and Green functions of subLaplacians on the quaternion Heisenberg group. J. Geom. Anal., 19(1):191–210, 2009. heti12 [4542] R. Tinaztepe and C. Heil. Modulation spaces, BMO, and the Balian– Low theorem. Sampling Theory in Signal & Image Processing, 11(1), 2012. scto07 [4543] R. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal., 27(2):232–261, 2007. to06-6 [4544] J. Toft. Positivity in twisted convolution algebra and Fourier modulation spaces. Bull., Cl. Sci. Math. Nat., Sci. Math., 133(31):75–86, 2006. to10 [4545] J. Toft. Pseudo-differential operators with symbols in modulation spaces, 2010. to12 [4546] J. Toft. The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl., 3(2):145–227, 2012. cogato10 [4547] J. Toft, F. Concetti, and G. Garello. Schatten-von Neumann properties for Fourier integral operators with non-smooth symbols. II. Osaka J. Math., 47(3):739–786, 2010. towa12 [4548] J. Toft and P. Wahlberg. Embeddings of α-modulation spaces. Pliska Stud. Math. Bulgar., 21:25–46, 2012. toyu10 [4549] K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim., 6:615–640, 2010. kato00 [4550] T. Tolonen and M. Karjalainen. A computationally efficient multipitch analysis model. Speech and Audio Processing, IEEE Transactions on, 8(6):708–716, 2000. torosm10 [4551] V. Tomas, J. Rosenthal, and R. Smarandache. Decoding of convolutional codes over the erasure channel. Information Theory-Submitted on 16 Jun 2010, page 27, 2010. 402 to11 [4552] J.-C. Tomasi. Haar measure and continuous representations of locally compact Abelian groups. Studia Math., 206(1):25–35, 2011. to96-1 [4553] N. Tomczak Jaegermann. A solution of the homogeneous Banach space problem. In Canadian Mathematical Society 1945–1995. Vol. 3: Invited papers, pages 267–286. Ottawa: Canadian Mathematical Society, 1996. to10-1 [4554] N. Tomita. A H¨ormander type multiplier theorem for multilinear operators. J. Funct. Anal., 259(8):2028–2044, 2010. tozu12 [4555] S. Torba and W. Zuniga Galindo. Parabolic type equations and Markov stochastic processes on adeles. Submitted on 22 Jun 2012, 2012. coto98 [4556] C. Torrence and G. Compo. A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1):61–78, 1998. to96 [4557] d. Torres. E-complementary Spaces and Fourier Multipliers for Spaces in Standard Situation. page 9, 1996. motozu98 [4558] G. Torres Vega, J. Morales Guzman, and A. Zuniga Segundo. Special functions in phase space: Mathieu functions. J. Phys. A, 31(31):6725– 6739, 1998. motoz96 [4559] G. Torres Vega, A. Zuniga Segundo, and J. Morales Guzman. Special functions and quantum mechanics in phase space: Airy functions. Phys. Rev. A (3), 53(6):3792–3797, 1996. to93-2 [4560] B. Torresani. Phase space decompositions: Local Fourier analysis on spheres. preprint CPT-93, page 2878, 1993. to95 [4561] B. Torresani. Position-frequency analysis for signals defined on spheres. Signal Process., 43(3):341–346, 1995. boto96 [4562] A. Toukmaji and J. Board. Ewald summation techniques in perspective: A survey. Comput. Phys. Commun., 95(2-3):73–92, 1996. tr08-8 [4563] L. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev., 50(1):67–87, 2008. 403 tr13-3 [4564] L. Trefethen. Approximation Theory and Approximation Practice. SIAM, 2013. tr03-1 [4565] W. Trench. Introduction to Real Analysis. Upper Saddle River, NJ: Prentice Hall/Pearson Education and San Antonio, TX: Selbstverlag (free online-version 2010). xi, 2003. tr76-1 [4566] H. Triebel. Spaces of Kudrjavcev type. I: Interpolation, embedding, and structure. J. Math. Anal. Appl., 56:253–277, 1976. tr76 [4567] H. Triebel. Spaces of Kudrjavcev type. II: Spaces of distributions: duality, interpolation. J. Math. Anal. Appl., 56:278–287, 1976. tr12 [4568] H. Triebel. Faber Systems and their Use in Sampling, Discrepancy, Numerical Integration. EMS Series of Lectures in Mathematics. Z¨ urich: European Mathematical Society (EMS). viii, 107 p. EUR 28.00, 2012. tr93-1 [4569] D. Trifonov. Completeness and geometry of Schr¨odinger minimum uncertainty states. J. Math. Phys., 34(1):100–110, 1993. tr94-2 [4570] D. Trifonov. Generalized intelligent states and squeezing. J. Math. Phys., 35(5):2297–2308, 1994. tr97-3 [4571] D. Trifonov. Robertson intelligent states. J. Phys. A, 30(17):5941– 5957, 1997. tr01-2 [4572] D. Trifonov. Remarks on the extended characteristic uncertainty relations. J. Phys. A, 34(9):L75–L78, 2001. tr03-2 [4573] D. Trifonov. On the position uncertainty measure on the circle. J. Phys. A, 36(47):11873–11879, 2003. tr04-3 [4574] D. Trifonov. Position uncertainty measures on the sphere. In Geometry, integrability and quantization, pages 211–224. Softex, Sofia, 2004. tr00-2 [4575] D. A. Trifonov. Generalized uncertainty relations and coherent and squeezed states. J. Opt. Soc. Amer. A, 17(12):2486–2495, 2000. 404 tr09-3 [4576] R. Trigub. Fourier multipliers and comparison of linear operators. In Modern analysis and applications. The Mark Krein centenary conference. Volume 2: Differential operators and mechanics. Papers based on invited talks at the international conference on modern analysis and applications, Odessa, Ukraine, April 9–14, 2007, pages 499–513. 2009. tr96 [4577] F. Trigui. Ondelettes et operateurs de Calderon-Zygmund. PhD thesis, 1996. tr81-5 [4578] K. Trim`eche. Transformation integrale de Weyl et theoreme de PaleyWiener associes a un operateur differentiel singulier sur (0, ∞). J. Math. Pures Appl. (9), 60(1):51–98, 1981. tr11 [4579] K. Trimeche. Harmonic analysis associated with the Cherednik operators and the Heckman-Opdam theory. Adv. Pure Appl. Math., 2(1):23–46, 2011. tr08-5 [4580] J. A. Tropp. Norms of random submatrices and sparse approximation. C. R., Math., Acad. Sci. Paris, 346(23-24):1271–1274, 2008. tr08-7 [4581] J. A. Tropp. On the linear independence of spikes and sines. J. Fourier Anal. Appl., 14(5-6):838–858, 2008. tr08-6 [4582] J. A. Tropp. The random paving property for uniformly bounded matrices. Studia Math., 185(1):67–82, 2008. tr09-1 [4583] J. A. Tropp. Column subset selection, matrix factorization, and eigenvalue optimization. In ACM-SIAM Symp. Discrete Algorithms (SODA), pages 978–986, 2009. tr12-3 [4584] J. A. Tropp. From the joint convexity of quantum relative entropy to a concavity theorem of Lieb. Proc. Amer. Math. Soc., 140(5):1757– 1760, 2012. tr14 [4585] J. A. Tropp. Convex recovery of a structured signal from independent random linear measurements. ArXiv e-prints, may 2014. tr99-3 [4586] J. Trout. Asymptotic Morphisms and Elliptic Operators over C*Algebras. K-theory, 18(3):277–314, 1999. 405 tr09-2 [4587] A. Trynin. A generalization of the Whittaker-Kotel’nikov-Shannon sampling theorem for continuous functions on a closed interval. Sb. Math., 200(11):1633–1679, 2009. chtswu01 [4588] D.-M. Tsai, S.-K. Wu, and M.-C. Chen. Optimal Gabor filter design for texture segmentation using stochastic optimization. Image and Vision Computing, 19(5):299 – 316, 2001. chts04 [4589] P.-Y. Tsai and T.-D. Chiueh. Frequency-domain interpolation-based channel estimation in pilot-aided OFDM systems. volume 1, pages 420–424, May 2004. ts59 [4590] M. Tsuji. Potential theory in modern function theory. Maruzen, 1959. ts09 [4591] A. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics. Springer, New York, 2009. tu04 [4592] L. Tu. A partial order on partitions and the generalized Vandermonde determinant. Journal of Algebra, 278(1):127–133, 2004. hutu11 [4593] N. Tuan and N. Huyen. The application of generalized convolutions associated with Fourier and Hartley transforms. to appear in J. Integral Equations Appl., 2011. tu33 [4594] A. Tulajkov. Zur Kompaktheit im Raum Lp f¨ ur p = 1. 1933. actu04 [4595] N. Tuneski and R. Aceska. On the linear combination of the representations of starlikeness and convexity. Glasnik Mat. Ser. III, 39(59):265 272, 2004. tu00 [4596] V. Turunen. Commutator characterization of periodic pseudodifferential operators. Z. Anal. Anwend., 19(1):95–108, 2000. ty85 [4597] J. Tysk. Comparison of two methods of multiplying distributions. Proc. Amer. Math. Soc., 93:35–39, 1985. ty10 [4598] R. Tyson. Principles of Adaptive Optics. CRC Press, 2010. ditz97 [4599] C. Tzanakis and A. Dimakis. On the uniqueness of the Moyal structure of phase-space functions. J. Phys. A, 30(13):4857–4866, 1997. 406 hutz09 [4600] R. Tzschoppe and J. Huber. Causal discrete-time system approximation of non-bandlimited continuous-time systems by means of discrete prolate spheroidal wave functions. Transactions on Emerging Telecommunications Technologies, 20(6):604–616, 2009. uh77 [4601] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Comm. Math. Phys., 54(1):21– 32, 1977. ul11 ¨ [4602] B. Ulgen. The ubiquitous role of Linear Algebra within Applied Mathematics. Master’s thesis, 2011. ul03 ¨ [4603] A. Ulger. A characterization of the closed unital ideals of the FourierStieltjes algebra b(g) of a locally compact amenable group g. J. Funct. Anal., 205(1):90–106, 2003. ul60 [4604] M. Ullrich. Representation theorem for random Schwartz distributions. Trans. 2nd Prague Conf. Information Theory, Stat. Decision Functions, Random Processes, Liblice 1959, 661-666 (1960)., 1960. ul12 [4605] T. Ullrich. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J. Funct. Spaces Appl., 2012(Article ID 163213):47, 2012. blun00 [4606] M. Unser and T. Blu. Fractional splines and wavelets. SIAM Rev., 42(1):43–67 (electronic), 2000. thunya95 [4607] M. Unser, P. Thevenaz, and L. Yaroslavsky. Convolution-based interpolation for fast, high-quality rotation of images. IEEE Trans. Image Process., 4(10):1371–1381, 1995. unun03 [4608] A. Unterberger. Automorphic Pseudodifferential Analysis and Higher Level Weyl Calculi. Progress in Mathematics (Boston, Mass.). 209. Basel: Birkh¨auser. vii, 2003. un08-1 [4609] A. Unterberger. Alternative Pseudodifferential Analysis With An Application to Modular Forms. Lecture Notes in Mathematics 1935. Berlin: Springer. ix, 118 p., 2008. un11 [4610] A. Unterberger. Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms. Pseudo-Differential Operators. Theory and Applications 8. Basel: Birkh¨auser. viii, 300 p., 2011. 407 boun65 [4611] A. Unterberger and J. Bokobza. Les op´erateurs pseudo-diff´erentiels d’ordre variable. C. R. Acad. Sci., Paris, 261:2271–2273, 1965. unup94 [4612] A. Unterberger and H. Upmeier. The Berezin transform and invariant differential operators. Comm. Math. Phys., 164(3):563–597, 1994. rourwi04 [4613] E. Urbach, J. Roerdink, and M. Wilkinson. Connected rotationinvariant size-shape granulometries. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on,, volume 1, pages 688 – 691, aug. 2004. us26 [4614] J. Uspensky. On the development of arbitrary functions in series of Hermite’s and Laguerre’s polynomials. Ann. of Math. (2), 28(14):593–619, 1926. edskuy01 [4615] M. Uyttendaele, A. Eden, and R. Skeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 2, pages II–509, 2001. va93 [4616] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice - Hall, 1993. va06-1 [4617] M. Vallarino. A maximal function on harmonic extensions of h-type groups. Ann. Math. Blaise Pascal, 13(1):87–101, 2006. va07-3 [4618] M. Vallarino. Spectral multipliers on Damek-Ricci spaces. J. Lie Theory, 17(1):163–189, 2007. va09-1 [4619] M. Vallarino. Spaces h1 and BMO on ax + b-groups. Collect. Math., 60(3):277–295, 2009. va03-1 [4620] F. Vallentin. SPHERE COVERINGS, LATTICES, AND TILINGS (in Low Dimensions). PhD thesis, 2003. frmuscva08 [4621] d. van, M. Schmidt, M. Friedlander, and K. Murphy. Group sparsity via linear-time projection. Technical report, Dep. o. Comp. Sc., Univ. o. British Columbia, 2008. vava91 [4622] H. Van and J. Vandewalle. The total least squares problem. Computational aspects and analysis, volume 9 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 1991. 408 duvawawizu13 [4623] B. Van de Wiele, A. Vansteenkiste, B. Van Waeyenberge, L. Dupr´e, and D. De Zutter. Fast Fourier transforms for the evaluation of convolution products: CPU versus GPU implementation. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, pages n/a–n/a, 2013. frva07 [4624] E. van den Berg and M. Friedlander. SPGL1: A solver for large-scale sparse reconstruction, Jun. 2007. frva08 [4625] E. van den Berg and M. Friedlander. Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput., 31(2):890–912, 2008. naseva05 [4626] C. V. van der Mee, M. Nashed, and S. Seatzu. A method for generating infinite positive self-adjoint test matrices and Riesz bases. SIAM J. Matrix Anal. Appl., 26(4):1132–1149, 2005. va01-2 [4627] A. J. van Leest. Non-separable Gabor schemes. Their Design and Implementation. PhD thesis, Tech. Univ. Eindhoven, 2001. va14-1 [4628] J. Van Schaftingen. Approximation in Sobolev spaces by piecewise affine interpolation. J. Math. Anal. Appl., 420(1):40–47, 2014. mova11 [4629] T. van Waterschoot and M. Moonen. Proceedings of the IEEE, title=Fifty Years of Acoustic Feedback Control: State of the Art and Future Challenges, 99(2):288 –327, feb. 2011. suvave06 [4630] P. Vandewalle, S. S¨ usstrunk, and M. Vetterli. A frequency domain approach to registration of aliased images with application to superresolution. EURASIP J. Appl. Signal Process., 2006:233–233, 2006. vawe07 [4631] V. Varadarajan and D. Weisbart. Convergence of quantum systems on grids. J. Math. Anal. Appl., 336(1):608–624, 2007. va67 [4632] S. Varadhan. On the behavior of the fundamental solution of the heat equation with variable coefficients. Communications on Pure and Applied Mathematics, 20(2):431–455, 1967. va88 ´ ´ e de [4633] S. Varadhan. Large deviations and applications. In Ecole d’Et´ Probabilit´es de Saint-Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages 1–49. Springer, Berlin, 1988. 409 va09-2 [4634] R. Varga. Matrix Iterative Analysis 1st Softcover Printing Of The 2nd Revised and Expanded Ed 2000. Springer Series in Computational Mathematics 27. Dordrecht: Springer. x, 358 p. EUR 96.25, 2009. va74-1 [4635] N. Varopoulos. On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. (Appendix by S. Kaijser and N. Th. Varopoulos.). J. Funct. Anal., 16:83–100, 1974. cosava92 [4636] N. Varopoulos, L. Saloff Coste, and T. Coulhon. Analysis and geometry on groups. Number 100. Cambridge Univ Pr, 1992. cosava08 [4637] N. Varopoulos, L. Saloff Coste, and T. Coulhon. Analysis and Geometry on Groups Paperback Reprint of the 1992 Original. Cambridge Tracts in Mathematics 100. Cambridge: Cambridge University Press. xii, 156 p., 2008. albahalupava10 [4638] S. Vasanawala, M. Alley, B. Hargreaves, R. Barth, J. Pauly, and M. Lustig. Improved pediatric MR imaging with compressed sensing. Radiology, 256(2):607–616, 2010. va12 [4639] L. Vashisht. On retro Banach frames of type p. Azerbaijan Journal of Mathematics, 2(1), 2012. va13 [4640] L. Vashisht. On Φ-Schauder frames. arXiv preprint arXiv:1302.5988, 2013. va14 [4641] A. Vasil´ev, editor. Harmonic and Complex Analysis and its applications. Berlin: Springer, 2014. va00-2 [4642] N. Vasilevski. Poly-Fock spaces. In V. M. Adamyan, I. Gohberg, M. Gorbachuk, V. Gorbachuk, M. A. Kaashoek, H. Langer, and G. Popov, editors, Differential operators and related topics. Proceedings of the Mark Krein international conference on operator theory and applications, Odessa, Ukraine, August 18-22, 1997. Volume I., Oper. Theory, Adv. Appl. 117, pages 371–386. Birkh¨auser, 2000. va88-1 [4643] N. Vasilevskij. T¨oplitz operators associated with the Siegel domains. Mat. Vesn., 40(3-4):349–354, 1988. 410 brva11 [4644] S. Vasishth and M. Broe. The Foundations of Statistics: Simulation-based Approach. Springer Berlin / Heidelberg, 2011. luva10 [4645] N. Vaswani and W. Lu. Modified-CS: Modifying compressive sensing for problems with partially known support. IEEE Trans. Signal Process., 58:4595–4607, Sep. 2010. va78 [4646] R. Vaud`ene. Stabilit´e g´eom´etrique et r´egularisation dans les espaces int´egraux de type Orlicz `a param`etre; crit`ere de compacit´e de Kolmogorov-Riesz. Travaux S´em. Anal. Convexe, 8(1):Exp. No. 6, 23, 1978. va78-1 [4647] R. Vaud`ene. Stabilit´e g´eom´etrique et r´egularisation dans les espaces int´egraux de type Orlicz `a param`etre et `a variable vectorielle;Crit`ere de compacit´e de Kolmogorov-Riesz. C. R. Acad. Sci. Paris S’er. A-B, 287(16):A1057–A1060, 1978. dukova00 [4648] C. Vazquez, J. Konrad, and E. Dubois. Wavelet-based reconstruction of irregularly-sampled images: application to stereo imaging. In Image Processing, 2000. Proc. of International Conference on,, volume 2, pages 319 –322. IEEE, sept. 2000. ve88-1 [4649] L. Vega. Schr¨odinger equations: Pointwise convergence to the initial data. Proc. Amer. Math. Soc., 102(4):874–878, 1988. dogrhove11 [4650] G. A. Velasco, N. Holighaus, M. D¨orfler, and T. Grill. Constructing an invertible constant-Q transform with non-stationary Gabor frames. Proceedings of DAFX11, 2011. ve93 [4651] R. N. J. Veldhuis. A vector-filter notation for analysis/synthesis systems and its relation to frames. Technical report, PO Box 513, 5600 MB, Eindhoven, 1993. abve89 [4652] E. Velez and R. Absher. Transient analysis of speech signals using the Wigner time-frequency representation. In Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 International Conference on, pages 2242–2245, 1989. ve13 [4653] G. Venema. Exploring Advanced Euclidean Geometry with GeoGebra. Washington, DC: The Mathematical Association of America (MAA), 2013. 411 A vezh08 [4654] M. Venouziou and H. Zhang. Characterizing the Hilbert transform by the Bedrosian theorem. J. Math. Anal. Appl., 338(2):1477–1481, 2008. bemove05 [4655] G. Ventura, B. Moran, and T. Belytschko. Dislocations by partition of unity. Int. J. Numer. Methods Eng., 62(11):1463–1487, 2005. spve92 [4656] A. Vershik and P. Sporyshev. Asymptotic behavior of the number of faces of random polyhedra and the neighborliness problem. Sel. Math. Sov., 11(2):181–201, 1992. ve01-2 [4657] R. Vershynin. John’s decompositions: selecting a large part. Israel J. Math., 122:253–277, 2001. ve11 [4658] R. Vershynin. Invertibility of symmetric random matrices. preprint, 2011. ve12 [4659] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, pages 210–268. Cambridge Univ Press, 2012. ve14 [4660] R. Vershynin. Estimation in high dimensions: a geometric perspective. ArXiv e-prints, may 2014. gokove14 [4661] M. Vetterli, V. Goyal, and J. Kovacevic. Foundations of signal processing. Cambridge Univ. Press, 2014. gokoveXX [4662] M. Vetterli, J. Kovacevic, and V. K. Goyal. The World of Fourier and Wavelets: Theory, Algorithms and Applications. nuveot84 [4663] M. Vetterli, H. Nussbaumer, and o. others. Simple FFT and DCT algorithms with reduced number of operations. Signal Process., 6(4):267–278, 1984. kuvi12 [4664] K. Vidhya and R. Kumar. Channel estimation techniques for OFDM systems. pages 135–139, March 2012. vi12 [4665] F. J. G. Vieli. A uniqueness result for the Fourier transform of measures on the sphere. Bull. Austral. Math. Soc., 86(1):78–82, 2012. 412 klvi95 [4666] N. Vilenkin and A. Klimyk. Representation of Lie Groups and Special Functions, volume 316 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1995. vi09-2 [4667] C. Villani. Optimal transport: old and new. Grundlehren der mathematischen Wissenschaften. Springer, 2009. vi11 [4668] P. Villarroya. On boundedness of discrete multilinear singular integral operators. J. Math. Anal. Appl., 382(2):534 – 548, 2011. vi93-1 [4669] A. Vince. Replicating tessellations. 6(3):501–521, 1993. SIAM J. Discrete Math., kovivi97 [4670] K. Vincken, A. Koster, and M. Viergever. Probabilistic multiscale image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(2):109 –120, feb 1997. vian06 [4671] R. Vio and P. Andreani. Comments on the paper The Mexican Hat Wavelet Family. Application to point source detection in CMB maps by J. Gonzalez-Nuevo et al. (astro-ph/0604376), 2006. kavizo12 [4672] Virender, A. Zothansanga, and S. Kaushik. On almost orthogonal frames. page 6, 2012. vi09-1 [4673] T. Virtanen. Spectral covariance in prior distributions of nonnegative matrix factorization based speech separation. In 17th European Signal Processing Conference (EUSIPCO 2009), pages 1933–1937, Glasgow, Scotland, UK, August 24-28, 2009. cevi09 [4674] T. Virtanen and A. Cemgil. Mixtures of gamma priors for nonnegative matrix factorization based speech separation. In T. Virtanen, A. Cemgil, T. Adali, C. Jutten, J. Romano, and A. Barros, editors, Independent Component Analysis and Signal Separation, volume 5441 of Lecture Notes in Computer Science, pages 646–653. Springer Berlin / Heidelberg, 2009. cevi08 [4675] T. Virtanen and A. T. Cemgil. Prior structures for non-negative matrix factorization based audio source separation. J. Acoust. Soc. Amer., 124(4):1p.(2571), 2008. 413 meryvi08 [4676] T. Virtanen, A. Mesaros, and M. Ryynanen. Combining pitch-based inference and non-negative spectrogram factorization in separating vocals from polyphonic music. In Proc. ISCA Tutorial and Research Workshop on Statistical and Perceptual Audition (SAPA2008), pages 17–22, Brisbane, Australia, September 21, 2008. vide11 [4677] T. Viscondi and A. de. Semiclassical propagator for SU (n) coherent states. Journal of Mathematical Physics, 52:052104, 2011. cogerevi10 [4678] A. Viswanathan, A. Gelb, D. Cochran, and R. Renaut. On reconstruction from non-uniform spectral data. J. Sci. Comput., 45(1-3):487– 513, 2010. bovi99 [4679] E. Viterbo and J. Boutros. A universal lattice code decoder for fading channels. IEEE Trans. Inform. Theory, 45(5):1639–1642, 1999. vi87 [4680] B. Viviani. An atomic decomposition of the predual of BM O(ρ). Rev. Mat. Iberoam., 3(3-4):401–425, 1987. vo11 [4681] D. Voelz. Computational Fourier optics. A MATLAB tutorial. Tutorial text. Vol. 89. SPIE, 2011. kovo87 [4682] A. Vol’berg and S. Konyagin. On measures with duplication condition. Izv. Akad. Nauk SSSR, Ser. Mat., 51(3):666–675, 1987. navo04 [4683] A. Volberg and F. Nazarov. Heating of the Ahlfors–Beurling operator, and estimates of its norm. St. Petersburg Math. J., 15(4):563–573, 2004. vo39 [4684] J. von Neumann. On infinite direct products. Compositio Math., 6:1–77, 1939. bojestvo11 [4685] S. Vorontsov, V. Strakhov, S. Jefferies, and K. Borelli. Deconvolution of astronomical images using SOR with adaptive relaxation. Optics express, 19(14):13509–13524, 2011. vo12 [4686] A. Vourdas. Harmonic analysis on rational numbers. J. Math. Anal. Appl., 394(1):48 – 60, 2012. vo13 [4687] A. Vourdas. Quantum mechanics on profinite groups and partial order. J. Phys. A, 46(4):043001, 49, 2013. 414 bavo10 [4688] A. Vourdas and C. Banderier. Symplectic transformations and quantum tomography in finite quantum systems. Journal of Physics A: Mathematical and Theoretical, 43(4):042001, 2010. prrovy10 [4689] A. Vyas, M. Roopashree, and B. Prasad. Optimizing the modal index of Zernike polynomials for regulated phase screen simulation. In A. Vyas, M. B. Roopashree, B. R. Prasad, B. L. Ellerbroek, M. Hart, N. Hubin, and P. L. Wizinowich, editors, Proc. SPIE, Adaptive Optics Systems II, volume 7736 of Poster Sessions, page 773640(7), San Diego, California, USA, 2010. SPIE. vy08-1 [4690] J. Vybiral. A new proof of the Jawerth-Franke embedding. Rev. Mat. Complut., 21(1):75–82, 2008. vy09 [4691] J. Vyb´ıral. Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability. Ann. Acad. Sci. Fenn., Math., 34(2):529–544, 2009. vy12 [4692] J. Vybiral. Average best m-term approximation. Constr. Approx., 36(1):83–115, 2012. wa95-4 [4693] H. Wackernagel. Multivariate Geostatistics: An Introduction with Applications. Springer, 1995. wa86 [4694] G. Wackersreuther. On two-dimensional polyphase filter banks. Acoustics, Speech and Signal Processing, IEEE Transactions on, 34(1):192–199, 1986. wa13 [4695] J. Wade. Ces`aro summability of Fourier orthogonal expansions on the cylinder. J. Math. Anal. Appl., 402(2):446–452, 2013. wa87-2 [4696] P. Wagner. Zur Faltung von Distributionen. (On convolution of distributions). Math. Ann., 276:467–485, 1987. wa90-1 [4697] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1990. wa90-2 [4698] G. Wahba. Spline Models for Observational Data, volume 59. SIAM, 1990. 415 wa65-3 [4699] S. Wainger. Special trigonometric series in k-dimensions. Mem. Amer. Math. Soc., 59:98, 1965. wa06-3 [4700] M. Wakin. The Geometry of Low-dimensional Signal Models. PhD thesis, 2006. wa07-1 [4701] S. Waldmann. Poisson-Geometrie und Deformationsquantisierung: Eine Einf¨ uhrung. Springer, 2007. juwa11 [4702] P. Walk and P. Jung. Approximation of L¨owdin orthogonalization to a spectrally efficient orthogonal overlapping PPM design for UWB impulse radio. Signal Process., 2011. wa04 [4703] C. A. e. Walker. Handbook of moire measurement. Optics and Optoelectronics. IoP, Institute of Physics Publishing, 2004. chwa00 [4704] J. Walker and Y. Chen. Image denoising using tree-based wavelet subband correlations and shrinkage. Opt. Eng., 39:2900, 2000. kuwa95 [4705] A. Wallin and O. K¨ ubler. Complete sets of complex Zernike moment invariants and the role of the pseudoinvariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11):1106–1110, 1995. wa65-2 [4706] J. Walsh. Interpolation and approximation by rational functions in the complex domain. Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX. American Mathematical Society, Providence, R.I., 1965. sowa06 [4707] G. Walter and T. Soleski. Prolate spheroidal wavelet sampling in computerized tomography. Sampl. Theory Signal Image Process., 5(1):21– 36, 2006. wa77-2 [4708] G. G. Walter. Properties of Hermite series estimation of probability density. Ann. Statist., 5(6):1258–1264, 1977. shwa03 [4709] G. G. Walter and X. A. Shen. Sampling with prolate spheroidal wave functions. Sampl. Theory Signal Image Process., 2(1):25–52, 2003. wa95-6 [4710] S. Walters. Projective modules over the non-commutative sphere. J. London Math. Soc. (2), 51(3):589–602, 1995. 416 wa01-2 [4711] S. Walters. k-theory of non-commutative spheres arising from the Fourier automorphism. Canad. J. Math., 53(3):631–672, 2001. wa03-4 [4712] S. Walters. On Fourier orthogonal projections in the rotation algebra. J. London Math. Soc. (2), 68(1):193–205, 2003. wa11-2 [4713] Z.-X. Wan. Finite Fields and Galois Rings. Hackensack, NJ: World Scientific. 400 p., 2011. wa06-4 [4714] C. Wang. On Korenblum’s maximum principle. Proc. Amer. Math. Soc., 134(7):2061–2066, 2006. wayu09 [4715] C. Wang and Y. Yu. Aronsson’s equations on Carnot-Carath´eodory spaces. Ill. J. Math., 52(3):757–772, 2009. huwazh04 [4716] D. Wang, G. Zhu, and Z. Hu. Optimal Pilots in Frequency Domain for Channel. volume 2, pages 608–612, May 2004. wa14 [4717] F.-Y. Wang. Analysis for Diffusion Processes on Riemannian Manifolds. Hackensack, NJ: World Scientific, 2014. kewa09 [4718] H. Wang and Q. Kemao. Frequency guided methods for demodulation of a single fringe pattern. Opt. Express, 17(17):15118–15127, Aug 2009. wawa07 [4719] H. Wang and J. Wang. Optimal pilot design for MIMO-OFDM system channel estimation in time domain. pages 307–312, Sep. 2007. wa11-1 [4720] H.-Y. Wang. Concentration estimates for the moving least-square method in learning theory. J. Approx. Theory, 163(9):1125 – 1133, 2011. luwa11 [4721] J. Wang and B. Lucier. Error bounds for finite-difference methods for Rudin-Osher-Fatemi image smoothing. SIAM Journal on Numerical Analysis, 49:845–868, 2011. qiwa14 [4722] J. Wang and T. Qian. Approximation of monogenic functions by higher order Szeg¨o kernels on the unit ball and half space. Sci. China Math., 57(9):1785–1797, 2014. 417 dikolishwayi11 [4723] J. Wang, Y. Shi, D. Kong, W. Ding, C. Li, and B. Yin. Sparse representation based down-sampling image compression. J. Comput. Appl. Math., 236(5):675–683, 2011. wa61-1 [4724] J.-k. Wang. Multipliers of commutative Banach algebras. Pacific J. Math., 11:1131–1149, 1961. wa11 [4725] J.-R. Wang. Shannon wavelet regularization methods for a backward heat equation. J. Comput. Appl. Math., 235(9):3079 – 3085, 2011. wa97-3 [4726] L. Wang. The error estimate of Backus-Gilbert method. Numer. Math., Nanjing, 19(4):364–369, 1997. wa09-1 [4727] S. Wang. Simple proofs of the Bedrosian equality for the Hilbert transform. Sci. China Ser. A, 52(3):507–510, 2009. fawayu11 [4728] S. Wang, H.-C. Yuan, and H.-Y. Fan. Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian. Modern Phys. Lett. A, 26(19):1433–1442, 2011. wawa09 [4729] T. Wang and Q. Wan. Sparse Signal Recovery via Multi-Residual Based Greedy Method. In Image and Signal Processing, 2009. CISP’09. 2nd International Congress on, pages 1–4, 2009. chwa97 [4730] W.-H. Wang and Y.-C. Chen. New approach for scale, rotation, and translation invariant pattern recognition. Opt. Eng., 36(4):1113–1122, 1997. huliwa09 [4731] X. Wang, C. Huang, and J. Liu. Gabor-2DLDA: Face Recognition Using Gabor Features and 2D Linear Discriminant Analysis. In Intelligent Computation Technology and Automation, 2009. ICICTA’09. Second International Conference on, volume 1, pages 608–610, 2009. wa02-2 [4732] Y. Wang. Wavelets, tiling, and spectral sets. 114(1):43–57, 2002. orwa09 [4733] Y. Wang and J. Orchard. Fast Discrete Orthonormal Stockwell Transform. SIAM Journal on Scientific Computing, 31(5):4000–4012, 2009. orwa09-1 [4734] Y. Wang and J. Orchard. On the use of the Stockwell transform for image compression. In Y. Wang, J. Orchard, J. T. Astola, 418 Duke Math. J., K. O. Egiazarian, N. M. Nasrabadi, and S. A. Rizvi, editors, Proc. SPIE, Image Processing: Algorithms and Systems VII, volume 7245 of Transform Methods, page 724504, San Jose, CA, USA, 2009. SPIE. orwa09-2 [4735] Y. Wang and J. Orchard. The discrete orthonormal Stockwell transform for image restoration. In Image Processing (ICIP), 2009 16th IEEE International Conference on, pages 2761 –2764, Cairo, 7-10 Nov. 2009, nov. 2009. waxu12 [4736] Y. Wang and Z. Xu. The performance of PCM quantization under tight frame representations. SIAM J. Math. Anal., 44(4):2802–2823, 2012. wa95-5 [4737] Z. Wang. Comments on generalized discrete Hartley transform. IEEE Trans. Signal Process., 43(7):1711 – 1712, jul 1995. gowa08 [4738] Z. Wang and G. Gong. New sequences design from Weil representation with low two-dimensional correlation in both time and phase shifts. Arxiv preprint arXiv:0812.4487, 2008. wa37 [4739] G. Wannier. The structure of electronic excitation levels in insulating crystals. Physical Review, 52(3):191 – 197., 1937. was13 [4740] W. Wasylkiwskyj. Signals and Transforms in Linear Systems Analysis. New York, NY: Springer, 2013. wa07-2 [4741] D. S. Watkins. The matrix eigenvalue problem: GR and Krylov subspace methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. we04-2 [4742] N. Weaver. The Kadison-Singer problem in discrepancy theory. Discrete Math., 278(1-3):227–239, 2004. we10-3 [4743] E. Weber. Algebraic aspects of the Paving and Feichtinger conjectures. In V. B. Joseph A. Ball, editor, Topics in operator theory: Operators, matrices and analytic functions (Proceedings of the 19th international workshop on operator theory and applications (IWOTA), College of William and Mary, Williamsburg, VA, USA, July 22–26, 2008), volume 1 of Operator Theory: Advances and Applications(Vol. 202), pages 569–578. Basel: Birkh¨auser., 2010. 419 we13 [4744] M. Weber. On C ∗ -algebras generated by isometries with twisted commutation relations. J. Funct. Anal., 264(8):1975–2004, 2013. smwewuxiya07 [4745] L. Wee Chung, J. Xian, S. Wu, D. Smith, and H. Yan. Spectral estimation in unevenly sampled space of periodically expressed microarray time series data. BMC Bioinformatics, 8(1):1–19, 2007. liwe14 [4746] D. Wei and Y. Li. Linear canonical Wigner distribution and its application. Optik - Internat. J. for Light and Electron Optics, 125(1):89 – 92, 2014. lirawe12 [4747] D. Wei, Q. Ran, and Y. Li. New convolution theorem for the linear canonical transform and its translation invariance property. OptikInternational Journal for Light and Electron Optics, 123(16):1478– 1481, 2012. limaratawe09 [4748] D. Wei, Q. Ran, Y. Li, J. Ma, and L. Tan. A convolution and product theorem for the linear canonical transform. IEEE Signal Processing Letters, 16(10):853–856, 2009. we13-1 [4749] J. WEI. Fast Space-Varying Convolution Using Matrix Source Coding with Applications to Camera Stray Light Reduction. IEEE Trans. Image Process., 2013. albowe13 [4750] J. Wei, C. Bouman, and J. Allebach. Fast Space-Varying Convolution Using Matrix Source Coding with Applications to Camera Stray Light Reduction. 2013. liwe10 [4751] K. Wei and T. Liang. Gabor Representation for Radar Signals via Real-Valued Discrete Gabor Transform. Computer, page 10, 2010. chwewu12 [4752] X. Wei, Y.-Z. Wu, and L.-P. Chen. A new sequential optimal sampling method for radial basis functions. Appl. Math. Comput., 218(19):9635 – 9646, 2012. we49-1 [4753] A. Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55:497–508, 1949. we74-2 [4754] A. Weil. Basic Number Theory 3rd ed. Die Grundlehren der mathematischen Wissenschaften. Band 144. Berlin-Heidelberg-New York: Springer-Verlag. XVIII, 325 p., 1974. 420 sawe09 [4755] K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research, 10:207–244, 2009. sashwe04 [4756] K. Weinberger, F. Sha, and L. Saul. Learning a kernel matrix for nonlinear dimensionality reduction. In Proceedings of the twenty-first international conference on Machine learning, page 106, 2004. we85 [4757] A. Weinstein. A symbol class for some Schr¨odinger equations on Amer. J. Math., 107:1–21, 1985. n . we09-3 [4758] M. Weinstein. Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations. Arxiv preprint arXiv:0902.1775, 2009. we10-4 [4759] M. Weinstein. Strange Bedfellows: Quantum Mechanics and Data Mining. Nuclear Physics B-Proceedings Supplements, 199(1):74–84, 2010. howe09 [4760] M. Weinstein and D. Horn. Dynamic quantum clustering: A method for visual exploration of structures in data. Physical Review E, 80(6):066117, 2009. aublwe09 [4761] P. Weiss, L. Blanc F´eraud, and G. Aubert. Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput., 31(3):2047–2080, 2009. aublwe14 [4762] P. Weiss, L. Blanc F´eraud, and G. Aubert. Processing stationary noise: model and parameter selection in variational methods. SIAM J. Sci. Comput., 7(2):613–640, 2014. aublfowe11 [4763] P. Weiss, A. Fournier, L. Blanc F´eraud, and G. Aubert. On the illumination invariance of the level lines under directed light: application to change detection. SIAM J. Imaging Sci., 4(1):448–471, 2011. we00 [4764] F. Weisz. A generalization for Fourier transforms of a theorem due to Marcinkiewicz. J. Math. Anal. Appl., 252(2):675–695, 2000. we05-5 [4765] F. Weisz. Marcinkiewicz multiplier theorem and the Sunouchi operator for Ciesielski–Fourier series. J. Approx. Theory, 133(2):195–220, 2005. 421 we09-1 [4766] F. Weisz. Pointwise summability of Gabor expansions. J. Fourier Anal. Appl., 15(4):463–487, 2009. we10-2 [4767] F. Weisz. Local Hardy spaces and summability of Fourier transforms. J. Math. Anal. Appl., 362(2):275–285, 2010. we10-1 [4768] F. Weisz. Restricted summability of Fourier transforms and local Hardy spaces. Acta Math. Sin. (Engl. Ser.), 26(9):1627–1640, 2010. we11 [4769] F. Weisz. 1 -summability of higher-dimensional Fourier series. J. Approx. Theory, 163(2):99 – 116, February 2011. we11-2 [4770] F. Weisz. Gabor expansions and restricted summability. Sampling Theory in Signal & Image Processing, 10(3), 2011. we11-3 [4771] F. Weisz. Marcinkiewicz-summability of multi-dimensional Fourier transforms and Fourier series. J. Math. Anal. Appl., 379(2):910– 929, 2011. we11-1 [4772] F. Weisz. Restricted summability of multi-dimensional VilenkinFourier series. Ann. Univ. Sci. Budap. Rolando E¨otv¨os, Sect. Comput., 35:305–317, 2011. we12 [4773] F. Weisz. Ces`aro-summability of higher-dimensional Fourier series. 2012. we14 [4774] F. Weisz. Pointwise convergence in Pringsheim’s sense of the summability of Fourier transforms on Wiener amalgam spaces. Monatsh. Math., 175(1):143–160, 2014. we80-3 [4775] Y. Weit. On Beurling’s theorem for locally compact groups. Proc. Amer. Math. Soc., 78:259–260, 1980. we80 [4776] Y. Weit. On closed ideals in the motion group algebra. Math. Ann., 248:279–283, 1980. we80-1 [4777] Y. Weit. On Schwartz’s theorem for the motion group. Ann. Inst. Fourier (Grenoble), 30(1):91–107, 1980. we80-2 [4778] Y. Weit. On the one-sided Wiener’s theorem for the motion group. 1980. 422 we81-1 [4779] Y. Weit. On spectral analysis in locally compact motion groups. J. Funct. Anal., 40:45–53, 1981. stwewe08 [4780] M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. Appl. Comput. Harmon. Anal., 24(2):195–224, 2008. gowe10 [4781] D. Weller and V. K. Goyal. On the estimation of nonrandom signal coefficients from jittered samples. Arxiv preprint arXiv:1007.5034, 2010. we01-3 [4782] H. Wendland. Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal., 21(1):285–300, 2001. we83-1 [4783] R. Werner. Physical uniformities on the state space of nonrelativistic quantum mechanics. Found. Phys., 13(8):859–881, 1983. we84 [4784] R. Werner. Quantum harmonic analysis on phase space. J. Math. Phys., 25(5):1404–1411, 1984. we04-1 [4785] R. Werner. The uncertainty relation for joint measurement of position and momentum. Quantum Inf. Comput., 4(6-7):546–562, 2004. we84-1 [4786] A. Weron. Stable processes and measures: A survey. Probability theory on vector spaces III, Proc. Conf., Lublin/Pol. 1983, Lect. Notes Math. 1080, 306-364 (1984)., 1984. we85-1 [4787] A. Weron. Harmonizable stable processes on groups: Spectral, ergodic and interpolation properties. Z. Wahrscheinlichkeitstheor. Verw. Geb., 68:473–491, 1985. ambafegiklkrwe09 [4788] T. Werther, A. Klotz, G. Kracher, M. Baubin, H. G. Feichtinger, H. Gilly, and A. Amann. CPR artifact removal in ventricular fibrillation ECG signals using Gabor multipliers. Biomedical Engineering, IEEE Transactions on, 56(2):320 –327, Feb. 2009. adwe11 [4789] J. Westerweel and R. Adrian. Particle Image Velocimetry. Cambridge University Press, 2011. adelwe13 [4790] J. Westerweel, G. Elsinga, and R. Adrian. Particle image velocimetry for complex and turbulent flows. In Annual review of fluid mechanics. Vol. 45, pages 409–436. Palo Alto, CA: Annual Reviews, 2013. 423 wh12 [4791] M. Whiting. Duchamp: a 3D source finder for spectral-line data. Submitted on 13 Jan 2012, page 17, 2012. wawh96 [4792] E. Whittaker and G. Watson. A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Repr. of the 4th ed. 1927. Cambridge: Cambridge University Press. 608 p., 1996. japuscvawi09 [4793] Y. Wiaux, L. Jacques, G. Puy, A. Scaife, and P. Vandergheynst. Compressed sensing imaging techniques for radio interferometry. Monthly Notices of the Royal Astronomical Society, 395(3):1733– 1742, 2009. bopuvawi09 [4794] Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst. Compressed sensing for radio interferometry: spread spectrum imaging techniques. Proc. SPIE, Wavelets XIII, 2009. wi76-2 [4795] J. Wichmann. On the symmetry of matrix algebras. Proc. Amer. Math. Soc., 54:237–240, 1976. wi63 [4796] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. Trans. Amer. Math. Soc., 109:278–295, 1963. wi13 [4797] L. Wiedemann. Elektromyografische Untersuchung von Erm¨ udungsprozessen beim Topspin Schlag im Tischtennis mittels Wavelet-Transformation. 2013. wi13-1 [4798] C. Wiesmeyr. Construction of frames by discretization of phase space. PhD thesis, 2013. hosowi13 [4799] C. Wiesmeyr, N. Holighaus, and P. Sondergaard. Efficient algorithms for discrete Gabor transforms on a nonseparable lattice. IEEE Trans. Signal Process., 61(20):5131 – 5142, 2013. wi60 [4800] E. P. Wigner. The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Anal., 13:1–14, 1960. wi91 [4801] C. Wilcox. The synthesis problem for radar ambiguity functions. Radar and sonar. Pt. I, Lect. Notes IMA Summer Progr., Minneapolis/MN (USA) 1990, IMA Vol. Math. Appl. 32 , 229-260 (1991)., 1991. 424 wi53 [4802] R. Wilder. The origin and growth of mathematical concepts. Bull. Amer. Math. Soc., 59:423–448, 1953. wi13-2 [4803] M. Willem. Functional analysis. Cornerstones. Birkh¨auser/Springer, New York, 2013. wi06-2 [4804] R. Willett. Some notes on Property A. Arxiv preprint math/0612492, 2006. wi09-2 [4805] R. Willett. Band-dominated operators and the stable Higson corona. PhD thesis, The Pennsylvania State University, 2009. wi11 [4806] R. Willett. An index theorem for band-dominated operators with slowly oscillating coefficients (after Deundyak and Shteinberg). Integr. Equ. Oper. Theory, 69(3):301–316, 2011. badaduwi14 [4807] R. Willett, M. Duarte, M. Davenport, and R. Baraniuk. Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, and target detection. IEEE Signal Proc. Mag., 31(1):116–126, 2014. maniwi11 [4808] R. Willett, R. Marcia, and J. Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng., 50(7):072601– 072601–13, 2011. wiyu12 [4809] R. Willett and G. Yu. Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math., 229(3):1380–1416, 2012. wi80 [4810] J. Williams. Fourier efficiency using analytic translation and Hilbert samples. J. Acoust. Soc. Am., 67:581–588, 1980. mowi10 [4811] G. Wilson and C. Morgan. An application of Fourier transforms on finite Abelian groups to an enumeration arising from the Josephus problem. J. Number Theory, 130(4):815 – 827, 2010. wi89 [4812] K. Wilson. Grand challenges to computational science. Future Generation Computer Systems, 5(2-3):171 – 189, 1989. wi10 [4813] M. Wilson. How fast and in what sense(s) does the Calderon reproducing formula converge? J. Fourier Anal. Appl., 16(5):768–785, 2010. 425 wi51 [4814] G. Wing. On the Lp theory of Hankel transforms. Pacific J. Math., 1:313–319, 1951. Win91 [4815] D. M. Winkler. Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence. JOSA A, 8(10):1568–1573, 1991. desowi13 [4816] E. Winokur, M. Delano, and C. Sodini. Biomedical Engineering, IEEE Transactions on, title=A Wearable Cardiac Monitor for LongTerm Data Acquisition and Analysis, 60(1):189 –192, jan. 2013. wn12 [4817] W. Wnuk. An operator characterization of continuous Riesz spaces. Indag. Math., New Ser., 23(1-2):105–112, 2012. wo00 [4818] W. Woess. Random walks on infinite graphs and groups. Number 138. Cambridge Univ Pr, 2000. wo11-2 [4819] P. Wojdyllo. Wilson system for triple redundancy. Int. J. Wavelets Multiresolut. Inf. Process., 9(1):151–167, 2011. wo99-2 [4820] P. Wojtaszczyk. Wavelets as unconditional bases in Lp (R). J. Fourier Anal. Appl., 5(1):73–85, 1999. wo12 [4821] P. Wojtaszczyk. 1 minimisation with noisy data. SIAM J. Numer. Anal., 50(2):458–467, 2012. wo92 [4822] J. Wolf. The uncertainty principle for Gelfand pairs. Nova J. Algebra Geom., 1(4):383–396, 1992. wo94-1 [4823] J. Wolf. Uncertainty principles for Gelfand pairs and Cayley complexes. Gindikin, Simon (ed.) et al., 75 years of Radon transform. Proceedings of the conference held at the Erwin Schr¨odinger International Institute for Mathematical Physics in Vienna, Austria, August 31-September 4, 1992. Cambridge, MA: International Press. Co, 1994. wo74 [4824] K. Wolf. Canonical transforms. I. Complex linear transforms. Journal of Mathematical Physics, 15:1295, 1974. wo74-1 [4825] K. Wolf. Canonical transforms. II. Complex radial transforms. J. Math. Phys., 15(12):2102–2111, 1974. 426 cadajamawo11 wo02-2 [4826] J. Wolff, M. Martens, S. Jafarpour, I. Daubechies, and R. Calderbank. Uncovering elements of style. In Acoustics Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 1017–1020, 2011. [4827] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002. wo11 [4828] M. Wong. Discrete Fourier analysis. Pseudo-Differential Operators. Theory and Applications 5. Basel: Birkh¨auser. viii, 176 p., 2011. wo79 [4829] J. Wood. Unbounded multipliers on commutative Banach algebras. Pacific J. Math., 85:479–484, 1979. wo97-1 [4830] N. Woodhouse. Geometric quantization. Oxford Mathematical Monographs. Oxford University Press, Second Edition edition, 1997. wo80-1 [4831] W. A. Woyczynski. On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence. Probab. Math. Stat., 1(2):117–131, 1980. wr97 [4832] G. Wright. Magnetic resonance imaging. IEEE Signal Processing Magazine Magazine, 14(1):56–66, 1997. gamasawrya09 [4833] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust Face Recognition via Sparse Representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,, 31(2):210 –227, 2009. wr13 [4834] T. Wright. Infinitely many Carmichael numbers in arithmetic progressions. Bulletin of the London Mathematical Society, 45(5):943–952, 2013. wr12 [4835] B. Wrobel. Multivariate spectral multipliers for tensor product orthogonal expansions. Monatsh. Math., 168(1):125–149, 2012. wr13-2 [4836] B. Wrobel. Erratum to: Multivariate spectral multipliers for tensor product orthogonal expansions [MR2971743]. Monatsh. Math., 169(1):113–115, 2013. wr13-1 [4837] B. Wr´obel. Laplace type multipliers for Laguerre expansions of Hermite type. Mediterr. J. Math., 10(4):1867–1881, 2013. 427 wr97-1 [4838] G. Wr´obel. Tensor harmonic analysis on homogeneous spaces. Acta Phys. Polon. B, 28(7):1575–1586, 1997. daflwu11 [4839] H.-T. Wu, P. Flandrin, and I. Daubechies. One or two frequencies? The synchrosqueezing answers. Adv. Adapt. Data Anal., 3(1-2):29– 39, 2011. wu06 [4840] W. Wu. Quantized Gromov-Hausdorff distance. J. Funct. Anal., 238(1):58–98, 2006. dagitiwu06 [4841] X. Wu, Z. Tian, T. Davidson, and G. Giannakis. Optimal waveform design for UWB radios. IEEE Trans. Signal Process., 54(6):2009– 2021, 2006. wuwu13 [4842] X. Wu and Z. Wu. Volterra operator from Bergman spaces to Morrey spaces. Eurasian Math. J., 4(1):135–144, 2013. guhewu05 [4843] Z. Wu, J. He, and G. Gu. Design of Optimal Pilot-tones for Channel Estimation in MIMO-OFDM Systems. volume 1, pages 12–17, Mar. 2005. wuzhzo08 [4844] Z. Wu, R. Zhao, and N. Zorboska. Toeplitz operators on analytic Besov spaces. Integr. Equ. Oper. Theory, 60(3):435–449, 2008. bowu91 [4845] D. Wuescher and K. Boyer. Robust contour decomposition using a constant curvature criterion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 13(1):41–51, 1991. wuzh13 [4846] H. Wulan and J. Zhou. QK and Morrey type spaces. Ann. Acad. Sci. Fenn., Math., 38(1):193–207, 2013. gemamexa11 [4847] F. Xaver, G. Matz, P. Gerstoft, and C. Mecklenbr¨auker. Localization of acoustic sources using a decentralized particle filter. EURASIP Journal on Wireless Communications and Networking, 2011(1):94, 2011. xizh97 [4848] D. Xia and D. Zheng. Products of Hankel operators. Integr. Equ. Oper. Theory, 29(3):339–363, 1997. xi00 [4849] E. Xia. The moduli of flat pu(2, 1) structures on Riemann surfaces. Pacific J. Math., 195(1):231–256, 2000. 428 naxi94 [4850] X.-G. Xia and M. Nashed. The Backus-Gilbert method for signals in reproducing kernel Hilbert spaces and wavelet subspaces. Inverse Problems, 10(3):785–804, 1994. xi10-1 [4851] J. Xian. Error estimates from noise samples for iterative algorithm in shift-invariant signal spaces. Abstr. Appl. Anal., Article ID 214213:9, 2010. xi12 [4852] J. Xian. Local sampling set conditions in weighted shift-invariant signal spaces. Applicable Analysis, 91(3):447–457, 2012. lixi12 [4853] J. Xian and S. Li. Improved sampling and reconstruction in spline subspaces. Acta Math. Appl. Sin., to appear, 2012. suxi10 [4854] J. Xian and W. Sun. Local sampling and reconstruction in shiftinvariant spaces and their applications in spline subspaces. Numer. Funct. Anal. Optim., 31(3):366–386, 2010. haraxixi09 [4855] Z. Xiang, Y. Xi, U. Hasson, and P. Ramadge. Boosting with spatial regularization. volume 22, pages 2107–2115, British Columbia, Canada, Dec. 2009. xi13 [4856] Z.-Q. Xiang. New characterizations of Riesz-type frames and stability of alternate duals of continuous frames. Adv. Math. Phys., pages Art. ID 298982, 11, 2013. xi98 [4857] H. Xiao. On anisotropic invariants of a symmetric tensor: Crystal classes, quasi-crystal classes and others. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 454(1972):1217–1240, 1998. roxiya01 [4858] H. Xiao, V. Rokhlin, and N. Yarvin. Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems, 17(4):805–838, 2001. xi01 [4859] J. Xiao. Holomorphic Q Classes. Lecture Notes in Mathematics Springer, 2001. xi06 [4860] J. Xiao. Geometric Qp Functions. Birkh¨auser, 2006. xizh09 Frontiers in Mathematics. [4861] X. Xiao and Y. Zhu. Duality principles of frames in Banach spaces. Acta Math. Sci., Ser. A, Chin. Ed., 29(1):94–102, 2009. 429 diwaxizh07 [4862] X. Xiao, Y. Zhu, Y. Wang, and M. Ding. Some properties of a bounded linear operator defined by a g-Bessel sequence. J. Fuzhou Univ., Nat. Sci., 35(3):326–330, 2007. chlixi10 [4863] Y. Xiao, H. Chen, and F. Li. Handbooks On Sensor Networks. Hackensack, NJ: World Scientific. xxvii, 2010. chxiyu05 [4864] X. Xie, S. Chan, and T. Yuk. Design of perfect-reconstruction nonuniform recombination filter banks with flexible rational sampling factors. Circuits and Systems I: Regular Papers, IEEE Transactions on, 52(9):1965 – 1981, sept. 2005. maxi01 [4865] Z. Xiong and H. S. Malvar. A nonuniform modulated complex lapped transform. IEEE Signal Processing Letters, 8(9):257–260, September 2001. waxuxu11 [4866] G. Xu, X. Wang, and X. Xu. 2D Hilbert transform and Bedrosian’s principle associated with fractional Fourier transform. Acta Math. Sci. Ser. A Chin. Ed., 31(3):814–828, 2011. xu10-1 [4867] J. Xu. Lecture notes on Mathematical Olympiad courses. For junior section. In 2 volumes. Mathematical Olympiad Series 6. Hackensack, NJ: World Scientific. xii and xii, 178 p./v.2., 2010. xu12 [4868] J. Xu. Lecture Notes On Mathematical Olympiad Courses For Senior Section In 2 Volumes. Mathematical Olympiad Series 8. Hackensack, NJ: World Scientific. 500 p./set., 2012. chqixu14 [4869] J. Xu, H. Chang, and J. Qin. Domain decomposition method for image deblurring. J. Comput. Appl. Math., 271(0):401 – 414, 2014. xu01 [4870] Y. Xu. Orthogonal polynomials on the ball and the simplex for weight functions with reflection symmetries. Constr. Approx., 17(3):383– 412, 2001. xu06 [4871] Y. Xu. Analysis on the unit ball and on the simplex. ETNA, Electron. Trans. Numer. Anal., 25:284–301, 2006. haraxu99 [4872] Y. Xu, S. Haykin, and R. Racine. Multiple window time-frequency distribution and coherence of EEG using Slepian sequences and Hermite functions. Biomedical Engineering, IEEE Transactions on, 46(7):861–866, 1999. 430 xu10 [4873] Z. Xu. A remark about orthogonal matching pursuit algorithm, 2010. plrexu10 [4874] Z. Xu, L. Rebollo Neira, and A. Plastino. Subspace modelling for structured noise suppression. Physica A: Statistical Mechanics and its Applications, 389(10):2030–2035, 2010. ya57 [4875] A. Yaglom. Certain types of random fields in n-dimensional spaces similar to stationary stochastic processes. Teor. Veroyatn. Primen., 2:292–338, 1957. yaya09 [4876] T. Yakovenko and R. Yamnenko. Convergence rate for wavelet expansions of generalized accumulated Ornstein-Uhlenbeck processes. 2009. ya06-2 [4877] S. Yakubovich. On the Plancherel theorem for the Olevskii transform. Acta Math. Vietnam., 31(3):249–260, 2006. luya94 [4878] S. Yakubovich and Y. Luchko. The Hypergeometric Approach To Integral Transforms and Convolutions. Mathematics and its Applications (Dordrecht). 287. Dordrecht: Kluwer Academic Publishers. xi, 324 p., 1994. ya94 [4879] K. Yamada. Gabor feature stabilities for basic image transformations. In BMVC94, Proc. of the 5th British Machine Vision Conference, page 10. BMVA Press, 1994. ya12 [4880] Y. Yamamoto. From Vector Spaces to Function Spaces: Introduction to functional analysis with applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2012. iljiya14 [4881] F. Yan, A. Iliyasu, and Z. Jiang. Quantum computation-based image representation, processing operations and their applications. Entropy, 16(10):5290–5338, 2014. yaya11 [4882] D. Yang and S. Yang. New characterizations of weighted MorreyCampanato spaces. Taiwanese J. Math., 15(1):141–163, 2011. yayuzh12 [4883] D. Yang, W. Yuan, and C. Zhuo. Fourier multipliers on TriebelLizorkin-type spaces. J. Funct. Spaces, 2012. yayuzh14 [4884] D. Yang, W. Yuan, and C. Zhuo. Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Mat. Univ. Complut. Madrid, 27(1):93–157, 2014. 431 yazh11 [4885] D. Yang and Y. Zhou. New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscripta Math., 134(1-2):59–90, 2011. huwuyazhzh14 [4886] H. Yang, M. Zhu, X. Wu, Z. Zhang, and H. Huang. Dictionary learning approach for image deconvolution with variance estimation. Applied optics, 53(25):5677–5684, 2014. huya11 [4887] J. Yang and T. Huang. Image super-resolution: historical overview and future challenges. from the book: Super-Resolution Imaging (edited by Peyman Milanfar). CRC Press (Taylor & and amp and Francis Group), 2011. humawrya10 [4888] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution via sparse representation. IEEE Trans. Image Process., 19(11):2861 –2873, nov. 2010. ya99-2 [4889] Q. Yang. Multiresolution analysis on non-abelian locally compact groups. PhD thesis, University of Saskatchewan, 1999. ya13 [4890] Q.-H. Yang. Hardy type inequalities related to Carnot-Caratheodory distance on the Heisenberg group. Proc. Amer. Math. Soc., 141(1):351–362, 2013. roya99 [4891] N. Yarvin and V. Rokhlin. Generalized Gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput., 20(2):699–718, 1999. ye12 [4892] P. Ye. Quantum approximation on anisotropic Sobolev and H¨olderNikolskii classes. Taiwanese J. Math., 16(1):71–88, 2012. ye56 [4893] J. Yen. On nonuniform sampling of bandwidth-limited signals. Circuit Theory, IRE Transactions on, 3(4):251–257, 1956. ye13 [4894] J. Yeol. Stability of functional equations in random normed spaces. New York, NY: Springer, 2013. chyezh09 [4895] K. Yeon, J. Choi, and S. Zhang. Quantum systems connected by a time-dependent canonical transformation. Commun. Theor. Phys., 52(3):416–420, 2009. 432 basayo13 [4896] Y. Yomdin, N. Sarig, and D. Batenkov. Decoupling of Fourier reconstruction system for shifts of several signals. SampTA 2013, preprint:4, 2013. jiyo13 [4897] C. Yonghui and Z. Jiang. Morrey spaces for nonhomogeneous metric measure spaces. Abstr. Appl. Anal., 2013:8, 2013. chchkisoyo07 [4898] I. Yoo, K. Chang, D. Cho, B. Kim, and T. Song. A change of scale formula for conditional Wiener integrals on classical Wiener space. J. Korean Math. Soc., 44(4):1025–1050, 2007. kuyo11 [4899] K. Young and L. Kun. Schatten-class operators and frames. Quaestiones Mathematicae, 34(2):203–211, 2011. boyo78 [4900] J. Youngberg and S. Boll. Constant-Q signal analysis and synthesis. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’78), volume 3, pages 375 – 378, 1978. yo06 [4901] S. Yousefi. Legendre wavelets method for solving differential equations of Lane–Emden type. Appl. Math. Comp., 181(2):1417–1422, 2006. ys05 [4902] H. Yserentant. Sparse grid spaces for the numerical solution of the electronic Schr¨odinger equation. Numer. Math., 101(2):381–389, 2005. yu97 [4903] G. Yu. K-theoretic indices of Dirac type operators on complete manifolds and the Roe algebra. K-Theory, 11(1):1–15, 1997. yu97-1 [4904] G. Yu. Localization algebras and the coarse Baum-Connes conjecture. K-Theory, 11(4):307–318, 1997. yu98 [4905] G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. (2), 147(2):325–355, 1998. yu00 [4906] G. Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139(1):201–240, 2000. yu11 [4907] G. Yu. Large scale geometry and its applications. In Noncommutative geometry and global analysis, volume 546 of Contemp. Math., pages 305–315. Amer. Math. Soc., Providence, RI, 2011. 433 yu88 [4908] S. Yu. A harmonic analysis for operators on homogeneous Banach spaces. Chinese Ann. Math. Ser. A, 9(1):23–31, 1988. yu89 [4909] S. Yu. Vector-valued pseudomeasures. J. Math. Res. Expo., 9(1):17– 23, 1989. demotryu11 [4910] S. Yu, L.-C. Tranchevent, M. De, and Y. Moreau. Kernel-based Data Fusion for Machine Learning. Springer Berlin Heidelberg, 2011. shyayuzh13 [4911] D. Yuan, S. Yang, X. Zheng, and Y. Shen. New proof for Balian-flow theorem of nonlinear Gabor system. J. Funct. Spaces Appl., pages Art. ID 530172, 7, 2013. sayayu10 [4912] W. Yuan, Y. Sawano, and D. Yang. Decompositions of BesovHausdorff and Triebel-Lizorkin-Hausdorff spaces and their applications. J. Math. Anal. Appl., 369(2):736–757, 2010. siyayu10 [4913] W. Yuan, W. Sickel, and D. Yang. Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005. Berlin: Springer. xi, 281 p., 2010. yv08 [4914] M. Yves. The Szego; and AvramParter theorems for general test functions Les th´eor`emes de Szego; et d’AvramParter pour des fonctions test g´en´erales. Comptes Rendus Mathematique, 346(13-14):749–752, 2008. za83-1 [4915] A. Zaanen. Riesz Spaces II. North-Holland Mathematical Library, Vol. 30. Amsterdam - New York - Oxford: North-Holland Publishing Company. XI, 1983. za97 [4916] A. Zaanen. Introduction to Operator Theory in Riesz Spaces. Berlin: Springer. xi, 312 p., 1997. za11-1 [4917] V. Zacharovas. A Tauberian theorem for the Ingham summation method. Acta Arith., 148(1):31–54, 2011. za74 [4918] L. Zalcman. Real proofs of complex theorems (and vice versa). Amer. Math. Monthly, 81(2):115–137, 1974. za81 [4919] R. Zalik. The M¨ untz-Szasz theorem and the closure of translates. J. Math. Anal. Appl., 82:361–369, 1981. 434 za08 [4920] R. Zalik. Bases of translates and multiresolution analyses. Appl. Comput. Harmon. Anal., 24(1):41–57, 2008. za10 [4921] R. Zalik. Corrigendum to “Bases of translates and multiresolution analyses” [Appl. Comput. Harmon. Anal. 24, 41–57 (2008)]. Appl. Comput. Harmon. Anal., 29(1):121, 2010. za13 [4922] M. Zarrabi. Some results of Katznelson-Tzafriri type. J. Math. Anal. Appl., 397(1):109 – 118, 2013. za11 [4923] G. Zauner. Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf., 9(1):445–507, 2011. za98 [4924] A. Zayed. Fractional Fourier transform of generalized functions. Integral Transforms Spec. Funct., 7(3-4):299–312, 1998. za98-1 [4925] A. Zayed. Hilbert Transform Associated with the Fractional Fourier Transform. IEEE Signal Processing Letters, 5(8):206–208, 1998. anelza91 [4926] A. Zayed, M. El Sayed, and M. Annaby. On Lagrange interpolations and Kramer’s sampling theorem associated with self-adjoint boundary value problems. J. Math. Anal. Appl., 158(1):269–284, 1991. shza11 [4927] A. Zayed and M. Shubov. Sampling theorem for bandlimited Hardy space functions generated by Regge problem. Appl. Comput. Harmon. Anal., 31(1):125 – 142, 2011. za98-2 [4928] A. I. Zayed. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Processing Letters, 5(4):101–103, 1998. ze10 [4929] E. Zehnder. Lectures on Dynamical Systems Hamiltonian Vector Fields and Symplectic Capacities. EMS Textbooks in Mathematics. Z¨ urich: European Mathematical Society (EMS). x, 353 p., 2010. ze06 [4930] E. Zeidler. Quantum Field theory I: Basics In mathematics and Physics A Bridge Between Mathematicians And Physicists. Berlin: Springer. xxiv, 1020 p. EUR 96.26 and SFR 152.50, 2006. ze09 [4931] E. Zeidler. Quantum Field Theory II: Quantum Electrodynamics A Bridge Between Mathematicians and Physicists. Berlin: Springer. xxxvii, 1101 p., 2009. 435 ze11 [4932] E. Zeidler. Quantum Field theory III: Gauge theory A Bridge Between Mathematicians And Physicists. Berlin: Springer. xxxii, 1126 p., 2011. ze12 [4933] A. Zeiser. Wavelet approximation in weighted Sobolev spaces of mixed order with applications to the electronic Schr¨odinger equation. Constr. Approx., 35(3):293–322, 2012. ze96 [4934] S. Zelditch. Quantum ergodicity of C ∗ dynamical systems. Comm. Math. Phys., 177(2):507–528, 1996. ze94 [4935] A. Zell. Simulation of neural nets. Bonn: Addison-Wesley Publishing Company. 624 p., 1994. meze05 [4936] T. Zemen and C. Mecklenbr¨auker. Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Trans. Signal Process., 53:3597–3607, Sep. 2005. ze05 [4937] A. Zettl. Sturm-Liouville theory, volume 121 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. ze82 [4938] H. Zettl. Ideals in Hilbert modules and invariants under strong Morita equivalence of C ∗ -algebras. Archiv der Mathematik, 39(1):69–77, 1982. zh00 [4939] B. Zhang. Commutator estimates, Besov spaces and scattering problems for the acoustic wave propagation in perturbed stratified fluids. Math. Proc. Cambridge Philos. Soc., 128(1):177–192, 2000. olzezh07 [4940] B. Zhang, J. Zerubia, and J. Olivo Marin. Gaussian approximations of fluorescence microscope point-spread function models. Applied Optics, 46:1819–1829, 2007. zh02-4 [4941] C. Zhang. A characterization of pseudo almost periodic functions in Fourier analysis. Acta Anal. Funct. Appl., 4(2):110–114, 2002. zh13 [4942] C. Zhang. Strichartz estimates in the frame of modulation spaces. Nonlinear Anal., 78:156–167, 2013. zh14 [4943] H. Zhang. Multidimensional Analytic Signals and the Bedrosian Identity. Int. Equ. Oper. Theory, 78(3):301–321, 2014. 436 chlitazh04 [4944] H. Zhang, J. Chen, Y. Tang, and S. Li. Analysis of PilotSymbol Aided Channel Estimation for MIMO-OFDM Systems. Proc. ICCCAS-2004, 1:299–303, Jun. 2004. krmozh09 [4945] H. Zhang, J. Moura, and B. Krogh. Dynamic field estimation using wireless sensor networks: tradeoffs between estimation error and communication cost. IEEE Trans. Signal Process., 57(6):2383–2395, 2009. zhzh11 [4946] H. Zhang and J. Zhang. Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products. Appl. Comput. Harmon. Anal., 31(1):1–25, 2011. pazh08-1 [4947] J. Zhang and A. Papandreou Suppappola. Compressive sensing and waveform design for the identification of linear time-varying systems. pages 3865 – 3868, Las Vegas, NV, April 2008. hozh12 [4948] J.-F. Zhang and S.-P. Hou. The generalization of the Poisson sum formula associated with the linear canonical transform. J. Appl. Math., pages Art. ID 102039, 9, 2012. kazh10 [4949] K. Zhang and J. Kang. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourierdomain OCT system. Optics express, 18(11):11772–11784, 2010. liluzh11 [4950] K. Zhang, K. Zhang, C. Liu, and Y. Lu. Toeplitz operators with BMO symbols on the weighted Bergman space of the unit ball. Acta Mathematica Sinica, 27(11):2129–2142, 2011. zh11-2 [4951] T. Zhang. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Trans. Inform. Theory, 57:6215–6221, Sep. 2011. brbuoszh10 [4952] X. Zhang, M. Burger, X. Bresson, and S. Osher. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci., 3(3):253–276, 2010. buoszh11 [4953] X. Zhang, M. Burger, and S. Osher. A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput., 46:20–46, 2011. 437 dogulireyazhzh97 [4954] Y. Zhang, B. Gu, B. Dong, G. Yang, H. Ren, X. Zhang, and S. Liu. Fractional Gabor transform. Optics letters, 22(21):1583–1585, 1997. lizh14 [4955] Y. Zhang and Y. Li. Rational time-frequency multi-window subspace Gabor frames and their Gabor duals. Science China Mathematics, 57(1):145–160, 2014. zh05-3 [4956] Z. Zhang. Characterization of compact support of Fourier transform for orthonormal wavelets of l2 ( d ). Acta Math. Sin. (Engl. Ser.), 21(4):855–864, 2005. zhzh00 [4957] Z. Zhang and W. Zheng. Multiplier theorems for special Hermite expansions on C n . Sci. China Ser. A, 43(7):685–692, 2000. hezhzh04 [4958] C. Zhao, M. He, and X. Zhao. Analysis of transient waveform based on combined short time Fourier transform and wavelet transform. In Power System Technology, 2004. PowerCon 2004. 2004 International Conference on, volume 2, pages 1122–1126, 2004. litawazh09 [4959] J. Zhao, R. Tao, Y. Li, and Y. Wang. Uncertainty principles for linear canonical transform. IEEE Trans. Signal Process., 57(7):2856– 2858, 2009. zh12-1 [4960] R. Zhao. A similarity invariant and the commutant of some multiplication operators on the Sobolev disk algebra. Int. J. Math. Math. Sci., 2012:17, 2012. suzh13 [4961] Z. Zhao and W. Sun. Homogeneous approximation property for wavelet frames with matrix dilations. II. Acta Math. Sin. (Engl. Ser.), 29(1):183–192, 2013. nerarozh11 [4962] M. Zhariy, A. Neubauer, M. Rosensteiner, and R. Ramlau. Cumulative wavefront reconstructor for the Shack-Hartmann sensor. Inverse Problems and Imaging (IPI), 5(4):893–913, 2011. dazh11 [4963] B. Zheng and B. Dai. A meshless local moving Kriging method for two-dimensional solids. Appl. Math. Comput., 218(2):563 – 573, 2011. zh96-2 [4964] D. Zheng. Semi-commutators of Toeplitz operators on the Bergman space. Integr. Equ. Oper. Theory, 25(3):347–372, 1996. 438 mcmuzh93 [4965] F.-C. Zheng, S. McLaughlin, and B. Mulgrew. Blind equalization of nonminimum phase channels: higher order cumulant based algorithm. IEEE Trans. Signal Process., 41(2):681–691, Feb. 1993. tozh97 [4966] H. Zheng and L. Tong. Blind Channel Estimation Using the SecondOrder Statistics: Asymptotic Performance and Limitations. IEEE Trans. Signal Process., 45(8):2060–2071, Aug. 1997. zh03-1 [4967] S. Zheng. Besov spaces for the Schroedinger operator with barrier potential. PhD thesis, 2003. chsuzh06 [4968] S. Zheng, W. Chen, and X. Su. Adaptive windowed Fourier transform in 3-D shape measurement. Opt. Eng., 45(6):063601–063601, 2006. zh11-1 [4969] V. V. Zhikov. Homogenization of a NavierStokes-type system for electrorheological fluid. Complex Variables and Elliptic Equations, 56(79):545–558, 2011. wezhXX [4970] J. Zhong and J. Weng. Dilating Gabor transform for the fringe analysis of 3-D shape measurement. Optical Engineering, 2004, 43(4), 2004. chzh11 [4971] Y. Zhong and J. Chen. Modulation space estimates for the fractional integral operators. Sci. China, Math., 54(7):1479–1489, 2011. xuzh14 [4972] H. Zhou and Z. Xu. The lower bound of the PCM quantization error in high dimension. Appl. Comput. Harmon. Anal., 2014. gowazh11 [4973] N. Zhou, Y. Wang, and L. Gong. Novel optical image encryption scheme based on fractional Mellin transform. Optics communications, 284(13):3234–3242, 2011. chgowayazh12 [4974] N. Zhou, Y. Wang, L. Gong, X. Chen, and Y. Yang. Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Optics & Laser Technology, 44(7):2270–2281, 2012. adzh03 [4975] Z. Zhou and H. Adeli. Time-Frequency Signal Analysis of Earthquake Records Using Mexican Hat Wavelets. Computer-Aided Civil and Infrastructure Engineering, 18(5):379–389, 2003. 439 hulizh07 [4976] F. Zhu, H. Li, and Y. Huang. Characterization of compactly support of Fourier transform for m-band scaling function and orthogonal wavelets. J. Ningxia Univ., Nat. Sci. Ed., 28(3):202–205, 2007. chhusozh11 [4977] H. Zhu, Y. Chen, S. Song, and H. Hu. Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schr¨odinger equations. Applied Numerical Mathematics, 61(3):308 – 321, 2011. zh93 [4978] K. Zhu. Zeros of functions in Fock spaces. Complex Var. Theory Appl., 21(1-2):87–98, 1993. zh94 [4979] K. Zhu. Interpolating sequences for the Bergman space. The Michigan Mathematical Journal, 41(1):73–86, 1994. zh11-3 [4980] K. Zhu. Invariance of Fock spaces under the action of the Heisenberg group. Bull. Sci. Math., 135(5):467–474, 2011. zh12 [4981] K. Zhu. Analysis on Fock Spaces. Graduate Texts in Mathematics 263. Springer, 2012. chzh08 [4982] M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical report, 2008. luzhzh07 [4983] Z. Zhu, H. Lu, and Y. Zhao. Scale multiplication in odd Gabor transform domain for edge detection. Journal of Visual Communication and Image Representation, 18(1):68 – 80, 2007. zezi96 [4984] M. Zibulski and Y. Zeevi. Signal- and image-component separation by a multi-window Gabor-type scheme. In Pattern Recognition, 1996., Proceedings of the 13th International Conference on,, volume 2, pages 835 –839, Vienna , Austria, aug 1996. IEEE. bacalezi07 [4985] T. Zijian, R. Cannizzaro, G. Leus, and P. Banelli. Pilot-Assisted Time-Varying Channel Estimation for OFDM Systems. IEEE Trans. Signal Process., 55(5):2226–2238, May 2007. zi05-1 [4986] J. Zinn Justin. Path Integrals in Quantum Mechanics. Oxford University Press, 2005. 440 zi11 [4987] P. Ziolo. Geometric characterization of interpolation in the space of Fourier-Laplace transforms of ultradistributions of Roumieu type. Collect. Math., 62(2):161–172, 2011. flzi03 [4988] B. Zitova and J. Flusser. Image registration methods: a survey. Image and vision computing, 21(11):977–1000, 2003. zo86 [4989] C. Zorko. Morrey space. Proc. Amer. Math. Soc., 98(4):586–592, 1986. liwazhzo05 [4990] H. Zou, D. Wang, X. Zhang, and Y. Li. Nonnegative timefrequency distributions for parametric time-frequency representations using semi-affine transformation group. Signal Process., 85(9):1813– 1826, 2005. zo06-1 [4991] Y. Zou. Gaussian binomials and the number of sublattices. Acta Crystallographica Section A: Foundations of Crystallography, 62(5):409– 410, 2006. mo12 [4992] Zouhair Mouayn. Une famille de transformations de Bargmann circulaires. C. R., Math., Acad. Sci. Paris, 350(23-24):1017–1022, 2012. zu03 [4993] W. Zuniga Galindo. Fundamental solutions of pseudo-differential operators over p-adic fields. Rend. Sem. Mat. Univ. Padova, 109:241– 245, 2003. zu08 [4994] W. Zuniga Galindo. Parabolic equations and Markov processes over p-adic fields. Potential Anal., 28(2):185–200, 2008. zw12 [4995] M. Zworski. Semiclassical Analysis. AMS, 2012. slzy98 [4996] K. Zyczkowski and W. Slomczynski. The Monge distance between quantum states. Journal of Physics A: Mathematical and General, 31:9095, 1998. slzy01 [4997] K. Zyczkowski and W. Slomczynski. The Monge metric on the sphere and geometry of quantum states. Journal of Physics A: Mathematical and General, 34:6689, 2001. zy43 [4998] A. Zygmund. Complex methods in the theory of Fourier series. Bull. Amer. Math. Soc., 49:805–822, 1943. 441 zy75 [4999] A. Zygmund. The role of Fourier series in the development of analysis. Hist. Math., 2:591–594, 1975. bocazy10 [5000] A. Zymnis, S. Boyd, and E. Candes. Compressed sensing with quantized measurements. IEEE Signal Process. Letters, 17(2):149 –152, 2010. 442
© Copyright 2025