References

February 6, 2015
BibTeX-File nhgbib [3].bib:
References
XX-7
[1] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: IEEE Standard 802.16e.
78
[2] Constructive polynomial approximation in Sobolev spaces. 41:31–44,
1978.
92
[3] Information Technology
Digital Compression and Coding of
Continuous-Tone Still Images
Requirements and Guidelines,
ISO/IEC 10918-1, ITU T.81. 1992.
XX-3
[4] IEEE Standard 802.11a-1999(2003): Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, 2003.
XX-4
[5] IEEE Standard 802.11g-2003: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, 2003.
08
[6] 3GPP TS36.300: Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN): Overall Description. 2008.
09-2
[7] 3GPP Release 7 HSPA+ (Evolved HSPA) Network Migration Analysis. Jan. 2009.
XX-6
[8] IEEE Standard 802.11n-2009: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, 2009.
XX-5
[9] IEEE Standard 802.16-2009: Air Interface for Broadband Wireless
Access Systems, 2009.
ackosa11
[10] Asymptotic behavior of distributions and the short-time Fourier transform, volume XVIII, 2011.
fapascso11
[11] Generic Zernike-based Surface representation of Measured Corneal
Surface Data, Sensors and Actuators for Medical Systems and Medical Specific Instrumentation II, Poster Session I, Bari, Italy, 29-31
May, 2011, 2011.
1
12
[12] Overview of 3GPP Release 12 V0.0.3. 2012.
aaki09
[13] D. Aalto and J. Kinnunen. Maximal functions in Sobolev spaces. In
Sobolev Spaces in Mathematics. I, volume 8 of Int. Math. Ser. (N.
Y.), pages 25–67. 2009.
aachXX
[14] R. M. Aarts and Cheapviagrasoftflavvoured67ifs.
izqgoodCheapViagraSoftFlavouredelz.
K-Theory,
http://www.erexion.org/products/viagra–soft–flavoured.h.
Vrrylpages
abdo12-1
[15] E. Abakumov and E. Doubtsov. Reverse estimates in growth spaces.
Math. Z., 271(1-2):399–413, 2012.
abot11
[16] A. Abanin and o. others. Pre-dual of the function algebra A−∞ (D)
and representation of functions in Dirichlet series. Complex Analysis
and Operator Theory, 5(4):1073–1092, 2011.
ab12-1
[17] A. Abbott. De-quantisation of the quantum Fourier transform. Appl.
Math. Comput., 219(1):3–13, 2012.
abbe10
[18] B. Abdous and A. Berlinet. Reproducing kernel Hilbert spaces and
local polynomial estimation of smooth functionals. In Progress in
analysis and its applications, pages 249–256. World Sci. Publ., Hackensack, 2010.
abpi94
[19] S. Abdullah and S. Pilipovic. Bounded subsets in spaces of distributions of lp -growth. Hokkaido Math. J., 23(1):51–54, 1994.
abneto04
[20] A. Abele, H. Neunzert, and R. Tobies. Traumjob Mathematik!
Berufswege von Frauen und M¨annern in der Mathematik. Basel:
Birkh¨auser, 2004.
abst65
[21] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions.
Dover, New York, 1965.
ab76
[22] J. Abreu. H-valued generalized functions and orthogonally scattered
measures. Adv. Math., 19:382–412, 1976.
abco86
[23] J. L. Abreu and A. Coria. A condition for a Banach space to be
Hilbert. Res. program 18th Natl. Congr. Mex. Math. Soc., Proc.,
Merida/Mex. 1984, Aportaciones Mat., Comun. 1, 1-7 (1986)., 1986.
2
ab06
[24] L. D. Abreu. Completeness, special functions and uncertainty principles over q-linear grids. J. Phys. A, Math. Gen., 39(47):14567–14580,
2006.
ab08
[25] L. D. Abreu. The reproducing kernel structure arising from a combination of continuous and discrete orthogonal polynomials into Fourier
systems. Constr. Approx., 28(2):219–235, 2008.
ab10-1
[26] L. D. Abreu. On the structure of Gabor and super Gabor spaces.
Monatsh. Math., 161(3):237–253, 2010.
ab10
[27] L. D. Abreu. Sampling and interpolation in Bargmann-Fock spaces of
polyanalytic functions. Appl. Comput. Harmon. Anal., 29(3):287–302,
2010.
ab11
[28] L. D. Abreu. Wavelet frames with Laguerre functions. Comptes Rendus Mathematique, 349:255 – 258, 2011.
ab12
[29] L. D. Abreu. Super-wavelets versus Poly-Bergman spaces. Integr.
Equ. Oper. Theory, 73(2):177–193, 2012.
abba12
[30] L. D. Abreu and A. S. Bandeira. Landau’s necessary density conditions for the Hankel transform. J. Funct. Anal., 262(4):1845–1866,
2012.
abciva12
[31] L. D. Abreu, O. Ciaurri, and J. L. Varona. Bilinear biorthogonal
expansions and the Dunkl kernel on the real line. Exposition. Math.,
30(1):32–48, 2012.
abdo12
[32] L. D. Abreu and M. D¨orfler. An inverse problem for localization
operators. Inverse Problems, 28(11):115001, 16, 2012.
abfe14
[33] L. D. Abreu and H. G. Feichtinger. Function spaces of polyanalytic
functions, pages 1–38. Birkhauser, 2014.
abgi14
[34] L. D. Abreu and J. E. Gilbert. Wavelet-type frames for an interval.
Exposition. Math., 32(3):274–283, 2014.
abgr12
[35] L. D. Abreu and K. Gr¨ochenig. Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl.
Anal., 91:1981–1997, 2012.
3
abgrro14
[36] L. D. Abreu, K. Gr¨ochenig, and J. L. Romero. On accumulated spectrograms. Trans. Amer. Math. Soc., To appear, 2014.
abpe14
[37] L. D. Abreu and J. M. Pereira. Measures of localization and quantitative Nyquist densities. Appl. Comput. Harmon. Anal., accepted,
2014.
ab11-1
[38] F. Abtahi. Lebesgue weighted Lp -algebra on locally compact groups.
Acta Math. Hungar., 133(4):324–331, 2011.
ab12-2
[39] F. Abtahi. Weighted Lp −spaces on locally compact groups. 2012.
ab14
[40] F. Abtahi. Generalized biprojectivity and biflatness of abstract Segal
algebras. Banach J. Math. Anal., 8(2):107 – 117, 2014.
abamlore12
[41] F. Abtahi, H. Amini, H. Lotfi, and A. Rejali. An arbitrary intersection
of Lp -spaces. Bull. Austral. Math. Soc., 85(3):433–445, 2012.
abnare12
[42] F. Abtahi, I. Nasr, and A. Rejali. Bochner algebras and their compact
multipliers. Math. Slovaca, 62(3):479–486, 2012.
abnare10
[43] F. Abtahi, R. Nasr Isfahani, and A. Rejali. Weighted Lp -conjecture
for locally compact groups. Period. Math. Hungar., 60(1):1–11, 2010.
abto07
[44] W. Abu Shammala and A. Torchinsky. The Hardy-Lorentz spaces
H p,q (Rn ). Studia Math., 182(3):283–294, 2007.
ac04
[45] R. Aceska. Analytic wavelets and multiresolution analysis: a note on
certain orthogonality conditions. Proceedings, Faculty of Mechanical
Engineering, Skopje, 23(1):41–47, 2004.
ac12
[46] R. Aceska. Multi-Wilson systems. Proc. the 8th Int. Symposium on
Geometric Function Theory and Applications, 2012.
acaldape13
[47] R. Aceska, A. Aldroubi, J. Davis, and A. Petrosyan. Dynamical
Sampling in Shift-Invariant Spaces. AMS Contemporary Mathematics
(CONM), 2013.
acdi96
[48] R. Aceska and D. Dimitrovski. Improper integral Theodorescu. Annuaire, Facult´e des Sciences de l’Universit´e ’Sv. Kiril et Metodij’
L’Institute des Math´ematiques, 1996.
4
acfe12
[49] R. Aceska and H. G. Feichtinger. Reproducing kernels and variable
bandwidth. J. Funct. Spaces Appl., (art. no. 469341), 2012.
acok13
[50] R. Aceska and K. Okoudjou. Scaling the multi-Wilson frame. 2013.
acta14
[51] R. Aceska and S. Tang. Dynamical Sampling in hybrid Shift Invariant
Spaces. 2014.
ac81
[52] A. D. Acosta. Inequalities for B-valued random vectors with applications to the strong law of large numbers. Ann. Probab., 9(1):157–161,
1981.
ad14
[53] D. R. Adams. Mock Morrey spaces.
142(3):881–886, 2014.
Proc. Amer. Math. Soc.,
adxi03
[54] D. R. Adams and J. Xiao. Strong type estimates for homogeneous
Besov capacities. Math. Ann., 325(4):695–709, 2003.
adxi04
[55] D. R. Adams and J. Xiao. Nonlinear potential analysis on Morrey
spaces and their capacities. Indiana Univ. Math. J., 53(6):1629–1663,
2004.
adxi11
[56] D. R. Adams and J. Xiao. Morrey potentials and harmonic maps.
Comm. Math. Phys., 308(2):439–456, 2011.
adxi12-1
[57] D. R. Adams and J. Xiao. Morrey Potentials for Mixed Laplace Systems. arxiv, 2012.
adxi12
[58] D. R. Adams and J. Xiao. Morrey spaces in harmonic analysis. Arkiv
f¨or Matematik, 50(2):201–230, 2012.
ad08-1
[59] J. Adams. Guide to the Atlas software: computational representation
theory of real reductive groups. Arthur, James (ed.) et al., Representation theory of real reductive Lie groups. AMS-IMS-SIAM joint
summer research conference, Snowbird, UT, USA, June 4–8, 2006.
Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 472, 1-37 (200, 2008.
adfo03-1
[60] R. A. Adams and J. Fournier. Sobolev spaces. 2nd ed. Pure and
Applied Mathematics 140. New York, NY: Academic Press. xiii, 2003.
5
ad11
[61] B. Adcock. On the convergence of expansions in polyharmonic eigenfunctions. J. Approx. Theory, 163(11):1638–1674, 2011.
adha11-2
[62] B. Adcock and A. C. Hansen. Reduced consistency sampling in Hilbert
spaces. In Proceedings of the 9th International Conference on Sampling Theory and Applications (SampTA), 2011.
adha11-1
[63] B. Adcock and A. C. Hansen. Sharp bounds, optimality and a geometric interpretation for generalised sampling in Hilbert spaces. preprint,
2011.
adha12
[64] B. Adcock and A. C. Hansen. A generalized sampling theorem for
stable reconstructions in arbitrary bases. J. Fourier Anal. Appl.,
18(4):685–716, 2012.
adha12-1
[65] B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces
and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon.
Anal., 32(3):357–388, 2012.
adhahete11
[66] B. Adcock, A. C. Hansen, E. Herrholz, and G. Teschke. Generalized
sampling, infinite-dimensional compressed sensing, and semi-random
sampling for asymptotically incoherent dictionaries. preprint, 2011.
adhapo12
[67] B. Adcock, A. C. Hansen, and C. Poon. Beyond consistent reconstructions: Optimality and sharp bounds for generalized sampling,
and application to the uniform resampling problem. Technical report,
2012.
adhaporo13
[68] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the
coherence barrier: A new theory for compressed sensing. arXiv, 2013.
adhaporo13-1
[69] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the
coherence barrier: asymptotic incoherence and asymptotic sparsity in
compressed sensing. preprint, 2013.
adelemgrjapl12
[70] A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley. Audio inpainting. Audio, Speech, and Language Processing,
IEEE Transactions on, 20(3):922–932, 2012.
ad04
[71] S. L. Adler. Quantum theory as an emergent phenomenon. Cambridge
University Press, Cambridge, 2004.
6
ad94
[72] G. Adomian. Solving Frontier Problems of Physics: the Decomposition Method. Fundamental Theories of Physics. 60. Dordrecht: Kluwer
Academic Publishers. xiii, 352 p., 1994.
afbifi10
[73] M. Afonso, J. Bioucas Dias, and M. Figueiredo. Fast image recovery
using variable splitting and constrained optimization. IEEE Trans.
Image Process., 19(9):2345–2356, 2010.
agergr97
[74] T. Agoh, P. Erdos, and A. Granville. Primes at a (somewhat lengthy)
glance. Amer. Math. Monthly, 104(10):943–945, 1997.
aganca14
[75] E. Agora, J. Antezana, and C. Cabrelli. Multi-tiling sets, Riesz bases,
and sampling near the critical density in LCA groups. arXiv, 2014.
agna04
[76] M. Agranovsky and E. Narayanan. Lp -integrability, supports of
Fourier transforms and uniqueness for convolution equations. J.
Fourier Anal. Appl., 10(3):315–324, 2004.
agervaze02
[77] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search
in lattices. IEEE Trans. Information Theory, 48(8):2201–2214, 2002.
agor10
[78] M. I. Aguilar Canestro and S. Ortega. Boundedness of generalized
Hardy operators on weighted amalgam spaces. Math. Inequal. Appl.,
13(2):305–318, 2010.
agor11
[79] M. I. Aguilar Canestro and P. Ortega Salvador. Boundedness of positive operators on weighted amalgams. J. Inequal. Appl., 13:12, 2011.
ahbrel06
[80] M. Aharon, M. Elad, and A. Bruckstein. The K-SVD: An algorithm
for designing of overcomplete dictionaries for sparse representation.
IEEE Trans. Signal Process., 54(11):4311–4322, 2006.
ahro05
[81] Y. Aharonov and D. Rohrlich. Quantum Paradoxes - Quantum Theory
for The Perplexed. Wiley-VCH, 2005.
ahyozh09
[82] P. Ahern, E. Youssfi, and K. Zhu. Compactness of Hankel operators on
Hardy-Sobolev spaces of the polydisk. J. Operator Theory, 61(2):301–
312, 2009.
armu05
[83] K. Ahlander and H. Munthe Kaas. Applications of the generalized
Fourier transform in numerical linear algebra. Numer. Algorithms,
45(4):819–850, 2005.
7
ahwi02
[84] R. Ahlswede and A. Winter. Strong converse for identification via
quantum channels,. IEEE Trans. Inform. Theory, 48(3):569 –579,
2002.
ah14
[85] A. Ahmed. A general class of weighted Banach function spaces. J.
Anal. Numer. Theory, 2:25–30, 2014.
ahrero12
[86] A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using
convex programming. preprint, 2012.
ahro13
[87] A. Ahmed and J. Romberg. Compressive multiplexing of correlated
signals. preprint, 2013.
ailaplve14
[88] A. Ai, A. Lapanowski, Y. Plan, and R. Vershynin. One-bit compressed
sensing with non-Gaussian measurements. Linear Algebra and Appl.,
441:222–239, 2014.
ai13
[89] P. Aiena. Algebraically paranormal operators on Banach spaces. Banach J. Math. Anal., 7(2):136–145, 2013.
aizi10
[90] M. Aigner and G. Ziegler. Proofs from The Book. Springer-Verlag,
Berlin, Fourth edition, 2010.
aiergo80
[91] J. G. Aiken, J. A. Erdos, and J. A. Goldstein. On L¨owdin orthogonalization. International Journal of Quantum Chemistry, 18(4):1101–
1108, 1980.
aich09
[92] N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform
and approximate nearest neighbors. SIAM J. Comput., 39(1):302–322,
2009.
aili09
[93] N. Ailon and E. Liberty.
Fast Dimension Reduction Using
Rademacher Series on Dual BCH Codes. Discrete & Computational
Geometry, 42(4):615–630, 2009.
aili11
[94] N. Ailon and E. Liberty. Almost optimal unrestricted fast JohnsonLindenstrauss transform. In Symposium on Discrete Algorithms
(SODA), 2011.
ai85
[95] H. Aimar. Singular integrals and approximate identities on spaces of
homogeneous type. Trans. Amer. Math. Soc., 292:135–153, 1985.
8
aibeia07
[96] H. Aimar, A. Bernardis, and B. Iaffei. Multiresolution approximations
and unconditional bases on weighted Lebesgue spaces on spaces of
homogeneous type. J. Approx. Theory, 148(1):12–34, 2007.
aima07
[97] H. Airault and P. Malliavin. Invariant measures for OrnsteinUhlenbeck operators. In Mathematical Analysis of Random Phenomena. Proceedings of the International Conference, Hammamet,
Tunisia, September 12–17, 2005, pages 23–29. Hackensack, NJ: World
Scientific, 2007.
ajengoguknlalyro12
[98] V. Ajdacic Gross, D. Knopfli, K. Landolt, M. Gostynski, S. Engelter,
P. Lyrer, F. Gutzwiller, and W. Rossler. Death has a preference for
birthdays-an analysis of death time series. Annals of Epidemiology,
22(8):603–606, 2012.
akch02
[99] A. Akan and L. Chaparro. Discrete rotational Gabor transform. In
Time-Frequency and Time-Scale Analysis, 1996., Proceedings of the
IEEE-SP International Symposium on, pages 169–172, 2002.
akayse05
[100] E. Akay, E. Sengul, and E. Ayanoglu. Performance Analysis of Beamforming for MIMO OFDM with BICM. volume 1, pages 613–617,
May 2005.
akbo02
[101] O. Akay and G. Boudreaux Bartels. Fractional convolution and correlation via operator methods and an application to detection of linear
FM signals. IEEE Trans. Signal Process., 49(5):979–993, 2002.
akekseta11
[102] A. Akbulut, I. Ekincioglu, A. Serbetci, and T. Tararykova. Boundedness of the anisotropic fractional maximal operator in anisotropic
local Morrey-type spaces. Eurasian Math. J., 2(2):5–30, 2011.
akgumu13
[103] A. Akbulut, V. Guliev, and S. Muradova. On the boundedness of the
anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces. Eurasian
Math. J., 4(1):7–20, 2013.
akni99
[104] H. Akcay and B. Ninnes. Orthonormal basis functions for continuoustime systems and lp convergence. Mathematics of Control, Signals,
and Systems (MCSS), 12:295–305, 1999.
9
akwa81
[105] C. Akemann and M. Walter. Unbounded negative definite functions.
Canad. J. Math., 33(4):862–871, 1981.
ak88
[106] N. Akhiezer. Lectures on integral transforms. Transl. from the Russian
by H. H. McFaden. Translations of Mathematical Monographs, 70.
American Mathematical Society (AMS), 1988.
akgl93
[107] N. Akhiezer and I. Glazman. Theory of linear operators in Hilbert
space. Transl. from the Russian and with a preface by Merlynd Nestell
(Two volumes bound as one). Repr. of the 1961 and 1963 transl. New
York, NY: Dover Publications, 1993.
ak08
[108] G. Akishev. Approximation of function classes in Lorentz spaces with
mixed norm. East J. Approx., 14(2):193–214, 2008.
al05-1
[109] H. Al Qassem. Weighted Lp estimates for a rough maximal operator.
Kyungpook Math. J., 45(2):255–272, 2005.
almave12
[110] R. Alabern, J. Mateu, and J. Verdera. A new characterization of
Sobolev spaces on Rn . Math. Ann., 354(2):589–626, 2012.
le76-2
[111] L. Alan.J. On band limited stochastic processes. SIAM J. Appl.
Math., 30(2):269–277, 1976.
albadede11
[112] G. Alberti, L. Balletti, M. De, and V. De. Signal Analyses in 2D, Part
I. Arxiv preprint arXiv:1109.6789, 2011.
alevsk10
[113] S. A. Albeverio, S. Evdokimov, and M. Skopina. p-adic multiresolution
analysis and wavelet frames. J. Fourier Anal. Appl., 16(5):693–714,
2010.
algokh97
[114] S. A. Albeverio, E. Gordon, and A. Khrennikov. Finite dimensional
approximations of p-adic pseudodifferential operators. Mat. Model.,
9(10), 1997.
algokh00
[115] S. A. Albeverio, E. Gordon, and A. Khrennikov. Finite-dimensional
approximations of operators in the Hilbert spaces of functions on locally compact Abelian groups. Acta Appl. Math., 64(1):33–73, 2000.
alhize92
[116] S. A. Albeverio, A. Hilbert, and E. Zehnder. Hamiltonian systems
with a stochastic force:nonlinear versus linear, and a Girsanov formula. Stochastics and Stochastic Reports, 39(2-3):159–188, 1992.
10
alkhsh11
[117] S. A. Albeverio, A. Khrennikov, and V. Shelkovich. The Cauchy problems for evolutionary pseudo-differential equations over p-adic field
and the wavelet theory. J. Math. Anal. Appl., 375(1):82–98, 2011.
alkhsh10
[118] S. A. Albeverio, A. Y. Khrennikov, and V. M. Shelkovich. Theory
of p-adic distributions. Linear and nonlinear models. London Mathematical Society Lecture Note Series 370. Cambridge University Press,
2010.
almaru92
[119] S. A. Albeverio, Z. Ma, and M. R¨ockner. A Beurling-Deny type structure theorem for Dirichlet forms on general state spaces. Ideas and
methods in mathematical analysis, stochastics, and applications (Oslo,
1988), pages 115–123, 1992.
alegse08
[120] B. Albrecht, M. Sergei, and A. Egor. Pushing the envelope of the test
functions in the Szeg¨o and AvramParter theorems. Linear Algebra
and its Applications, 429(1):346–366, 2008.
alalbe96
[121] J. Alda, J. Alonso, and E. Bernabeu. Aberrated laser beams in terms
of Zernike polynomials. In J. Alda, J. Alonso, E. Bernabeu, M. Morin,
and A. Giesen, editors, Third International Workshop on Laser Beam
and Optics Characterization, volume 2870 of Laser beam amplitude
and phase, pages 52–61, Quebec City, Canada, 1996. SPIE.
akalchdu10
[122] S. Aldirmaz, L. Durak Ata, A. Akan, and L. Chaparro. A SignalAdaptive Discrete Evolutionary Transform. In Proceedings of the European
Signal Processing Conference, pages 1756–1760, 2010.
alsa97
[123] R. Aldrovandi and L. Saeger. Projective Fourier duality and Weyl
quantization. Internat. J. Theoret. Phys., 36(3):573–612, 1997.
alpe11
[124] A. Aleksandrov and V. V. Peller. Trace formulae for perturbations of
class sm . J. Spectr. Theory, 1(1):1–26, 2011.
alglgo01
[125] M. Alekseev, L. Glebskii, and E. I. Gordon. On approximations of
groups, group actions and Hopf algebras. J. Math. Sci., 107(5):4305–
4332, 2001.
alco12
[126] A. Aleman and O. Constantin. The Bergman projection on vectorvalued L2 -spaces with operator-valued weights. J. Funct. Anal.,
262(5):2359–2378, 2012.
11
alpe12
[127] A. Aleman and K.-M. Perfekt. Hankel forms and embedding theorems in weighted Dirichlet spaces. Internat. Math. Res. Notices,
2012(19):4435–4448, 2012.
alpore13
[128] A. Aleman, S. Pott, and M. Reguera. Sarason Conjecture on the
Bergman space. arXiv preprint arXiv:1304.1750, 2013.
alrisu96
[129] A. Aleman, S. Richter, and C. Sundberg. Beurling’s theorem for the
Bergman space. Acta Math., 177(2):275–310, 1996.
alrisu02
[130] A. Aleman, S. Richter, and C. Sundberg. The majorization function
and the index of invariant subspaces in the Bergman spaces. J. Anal.
Math., 86:139–182, 2002.
alarfami10
[131] S. Alesker, S. Artstein Avidan, D. Faifman, and V. Milman. A characterization of product preserving maps with applications to a characterization of the Fourier transform. Illinois J. Math., 54(3):1115–1132
(2012), 2010.
alarmi09
[132] S. Alesker, S. Artstein Avidan, and V. Milman. A characterization
of the Fourier transform and related topics. Alexandrov, Alexei (ed.)
et al., Linear and complex analysis. Dedicated to V. P. Havin on the
occasion of his 75th birthday. Providence, RI: American Mathematical Society (AMS). Translations. Series 2. American Mathematical
Society 226; Advances in the Ma, 2009.
albakomamethtrwa11
[133] T. Alexandrov, S. Meding, D. Trede, J. Kobarg, B. Balluff, A. Walch,
H. Thiele, and P. Maass. Super-resolution segmentation of imaging
mass spectrometry data: Solving the issue of low lateral resolution.
Journal of Proteomics, 75(1):237 – 245, 2011.
alkomapizh10
[134] V. Alexandrov, S. Piskunov, Y. Zhukovskii, E. Kotomin, and J. Maier.
First-principles modeling of oxygen interaction with SrTiO3 (001) surface: Comparative density-functional LCAO and plane-wave study.
Arxiv preprint arXiv:1005.4833, 2010.
algrpo94
[135] W. Alford, A. Granville, and C. Pomerance. There are infinitely many
Carmichael numbers. Ann. of Math. (2), 139(3):703–722, 1994.
12
alanbaga12
[136] S. Ali, J.-P. Antoine, F. Bagarello, and J.-P. Gazeau. Coherent states:
a contemporary panorama. Journal of Physics A: Mathematical and
Theoretical, 45(24):240301, 2012.
alanga91-1
[137] S. Ali, J.-P. Antoine, and J.-P. Gazeau. Square integrability of
group representations on homogeneous spaces II: Coherent and quasicoherent states. The case of the Poincare group. Ann. Inst. Henri
Poincar´e, Phys. Th´eor., 55(4):857–890, 1991.
alanga93-1
[138] S. Ali, J.-P. Antoine, and J.-P. Gazeau. Relativistic quantum frames.
Annals of Physics, 222(1):38–88, 1993.
albaga10
[139] S. Ali, F. Bagarello, and J.-P. Gazeau. Modified Landau levels,
damped harmonic oscillator, and two-dimensional pseudo-bosons.
Journal of mathematical physics, 51(12):123502, 2010.
alem86
[140] S. T. Ali and G. G. Emch. Geometric quantization: modular reduction
theory and coherent states. J. Math. Phys., 27(12):2936–2943, 1986.
al11
[141] Y. Alkhutov. Elliptic problems with nonstandard conditions of
growth: Zhikov’s approach. Complex Variables and Elliptic Equations, 56(7-9):559–571, 2011.
alangipara11
[142] Y. Alkhutov, S. Antontsev, R. Gilbert, A. Pankov, and V. Radulescu.
Preface. Complex Variables and Elliptic Equations, 56(7-9):543–544,
2011.
aldr12
[143] A. Almeida and D. Drihem. Maximal, potential and singular type
operators on Herz spaces with variable exponents. J. Math. Anal.
Appl., 394(2):781–795, 2012.
alha10
[144] A. Almeida and P. H¨ast¨o. Besov spaces with variable smoothness and
integrability. J. Funct. Anal., 258(5):1628–1655, 2010.
alsa06
[145] A. Almeida and S. Samko. Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Funct. Spaces Appl., 4(2):113–
144, 2006.
alsa07
[146] A. Almeida and S. Samko. Pointwise inequalities in variable Sobolev
spaces and applications. Z. Anal. Anwend., 26(2):179–193, 2007.
13
alsa09
[147] A. Almeida and S. Samko. Embeddings of variable Hajlasz-Sobolev
spaces into H¨older spaces of variable order. J. Math. Anal. Appl.,
353(2):489–496, 2009.
alhukhso06
[148] M. Almeida, J. Huguenin, R. Souto, and A. Khoury. Theoretical
investigation of moire patterns in quantum images. J. Modern Opt.,
53(5-6):777–785, 2006.
al95-3
[149] B. Alpert. High-order quadratures for integral operators with singular
kernels. J. Comput. Appl. Math., 60(3):367–378, 1995.
albegivo02
[150] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi. Adaptive solution of
partial differential equations in multiwavelet bases. J. Comput. Phys.,
182(1):149–190, 2002.
alch05
[151] B. Alpert and Y. Chen. A representation of acoustic waves in unbounded domains. Commun. Pure Appl. Anal., 58(10):1358–1374,
2005.
al81
[152] J. Alvarez Alonso. The distribution function in the Morrey space.
Proc. Amer. Math. Soc., 83(4):693–699, 1981.
am89
[153] L. Ambrosio. A compactness theorem for a new class of functions of
bounded variation. Boll. Un. Mat. Ital. B (7), 3(4):857–881, 1989.
am95
[154] L. Ambrosio. A new proof of the SBV compactness theorem. Calc.
Var. Partial Differential Equations, 3(1):127–137, 1995.
amcoma97
[155] L. Ambrosio, A. Coscia, and G. Maso. Fine properties of functions
with bounded deformation. Archive for Rational Mechanics and Analysis, 139(3):201–238, 1997.
amdapa10
[156] L. Ambrosio, P. Da, and D. Pallara. BV functions in a Hilbert space
with respect to a Gaussian measure. Atti Accad. Naz. Lincei Cl. Sci.
Fis. Mat. Natur. Mem. (9) Mat. Appl., 21(4):405–414, 2010.
amgh13
[157] L. Ambrosio and F. Ghiraldin. Compactness of special functions of
bounded higher variation. Anal. Geom. Metr. Spaces, 1:1–30, 2013.
amma14
[158] L. Ambrosio and S. Marino. Equivalent definitions of BV space and of
total variation on metric measure spaces. J. Funct. Anal., 266(7):4150
– 4188, 2014.
14
amsc13
[159] L. Ambrosio and T. Schmidt. Compactness results for normal currents
and the Plateau problem in dual Banach spaces. Proc. Lond. Math.
Soc. (3), 106(5):1121–1142, 2013.
amlomctr13
[160] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on
the edge: Phase transitions in convex programs with random data.
Inform. Inference, 3(3):224–294, 2014.
amhema10
[161] Y. Ameur, N. Makarov, and H. Hedenmalm.
Berezin transform in polynomial Bergman spaces. Commun. Pure Appl. Anal.,
63(12):1533–1584, 2010.
amor12
[162] Y. Ameur and J. Ortega Cerd`a. BeurlingLandau densities of weighted
Fekete sets and correlation kernel estimates. J. Funct. Anal.,
263(7):1825 – 1861, 2012.
am00
[163] I. Amidror. The Theory of the Moire Phenomenon. Computational
Imaging and Vision 15. Dordrecht: Kluwer Academic Publishers,
2000.
am07
[164] I. Amidror. The Theory of the Moir´e Phenomenon Vol. II: Aperiodic
layers. Computational Imaging and Vision 34. Springer, 2007.
am09-1
[165] I. Amidror. The theory of the Moire phenomenon. Volume I: Periodic
layers. 2nd revised and updated ed. Computational Imaging and Vision
38. Springer, 2009.
am13
[166] I. Amidror. Mastering the discrete Fourier transform in one, two or
several dimensions. Pitfalls and artifacts. London: Springer, 2013.
amhe09
[167] I. Amidror and R. Hersch. The role of Fourier theory and of modulation in the prediction of visible Moire effects. J. Modern Opt.,
56(9):1103–1118, 2009.
amhe10
[168] I. Amidror and R. Hersch. Mathematical Moire models and their
limitations. J. Modern Opt., 57(1):23–36, 2010.
anbrto09-1
[169] M. An, A. Brodzik, and R. Tolimieri. Ideal Sequence Design in
Time-Frequency Space. Applied and Numerical Harmonic Analysis.
Birkh¨auser Boston Inc., Boston, MA, 2009.
15
anbrto09
[170] M. An, A. Brodzik, and R. Tolimieri. Zak Transform. Ideal Sequence
Design in Time-Frequency Space, pages 1–17, 2009.
anca09
[171] M. Anastasio and C. Cabrelli. Sampling in a union of frame generated subspace. Sampl. Theory Signal Image Process., 8(3):261–286,
September 2009.
ancapa10
[172] M. Anastasio, C. Cabrelli, and V. Paternostro. Extra invariance
of shift-invariant spaces on LCA groups. J. Math. Anal. Appl.,
370(2):530–537, 2010.
ancapa11
[173] M. Anastasio, C. Cabrelli, and V. Paternostro. Invariance of a shiftinvariant space in several variables. Complex Anal. Oper. Theory,
5(4):1031–1050, 2011.
anchdugh09
[174] G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen. Holographic
wavefront sensor. Opt. Eng., 48(8):085801, 2009.
an04
[175] N. B. Andersen. Real Paley-Wiener theorems for the inverse Fourier
transform on a Riemannian symmetric space. Pacific J. Math.,
213(1):1–13, 2004.
an12
[176] N. B. Andersen. On the Fourier transform of Schwartz functions on
Riemannian symmetric spaces. Submitted on 15 Jun 2012, 2012.
an93
[177] A. Anderson. Quantum canonical transformations and integrability.
Beyond unitary transformations. Physics Letters B, 319(1-3):157–162,
1993.
anbabidedogrhaso99
[178] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, A. Greenbaum, S. Hammarling, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
Third edition, 1999.
anguze10
[179] G. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
anclpo74
[180] J. Anderson, J. Clunie, and C. Pommerenke. On Bloch functions and
normal functions. J. Reine Angew. Math., 270:12–37, 1974.
16
anpa89
[181] J. Anderson and W. Paschke. The rotation algebra. Houston J. Math.,
15(1):1–26, 1989.
anta78
[182] J. Anderson and D. Taylor. A bandwidth-efficient class of signal-space
codes. IEEE Trans. Information Theory, 24(6):703–712, 1978.
ancade11
[183] F. Andersson, M. Carlsson, and H. de. Sparse approximation of functions using sums of exponentials and AAK theory. J. Approx. Theory,
163(2):213–248, 2011.
ancate12
[184] F. Andersson, M. Carlsson, and L. Tenorio. On the Representation
of Functions with Gaussian Wave Packets. J. Fourier Anal. Appl.,
18:146–181, 2012.
andewe12
[185] F. Andersson, M. V. de Hoop, and H. Wendt. Multiscale discrete
approximation of Fourier integral operators. Multiscale Model. Simul.,
10(1):111–145, 2012.
an98-3
[186] M. Andersson. On the vector valued Hausdorff-Young inequality. Ark.
Mat., 36(1):1–30, 1998.
an00
[187] M. Andersson. An inverse problem connected to double orthogonality
in Bergman spaces. Math. Proc. Cambridge Philos. Soc., 128(3):535–
538, 2000.
anknsasm11
[188] M. Andersson, M. Sandborg, O. Smedby, and H. Knutsson. 4D Adaptive Filtering of CT-Heart. In Proceedings of the SSAB Symposium
on Image Analysis, 2011, 2011.
anrare11
[189] P. Andreani, E. Ramos, and R. Vio. Detection of new point sources in
WMAP cosmic microwave background maps at high Galactic latitude
A new technique to extract point sources from CMB maps. Astronomy
& Astrophysics, 528(A75), January 2011.
anbabeczok13
[190] T. Andrews, R. Balan, J. Benedetto, W. Czaja, and K. Okoudjou.
Excursions in Harmonic Analysis Volume 1. The February Fourier
Talks at the Norbert Wiener Center. Birkh¨auser, 2013.
anbabeczok13-1
[191] T. Andrews, R. Balan, J. Benedetto, W. Czaja, and K. Okoudjou.
Excursions in Harmonic Analysis Volume 2. The February Fourier
Talks at the Norbert Wiener Center. Birkh¨auser, 2013.
17
anti11
[192] O. Andriy and P. Tibor. Average sampling restoration of harmonizable processes,. Communications in Statistics - Theory and Methods,
40:3587–3598, 2011.
ananco08
[193] E. Andruchow, J. Antezana, and G. Corach. Sampling formulae and
optimal factorizations of projections. Sampl. Theory Signal Image
Process., 7(3):313–331, 2008.
ancost01
[194] E. Andruchow, G. Corach, and D. Stojanoff. Projective space of a C ∗ module. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4(3):289–
307, 2001.
anja78
[195] E. Angel and A. Jain. Restoration of images degraded by spatially
varying pointspread functions by a conjugate gradient method. Applied Optics, 17(14):2186–2190, 1978.
an04-1
[196] P. Aniello. A perturbative expansion of the evolution operator associated with time-dependent quantum Hamiltonians. 2004.
ancalevi98-1
[197] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. Square-integrability
of induced representations of semidirect products. Rev. Math. Phys.,
10(3):301–313, 1998.
ancalevi98
[198] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. Wavelet transforms
and discrete frames associated to semidirect products. J. Math. Phys.,
39(8):3965–3973, 1998.
ancalevi99
[199] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. Frames from imprimitivity systems. J. Math. Phys., 40(10):5184–5202, 1999.
ancalevi01
[200] P. Aniello, G. Cassinelli, E. Vito, and A. Levrero. On discrete frames
associated with semidirect products. J. Fourier Anal. Appl., 7(2):199–
206, 2001.
anmama08
[201] P. Aniello, V. Man’ko, and G. Marmo. Frame transforms, star products and quantum mechanics on phase space. J. Phys. A, Math.
Theor., 41(28):40, 2008.
anpi09
[202] J.-P. Anker and V. Pierfelice. Nonlinear Schr¨odinger equation on real
hyperbolic spaces. 2009.
18
anelha11
[203] M. Annaby, H. Hassan, and O. El Haddad. A perturbed WhittakerKotel’nikov-Shannon sampling theorem. J. Math. Anal. Appl.,
381(1):64–79, 2011.
an98-1
[204] M. H. Annaby. One and multidimensional sampling theorems associated with Dirichlet problems. Math. Methods Appl. Sci., 21(4):361–
374, 1998.
anas11
[205] M. H. Annaby and R. M. Asharabi. Truncation, amplitude, and jitter errors on R for sampling series derivatives. J. Approx. Theory,
163(3):336–362, March 2011.
an70
[206] P. Anselone. Compactness properties of sets of operators and their
adjoints. Math. Z., 113:233–236, 1970.
an71
[207] P. Anselone. Collectively compact Operator approximation Theory and
applications to integral Equations With An Appendix By Joel Davis.
Prentice-Hall Series in Automatic Computation. Englewood-Cliffs, N.
J.: Prentice-Hall, 1971.
anbl98
[208] J. Ansorena and O. Blasco. Convolution multipliers on weighted Besov
spaces. Bol. Soc. Mat. Mex., III. Ser., 4(1):47–68, 1998.
anco06
[209] J. Antezana and G. Corach. Sampling theory, oblique projections
and a question by Smale and Zhou. Appl. Comput. Harmon. Anal.,
21(2):245–253, 2006.
andapi06
[210] S. Anthoine, E. Pierpaoli, and I. Daubechies. Two approaches for the
simultaneous separation and deblurring; application to astrophysical
data. (Deux m´ethodes de d´econvolution et s´eparation simultan´ees;
application `a la reconstruction des amas de galaxies.). Trait. Signal,
23(5-6):439–447, 2006.
anba99
[211] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical
Foundations. Cambridge University Press, Cambridge, 1999.
anba11
[212] J.-P. Antoine and P. Balazs. Frames and Semi-Frames. Journal of
Physcis A: Mathematical and Theoretical, 44, 2011.
anba12
[213] J.-P. Antoine and P. Balazs. Frames, semi-frames, and Hilbert scales.
Numer. Funct. Anal. Optim., 33(7-9):736–769, 2012.
19
anbrci12
[214] J.-P. Antoine, P. Brault, and M. CIRM. Wavelets and motion analysis. In SIGMA/CIRM Signal, Image, Geom’etrie, Mod’elisation et
Approximation, 2012.
antr10
[215] J.-P. Antoine and C. Trapani. The partial inner product space
method: a quick overview. Adv. Math. Phys., Article ID 457635:37,
2010.
antr11
[216] J.-P. Antoine and C. Trapani. Erratum to “the partial inner product space method: a quick overview”. Adv. Math. Phys., Article ID
272703:1, 2011.
anva07
[217] J.-P. Antoine and P. Vandergheynst. Wavelets on the two-sphere and
other conic sections. J. Fourier Anal. Appl., 13(4):369–386, 2007.
anbu03
[218] H. Anton and R. Busby. Contemporary Linear Algebra. John Wiley
& Sons Inc., 2003.
anbu10
[219] N. Antonic and K. Burazin.
Intrinsic boundary conditions
for Friedrichs systems.
Comm. Partial Differential Equations,
35(9):1690–1715, 2010.
ansh11
[220] S. Antontsev and S. Shmarev. Elliptic equations with triple variable
nonlinearity. Complex Variables and Elliptic Equations, 56(7-9):573–
597, 2011.
anmi06
[221] P. Antsaklis and A. Michel. Linear Systems. Birkh¨auser Boston Inc.,
Boston, MA, 2006.
anla13
[222] N. Anugu and J. Lancelot. Study of atmospheric turbulence with
Shack Hartmann wavefront sensor. Journal of Optics, pages 1–13,
2013.
ap06
[223] S. Aparicio Secanellas. Harmonic analysis on SO(n, C)/SO(n − 1, C),
n ≥ 3. Acta Appl. Math., 90(1-2):3–17, 2006.
ap76
[224] T. Apostol. Introduction to analytic number theory. Springer, 1976.
ap05
[225] D. Appleby. Symmetric informationally complete–positive operator
valued measures and the extended Clifford group. J. Math. Phys.,
46(5):052107, 2005.
20
ap09
[226] D. Appleby. SIC-POVMS and MUBS: geometrical relationships in
prime dimension. In Foundations of probability and physics – 5. V¨axj¨o,
Sweden, 24–27 August 2008. Proceedings of the international conference., pages 223–232. 2009.
arma11
[227] P. Ara and M. Mathieu. When is the second local multiplier algebra of
a C ∗ -algebra equal to the first? Bull. Lond. Math. Soc., 43(6):1167–
1180, 2011.
arbamo09
[228] L. Arambasic, D. Bakic, and M. Moslehian. A characterization of
Hilbert c∗ -modules over finite dimensional c∗ -algebras. Oper. Matrices,
3(2, article No. 14):235–240, 2009.
arbara07
[229] L. Arambasic, D. Bakic, and R. Rajic. Dimension functions of orthonormal wavelets. J. Fourier Anal. Appl., 13(3):331–356, 2007.
arbara10
[230] L. Arambasic, D. Bakic, and R. Rajic. Dimension functions, scaling
sequences, and wavelet sets. Studia Math., 198(1):1–32, 2010.
arbara10-1
[231] L. Arambasic, D. Bakic, and R. Rajic. Finite-dimensional Hilbert
c∗ -modules. Banach J. Math. Anal., 4(2):147–157, 2010.
arfi84
[232] J. Arazy and S. D. Fisher. Some aspects of the minimal, M¨obiusinvariant space of analytic functions on the unit disc. In Michael
Cwikel and J. Peetre, editors, Interpolation spaces and allied topics
in analysis (Proc. of the Conference held in Lund, Sweden, August 29
- September 1, 1983), volume 1070 of Lecture Notes in Math., pages
24–44. Springer, 1984.
arfi85
[233] J. Arazy and S. D. Fisher. The uniqueness of the Dirichlet space
among M¨obius-invariant Hilbert spaces. Illinois J. Math., 29(3):449–
462, 1985.
arup12
[234] J. Arazy and H. Upmeier. Minimal and maximal invariant spaces
of holomorphic functions on bounded symmetric domains. In A
panorama of modern operator theory and related topics. The Israel
Gohberg memorial volume, pages 19–49. 2012.
arto14
[235] R. Arcangeli and J. J. Torrens. Sampling inequalities in Sobolev
spaces. J. Approx. Theory, (0):–, 2014.
21
argi93
[236] M. Arcones and E. Gine. On decoupling, series expansions, and tail
behavior of chaos processes. J. Theoret. Probab., 6(1):101–122, 1993.
arli97
[237] N. Arcozzi and X. Li. Riesz transforms on spheres. Math. Res. Lett.,
4(2-3):401–412, 1997.
arrosawi11
[238] N. Arcozzi, R. Rochberg, E. T. Sawyer, and B. D. Wick. Distance
functions for reproducing kernel Hilbert spaces. In Function spaces in
modern analysis, volume 547 of Contemp. Math., pages 25–53. Amer.
Math. Soc., Providence, RI, 2011.
arrosawi11-2
[239] N. Arcozzi, R. Rochberg, E. T. Sawyer, and B. D. Wick. Function
spaces related to the Dirichlet space. J. Lond. Math. Soc. (2), 83(1):1–
18, 2011.
arrosawi11-1
[240] N. Arcozzi, R. Rochberg, E. T. Sawyer, and B. D. Wick. The Dirichlet
space: a survey. New York J. Math., 17a:45–86, 2011.
ardrvo88
[241] I. Y. Arefeva, B. G. Dragovic, and I. V. Volovich. On the adelic string
amplitudes. Physics Letters B, 209(4):445 – 450, 1988.
arghXX
[242] A. Arefijamaal and A. Ghaani Farashahi. Zak transform for semidirect
product of locally compact groups. Anal.Math.Phys., April.
argh12
[243] A. Arefijamaal and S. Ghasemi. On characterization and stability of
alternate dual of g-frames. Turk. J. Math., In Press:9, 2012.
arta12
[244] A. Arefijamaal and N. Tavallaei. Continuous frame wavelets. Acta
Math. Sci. Ser. B Engl. Ed., 32(2):807–812, 2012.
ar12
[245] A. A. Arefijamaal. The continuous Zak transform and generalized Gabor frames. Mediterranean Journal of Mathematics, Online First:13,
2012.
arbuhekast13
[246] T. Arens, R. Busam, F. Hettlich, C. Karpfinger, and H. Stachel.
Grundwissen Mathematikstudium. Analysis und Lineare Algebra mit
Querverbindungen. Heidelberg: Springer Spektrum, 2013.
ar66
[247] G. Arfken. Mathematical methods for physicists. Academic Press,
New York, 1966.
22
arla71
[248] L. Argabright and J. Lamadrid. Fourier transforms of unbounded
measures. Bull. Amer. Math. Soc., 77:355–359, 1971.
arla72
[249] L. N. Argabright and J. Lamadrid. Analyse harmonique des mesures
non bornees sur les groupes abeliens localement compacts. Conf. harmonic Analysis, College Park, Maryland 1971, Lect. Notes Math. 266,
1-16 (1972)., 1972.
ar11
[250] C. Arhancet. Noncommutative Figa-Talamanca-Herz algebras for
Schur multipliers. Int. Equ. Oper. Theory, 70(4):485–510, 2011.
ar95
[251] J. Arhippainen. On the ideal structure of algebras of star-algebra
valued functions. Proc. Amer. Math. Soc., 123(2):381–391, 1995.
arco13
[252] M. Arias and C. Conde. Generalized inverses and sampling problems.
J. Math. Anal. Appl., 398(2):744 – 751, 2013.
arpa08
[253] M. Arias and M. Pacheco. Bessel fusion multipliers. J. Math. Anal.
Appl., 348(2):581–588, 2008.
arco76
[254] M. Arik and D. Coon. Hilbert spaces of analytic functions and generalized coherent states. J. Mathematical Phys., 17(4):524–527, 1976.
armuva96
[255] M. Arioli, H. Munthe Kaas, and L. Valdettaro. Componentwise error
analysis for FFTs with applications to fast Helmholtz solvers. Numer.
Algorithms, 12(1-2):65–88, 1996.
argapr06
[256] S. Arivazhagan, L. Ganesan, and S. Priyal. Texture classification using
Gabor wavelets based rotation invariant features. Pattern Recognition
Lett., 27(16):1976 – 1982, 2006.
arbets11
[257] Y. Arlinskii, S. Belyi, and E. Tsekanovskii. Geometry of Rigged Hilbert
Spaces,. Operator Theory: Advances and Applications. Springer
Basel, 2011.
arbe14
[258] Y. Arlinskiui and S. Belyi. Non-negative Self-adjoint Extensions in
Rigged Hilbert Space. In Y. Arlinskiui, S. Belyi, M. Cepedello Boiso,
H. Hedenmalm, M. A. Kaashoek, A. Montes Rodr’iguez, and S. Treil,
editors, Concrete Operators, Spectral Theory, Operators in Harmonic
Analysis and Approximation, volume 236 of Operator Theory: Advances and Applications, pages 11–41. Springer Basel, 2014.
23
arth10
[259] M. Arnaudon and A. Thalmaier. The differentiation of hypoelliptic
diffusion semigroups. Illinois J. Math., 54(4):1285–1311 (2012), 2010.
arheju04
[260] S. Aromaa, P. Henttu, and M. Juntti. Transform-selective interference
suppression algorithm for spread-spectrum communications. IEEE
Signal Processing Letters, 12(1):49–51, 2004.
arga65
[261] N. Aronszajn and E. Gagliardo. Interpolation spaces and interpolation
methods. Ann. Mat. Pura Appl. (4), 68(1):51–117, 1965.
arre07
[262] J. Arpe and R. Reischuk. When does greedy learning of relevant
attributes succeed? A Fourier-based characterization. In Computing
and combinatorics. 13th annual international conference, COCOON
2007, Banff, Canada, July 16–19, 2007. Proceedings., pages 296–306.
2007.
arbl97
[263] J. L. Arregui and O. Blasco. On the Bloch space and convolution
of functions in the Lp -valued case. Collectanea Mathematica, 48(46):363–373, 1997.
arbl99
[264] J. L. Arregui and O. Blasco. Convolution of three functions by means
of bilinear maps and applications. Illinois Journal of Mathematics,
43(2):264–280, 1999.
arhuuz58
[265] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in Linear and Nonlinear Programming. : Stanford University Press. 229 p., 1958.
arma12
[266] C. Arteaga and I. Marrero. A scheme for interpolation by Hankel
translates of a basis function. J. Approx. Theory, 2012.
arma13
[267] C. Arteaga and I. Marrero. Density in spaces of interpolation by
Hankel translates of a basis function. J. Funct. Spaces Appl., pages
Art. ID 813502, 9, 2013.
arma14
[268] C. Arteaga and I. Marrero. Direct form seminorms arising in the
theory of interpolation by Hankel translates of a basis function. Adv.
Comput. Math., 40(1):167–183, 2014.
arblhu87
[269] K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two
3-D point sets. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, PAMI-9(5):698–700, 1987.
24
ar67-1
[270] W. Arveson. Operator algebras and measure preserving automorphisms. Acta Math., 118:95–109, 1967.
ar87
[271] W. Arveson. Nonlinear states on C ∗ -algebras. In Operator algebras
and mathematical physics (Iowa City, Iowa, 1985), volume 62 of Contemp. Math., pages 283–343. Amer. Math. Soc., Providence, RI, 1987.
ar90
[272] W. Arveson. Continuous analogues of Fock space. II. The spectral
c∗ -algebra. J. Funct. Anal., 90(1):138–205, 1990.
ar02-1
[273] W. Arveson. A Short Course on Spectral Theory. New York, NY:
Springer, 2002.
asfu78
[274] K. Asada and D. Fujiwara. On some oscillatory integral transformations in l2 (r2 ). Japan. J. Math. (N.S.), 4:299–361, 1978.
as76-1
[275] T. Asai. The conjugacy classes in the unitary, symplectic and orthogonal groups over an algebraic number field. J. Math. Kyoto Univ.,
16:325–350, 1976.
asfeka14
[276] G. Ascensi, H. G. Feichtinger, and N. Kaiblinger. Dilation of the
Weyl symbol and Balian-Low theorem. Trans. Amer. Math. Soc.,
366(7):3865–3880, 2014.
ascekr12
[277] I. Asekritova, J. Cerda, and N. Y. Kruglyak. The Riesz-Herz equivalence for capacitary maximal functions. Rev. Mat. Complut., 25(1):43–
59, 2012.
askr13
[278] I. Asekritova and N. Y. Kruglyak. Necessary and sufficient conditions
for invertibility of operators in spaces of real interpolation. J. Funct.
Anal., 264(1):207–245, 2013.
as76
[279] J. Ash. Studies In Harmonic analysis. MAA Studies in Mathematics,
13. Washington, 1976.
astitu10
[280] J. Ash, S. Tikhonov, and J. Tung. Wiener’s positive Fourier coefficients theorem in variants of lp spaces. Michigan Math. J., 59(1):143–
152, 2010.
aschlu10
[281] A. Ashraf, S. Lucey, and T. Chen. Reinterpreting the application
of Gabor filters as a manipulation of the margin in linear support
25
vector machines. IEEE transactions on pattern analysis and machine
intelligence, 32(7):1335–1341, 2010.
aslemamoth96
[282] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, and T. Thiemann. Coherent state transforms for spaces of connections. J. Funct.
Anal., 135(2):519–551, 1996.
as11
[283] R. Ashurov. Convergence of the continuous wavelet transforms on the
entire Lebesgue set of Lp -functions. Int. J. Wavelets Multiresolut. Inf.
Process., 9(4):675–683, 2011.
as12
[284] R. Ashurov. On the almost-everywhere convergence of the continuous
wavelet transforms. Proc. Roy. Soc. Edinburgh Sect. A, 142(6):1121–
1129, 2012.
aswa65
[285] R. Askey and S. Wainger. Mean convergence of expansions in Laguerre
und Hermite series. Amer. J. Math., 87(3):695–708, 1965.
asinmo10
[286] N. E. Askour, A. Intissar, and Z. Mouayn. A formula representing
Magnetic Berezin Transforms as functions of the Laplacian on Cn.
Mathematical Physics-Submitted on 17 Apr 2010, page 9, 2010.
asje05
[287] M. Assal and M. Jelassi. Generalized Sobolev type spaces associated
with the spherical mean operators. Math. Sci. Res. J., 9(6):151–160,
2005.
abasmarati10
[288] D. Assefa, L. Mansinha, K. Tiampo, H. Rasmussen, and K. Abdella.
Local quaternion Fourier transform and color image texture analysis.
Signal Process., 90(6):1825–1835, 2010.
ascltourve13
[289] K. Astala, A. Clop, X. Tolsa, I. Uriarte Tuero, and J. Verdera. Quasiconformal distortion of Riesz capacities and Hausdorff measures in
the plane. Amer. J. Math., 135(1):17–52, 2013.
as98
[290] S. Astashkin. Tensor product in symmetric function spaces. Arxiv
preprint math/9812155, 1998.
asma13
[291] S. Astashkin and L. Maligranda. Interpolation of Cesaro sequence
and function spaces. Studia Math., 215(1):39–69, 2013.
26
asblri07
[292] F. Astengo, B. Blasio, and F. Ricci. Gelfand transforms of polyradial Schwartz functions on the Heisenberg group. J. Funct. Anal.,
251(2):772–791, 2007.
asdi10
[293] F. Astengo and B. Di Blasio. Huygens’ principle and a Paley-Wiener
type theorem on Damek-Ricci spaces. Ann. Math. Blaise Pascal,
17(2):327–340, 2010.
atviwo99
[294] N. Atakishiyev, L. Vicent, and K. Wolf. Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math., 107(1):73–95,
1999,.
atpapepu11
[295] A. Athanassoulis, T. Paul, F. Pezzotti, and M. Pulvirenti. Strong
semiclassical approximation of Wigner functions for the Hartree dynamics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem. (9)
Mat. Appl., 22(4):525–552, 2011.
at83-1
[296] M. Atiyah. Angular momentum, convex polyhedra and algebraic geometry. Proc. Edinburgh Math. Soc. (2), 26(2):121–133, 1983.
frglgrhilamaruot94
[297] M. Atiyah, A. Borel, G. Chaitin, D. Friedan, J. Glimm, J. Gray,
M. Hirsch, S. Lane, B. Mandelbrot, D. Ruelle, and o. others. Responses to Theoretical Mathematics: Toward a cultural synthesis of
mathematics and theoretical physics by A. Jaffe and F. Quinn. Bulletin of the American Mathematical Society, 30(2):178–207, 1994.
atia03
[298] S. Atiyah and D. Iagolnitzer. Fields MedallistsLectures. World Scientific Publishing, 2nd edition, 2003.
atso10
[299] C. Atkinson and J. Soria. Algebraic reconstruction techniques for
tomographic particle image velocimetry. In 16th Australasian Fluid
Mechanics Conference (AFMC), pages 191–198, 2010.
atha12
[300] K. Atkinson and W. Han. Spherical Harmonics and Approximations
on the Unit Sphere: An Introduction, volume 2044 of Lecture Notes
in Mathematics. Springer, Heidelberg, 2012.
at08-1
[301] N. Atreas. A Walsh type multiresolution analysis. In R. Stankovic,
editor, Proceedings of the workshop: Walsh and dyadic analysis, pages
177–183, Nis, Serbia, 2008.
27
at09
[302] N. Atreas. Detecting hidden periodicities on symbolic sequences. J.
Interdiscip. Math., 12(5):639–646, 2009.
atka99
[303] N. Atreas and C. Karanikas. Gibbs phenomenon on sampling series
based on Shannon’s and Meyer’s wavelet analysis. J. Fourier Anal.
Appl., 5(6):575–588, 1999.
atka00
[304] N. Atreas and C. Karanikas. Truncation error on wavelet sampling
expansions. J. Comput. Anal. Appl., 2(1):89–102, 2000.
atka05
[305] N. Atreas and C. Karanikas. Discrete sampling formulas on spaces of
pm -periodic sequences for computational applications on edge detection. Numer. Funct. Anal. Optim., 26(3):285–301, 2005.
atka07-1
[306] N. Atreas and C. Karanikas. A fast pattern matching algorithm based
on prime numbers and hashing approximation. In R. W. Ognyan
Kounchev, editor, NATO science for peace and security series - D:
Information and communication security, Vol.12: Scientific support
for the decision making in the security sector, pages 118–125. IOS
Press, 2007.
atka07
[307] N. Atreas and C. Karanikas. Multiscale Haar orthonormal matrices with the corresponding Riesz products and a characterization of
Cantor-type languages. J. Fourier Anal. Appl., 13(2):197–210, 2007.
atka08-2
[308] N. Atreas and C. Karanikas. Haar-type orthonormal systems, data
presentation as Riesz products and a recognition on symbolic sequences. In Frames and operator theory in analysis and signal processing, volume 451 of Contemp. Math., pages 1–9. Amer. Math. Soc.,
Providence, RI, 2008.
atmest12
[309] N. Atreas, A. Melas, and T. Stavropoulos. Affine dual frames and
extension principles. Applied Comput. Harmon. Anal., preprint submitted:24, 2012.
atpo08
[310] N. Atreas and P. Polychronidou. A class of sparse invertible matrices
and their use for nonlinear prediction of nearly periodic time series
with fixed period. Numer. Funct. Anal. Optim., 29(1-2):66–87, 2008.
at02
[311] N. D. Atreas. New bounds for truncation-type errors on regular sampling expansions. Numer. Funct. Anal. Optim., 23(7-8):695–704, 2002.
28
at03
[312] N. D. Atreas. Wavelet decomposition and sampling for p-adic multiresolution analysis. In B. D. Bojanov, editor, Constructive theory
of functions. Proceedings of the international conference, Varna, Bulgaria, June 19-23, 2002, pages 198–204. DARBA, Sofia, 2003.
at07-1
[313] N. D. Atreas. On a class of multiscale transforms on L2[0,1) and their
corresponding sampling theorem. In Nikolaos D. Atreas and Costas
Karanikas, editors, Proceedings of the conference SampTA07, pages
19–22, Thessaloniki, Greece, june 1 - 5, 2007, 2007.
at11
[314] N. D. Atreas. Perturbed sampling formulas and local reconstruction
in shift invariant spaces. J. Math. Anal. Appl., 377(2):841–852, 2011.
at12
[315] N. D. Atreas. On a class of non-uniform average sampling expansions
and partial reconstruction in subspaces of l2 ( ). Adv. Comput. Math.,
36(1):21–38, 2012.
atbaka02
[316] N. D. Atreas, N. Bagis, and C. Karanikas. The information loss error
and the jitter error for regular sampling expansions. Sampl. Theory
Signal Image Process., 1(3):261–276, 2002.
atbi12
[317] N. D. Atreas and A. Bisbas. Generalized Riesz products produced
from orthonormal transforms. Colloq. Math., 126(2):141–154, 2012.
atka11
[318] N. D. Atreas and C. Karanikas. Boolean invertible matrices identified
from two permutations and their corresponding Haar-type matrices.
Linear Algebra Appl., 435(1):95–105, 2011.
atka11-1
[319] N. D. Atreas and C. Karanikas. Reducing Gibbs ripples for some
wavelet sampling series. Chapter 11, 2011.
atka12
[320] N. D. Atreas and C. Karanikas. Discrete transforms produced from
two natural numbers and applications. In R. Moreno D´ıaz and Pichler,
editors, Computer aided systems theory EUROCAST 2011, Lecture
notes in computer science Vol. 6928, pages 304–310. Springer Berlin
Heidelberg, 2012.
atkapo04
[321] N. D. Atreas, C. Karanikas, and P. Polychronidou. Signal analysis
on strings for immune-type pattern recognition. Comparative and
Functional Genomics, 5(1):69–74, 2004.
29
atkapo08
[322] N. D. Atreas, C. Karanikas, and P. Polychronidou. A class of sparse
unimodular matrices generating multiresolution and sampling analysis
for data of any length. SIAM J. Matrix Anal. Appl., 30(1):312–323,
2008.
atkata03
[323] N. D. Atreas, C. Karanikas, and A. O. Tarakanov. Signal processing
by an immune type tree transform. In J. Timmis, Peter J. Bentley, and
Emma Hart, editors, Artificial immune systems, volume 2787 Atreas,
Nikolaos, D.;Karanikas, Costas;Tarakanov, of Lecture Notes in Computer Science, pages 111–119. Springer Berlin Heidelberg, 2003.
at80
[324] A. Atzmon. On the union of sets of synthesis and Ditkin’s condition in
regular Banach algebras. Bull. Amer. Math. Soc. (N.S.), 2:317–320,
1980.
au68
[325] J.-P. Aubin. Evaluations des erreurs de troncature des approximations
des espaces de Sobolev. J. Math. Anal. Appl., 21:356–368, 1968.
au68-1
[326] J.-P. Aubin. Interpolation et approximation optimales et “spline functions”. J. Math. Anal. Appl., 24:1–24, 1968.
au00
[327] J.-P. Aubin. Applied Functional Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York, Second edition,
2000.
aufl95
[328] F. Auger and P. Flandrin. Improving the readability of time-frequency
and time-scale representations by the reassignment method. Signal
Processing, IEEE Transactions on, title=Improving the readability
of time-frequency and time-scale representations by the reassignment
method, 43(5):1068 –1089,, may 1995.
au72
[329] D. Aumuraz. Crit`eres de compacite etroite sur un groupe abelien
localement compact. Bull. Sci. Math. (2), 96:263–271, 1972.
auco05
[330] P. Auscher and T. Coulhon. Riesz transform on manifolds and
Poincare inequalities. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 4(3),
2005.
auholalemctc01
[331] P. Auscher, S. Hofmann, M. Lacey, J. Lewis, A. McIntosh, and
P. Tchamitchian. The solution of Kato’s conjectures. C. R. Acad.
Sci., Paris, S´er. I, Math., 332(7):601–606, 2001.
30
auhy13
[332] P. Auscher and T. Hyt¨onen. Orthonormal bases of regular wavelets
in spaces of homogeneous type. Appl. Comput. Harmon. Anal.,
34(2):266–296, 2013.
aukrmopo12
[333] P. Auscher, C. Kriegler, S. Monniaux, and P. Portal. Singular integral
operators on tent spaces. J. Evol. Equ., 12(4):741–765, 2012.
aurutc05
[334] P. Auscher, E. Russ, and P. Tchamitchian. Hardy Sobolev spaces
on strongly Lipschitz domains of Rn . J. Funct. Anal., 218(1):54–109,
2005.
aupu11
[335] G. Autuori and P. Pucci. Asymptotic stability for Kirchhoff systems
in variable exponent Sobolev spaces. Complex Variables and Elliptic
Equations, 56(7-9):715–753, 2011.
avkato14
[336] S. H. Avazzadeh, R. Kamyabi Gol, and R. Raisi Tousi. Continuous frames and G-frames. Bull. Iranian Math. Soc., 40(4):1047–1055,
2014.
avmewe12
[337] M. Avdispahic, N. Memic, and F. Weisz. Maximal functions,
Hardy spaces and Fourier multiplier theorems on unbounded Vilenkin
groups. J. Math. Anal. Appl., 390(1):68–73, 2012.
av74
[338] S. Avdonin. On the question of Riesz bases of exponential functions
in L2 . Vestnik Leningrad. Univ. No. 13 Mat. Meh. Astronom., (Vyp.
3):5–12, 154, 1974.
avbumo07
[339] S. Avdonin, A. Bulanova, and W. Moran. Construction of sampling
and interpolating sequences for multi-band signals. The two-band
case. Int. J. Appl. Math. Comput. Sci., 17(2):143–156, 2007.
avmo99
[340] S. Avdonin and W. Moran. Sampling and interpolation of functions
with multi-band spectra and controllability problems. In Optimal
control of partial differential equations. Proceedings of the IFIP WG
7. 2 international conference, Chemnitz, Germany, April 20–25, 1998,
pages 43–51. 1999.
avmo01
[341] S. Avdonin and W. Moran. Ingham-type inequalities and Riesz bases
of divided differences. Int. Journ. Applied Math. Comp. Sci.,, 11:803–
820, 2001.
31
avcodoissh08
[342] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and Y. Shkolnisky. A framework for discrete integral transformations. I: The pseudopolar Fourier transform. SIAM J. Sci. Comput., 30(2):764–784,
2008.
avcodoissesh08
[343] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, Y. Shkolnisky, and I. Sedelnikov. A framework for discrete integral transformations: II. The 2D discrete Radon transform. SIAM J. Sci. Comput.,
30(2):785–803, 2008.
avho05
[344] R. Averkamp and C. Houdre. Wavelet thresholding for nonnecessarily
Gaussian noise: functionality. Ann. Statist., 33(5):2164–2193, 2005.
ax88
[345] S. Axler. Bergman spaces and their operators. In Surveys of some
recent results in operator theory, Vol. I, volume 171 of Pitman Res.
Notes Math. Ser., pages 1–50. 1988.
axbo88
[346] S. Axler and P. Bourdon. Finite-codimensional invariant subspaces of
Bergman spaces. Trans. Amer. Math. Soc., 306(2):805–817, 1988.
shzenv00
[347] S. Axler, Z. Cuckovi, and N. V. Rao. Commutants of analytic
Toeplitz operators on the Bergman space. Proc. Amer. Math. Soc.,
128(7):1951–1953, 2000.
ay12
[348] I. Aydin. Weighted variable Sobolev spaces and capacity. J. Funct.
Spaces, 2012.
azfasc05
[349] A. Azzalini, M. Farge, and K. Schneider. Nonlinear wavelet thresholding: a recursive method to determine the optimal denoising threshold.
Appl. Comput. Harmon. Anal., 18(2):177–185, 2005.
azdato14
[350] J. Azzam, G. David, and T. Toro. Wasserstein Distance and
the Rectifiability of Doubling Measures: Part I. arXiv preprint
arXiv:1408.6645, 2014.
bafrgr07
[351] M. Baake, D. Frettl¨oh, and U. Grimm. A radial analogue of Poisson’s summation formula with applications to powder diffraction and
pinwheel patterns. J. Geom. Phys., 57(5):1331–1343, 2007.
bamo00
[352] M. Baake and R. Moody. Self-similar measures for quasicrystals. In
Directions in mathematical quasicrystals, volume 13 of CRM Monogr.
Ser., pages 1–42. Amer. Math. Soc., Providence, 2000.
32
baberiso14
[353] F. Baaske, S. Bernstein, H. Ridder, and F. Sommen. On solutions of
a discretized heat equation in discrete Clifford analysis. J. Difference
Equ. Appl., 20(2):271–295, 2014.
ba13-1
[354] D. Babot. Heisenberg uniqueness pairs in the plane. Three parallel
lines. Proc. Amer. Math. Soc., 141(11):3899–3904, 2013.
bagu02-1
[355] I. Babuska and B. Guo. Direct and inverse approximation theorems
for the p-version of the finite element method in the framework of
weighted Besov spaces. II. Optimal rate of convergence of the p-version
finite element solutions. Math. Models Methods Appl. Sci., 12(5):689–
719, 2002.
bame97-1
[356] I. Babuska and J. Melenk. The partition of unity method. Int. J.
Numer. Methods Eng., 40(4):727–758, 1997.
bajemaob12
[357] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization
with sparsity-inducing penalties. Foundations and Trends in Machine
Learning, 4(1):1–106, 2012.
bagi68
[358] G. Backus and F. Gilbert. The resolving power of gross Earth data.
Geophys. J. R. Astron. Soc., 16:169–205, 1968.
bamapa93
[359] E. Bacry, S. Mallat, and G. Papanicolaou. A wavelet space-time adaptive scheme for partial differential equations. In Progress in wavelet
analysis and applications (Toulouse, 1992), pages 677–682. Fronti`eres,
Gif-sur-Yvette, 1993.
arbamu93
[360] E. Bacry, J. Muzy, and A. Arn’eodo. Singularity spectrum of fractal
signals from wavelet analysis: Exact results. Journal of Statistical
Physics, 70(3-4):635–674, 1993.
baca81
[361] H. Bacry and M. Cadilhac. Metaplectic group and Fourier optics.
Physical Review A, 23(5):2533, 1981.
babe10
[362] N. Badr and F. Bernicot. Abstract Hardy-Sobolev spaces and interpolation. J. Funct. Anal., 259(5):1169–1208, 2010.
baberu12
[363] N. Badr, F. Bernicot, and E. Russ. Algebra properties for Sobolev
spaces – applications to semilinear PDEs on manifolds. J. Anal.
Math., 118(2):509–544, 2012.
33
bagu10
[364] G. Badrinath and P. Gupta. Stockwell transform based palm-print
recognition. Applied Soft Computing, In Press, Corrected Proof:–,
2010.
bada10
[365] K. Bagadi and S. Das. MIMO-OFDM channel estimation using pilot
carriers. Int. J. Comp. Appl., 2:81–88, May 2010.
ba10-6
[366] F. Bagarello. Examples of Pseudo-bosons in quantum mechanics.
Physics Letters A, 374(37):3823–3827, 2010.
ba10-7
[367] F. Bagarello. Mathematical aspects of intertwining operators: the role
of Riesz bases. Journal of Physics A: Mathematical and Theoretical,
43(17):175203, 2010.
ba11-3
[368] F. Bagarello. Pseudo-bosons, so far. Rep. Math. Phys., 68(2):175–210,
2011.
batr96
[369] F. Bagarello and C. Trapani. Lp -spaces as quasi ∗ -algebras. J. Math.
Anal. Appl., 197(3):810–824, 1996.
bazn11
[370] F. Bagarello and M. Znojil. Non linear pseudo-bosons versus hidden
Hermiticity. arXiv preprint arXiv:1109.0605, 2011.
ba79-4
[371] R. Bagby. Riesz potentials and Fourier multipliers. Harmonic analysis
in Euclidean spaces, Part 1, Williamstown/ Massachusetts 1978, Proc.
Symp. Pure Math., Vol. 35, 115-119 (1979)., 1979.
bami01
[372] B. Bagchi and G. Misra. Homogeneous operators and projective representations of the M¨obius group: A survey. Proc. Indian Acad. Sci.,
Math. Sci., 111(4):415–437, 2001.
ba63
[373] R. Bagley. Mathematical Notes: Compactness in Function Spaces.
Amer. Math. Monthly, 70(3):286–288, 1963.
bata10
[374] B. Bah and J. Tanner. Improved bounds on restricted isometry
constants for Gaussian matrices. SIAM J. Matrix Anal. Appl.,
31(5):2882–2898, 2010.
bafega12
[375] H. Bahouri, C. Fermanian Kammerer, and I. Gallagher. Phase-space
Analysis and Pseudodifferential Calculus on the Heisenberg Group.
Asterisque 342. Paris: Societe Mathematique de France (SMF). vi,
128 p., 2012.
34
bamama11
[376] H. Bahouri, M. Majdoub, and N. Masmoudi. On the lack of compactness in the 2D critical Sobolev embedding. J. Funct. Anal.,
260(1):208–252, 2011.
bamama12
[377] H. Bahouri, M. Majdoub, and N. Masmoudi. Lack of compactness in
the 2D critical Sobolev embedding, the general case. C. R., Math.,
Acad. Sci. Paris, 350(3-4):177–181, 2012.
basi10
[378] Z. Bai and J. Silverstein. Spectral analysis of large dimensional random matrices. Springer Series in Statistics. Springer, New York, Second edition, 2010.
ba10-5
[379] B. Bailey. Sampling and recovery of multidimensional bandlimited
functions via frames. J. Math. Anal. Appl., 367(2):374–388, 2010.
bama14
[380] B. Bailey and W. Madych. Functions of exponential type and the
cardinal series. J. Approx. Theory, 181:54 – 72, 2014.
ba12
[381] B. A. Bailey. Multivariate polynomial interpolation and sampling in
Paley-Wiener spaces. J. Approx. Theory, 164(4):460–487, 2012.
babocagilumo07
[382] D. Bailey, J. M. Borwein, N. Calkin, R. Girgensohn, D. Luke, and
V. Moll. Experimental mathematics in action. A K Peters Ltd.,
Wellesley, MA, 2007.
basw91
[383] D. Bailey and P. Swarztrauber. The fractional Fourier transform and
applications. SIAM Rev., 33(3):389–404, 1991.
basw94
[384] D. Bailey and P. Swarztrauber. A fast method for the numerical
evaluation of continuous Fourier and Laplace transforms. SIAM J.
Sci. Comput., 15(5):1105–1110, 1994.
banosa08
[385] W. Bajwa, A. Sayeed, and R. Nowak. Learning sparse doubly-selective
channels. Monticello, IL, Sep. 2008.
ba05-5
[386] D. Bakic. On admissible generalized multiresolution analyses. Grazer
Math. Ber., 348:15–30, 2005.
ba06-3
[387] D. Bakic. Semi-orthogonal Parseval frame wavelets and generalized
multiresolution analyses. 21(3):281–304, 2006.
35
bakrwi05
[388] D. Bakic, I. Krishtal, and E. Wilson. Parseval frame wavelets with
(2)
en -dilations. Appl. Comput. Harmon. Anal., 19(3):386–431, 2005.
bachkrro14
[389] R. Balan, J. G. Christensen, I. Krishtal, K. Okoudjou, and J. L.
Romero. Multi-window Gabor frames in amalgam spaces. Math. Res.
Lett., 21(1):55–69, 2014.
bakr10
[390] R. Balan and I. Krishtal. An almost periodic noncommutative
Wiener’s Lemma. J. Math. Anal. Appl., 370(2):339–349, 2010.
bama03
[391] E. Balanzario and E. Marmolejo Olea. Ingham Tauberian theorem with an estimate for the error term. Int. J. Math. Math. Sci.,
(64):4025–4031, 2003.
bara05
[392] R. Balasubramanian and R. Radha. Hardy-type inequalities for Hermite expansions. JIPAM, J. Inequal. Pure Appl. Math., 6(1):Paper
No. 12, 4 p, 2005.
ba06-4
[393] P. Balazs. Frames and finite dimensionality: Frame transformation,
classification and algorithms. 2006.
babajaso11
[394] P. Balazs, D. Bayer, F. Jaillet, and P. Sondergaard. The phase
derivative around zeros of the short-time Fourier transform. preprint,
page 22, 2011.
babara12
[395] P. Balazs, D. Bayer, and A. Rahimi. Multipliers for continuous
frames in Hilbert spaces. J. Phys. A, Special issue: Coherent
states(45):244023, 2012.
bacahemo11
[396] P. Balazs, C. Cabrelli, S. B. Heineken, and U. Molter. Frames by
multiplication. Current Development in Theory and Applications of
Wavelets, 5(2-3):165–186, 2011.
badohojave11
[397] P. Balazs, M. D¨orfler, F. Jaillet, N. Holighaus, and G. A. Velasco. Theory, implementation and applications of nonstationary Gabor frames.
J. Comput. Appl. Math., 236(6):1481–1496, 2011.
badokoto13
[398] P. Balazs, M. D¨orfler, M. Kowalski, and B. Torr´esani. Adapted and
adaptive linear time-frequency representations: a synthesis point of
view. IEEE Signal Processing Magazine, 30(6):20–31, 2013.
36
bast15
[399] P. Balazs and D. Stoeva. Representation of the inverse of a frame
multiplier. J. Math. Anal. Appl., 422(2):981 – 994, 2015.
baho70
[400] R. Balbes and A. Horn. Injective and projective Heyting algebras.
Trans. Amer. Math. Soc., 148:549–559, 1970.
bakemapi09-1
[401] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard. Adaptive
density estimation for directional data using needlets. Ann. Statist.,
37(6A):3362–3395, 2009.
bakemapi09-2
[402] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard. Asymptotics for spherical needlets. Ann. Statist., 37(3):1150–1171, 2009.
bakemapi09
[403] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard. Subsampling needlet coefficients on the sphere. Bernoulli, 15(2):438–463,
2009.
bafrgi11
[404] M. Baldiotti, R. Fresneda, and D. Gitman. Quantization of the
damped harmonic oscillator revisited. Phys. Lett. A, 375(15):1630–
1636, 2011.
ba91-1
[405] M. Balk.
Polyanalytic functions and their generalizations [
MR1155418 (93f:30050)]. In Complex analysis I: Entire and meromorphic functions, polyanalytic functions and their generalizations.
Transl. from the Russian by V. I. Rublinetskij and V. A. Tkachenko,
volume 85 of Encyclopaedia Math. Sci., pages 195–253. Berlin:
Springer, 1991.
bahiza10
[406] T. Banakh, J. Higes, and I. Zarichnyi. The coarse classification of
countable abelian groups. Trans. Amer. Math. Soc, 362:4755–4780,
2010.
bawe92
[407] T. Banchoff and J. Wermer. Undergraduate Texts in Mathematics.
Springer New York, second edition edition, 1992.
badomisa12
[408] A. Bandeira, E. Dobriban, D. Mixon, and W. Sawin. Certifying the
restricted isometry property is hard. preprint, 2012.
ba95-1
[409] H. Bang. Functions with bounded spectrum. Trans. Amer. Math.
Soc., 347(3):1067–1080, 1995.
37
ba97-6
[410] H. Bang. Spectrum of functions in Orlicz spaces. J. Math. Sci., Tokyo,
4(2):341–349, 1997.
bagrst14
[411] S. Bannert, K. Gr¨ochenig, and J. St¨ockler. Discretized Gabor frames
of totally positive functions. IEEE Trans. Information Theory,
60(1):159–169, 2014.
bagipf07
[412] C. B¨ar, N. Ginoux, and F. Pf¨affle. Wave Equations on Lorentzian
Manifolds and Quantization. ESI Lectures in Mathematics and
Physics. European Mathematical Society (EMS), Z¨
urich, 2007.
bakiso07
[413] L. Bar, N. Sochen, and N. Kiryati. Restoration of images with piecewise space-variant blur. In Scale Space and Variational Methods in
Computer Vision, pages 533–544. Springer, 2007.
baboscstwi09
[414] S. Bar lev, O. Boxma, W. Stadje, F. Schouten, and C. Wiesmeyr.
Two-stage queueing network models for quality control and testing.
European Journal of Operational Research, 198:859–866, 2009.
bast07
[415] R. G. Baraniuk and P. Steeghs. Compressive radar imaging. pages
128–133, April 2007.
bady11
[416] A. Baranov and K. Dyakonov. The Feichtinger conjecture for reproducing kernels in model subspaces. J. Geom. Anal., 21(2):276–287,
2011.
ba11-4
[417] D. Barbieri. Approximations of Sobolev norms in Carnot groups.
Commun. Contemp. Math., 13(5):765–794, 2011.
bahepa14
[418] D. Barbieri, E. Hernandez, and V. Paternostro. The Zak transform
and the structure of spaces invariant by the action of an LCA group.
arXiv, 2014.
bamevi08-1
[419] J. Bardsley, J. Merikoski, and R. Vio. The stabilizing properties of
nonnegativity constraints in least-squares image reconstruction. Int.
J. Pure Appl. Math., 43(1):95–109, 2008.
babugikl40
[420] V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder. Some
formal properties of the density matrix. 1940.
bamo60
[421] V. Bargmann and M. Moshinsky. Group theory of harmonic oscillators::(I). The Collective Modes. Nuclear physics, 18:697–712, 1960.
38
bakome10
[422] A. Barhoumi, V. Komornik, and M. Mehrenberger. A vectorial
Ingham-Beurling type theorem. Ann. Univ. Sci. Budapest. E¨otv¨os
Sect. Math., 53:17–32, 2010.
balemo03
[423] I. Barhumi, G. Leus, and M. Moonen. Optimal training design for
MIMO OFDM systems in mobile wireless channels. IEEE Trans.
Signal Process., 51:1615–1624, Jun. 2003.
bade90
[424] J. Barlow and J. Demmel. Computing Accurate Eigensystems of
Scaled Diagonally Dominant Matrices. SIAM J. Numer. Anal.,
27(3):762–791, 1990.
base10
[425] J. Barral and S. Seuret. Recent developments in fractals and related fields. Applied and Numerical Harmonic Analysis. Boston, MA:
Birkh¨auser, Based on the international conference on fractals and
related fields, Monastir, Tunisia, September 2007 held in honor of
Jacques Peyriere, 2010.
bagima99
[426] E. Barrio, E. Gine, and C. Matran.
27(2):pp. 1009–1071, 1999.
The Annals of Probability,
babe11
[427] B. Barrios and J. J. Betancor. Characterizations of anisotropic Besov
spaces. Math. Nachr., 284(14-15):1796–1819, 2011.
babe12
[428] B. Barrios and J. J. Betancor. Anisotropic weak Hardy spaces and
wavelets. J. Funct. Spaces Appl., 2012:17, 2012.
bakuoz97
[429] B. Barshan, M. Kutay, and H. Ozaktas. Optimal filtering with linear
canonical transformations. Optics Communications, 135(1-3):32–36,
1997.
ba11-1
[430] S. Bartels. Total variation minimization with finite elements: convergence and iterative solution. preprint, 2011.
ba12-4
[431] S. Bartels. Total variation minimization with finite elements: Convergence and iterative solution. SIAM Journal on Numerical Analysis,
50:1162–1180, 2012.
ba08-5
[432] L. Bartholdi. On amenability of group algebras. I. Israel J. Math.,
168:153–165, 2008.
39
babo10
[433] L. Bartholdi and O. Bogopolski. On abstract commensurators of
groups. J. Group Theory, 13(6):903–922, 2010.
bapo09
[434] L. Bartholdi and F. Pochon. On growth and torsion of groups. Groups
Geom. Dyn., 3(4):525–539, 2009.
bakapeso06
[435] S. Barza, A. Kaminska, L.-E. Persson, and J. Soria. Mixed norm and
multidimensional Lorentz spaces. Positivity, 10(3):539–554, 2006.
basi14
[436] S. Barza and P. Silvestre. Functions of bounded second p-variation.
Rev. Mat. Complut., 27(1):69–91, 2014.
ba78-1
[437] A. Baskakov. Spectral criteria for almost periodicity of solutions of
functional equations. Mathematical Notes, 24(2):606–612, 1978.
ba83-1
[438] A. Baskakov. Spectral synthesis in Banach modules over commutative
Banach algebras. Math. Notes, 34:776–782, 1983.
baka12
[439] A. Baskakov and N. Kaluzhina. Beurling’s Theorem for Functions
with Essential Spectrum from Homogeneous Spaces and Stabilization of Solutions of Parabolic Equations. Matematicheskie Zametki,
92(5):643–661, 2012.
bakr05
[440] A. Baskakov and I. Krishtal. Harmonic analysis of causal operators and their spectral properties. Izv. Ross. Akad. Nauk Ser. Mat.,
69(3):3–54, 2005.
bakr14
[441] A. Baskakov and I. Krishtal. Memory estimation of inverse operators.
J. Funct. Anal., 267(8):2551 – 2605, 2014.
bagr12
[442] R. F. Bass and K. Gr¨ochenig. Relevant sampling of band-limited
functions. Illinois J. Math., 57(1):43–58, 2013.
bape13
[443] F. Bassetti and E. Perversi. Speed of convergence to equilibrium
in Wasserstein metrics for Kac-like kinetic equations. Electron. J.
Probab., 18:no. 6, 35, 2013.
bahust91
[444] J. Bastero, H. Hudzik, and A. Steinberg. On smallest and largest
spaces among rearrangement-invariant p-Banach function spaces (0 <
p < 1). Indag. Math., New Ser., 2(3):283–288, 1991.
40
bamiru03
[445] J. Bastero, M. Milman, and B. Ruiz. A note on L(∞, q) spaces and
Sobolev embeddings. Indiana Univ. Math. J., 52(5):1215–1230, 2003.
alba02
[446] M. J. Bastiaans and T. Alieva. Wigner distribution moments in fractional Fourier transform systems. J. Opt. Soc. Amer. A, 19(9):1763–
1773, 2002.
bawo03
[447] M. J. Bastiaans and K. Wolf. Phase reconstruction from intensity
measurements in linear systems. JOSA A, 20(6):1046–1049, 2003.
babo98
[448] F. Bastin and C. Boigelot. Biorthogonal wavelets in H m (R). J.
Fourier Anal. Appl., 4(6):749–768, 1998.
bala94
[449] F. Bastin and P. Laubin. On the functional characterization of the
analytic wave front set of an hyperfunction. Math. Nachr., 166:263–
271, 1994.
ba13
[450] J. Basto Goncalves. Symplectic rigidity and flexibility of ellipsoids.
Indagationes Mathematicae, 24(1):264 – 278, 2013.
badipr10
[451] C. Bastos, N. Dias, and J. Prata. Wigner measures in noncommutative
quantum mechanics. Comm. Math. Phys., 299(3):709–740, 2010.
ba10-4
[452] D. Basu. Introduction To Classical And Modern Analysis And Their
Application To Group Representation theory. Hackensack, NJ: World
Scientific. 400 p., 2010.
ba11
[453] D. Basu. Introduction to Classical and Modern Analysis and Their
Application to Group Representation Theory. World Scientific, 2011.
ba12-3
[454] D. Batenkov. Complete algebraic reconstruction of piecewise-smooth
functions from Fourier data. preprint:12, 2012.
bayo12
[455] D. Batenkov and Y. Yomdin. Algebraic Fourier reconstruction of
piecewise smooth functions. Math. Commun., 81(277):277–318, 2012.
bayo13
[456] D. Batenkov and Y. Yomdin. Geometry and singularities of the Prony
mapping. preprint:26, 2013.
bahamu13
[457] C. Batty, M. Haase, and J. Mubeen. The holomorphic functional
calculus approach to operator semigroups. Acta Math. Sci., 79(12):289–323, 2013.
41
babogamu14
[458] F. Baudoin, M. Bonnefont, N. Garofalo, and I. Munive. Volume
and distance comparison theorems for sub-Riemannian manifolds. J.
Funct. Anal., 267(7):2005–2027, 2014.
baki14
[459] F. Baudoin and B. Kim. Sobolev, Poincar´e, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized
curvature dimension inequality. Rev. Mat. Iberoam., 30(1):109–131,
2014.
ba04-1
[460] W. Bauer. Hilbert-Schmidt Hankel operators on the Segal-Bargmann
space. Proc. Amer. Math. Soc., 132(10):2989–2996 (electronic), 2004.
bafu08-1
[461] W. Bauer and K. Furutani. Compact operators and the pluriharmonic
Berezin transform. Int. J. Math., 19(6):645–669, 2008.
bais12
[462] W. Bauer and H. Issa. Commuting Toeplitz operators with quasihomogeneous symbols on the Segal-Bargmann space. J. Math. Anal.
Appl., 386(1):213–235, 2012.
bale11
[463] W. Bauer and T. Le. Algebraic properties and the finite rank problem
for Toeplitz operators on the Segal-Bargmann space. J. Funct. Anal.,
261(9):2617–2640, 2011.
bale11-1
[464] W. Bauer and Y. Lee. Commuting Toeplitz operators on the SegalBargmann space. J. Funct. Anal., 260(2):460–489, 2011.
ba09-5
[465] H. Baum. Eichfeldtheorie: Eine Einf¨
uhrung in Die Differentialgeometrie auf Faserb¨
undeln. Springer-Lehrbuch Masterclass. Springer,
2009.
ba12-2
[466] C. Baumgarten. A geometrical method of decoupling. Submitted on
4 Jan 2012, 2012.
ba12-1
[467] C. Baumgarten. A symplectic method to generate multivariate normal
distributions. Submitted on 16 May 2012, 2012.
bari00
[468] F. Baur and W. Ricker. The Weyl calculus and a Cayley-Hamilton
theorem for pairs of selfadjoint matrices. Linear Algebra Appl., 319(13):103–116, 2000.
42
baco11
[469] H. Bauschke and P. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages
de Math´ematiques de la SMC. Springer, New York, 2011.
bahi64
[470] G. Baxter and I. Hirschman. An explicit inversion formula for finitesection Wiener-Hopf operators. Bull. Amer. Math. Soc., 70:820–823,
1964.
ba99-5
[471] R. Baxter. SAR image compression with the Gabor transform. Geoscience and Remote Sensing, IEEE Transactions on, 37(1):574–588,
1999.
ba11-2
[472] F. Bayart. Composition operators on the polydisk induced by affine
maps. J. Funct. Anal., 260(7):1969–2003, 2011.
ba10-3
[473] D. Bayer. Bilinear Time-Frequency Distributions and Pseudodifferential Operators. PhD thesis, 2010.
base09-1
[474] I. Bayram and I. Selesnick. On the frame bounds of iterated filter
banks. Appl. Comput. Harmon. Anal., 27(2):255–262, 2009.
bewo10-1
[475] R. Beals and R. Wong. Special Functions - A Graduate Text. Cambridge University Press, 2010.
be79-2
[476] H. Bear. Approximate identities and pointwise convergence. Pacific
J. Math., 81:17–27, 1979.
be95-5
[477] A. Beardon. Graduate Texts in Mathematics - The Geometry of Discrete Groups. Springer, 1995.
be95-4
[478] A. Beardon. The Geometry of Discrete Groups. 91. Springer-Verlag,
New York, 1995.
bede73
[479] A. Beavers and E. Denman. A computational method for eigenvalues
and eigenvectors of a matrix with real eigenvalues. Numer. Math.,
21:389–396, 1973.
beda14
[480] N. Bebiano and J. da Providencia. Krein space numerical ranges:
compressions and dilations. Ann. Funct. Anal., 5(1):36–50, 2014.
43
becaro13
[481] C. Beccari, G. Casciola, and L. Romani. Construction and characterization of non-uniform local interpolating polynomial splines. J.
Comput. Appl. Math., 240(0):5 – 19, 2013.
be11
[482] M. Beceanu. New estimates for a time-dependent Schr¨odinger equation. Duke Math. J., 159(3):417–477, 2011.
be09-2
[483] I. Bechar. A Bernstein-type inequality for stochastic processes of
quadratic forms of Gaussian variables. preprint, 2009.
be09-3
[484] P. Bechler. Wavelet approximation of distributions with bounded
variation derivatives. J. Fourier Anal. Appl., 15(1):31–57, 2009.
beel13
[485] A. Beck and Y. Eldar. Sparsity constrained nonlinear optimization:
Optimality conditions and algorithms. SIAM J. Optim., 23(3):1480–
1509, 2013.
bete09
[486] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183–
202, 2009.
bete09-1
[487] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems.
IEEE Trans. Image Process., 18(11):2419–2434, 2009.
bero07
[488] M. Beck and S. Robins. Computing The Continous Discretely. 2007.
beboca11
[489] S. Becker, J. Bobin, and E. J. Candes. NESTA: A fast and accurate
first-order method for sparse recovery. SIAM J. Imaging Sci., 4(1):1–
39, 2011.
beco09
[490] E. B´edos and R. Conti. On twisted Fourier analysis and convergence
of Fourier series on discrete groups. J. Fourier Anal. Appl., 15(3):336–
365, 2009.
beco11
[491] E. B’edos and R. Conti. On discrete twisted C*-dynamical systems,
Hilbert C*-modules and regularity. arXiv preprint arXiv:1104.1731,
2011.
be02-1
¯ C).
[492] H. Begehr. Orthogonal decompositions of the function space L2 (D;
J. Reine Angew. Math., 549:191–219, 2002.
44
beboperi01
[493] D. Bekoll´e, A. Bonami, M. Peloso, and F. Ricci. Boundedness of
Bergman projections on tube domains over light cones. Math. Z.,
237(1):31–59, 2001.
bena07
[494] D. Bekoll´e and C. Nana. Lp -boundedness of Bergman projections in
the tube domain over Vinberg’s cone. J. Lie Theory, 17(1):115–144,
2007.
beli06
[495] E. S. Belinsky and W. Linde. Compactness properties of certain integral operators related to fractional integration. Math. Z., 252(3):669–
686, 2006.
bedr01
[496] G. Bell and A. Dranishnikov. On asymptotic dimension of groups.
Algebr. Geom. Topol, 1:57–71, 2001.
be11-2
[497] G. Bellomonte. Rigged Hilbert spaces and contractive families of
Hilbert spaces. Monatsh. Math., 164(3):271285, 2011.
beditr13
[498] G. Bellomonte, B. Di, and C. Trapani. Operators in Rigged Hilbert
spaces: some spectral properties. ArXiv e-prints, September 2013.
bemese10
[499] Y. Belov, T. Mengestie, and K. Seip. Unitary discrete Hilbert transforms. J. Anal. Math., 112:383–393, 2010.
bemese11
[500] Y. Belov, T. Mengestie, and K. Seip. Discrete Hilbert transforms on
sparse sequences. Proc. Lond. Math. Soc. (3), 103(1):73–105, 2011.
bega10
[501] D. Beltita and J. E. Gale. Universal objects in categories of reproducing kernels. Revista Matem’atica Iberoamericana, 27(1):123–179,
2010.
bebe09
[502] I. Beltita and D. Beltita. A survey on Weyl calculus for representations of nilpotent Lie groups. Arxiv preprint arXiv:0910.1994, 2009.
bebe09-1
[503] I. Beltita and D. Beltita. Magnetic pseudo-differential Weyl calculus
on nilpotent Lie groups. Ann. Global Anal. Geom., 36(3):293–322,
2009.
bebe10
[504] I. Beltita and D. Beltita. Uncertainty principles for magnetic structures on certain coadjoint orbits. J. Fourier Anal. Appl., 60(1):81–95,
2010.
45
bebe11-1
[505] I. Beltita and D. Beltita. Continuity of magnetic Weyl calculus. J.
Funct. Anal., 260(7):1944–1968, 2011.
bebe11
[506] I. Beltita and D. Beltita. Modulation spaces of symbols for representations of nilpotent Lie groups. J. Fourier Anal. Appl., 17(2):290–319,
2011.
bebe12
[507] I. Beltita and D. Beltita. Algebras of symbols associated with the
Weyl calculus for Lie group representations. Monatsh. Math., 167:13–
33, 2012.
begr13
[508] A. V. Belykh and A. V. Greshnov. Carnot-Caratheodory homogeneous cone condition and Carnot-Caratheodory balls in Heisenberg
groups. J. Math. Sci. (N. Y.), 195(6):779–790, 2013.
bebl11
[509] H. Ben and L. Blanc F´eraud. Restoration mehod for spatially variant
blurred images. Technical report, INRIA, June 2011.
begh13
[510] M. Ben and B. Ghribi. Weinstein-Sobolev spaces of exponential type
and applications. Acta Math. Sin. (Engl. Ser.), 29(3):591–608, 2013.
bera93-3
[511] J. Ben Arie and K. Rao. Image expansion by non-orthogonal basis functions extended for optimal multiple template matching. In
Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993
IEEE International Conference on, volume 5, pages 145–148, 1993.
bebr00
[512] J.-D. Benamou and Y. Brenier. A computational fluid mechanics
solution to the Monge-Kantorovich mass transfer problem. Numer.
Math., 84(3):375–393, 2000.
bedefe14
[513] T. Bendory, S. Dekel, and A. Feuer. Exact recovery of non-uniform
splines from the projection onto spaces of algebraic polynomials. J.
Approx. Theory, 182:7–17, 2014.
anbe11
[514] J. Benedetto and T. D. Andrews. Intrinsic wavelet and frame applications. In Proc. SPIE, Wavelet pioneer award; Independent component
analyses, wavelets, neural networks, biosystems, and nanoengineering
IX, volume 8058, pages 805802–805802–13. SPIE, 2011.
bebewo12
[515] J. Benedetto, R. Benedetto, and J. Woodworth. Optimal ambiguity
functions and Weils exponential sum bound. J. Fourier Anal. Appl.,
18(3):471–487, 2012.
46
behe92
[516] J. Benedetto and H. Heinig. Fourier transform inequalities with measure weights. Adv. Math., 96(2):194–225, 1992.
bemanato10
[517] A. Benyi, D. Maldonado, V. Naibo, and R. H. Torres. On the
H¨ormander classes of bilinear pseudodifferential operators. Integr.
Equ. Oper. Theory, 67(3):341–364, 2010.
beoh11
[518] A. Benyi and T. Oh. Modulation spaces, Wiener amalgam spaces,
and Brownian motions. Adv. Math., 228(5):2943 – 2981, 2011.
bedenathtovi09
[519] . B´enyi, C. Demeter, A. Nahmod, C. Thiele, R. Torres, and P. Villarroya. Modulation invariant bilinear t(1) theorem. J. Anal. Math.,
109:279–352, 2009.
bera07
[520] M. Benzi and N. Razouk. On the Iwasawa decomposition of a symplectic matrix. Appl. Math. Lett., 20(3):260–265, 2007.
be86-2
[521] Y. Berezanskii. Selfadjoint operators in spaces of functions of infinitely many variables, volume 63 of Translations of Mathematical
Monographs. American Mathematical Society, Providence, RI, 1986.
be63-2
[522] F. A. Berezin. Canonical transformations in representations of second
quantization. Dokl. Akad. Nauk SSSR, 150:959–962, 1963.
be75-2
[523] F. A. Berezin. General concept of quantization. Communications in
Mathematical Physics, 40(2):153–174, 1975.
bemi99
[524] A. Berg and W. Mikhael. A survey of mixed transform techniques for
speech and image coding. In Circuits and Systems, 1999. ISCAS ’99.
Proceedings of the 1999 IEEE International Symposium on, volume 4,
pages 106 –109, Orlando, FL, USA, jul 1999.
be00-3
[525] M. Berg. The Fourier-analytic Proof of Quadratic Reciprocity. Pure
and Applied Mathematics. A Wiley-Interscience Series of Texts,
Monographs, 2000.
be00-2
[526] A. Berge. Symplectic lattices. In Quadratic forms and their applications: proceedings of the Conference on Quadratic Forms and Their
Applications, July 5-9, 1999, University College Dublin, volume 272,
page 9, 2000.
47
behuwazh10
[527] C. Berger, Z. Wang, J. Huang, and S. Zhou. Application of Compressive Sensing to Sparse Channel Estimation. IEEE Comm. Mag.,
48:164–174, Nov. 2010.
beprwizh10
[528] C. Berger, S. Zhou, J. Preisig, and P. Willett. Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From
Subspace Methods to Compressed Sensing. IEEE Trans. Signal Process., 58:1708–1721, Mar. 2010.
beco87
[529] C. A. Berger and L. A. Coburn. Toeplitz operators on the SegalBargmann space. Trans. Amer. Math. Soc., 301(2):813–829, 1987.
begrma14
[530] P. Berger, K. Gr¨ochenig, and G. Matz. Sampling and reconstruction
in different subspaces using oblique projections. 2014.
be71-3
[531] T. Berger. Rate distorsion theory. A mathematical basis for data
compression. Prentice-Hall series in information and system sciences.
Eaglewood Cliffs: Prentice-Hall, Inc. xiii, 311 p. (1971)., 1971.
be13
[532] R. Bergmann.
Translationsinvariante R¨aume multivariater
anisotroper Funktionen auf dem Torus. PhD thesis, 2013.
beho12
[533] S. Berhanu and J. Hounie. A class of FBI transforms. Comm. Partial
Differential Equations, 37(1-3):38–57, 2012.
beinru08
[534] R. Berinde, P. Indyk, and M. Ruzic. Practical near-optimal sparse
recovery in the L1 norm. In Proc. Allerton, 2008.
beno94
[535] M. Z. Berkolaiko and I. Y. Novikov. Unconditional bases in spaces
of functions of anisotropic smoothness. Proc. Steklov Inst. Math.,
204(3):27–41, 1994.
begeve92
[536] N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Berlin etc.: Springer-Verlag, 1992.
beor95
[537] B. Berndtsson and J. Ortega. On interpolation and sampling in
Hilbert spaces of analytic functions. J. Reine Angew. Math., 464:109–
128, 1995.
befr14
[538] F. Bernicot and D. Frey. Pseudodifferential operators associated with
a semigroup of operators. J. Fourier Anal. Appl., 20(1):91–118, 2014.
48
bemamona14
[539] F. Bernicot, D. Maldonado, K. Moen, and V. Naibo. Bilinear
Sobolev-Poincar´e inequalities and Leibniz-type rules. J. Geom. Anal.,
24(2):1144–1180, 2014.
besh11
[540] F. Bernicot and S. Shrivastava. Boundedness of smooth bilinear
square functions and applications to some bilinear pseudo-differential
operators. Indiana Univ. Math. J., 60(1):233–268, 2011.
bezh08
[541] F. Bernicot and J. Zhao. New abstract Hardy spaces. J. Funct. Anal.,
255(7):1761–1796, 2008.
beta96
[542] D. Bernier and K. F. Taylor. Wavelets from square-integrable representations. SIAM J. Math. Anal., 27(2):594–608, 1996.
be87-1
[543] J. Bernstein. Method and apparatus for multi-dimensional signal processing using a Short-Space Fourier transform, Oct 1987.
be24
[544] S. Bernstein. Sur une modification de l’in´equalit´e de Tchebichef. Annals Science Insitute Sav. Ukraine, Sect. Math. I, 1924.
be27
[545] S. Bernstein. Theory of Probability. Moscow, 1927.
be98-3
[546] S. Bernstein. A Paley-Wiener theorem and Wiener-Hopf-type integral
equations in Clifford analysis. Adv. Appl. Clifford Algebr., 8(1):31–46,
1998.
beeb10
[547] S. Bernstein and S. Ebert. Wavelets on S3 and SO(3)Their construction, relation to each other and Radon transform of wavelets on
SO(3). Mathematical Methods in the Applied Sciences, 33(16):1895–
1909, 2010.
beebpe13
[548] S. Bernstein, S. Ebert, and I. Z. Pesenson. Generalized splines for
Radon transform on compact Lie groups with applications to crystallography. J. Fourier Anal. Appl., 19(1):140–166, 2013.
bets97
[549] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, Belmont, 1997.
be92
[550] M. Besbes. Points fixes dans les espaces des op´erateurs nucl´eaires.
Bull. Austral. Math. Soc., 46(2):287–294, 1992.
49
be64-2
[551] O. V. Besov. Investigation of a family of function spaces in connection
with theorems of imbedding and extension. Am. Math. Soc., Transl.,
II. Ser., 40:85–126, 1964.
be03-6
[552] O. V. Besov. Equivalent normings of spaces of functions of variable smoothness. Proceedings of the Steklov Institute of MathematicsInterperiodica Translation, 243:80–88, 2003.
be05-3
[553] O. V. Besov. Interpolation, embedding, and extension of spaces of
functions of variable smoothness. Proceedings of the Steklov Institute
of Mathematics-Interperiodica Translation, 248:47–58, 2005.
be09-1
[554] O. V. Besov. Weighted function spaces with constant and variable
smoothness. Begehr, H. G. W. (ed.) et al., More progresses in analysis.
Proceedings of the 5th international ISAAC congress, Catania, Italy,
July 25–30, 2005. Hackensack, NJ: World Scientific. 55-66 (2009).,
2009.
bede91
[555] D. Bessis and S. Demko. Stable recovery of fractal measures by polynomial sampling. Physica D, 47(3):427–438, 1991.
befarosato08
[556] J. Betancor, J. Farina, L. Rodriguez Mesa, A. Sanabria, and J.-L.
Torrea. Transference between Laguerre and Hermite settings. J.
Funct. Anal., 254(3):826–850, 2008.
beda10
[557] J. J. Betancor and W. Damian. Anisotropic local Hardy spaces. J.
Fourier Anal. Appl., 16(5):658–675, 2010.
bedzga10
[558] J. J. Betancor, J. Dziubanski, and G. Garrigos. Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions. Tohoku Math. J., 62(2):215–231, 2010.
befamaro08
[559] J. J. Betancor, J. Farina, T. Martinez, and L. Rodriguez Mesa. Higher
order Riesz transforms associated with Bessel operators. Ark. Mat.,
46(2):219–250, 2008.
best01
[560] J. J. Betancor and K. Stempak. Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform. Tohoku
Math. J., 53(1):109–129, 2001.
50
bebebo10
[561] N. Bettaibi, R. Bettaieb, and S. Bouaziz. Wavelet transform associated with the q-Dunkl operator. Tamsui Oxf. J. Math. Sci., 26(1):77–
101, 2010.
bego11
[562] A. Bettayeb and T. Goodman. Some properties of multi-box splines.
J. Approx. Theory, 163(2):197–212, February 2011.
bedede02
[563] R. Beukema, M. De, and G. De. A Gelfand triple approach to Wigner
and Husimi representations. Eindhoven University of Technology, Department of Mathematics and Computing Science, 2002.
bero04
[564] A. Beutelspacher and U. Rosenbaum. Projective Geometry from Foundations to Applications (Projektive Geometrie von den Grundlagen bis
zu den Anwendungen) 2nd Revised and Expanded ed. Vieweg Studium
41, Aufbaukurs Mathematik. Braunschweig: Vieweg. x, 2004.
bero76
[565] F. Beutler and W. Root. The operator pseudoinverse in control and
systems identification. Gen. Inverses Appl., Proc. adv. Semin., Madison 1973, 397-494 (1976)., 1976.
be11-1
[566] N. Bey. Multi-Resolution Fourier Analysis Part I: Fundamentals.
International Journal of Communications, Network and System Sciences, 4(6):364–371, 2011.
be12-1
[567] N. Bey. Multi-resolution Fourier analysis: extraction and missing
signal recovery of short buried signals in noise. Signal, Image and
Video Processing, pages 1–13, 2012.
be12
[568] N. Bey. Multi-Resolution Fourier Analysis Part II: Missing Signal
Recovery and Observation Results. International Journal of Communications, Network and System Sciences, 5(1):28–36, 2012.
be92-1
[569] G. Beylkin. On the representation of operators in bases of compactly
supported wavelets. SIAM J. Numer. Anal., 29(6):1716–1740, 1992.
becoro92
[570] G. Beylkin, R. Coifman, and V. Rokhlin. Wavelets in numerical analysis. In Wavelets and their applications, pages 181–210. 1992.
bemo09
[571] G. Beylkin and L. Monzon. Nonlinear inversion of a band-limited
Fourier transform. Appl. Comput. Harmon. Anal., 27(3):351–366,
2009.
51
bemo10
[572] G. Beylkin and L. Monz´on. Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal., 28(2):131–149, 2010.
be03-5
[573] S. Bezdidko. Study of the properties of Zernike’s orthogonal polynomials. In S. N. Bezdidko, J. M. Sasian, R. J. Koshel, and P. K. Manhart,
editors, Proc. SPIE, Novel Optical Systems Design and Optimization
VI, volume 5174 of Poster Session, pages 227–234, San Diego, CA,
USA, 2003. SPIE.
bhda84
[574] R. Bhatia and C. Davis. A bound for the spectral variation of a
unitary operator. Linear Multilinear Algebra, 15:71–76, 1984.
bhdamc83
[575] R. Bhatia, C. Davis, and A. McIntosh. Perturbation of spectral subspaces and solution of linear operator equations. Linear Algebra Appl.,
52-53:45–67, 1983.
bhda13
[576] S. Bhatt and P. Dabhi. Arens regularity and amenability of Lau
product of Banach algebras defined by a Banach algebra morphism.
Bull. Austral. Math. Soc., 87:195–206, 2013.
bhdade14
[577] S. Bhatt, P. Dabhi, and H. Dedania. The multiplier algebra of a
Beurling algebra. Bull. Austral. Math. Soc., 90(1):113–120, 2014.
bh77
[578] R. Bhattacharya. Refinements of the multidimensional central limit
theorem and applications. Ann. Probab., 5:1–27, 1977.
bhwu97-1
[579] G. Bhowmik and J. Wu. On the asymptotic behaviour of the number
of subgroups of finite abelian groups. Arch. Math. (Basel), 69(2):95–
104, 1997.
bhmaXX
[580] T. Bhuyain and M. Marcolli. The Ricci Flow on Noncommutative
Two-Tori. Letters in Mathematical Physics, pages 1–22.
bile08-1
[581] P. Bickel and E. Levina. Covariance regularization by thresholding.
Ann. Statist., 36(6):2577–2604, 2008.
bile08
[582] P. Bickel and E. Levina. Regularized estimation of large covariance
matrices. Ann. Statist., 36:199–227, 2008.
birits09
[583] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of lasso
and Dantzig selector. Ann. Statist., 37(4):1705–1732, 2009.
52
biscso11
[584] H. Bie, N. Schepper, and F. Sommen. The class of Clifford-Fourier
transforms. J. Fourier Anal. Appl., 17(6):1198–1231, 2011.
anbisc09
[585] M. Bieri, R. Andreev, and C. Schwab. Sparse tensor discretization of
elliptic sPDEs. SIAM J. Sci. Comput., 31:4281–4304, 2009.
biri08
[586] H. Bierme and F. Richard. Estimation of anisotropic Gaussian fields
through Radon transform. ESAIM, Probab. Stat., 12:30–50, 2008.
bibowe13
[587] J. Bigot, C. Boyer, and P. Weiss. An analysis of block sampling
strategies in compressed sensing. arXiv, 2013.
bi94
[588] J. Bigun. Speed, frequency, and orientation tuned 3-D Gabor filter
banks and their design. In Pattern Recognition, Conference C: Signal
Processing, Proceedings of the 12th IAPR International Conference
on, volume 3, pages 184–187, Jerusalem, 1994. IEEE.
bibova97
[589] A. Bijaoui, Y. Bobichon, and B. Vandame. Multiscale image fusion
in Astronomy. Vistas in Astronomy, 41(3):365–372, 1997.
bi96
[590] C. Binder. Edmund Hlawka zum 80. Geburtstag. Befragt von Christa
Binder (Edmund Hlawka on the occasion of his 80th birthday. An
interview with Christa Binder). NTM Zeitschrift f¨
ur Geschichte der
Wissenschaften, Technik und Medizin, 4(1):201–213, 1996.
bicodadepewo10
[591] P. Binev, A. Cohen, W. Dahmen, R. A. DeVore, G. Petrova, and
P. Wojtaszczyk. Convergence rates for greedy algorithms in reduced
basis methods. preprint, 2010.
bi07-3
[592] N. Bingham. Regular variation and probability: The early years. J.
Comput. Appl. Math., 200(1):357–363, 2007.
bigote87
[593] N. Bingham, C. Goldie, and J. Teugels. Regular variation. Encyclopedia of Mathematics and its applications, Vol. 27. Cambridge etc.:
Cambridge University Press. XIX, 1987.
bios09
[594] N. Bingham and A. Ostaszewski. Infinite combinatorics and the foundations of regular variation. J. Math. Anal. Appl., 360(2):518–529,
2009.
bite79
[595] N. Bingham and J. Teugels. Tauberian theorems and regular variation. Nieuw Arch. Wisk. (3), 27:153–186, 1979.
53
bidehi13
[596] E. Binz, M. De Gosson, and B. Hiley. Clifford algebras in symplectic geometry and quantum mechanics. Found. Phys., 43(4):424–439,
2013.
bipo08
[597] E. Binz and S. Pods. The Geometry of Heisenberg Groups. American
Mathematical Society, 2008.
bimara03
[598] E. Birgin, J. Martinez, and M. Raydan. Inexact spectral projected
gradient methods on convex sets. IMA J. Numer. Anal., 23(4):539–
559, 2003.
biso87
[599] M. S. Birman and M. Solomyak. Spectral-theory of self-adjoint operators in Hilbert space. Transl. from the Russian. Mathematics and its
Applications (Soviet Series) 5. D. Reidel Publishing Co.. A member
of the Kluwer Academic Publishers, 1987.
bikashya12
[600] S. Bishnoi, S. Sharma, N. Katyal, and R. Yadav. A Conceptual Study
of OFDM Transmission Techniques Based on Algorithms Developed
Through UML. IJCA Proc. Nat. Workshop-Cum-Conf. Recent Trends
Math. Comp., (3), May 2012.
bjsi12
[601] I. Bjelakovic and R. Siegmund Schultze. Quantum Stein’s lemma
revisited, inequalities for quantum entropies, and a concavity theorem
of Lieb. preprint, 2012.
bjbj11
[602] A. Bj¨orn and J. Bj¨orn. Nonlinear potential theory on metric spaces.
Z¨
urich: European Mathematical Society (EMS), 2011.
bl03
[603] R. Blahut. Algebraic Codes for Data Transmission. Cambridge Univ.
Press, Cambridge, U.K., 2003.
bl10
[604] D. Blair. Riemannian Geometry of Contact and Symplectic Manifolds, volume 203 of Progress in Mathematics. Birkh¨auser Boston
Inc., Boston, MA, Second edition, 2010.
blcata11
[605] J. Blanchard, C. Cartis, and J. Tanner. Compressed sensing: how
sharp is the restricted isometry property? SIAM Rev., 53(1):105–125,
2011.
blth10
[606] J. Blanchard and A. Thompson. On support sizes of restricted isometry constants. Appl. Comput. Harmon. Anal., 29(3):382–390, 2010.
54
bl13
[607] K. Blanchfield. Orbits of mutually unbiased bases. arXiv preprint
arXiv:1310.4684, 2013.
blcamu11
[608] S. Blanes, F. Casas, and A. Murua. Error analysis of splitting methods
for the time dependent Schr¨odinger equation. SIAM J. Sci. Comput.,
33(4):1525–1548, 2011.
bl88
[609] O. Blasco. Convolution of operators and applications. Math. Z.,
199(1):109–114, 1988.
bl00
[610] O. Blasco. Bilinear maps and convolutions. Research and Expositions
in Math, 24:157–167, 2000.
bl01
[611] O. Blasco. Remarks on p-summing multipliers. In Recent progress
in functional analysis (Valencia, 2000), volume 189 of North-Holland
Math. Stud., pages 239–254. 2001.
bl05
[612] O. Blasco. Bilinear multipliers and transference. Int. J. Math. Math.
Sci., (4):545–554, 2005.
bl05-1
[613] O. Blasco. Introduction to vector valued Bergman spaces. 2005.
bl07-1
[614] O. Blasco. Dyadic BMO, paraproducts and Haar multipliers. In Interpolation theory and applications, volume 445 of Contemp. Math.,
pages 11–18. 2007.
bl09-3
[615] O. Blasco. Notes on the spaces of bilinear multipliers. Rev. Un. Mat.
Argentina, 50(2):23–37, 2009.
arbl02
[616] O. Blasco and J. Arregui. Multipliers on vector valued Bergman
spaces. Canad. J. Math., 54(6):1165–1186, 2002.
blca09
[617] O. Blasco and J. Calabuig. Fourier analysis with respect to bilinear
maps. Acta Math. Sin. (Engl. Ser.), 25(4):519–530, 2009.
blcagi05
[618] O. Blasco, M. Carro, and T. Gillespie. Bilinear Hilbert transform on
measure spaces. J. Funct. Anal., 11(4):459–470, 2005.
blfosc07
[619] O. Blasco, J. Fourie, and I. Schoeman. On operator valued sequences
of multipliers and r-boundedness. J. Math. Anal. Appl., 328(1):7–23,
2007.
55
blvi03
[620] O. Blasco and F. Villarroya. Transference of bilinear multiplier operators on Lorentz spaces. Illinois J. Math., 47(4):1327–1343, 2003.
blvi13
[621] O. Blasco and P. Villarroya. Transference of vector-valued multipliers
on weighted lp -spaces. Canad. J. Math., 65(3):510–543, 2013.
bl04
[622] D. P. Blecher. Are operator algebras Banach algebras? Lau, Anthony To-Ming (ed.) et al., Banach algebras and their applications.
Proceedings of the 16th international conference, University of Alberta, Edmonton, Canada, July 27–August 9, 2003. Providence, RI:
American Mathematical Society (AMS). Contemporar, 2004.
bl04-1
[623] D. P. Blecher. One-sided ideals and approximate identities in operator
algebras. J. Aust. Math. Soc., 76(3):425–448, 2004.
blka08
[624] D. P. Blecher and U. Kashyap. Morita equivalence of dual operator
algebras. J. Pure Appl. Algebra, 212(11):2401–2412, 2008.
blle04
[625] D. P. Blecher and M. Le. Operator Algebras and their Modules An
operator Space Approach. Claderon Press, 2004.
blma05
[626] D. P. Blecher and B. Magajna. Duality and operator algebras. II:
Operator algebras as Banach algebras. J. Funct. Anal., 226(2):485–
493, 2005.
blfo89
[627] R. Blei and J. Fournier. Mixed-norm conditions and Lorentz norms.
Commutative harmonic analysis, Proc. SLU-GTE Conf., Canton/NY
1987, Contemp. Math. 91, 57-78 (1989)., 1989.
blmi13
[628] T. Blendek and J. Michalicek. l1 -Norm estimates of character sums
defined by a Sidon set in the dual of a compact Kac algebra. J.
Operator Theory, 70(2):375–399, 2013.
blhets10
[629] V. Blondel, J. Hendrickx, and J. Tsitsiklis. Continuous-time averagepreserving opinion dynamics with opinion-dependent communications. SIAM J. Control Optim., 48(8):5214–5240, 2010.
blthun01
[630] T. Blu, P. Th´evenaz, and M. Unser. MOMS: Maximal-order interpolation of minimal support. IEEE Trans. Image Process., 10(7):1069 –
1080, July 2001.
56
bllapoy10
¨ Yilmaz. Erratum to: Sobolev
[631] J. Blum, M. Lammers, A. Powell, and O.
duals in frame theory and sigma-delta quantization [MR2643587]. J.
Fourier Anal. Appl., 16(3):382, 2010.
blnawezi07
[632] M. Blume, D. Zikic, W. Wein, and N. Navab. A new and general
method for blind shift-variant deconvolution of biomedical images.
In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2007, pages 743–750. Springer, 2007.
blda04
[633] T. Blumensath and M. Davies. On shift-invariant sparse coding. Independent Component Analysis and Blind Signal Separation, pages
1205–1212, 2004.
blda05
[634] T. Blumensath and M. Davies. A fast importance sampling algorithm
for unsupervised learning of over-complete dictionaries. In Acoustics,
Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE
International Conference on, volume 5, pages v–213, 2005.
blda06
[635] T. Blumensath and M. Davies. Sparse and shift-invariant representations of music. IEEE Transactions on Audio, Speech and Language
Processing, 14(1):50–57, 2006.
blda07
[636] T. Blumensath and M. Davies. Compressed sensing and source separation. Independent Component Analysis and Signal Separation, pages
341–348, 2007.
blda08-1
[637] T. Blumensath and M. Davies. Gradient pursuits. IEEE Trans. Signal
Process., 56:2370–2382, Jun. 2008.
blda08
[638] T. Blumensath and M. Davies. Iterative thresholding for sparse approximations. J. Fourier Anal. Appl., 14:629–654, 2008.
blda09-1
[639] T. Blumensath and M. Davies. Sampling theorems for signals from the
union of finite-dimensional linear subspaces. IEEE Trans. Information
Theory, 55(4):1872–1882, 2009.
blda10
[640] T. Blumensath and M. Davies. Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Topics Sig.
Process., 4(2):298–309, april , 2010.
57
bosm38
[641] R. Boas and F. Smithies. On the characterization of a distribution
function by its Fourier transform. Amer. J. Math., 60:523–531, 1938.
abbeboli05
[642] B. Boashash, A. Belouchrani, K. Abed Meraim, and N. Linh Trung.
Time-Frequency Signal Processing for Wireless Communication. CRC
Press, 2005.
bofr92
[643] B. Boashash and G. Frazer. Time-varying higher-order spectra, generalised Wigner-Ville distribution and the analysis of underwater acoustic data. In icassp, pages 193–196, 1992.
bomot09
[644] H. Boche, U. M¨onich, and o. others. The Class of Bandlimited
Functions with Unstable Reconstruction under Thresholding. In
SAMPTA’09, International Conference on Sampling Theory and Applications, 2009.
bomo11
[645] H. Boche and U. J. M¨onich. Sampling of deterministic signals and
systems. IEEE Trans. Signal Process., 59(5):2101–2111, 2011.
bo04-4
[646] B. Bodmann. A lower bound for the Wehrl entropy of quantum spin
with sharp high-spin asymptotics. Comm. Math. Phys., 250(2):287–
300, 2004.
bokuzh15
[647] B. Bodmann, G. Kutyniok, and X. Zhuang. Gabor shearlets. Appl.
Comput. Harmon. Anal., 38(1):87–114, 2015.
bocaku11
[648] B. G. Bodmann, P. Casazza, and G. Kutyniok. A quantitative notion of redundancy for finite frames. Appl. Comput. Harmon. Anal.,
30(3):348–362, 2011.
bocrkulimaszte93
[649] M. Bodruzzaman, X. Li, K. Kuah, L. Crowder, M. Malkani, H. H.
Szu, and B. Telfer. Speaker recognition using neural network and
adaptive wavelet transform. In M. Bodruzzaman, X. Li, K. E. Kuah,
L. Crowder, M. Malkani, H. H. Szu, B. A. Telfer, F. O. Huck, and
R. D. Juday, editors, Proc. SPIE, Visual Information Processing II,
Wavelet Transform, volume 1961, pages 391–400, Orlando, FL, USA,
Friday 16 April 1993, 1993. SPIE.
bogrra04
[650] A. Boettcher, S. M. Grudsky, and d. Ramirez. Approximating inverses of Toeplitz matrices by circulant matrices. Methods Appl. Anal.,
11(2):211–220, 2004.
58
bobumo08
[651] A. Boggess, B. Bunch, and C. Moore. Fourier series and the Lubkin
W-transform. Numer. Algorithms, 47(2):133–142, 2008.
bora09
[652] A. Boggess and A. Raich. A simplified calculation for the fundamental
solution to the heat equation on the Heisenberg group. Proc. Amer.
Math. Soc., 137(3):937–944, 2009.
bocaol11
[653] P. Boggiatto, E. Carypis, and A. Oliaro. Wigner representations
associated with linear transformations of the time-frequency plane.
In Pseudo-differential operators: analysis, applications and computations. Selected papers based on lectures presented at the meeting of the
ISAAC Group in Pseudo-Differential Operators (IGPDO), London,
UK, July 13–18, 2009, pages 275–288. 2011.
bocaol13
[654] P. Boggiatto, E. Carypis, and A. Oliaro. Windowed-Wigner representations in the Cohen class and uncertainty principles. J. Geom. Anal.,
23(4):1753–1779, 2013.
boco02
[655] P. Boggiatto and E. Cordero. Anti-Wick quantization with symbols
in Lp spaces. Proc. Amer. Math. Soc., 130(9):2679–2685 (electronic),
2002.
bodool13
[656] P. Boggiatto, G. Donno, and A. Oliaro. Hudson’s theorem for τ Wigner transforms. Bull. Lond. Math. Soc., 45(6):1131–1147, 2013.
bofega11
[657] P. Boggiatto, C. Fernandez, and A. Galbis. Supports of representations in the Cohen class. J. Fourier Anal. Appl., 17(6):1180–1197,
2011.
bo74
[658] A. Bohm. Rigged Hilbert space and quantum mechanics. Technical
report, Texas Univ., Austin (USA). Center for Particle Theory, 1974.
bo25
[659] H. Bohr. Zur Theorie der Fastperiodischen Funktionen. Acta Mathematica, 46:101–214,, 1925.
bo84-1
[660] J. Boidol. Group algebras with a unique C ∗ -norm. J. Funct. Anal.,
56(2):220–232, 1984.
atbo97
[661] J. Bokor and M. Athans. Frequency domain identification of the
MIT interferometer tested in generalized orthogonal basis. In Proc. of
the 11th IFAC Simposium on system identificacion, volume 4, pages
1735–1739, Kiayushu, Japan, 1997.
59
bo08-4
[662] F. Bolley. Separability and completeness for the Wasserstein distance.
Donati-Martin, Catherine (ed.) et al., S´eminaire de probabilit´es XLI.
Some papers are selected contributions of the seminars in Nancy 2005
and Luminy 2006. Berlin: Springer. Lecture Notes in Mathematics
1934, 371-377 (2008)., 2008.
boca14
[663] F. Bolley and J. Carrillo. Nonlinear Diffusion: Geodesic convexity
is equivalent to Wasserstein contraction. Comm. Partial Differential
Equations, 39(10):1860–1869, 2014.
bota87
[664] E. Bombieri and J. Taylor. Quasicrystals, tilings, and algebraic number theory: some preliminary connections. In The legacy of Sonya
Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985), volume 64 of Contemp. Math., pages 241–264. Amer. Math. Soc., Providence, 1987.
boenyo14
[665] H. Bommier - Hato, M. Englis, and E.-H. Youssfi. Dixmier classes
on generalized Segal Bargmann Fock spaces. J. Funct. Anal.,
266(4):2096 – 2124, 2014.
boenyo12
[666] H. Bommier Hato, M. Englis, and E. Youssfi. Bergman-type projections in generalized Fock spaces. J. Math. Anal. Appl., 389(2):1086–
1104, 2012.
boyo07
[667] H. Bommier Hato and E. Youssfi. Hankel operators on weighted Fock
spaces. Integr. Equ. Oper. Theory, 59(1):1–17, 2007.
bodepr99
[668] J. Bona, F. Demengel, and K. Promislow. Fourier splitting and dissipation of nonlinear dispersive waves. Proc. Roy. Soc. Edinburgh Sect.
A, 129(3):477–502, 1999.
bofe10
[669] A. Bonami and J. Feuto. Products of functions in Hardy and Lipschitz
or BMO spaces. Cabrelli, Carlos (ed.) et al., Recent developments in
real and harmonic analysis. In honor of Carlos Segovia. Boston, MA:
Birkh¨auser. Applied and Numerical Harmonic Analysis, 57-71 (2010).,
2010.
boka10
[670] A. Bonami and A. Karoui. Uniform estimates of the prolate spheroidal
wave functions and spectral approximation in Sobolev spaces, 2010.
60
boka14-1
[671] A. Bonami and A. Karoui. Spectral decay of the sinc kernel operator
and approximations by Prolate Spheroidal Wave Functions. 2014.
boka14
[672] A. Bonami and A. Karoui. Uniform bounds of prolate spheroidal
wave functions and eigenvalues decay. C. R. Math. Acad. Sci. Paris,
352(3):229–234, 2014.
bopo87
[673] A. Bonami and S. Poornima. Nonmultipliers of the Sobolev spaces
W k,1 (Rn ). J. Funct. Anal., 71:175–181, 1987.
bota09
[674] J. Bonet and J. Taskinen. Toeplitz operators on the space of analytic
functions with logarithmic growth. J. Math. Anal. Appl., 353(1):428–
435, 2009.
bocopr13
[675] S. Bonettini, A. Cornelio, and M. Prato. A new semiblind deconvolution approach for Fourier-based image restoration: an application
in astronomy. SIAM Journal on Imaging Sciences, 6(3):1736–1757,
2013.
bopr13
[676] S. Bonettini and M. Prato. A scaled gradient projection method for
the X-ray imaging of solar flares. arXiv, 2013.
bolaug07
[677] A. Bonfigliolo, E. Lanconelli, and F. Uguzzoni. Stratified Lie Groups
and Potential Theory for their Sub-Laplacians. Springer Berlin / Heidelberg, 2007.
bo11
[678] B. Bongioanni. Sobolev spaces diversification. Rev. Union Mat. Argent., 52(2):23–34, 2011.
bohasa11
[679] B. Bongioanni, E. Harboure, and O. Salinas. Classes of weights related
to Schr¨odinger operators. J. Math. Anal. Appl., 373(2):563–579, 2011.
boro11
[680] B. Bongioanni and K. Rogers. Regularity of the Schr¨odinger equation
for the harmonic oscillator. Ark. Mat., 49(2):217–238, 2011.
bonoXX
[681] R. Bonner and R. Nossal. 2. Principles of Laser-Doppler Flowmetry.
Laser-Doppler blood flowmetry, pages 17–45.
bo81
[682] J.-M. Bony. Calcul symbolique et propagation des singularites pour
les equations aux derivees partielles non lineaires(Symbolic calculus
and propagation of singularities for nonlinear partial differential equations). Ann. Sci. cole Norm. Sup. (4), 14(2):209–246, 1981.
61
bo10-3
[683] L. Books. Multivariate Interpolation: Non-Uniform Rational BSpline, Bezier Triangle, Bezier Surface, Kriging, Microsphere Projection. Books LLC, 2010.
bosa07
[684] B. Booton and Y. Sagher. Norm inequalities for certain classes of functions and their Fourier transforms. J. Math. Anal. Appl., 335(2):1416–
1433, 2007.
boha99
[685] D. Borah and B. Hart. Frequency-selective fading channel estimation
with a polynomial time-varying channel model. IEEE Trans. Comm.,
47:862–873, Jun. 1999.
bo09
[686] M. Bordeaux. Loi de Weyl presque sure pour un systeme differentiel
en dimension 1. In Annales Henri Poincare, pages 1–32, 2009.
bo74-2
[687] C. Borell. Convex measures on locally convex spaces. Ark. Mat.,
12:239–252, 1974.
bo96-3
[688] A. Borichev. Beurling algebras and the generalized Fourier transform.
Proc. Lond. Math. Soc., III. Ser., 73(2):431–480, 1996.
bochto07
[689] A. Borichev, R. Chill, and Y. Tomilov. Uniqueness theorems for (sub)harmonic functions with applications to operator theory. Proc. Lond.
Math. Soc. (3), 95(3):687–708, 2007.
bohe93
[690] A. Borichev and H. Hedenmalm. Approximation in a class of Banach
algebras of quasianalytically smooth analytic functions. J. Funct.
Anal., 115(2):359–390, 1993.
bohe95-1
[691] A. Borichev and H. Hedenmalm. Completeness of translates in
weighted spaces on the half-line. Acta Math., 174(1):1–84, 1995.
bohe97
[692] A. Borichev and H. Hedenmalm. Harmonic functions of maximal
growth: invertibility and cyclicity in Bergman spaces. J. Amer. Math.
Soc., 10(4):761–796, 1997.
bohevo04
[693] A. Borichev, H. Hedenmalm, and A. Volberg. Large Bergman spaces:
invertibility, cyclicity, and subspaces of arbitrary index. J. Funct.
Anal., 207(1):111–160, 2004.
bohe95
[694] A. Borichev and P. Hedenmalm. Cyclicity in Bergman-type spaces.
Internat. Math. Res. Notices, (5):253–262, 1995.
62
boly07
[695] A. Borichev and Y. Lyubarskii. Uniqueness theorems for Korenblum
type spaces. J. Anal. Math., 103:307–329, 2007.
bolymath09
[696] A. Borichev, Y. Lyubarskii, E. Malinnikova, and P. Thomas. Radial growth of functions in the Korenblum space. Algebra i Analiz,
21(6):47–65, 2009.
bomonise10
[697] A. Borichev, R. Mortini, N. Nikolski, and K. Seip. Operator theory
and harmonic analysis. Abstracts from the workshop held October
31st-November 6th, 2010. Oberwolfach Rep., 7(4):2813–2875, 2010.
boso11
[698] A. Borichev and M. Sodin. Weighted exponential approximation and
non-classical orthogonal spectral measures. Adv. Math., 226(3):2503–
2545, 2011.
borost99
[699] S. Borman, M. Robertson, and R. Stevenson. Block-matching subpixel motion estimation from noisy, under-sampled frames: An empirical performance evaluation. In S. Borman, M. A. Robertson, R. L.
Stevenson, K. Aizawa, R. L. Stevenson, and Y.-Q. Zhang, editors, Visual Communications and Image Processing ’99, Motion estimation,
volume 3653 (from 1998) of Proceedings of the SPIE, pages 1442–1451,
San Jose, CA, USA, jan 1999.
bost98-1
[700] S. Borman and R. Stevenson. Spatial resolution enhancement of lowresolution image sequences: A comprehensive review with directions
for future research. Technical report, Department of electrical engineering, University of Notre Dame, Notre Dame, Indiana, USA, jul,
1998.
bost98
[701] S. Borman and R. Stevenson. Super-resolution from image sequencesa review. In Circuits and Systems, 1998. Proceedings. 1998 Midwest
Symposium on, pages 374 –378, Notre Dame, IN , USA, aug 1998.
bost99-1
[702] S. Borman and R. Stevenson. Simultaneous multi-frame MAP superresolution video enhancement using spatio-temporal priors. In Image
Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on, volume 3, pages 469 –473, 1999.
bost03
[703] S. Borman and R. Stevenson. Image resampling and constraint formulation for multi-frame super-resolution restoration. In S. Borman,
63
R. L. Stevenson, C. A. Bouman, and R. L. Stevenson, editors, Computational Imaging, Image rendering and processing II, volume 5016
of Proceedings of the SPIE, pages 208–219, Santa Clara, CA, USA,
jan 2003.
bost04
[704] S. Borman and R. Stevenson. Linear models for multi-frame superresolution restoration under non-affine registration and spatially varying PSF. In S. Borman, R. L. Stevenson, C. A. Bouman, and E. L.
Miller, editors, Computational imaging II, Registration and mosaicing, volume 5299 of Proceedings of the SPIE, pages 234–245, San Jose,
CA, USA, jan 2004.
bowo99
[705] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory
of Propagation, Interference and Diffraction of Light. CUP Archive,
1999.
bowa09
[706] S. Borodachov and Y. Wang. Lattice quantization error for redundant
representations. Appl. Comput. Harmon. Anal., 27(3):334 – 341, 2009.
babo04
[707] J. Borwein and D. Bailey. Mathematics by Experiment. A K Peters
Ltd., Natick, MA, 2004.
babo08
[708] J. Borwein and D. Bailey. Mathematics by experiment. A K Peters
Ltd., Wellesley, MA, Second edition, 2008.
babogi04
[709] J. Borwein, D. Bailey, and R. Girgensohn. Experimentation in mathematics. A K Peters Ltd., Natick, MA, 2004.
boboXX
[710] J. Borwein and P. Borwein. Experimental and Computational Mathematics: Selected Writings. ?
bode09
[711] J. Borwein and K. Devlin. The computer as crucible. An introduction
to experimental mathematics. A K Peters Ltd., Wellesley, MA, 2009.
bode11
[712] J. Borwein and K. Devlin. Experimental mathematics. An exampleoriented introduction. Heidelberg: Spektrum Akademischer Verlag(Springer), 2011.
boglmcwazu13
[713] J. Borwein, M. Glasser, R. McPhedran, J. Wan, and I. Zucker. Lattice
Sums Then and Now. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2013.
64
bororo08
[714] J. M. Borwein, E. Rocha, and J. Rodrigues. Communicating mathematics in the digital era (CMDE 2006). A K Peters Ltd., Wellesley,
MA, 2008.
bosa89
[715] L. Bos and K. Salkauskas. Moving least-squares are Backus-Gilbert
optimal. J. Approx. Theory, 59(3):267–275, 1989.
bo08-5
[716] S. Bosch. Linear Algebra (Lineare Algebra) 4th revised Ed. SpringerLehrbuch. Berlin: Springer. x, 297 p. EUR 26.95 and SFR 44.00, 2008.
bo90-2
[717] J. Bost. Principe d’Oka, K-th´eorie et syst`emes dynamiques non commutatifs. Invent. Math., 101(1):261–333, 1990.
bogr10
[718] A. B¨ottcher and S. Grudsky. Variable-coefficient Toeplitz matrices
with symbols beyond the Wiener algebra. In Numerical methods for
structured matrices and applications. The Georg Heinig memorial volume, pages 191–202. Basel: Birkh¨auser, 2010.
bogr03
[719] A. B¨ottcher and S. M. Grudsky. Fej´er means and norms of large
Toeplitz matrices. Acta Math. Sci., 69(3-4):889–900, 2003.
boma11-1
[720] P. Bouboulis and M. Mavroforakis. Reproducing kernel Hilbert spaces
and fractal interpolation. J. Comput. Appl. Math., 235(12):3425–3434,
2011.
bo73
[721] R. Bouldin. The pseudo-inverse of a product. SIAM J. Appl. Math.,
24:489–495, 1973.
bohi91
[722] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener
Space. de Gruyter Studies in Mathematics. 14. Berlin etc.: de Gruyter.
x, 325 p., 1991.
bo88-1
[723] G. Bourdaud. Realisations des espaces de Besov homogenes. (Realization of homogeneous Besov spaces). Ark. Mat., 26(1):41–54, 1988.
bo13
[724] G. Bourdaud. Realizations of homogeneous Besov and LizorkinTriebel spaces. Math. Nachr., 286(5-6):476–491, 2013.
bola08
[725] G. Bourdaud and d. Lanza. Regularity of the symbolic calculus in
Besov algebras. Studia Math., 184(3):271–298, 2008.
65
bomosi06
[726] G. Bourdaud, M. Moussai, and W. Sickel. An optimal symbolic calculus on Besov algebras. Ann. Inst. Henri Poincar´e, Anal. Non Lin´eaire,
23(6):949–956, 2006.
bomosi08
[727] G. Bourdaud, M. Moussai, and W. Sickel. Towards sharp superposition theorems in Besov and Lizorkin-Triebel spaces. Nonlinear Anal.,
Theory Methods Appl., Ser. A, Theory Methods, 68(10):2889–2912,
2008.
bosi99
[728] G. Bourdaud and W. Sickel. Changes of variable in Besov spaces.
Math. Nachr., 198:19–39, 1999.
bopura11
[729] M.-M. Boureanu, P. Pucci, and V. Radulescu. Multiplicity of solutions
for a class of anisotropic elliptic equations with variable exponent.
Complex Variables and Elliptic Equations, 56(7-9):755–767, 2011.
bo88
[730] J. Bourgain. A remark on the uncertainty principle for Hilbertian
basis. J. Funct. Anal., 79(1):136–143, 1988.
bodifokoku11-1
[731] J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova.
Breaking the k 2 -barrier for explicit RIP matrices. In STOC’11, pages
637–644, 2011.
bodifokoku11
[732] J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova.
Explicit constructions of RIP matrices and related problems. Duke
Math. J., 159(1):145–185, 2011.
bofokosh10
[733] J. Bourgain, K. Ford, S. Konyagin, and I. Shparlinski. On the divisibility of Fermat quotients. Michigan Math. J., 59(2):313–328, 2010.
bogu11
[734] J. Bourgain and L. Guth. Bounds on oscillatory integral operators.
C. R., Math., Acad. Sci. Paris, 349(3-4):137–141, 2011.
botz89
[735] J. Bourgain and L. Tzafriri. Restricted invertibility of matrices and
applications. Analysis at Urbana. Vol. II: Analysis in abstract spaces,
Proc. Spec. Year Mod. Anal., Urbana/Ill. 1986-87, Lond. Math. Soc.
Lect. Note Ser. 138, 61-107 (1989)., 1989.
botz91
[736] J. Bourgain and L. Tzafriri. On a problem of Kadison and Singer. J.
Reine Angew. Math., 420:1–43, 1991.
66
boma11
[737] H. Bourles and B. Marinescu. Linear Time-varying Systems Algebraicanalytic Approach. Lecture Notes in Control and Information Sciences
410. Berlin: Springer. xxv, 635 p., 2011.
bo02-1
[738] O. Bousquet. A Bennett concentration inequality and its application
to suprema of empirical processes. C. R., Math., Acad. Sci. Paris,
334(6):495–500, 2002.
bo74-1
[739] d. Boutet. Hypoelliptic operators with double characteristics and
related pseudodifferential operators. Commun. Pure Appl. Anal.,
27:585–639, 1974.
bo47-1
[740] C. Bouwkamp. On spheroidal wave functions of order zero. J. Math.
Phys. Mass. Inst. Tech., 26:79–92, 1947.
bofighne12
[741] F. Bouzeffour, A. Nemri, A. Fitouhi, and S. Ghazouani. On harmonic analysis related with the generalized Dunkl operator. Integral
Transforms Spec. Funct., 23(8):609–625, 2012.
boma04
[742] V. Bove and J. Mallett. Collaborative Knowledge Building by Smart
Sensors. BT Technology Journal, 22:45–51, 2004.
boemgore92
[743] A. Bovik, N. Gopal, T. Emmoth, and A. Restrepo. Localized measurement of emergent image frequencies by Gabor wavelets. IEEE
Trans. Information Theory, 38(2):691–712, 1992.
bore11
[744] J. Bowley and L. Rebollo Neira. Sparsity and “Something else’: an
approach to encrypted image folding. IEEE Signal Process. Letters,
18(3):189–192, 2011.
bo01-7
[745] M. Bownik. The construction of r-regular wavelets for arbitrary dilations. J. Fourier Anal. Appl., 7(5):489–506, 2001.
bochhuyu12
[746] M. Bownik, O. Christensen, X. Huang, and B. Yu. Extension of shiftinvariant systems in L2 (R) to frames. Numer. Funct. Anal. Optim.,
33(7-9):833–846, 2012.
boja13
[747] M. Bownik and J. Jasper. Constructive proof of the Carpenters Theorem. Canad. Math. Bull., 57(3):463–476, 2013.
bole07
[748] M. Bownik and J. Lemvig. The canonical and alternate duals of a
wavelet frame. Appl. Comput. Harmon. Anal., 23(2):263–272, 2007.
67
bole11
[749] M. Bownik and J. Lemvig. Affine and quasi-affine frames for rational
dilations. Trans. Amer. Math. Soc., 363(4):1887–1924, 2011.
boro14
[750] M. Bownik and K. Ross. The structure of translation-invariant spaces
on locally compact abelian groups. preprint, 2014.
bosp02
[751] M. Bownik and D. Speegle. Meyer type wavelet bases in R2 . J. Approx.
Theory, 116(1):49–75, 2002.
bosp13
[752] M. Bownik and D. Speegle. Linear independence of time-frequency
translates of functions with faster than exponential decay. Bull. Lond.
Math. Soc., 45(3):554–566, 2013.
bo67-4
[753] D. Boyd. The Hilbert transform on rearrangement-invariant spaces.
Canad. J. Math., 19:599–616, 1967.
bo92-1
[754] J. Boyd. A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid. J. Comput. Phys., 103(2):243–257,
1992.
bo92-2
[755] J. Boyd. Multipole expansions and pseudospectral cardinal functions:
A new generalization of the fast Fourier transform. J. Comput. Phys.,
103(1):184–186, 1992.
bo01-6
[756] J. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Inc., 2nd (revised) edition, 2001.
bo05-3
[757] J. Boyd. Algorithm 840: Computation of Grid Points, Quadrature
Weights and Derivatives for Spectral Element Methods Using Prolate
Spheroidal Wave Functions — Prolate Elements. ACM Transactions
on Mathematical Software, 31(1):149–165, mar 2005.
bibowe14
[758] C. Boyer, P. Weiss, and J. Bigot. An algorithm for variable density
sampling with block-constrained acquisition. SIAM J. Imaging Sci.,
7(2):1080–1107, 2014.
bosk10
[759] H. Boylan and N.-P. Skoruppa. Explicit formulas for Hecke Gauss
sums in quadratic number fields. Abh. Math. Semin. Univ. Hamb.,
80(2):213–226, 2010.
68
bohi14
[760] M. Bozejko and T. Hirai. GELFAND–RAIKOV REPRESENTATIONS OF COXETER GROUPS ASSOCIATED WITH POSITIVE
DEFINITE NORM FUNCTIONS. Prob. Math. Stat, 34, 2014.
bodyro11
[761] M. Bozzini, N. Dyn, and M. Rossini. Construction of generators of
quasi-interpolation operators of high approximation orders in spaces
of polyharmonic splines. J. Comput. Appl. Math., 236(4):557 – 564,
2011.
bolero10
[762] M. Bozzini, L. Lenarduzzi, and M. Rossini. Polyharmonic splines:
an approximation method for noisy scattered data of extra-large size.
Appl. Math. Comput., 216(1):317–331, 2010.
bolerosc04
[763] M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback. Interpolation
by basis functions of different scales and shapes. Calcolo, 41(2):77–87,
2004.
boro02
[764] M. Bozzini and M. Rossini. Testing methods for 3D scattered data
interpolation. In M. Gasca, editor, Proc. of the 6th international workshop, MAIA 2001. Multivariate approximation and interpolation with
applications, volume 20, pages 111–135, Almu´ecar, Spain, September
10-14, 2001, 2002. Academia de Ciencias Exactas, Fisicas.
boro14-1
[765] M. Bozzini and M. Rossini. Properties of generators of quasiinterpolation operators of high approximation orders in spaces of polyharmonic splines. J. Comput. Appl. Math., (0):–, 2014.
br83-1
[766] R. Bracewell. Discrete Hartley transform.
73(12):1832–1835, 1983.
br03-3
[767] J. Bracic. Simple multipliers on Banach modules. Glasgow Mathematical Journal, 45(2):309–322, 2003.
brdowo99
[768] A. Bracken, H. Doebner, and J. Wood. Bounds on integrals of the
Wigner function. Physical Review Letters, 83(19):3758–3761, 1999.
brelwo03
[769] A. Bracken, D. Ellinas, and J. Wood. Group theory and quasiprobability integrals of Wigner functions. Journal of Physics A: Mathematical
and General, 36:L297, 2003.
69
J. Opt. Soc. Am.,
brelwo04
[770] A. Bracken, D. Ellinas, and J. Wood. Non-positivity of the Wigner
function and bounds on associated integrals. Acta Physica Hungarica
B) Quantum Electronics, 20(1):121–124, 2004.
brwa10
[771] A. Bracken and P. Watson. The quantum state vector in phase space
and Gabor’s windowed Fourier transform. Journal of Physics A:
Mathematical and Theoretical, 43:395304, 2010.
brscso10
[772] F. Brackx, N. Schepper, and F. Sommen. The Clifford-Fourier integral
kernel in even dimensional Euclidean space. J. Math. Anal. Appl.,
365(2):718–728, 2010.
br45
[773] J. Braconnier. Groupes d’automorphismes d’un groupe localement
compact. C. R. Math. Acad. Sci. Paris, 220:382–384, 1945.
brsa09
[774] R. Bradley and C. Sandifer. Cauchys Cours danalyse. Springer, 2009.
brravl09
[775] M. Brady, S. Raben, and P. Vlachos. Methods for Digital Particle
Image Sizing (DPIS): Comparisons and improvements. Flow Measurement and Instrumentation, 20(6):207–219, 2009.
br95
[776] J. Bramble. Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory. Math. Commun.,
64(212):1359–1365, 1995.
brhi70
[777] J. Bramble and S. Hilbert. Estimation of linear functionals on Sobolev
spaces with application to Fourier transforms and spline interpolation.
SIAM J. Numer. Anal., 7:112–124, 1970.
brpava00
[778] J. Bramble, J. Pasciak, and P. Vassilevski. Computational scales of
Sobolev norms with application to preconditioning. Math. Commun.,
69(230):463–480, 2000.
brwh71
[779] J. Brault and O. White. The analysis and restoration of astronomical
data via the fast Fourier transform. Astronomy and Astrophysics,
13:169, jul 1971.
anbr13
[780] P. Brault and J.-P. Antoine. A spatio-temporal Gaussian-Conical
wavelet with high aperture selectivity for motion and speed analysis.
Appl. Comput. Harmon. Anal., 34(1):148–161, 2013.
70
br10-1
[781] A. Braverman. Pursuing the double affine Grassmannian, I: Transversal slices via instantons on A k-Singularities. Duke Math. J.,
152(2):175–206, 2010.
brfi12
[782] A. Braverman and M. Finkelberg. Pursuing the double affine Grassmannian II: Convolution. Adv. Math., 230(1):414 – 432, 2012.
bros10
[783] V. Braverman and R. Ostrovsky. Effective computations on sliding
windows. SIAM J. Comput., 39(6):2113–2131, 2010.
brosza12
[784] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from
sliding windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.
brlo08
[785] K. Bredies and D. Lorenz. Linear convergence of iterative softthresholding. J. Fourier Anal. Appl., 14(5-6):813–837, 2008.
brfr93
[786] L. Brekke and P. G. O. Freund. p-adic numbers in physics. Phys.
Rep., 233(1):1–66, 1993.
br13
[787] A. Bressan. Lecture Notes on Functional Analysis. With Applications
to Linear Partial Differential Equations. Providence, RI: American
Mathematical Society (AMS), 2013.
brwa80
[788] H. Brezis and S. Wainger. A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential
Equations, 5:773–789, 1980.
br83-2
[789] E. Brieskorn. Lineare Algebra und Analytische Geometrie I Noten Zu
Einer Vorlesung mit Historischen Anmerkungen von Erhard Scholz.
Braunschweig - Wiesbaden: Friedr. Vieweg & Sohn. VIII, 636 S., 1983.
br85-1
[790] E. Brieskorn. Lineare Algebra und Analytische Geometrie II. Friedr.
Vieweg & Sohn, Braunschweig, 1985.
brmimimi13
[791] D. Brigham, D. Mitrea, I. Mitrea, and M. Mitrea. Triebel-Lizorkin
sequence spaces are genuine mixed-norm spaces. Math. Nachr., 286(56):503–517, 2013.
br12
brgr10
[792] R. Brigola. Fourier-Analysis und Distributionen. tredition, 2012.
[793] D. Brody and E. Graefe. Coherent states and rational surfaces. Journal of Physics A: Mathematical and Theoretical, 43:255205, 2010.
71
brni04
[794] J. Brodzki and G. Niblo. Rapid decay and metric approximation
property. Arxiv preprint math/0403423, 2004.
brni06
[795] J. Brodzki and G. Niblo. Approximation properties for discrete
groups. C*-algebras and Elliptic Theory, pages 23–35, 2006.
brniwr07
[796] J. Brodzki, G. Niblo, and N. Wright. Property A, partial translation
structures, and uniform embeddings in groups. Journal of the London
Mathematical Society, 76(2):479–497, 2007.
brke11
[797] M. Brokate and G. Kersting. Measure and Integral (Mass und Integral). Mathematik Kompakt. Basel: Birkh¨auser. vi, 158 p. EUR 18.90,
2011.
brdi82
[798] J. Brooks and N. Dinculeanu. On weak compactness in the space of
Pettis integrable functions. Adv. Math., 45:255–258, 1982.
br88-2
[799] G. Brosamler. An almost everywhere central limit theorem. Math.
Proc. Cambridge Philos. Soc., 104(3):561–574, 1988.
brda05
[800] G. Brown and F. Dai. Approximation of smooth functions on compact
two-point homogeneous spaces. J. Funct. Anal., 220(2):401–423, 2005.
br69-1
[801] J. J. L. Brown. Truncation error for band-limited random processes.
Information science, 1(3):261–271, 1969.
brcadajopl84
[802] R. Brualdi, D. Carlson, B. Datta, C. Johnson, R. Plemmons, and R. J.
Plemmons. Contemporary Mathematics - Linear Algebra and Its Role
in Systems Theory. Volume 47 edition, 1984.
brki11
[803] A. Brudnyi and D. Kinzebulatov. Holomorphic almost periodic functions on coverings of complex manifolds. New York J. Math, 17:267–
300, 2011.
br76
[804] J. Brudnyi. Piecewise polynomial approximation, embedding theorem
and rational approximation. In Approximation Theory (Proceedings
of an International Colloquium Held at Bonn, Germany, June 811,
1976), volume 556 of Lecture Notes in Mathematics, pages 73–98.
Springer, 1976.
brkr81
[805] J. Brudnyi and N. Y. Kruglyak. Functors of real interpolation. Dokl.
Akad. Nauk SSSR, 256(1):14–17, 1981.
72
brma12
[806] L. Brugnano and F. Mazzia. 40 years of numerical analysis: Is the
discrete world an approximation of the continuous one or is it the
other way around? J. Comput. Appl. Math., 236(16):3855 – 3856,
2012.
brcu13
[807] J. Bruna and J. Cufi. Complex Analysis. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Z¨
urich, 2013.
brst12
[808] J. Brundan and C. Stroppel. Highest weight categories arising from
Khovanov’s diagram algebra. IV: The general linear supergroup. J.
Eur. Math. Soc. (JEMS), 14(2):373–419, 2012.
brisno11
[809] H. Brunner, A. Iserles, and S. Norsett. The computation of the spectra
of highly oscillatory Fredholm integral operators. J. Integral Equations
Appl., 23(4):467–519, 2011.
brle06-1
[810] K. Bryan and T. Leise. The $25,000,000,000 eigenvector: The linear
algebra behind google. SIAM Rev., 48(3):569–581, 2006.
buch02
[811] S. Bu and R. Chill. Banach spaces with the Riemann-Lebesgue or
the analytic Riemann-Lebesgue property. Bull. London Math. Soc.,
34(5):569–581, 2002.
busa06-1
[812] S. Bu and E. Saksman. The complete continuity property in Banach
spaces. Rocky Mountain J. Math., 36(5):1427–1435, 2006.
bucomo05
[813] A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation,
4(2):490–530, 2005.
buwa07-1
[814] J. Buck and S. Walters. Connes-Chern characters of hexic and cubic
modules. J. Operator Theory, 57(1):35–65, 2007.
buwa07
[815] J. Buck and S. Walters. Non commutative spheres associated with the
hexic transform and their k-theory. J. Operator Theory, 58(2):441–
462, 2007.
bukovu99
[816] S. Buckley, P. Koskela, and D. Vukotic. Fractional integration, differentiation, and weighted Bergman spaces. Math. Proc. Cambridge
Philos. Soc., 126(2):369–385, 1999.
73
buva11
[817] P. B¨
uhlmann and d. van. Statistics for High-dimensional Data.
Springer Series in Statistics. Springer, Heidelberg, 2011.
bu12-1
[818] H. Bui. Linear Dependencies in Weyl-Heisenberg Orbits.
preprint arXiv:1211.0215, 2012.
arXiv
bu82
[819] H.-Q. Bui. Weighted Besov and Triebel spaces: Interpolation by the
real method. Hiroshima Math. J., 12:581–605, 1982.
bu84
[820] H.-Q. Bui. Characterizations of weighted Besov and Triebel-Lizorkin
spaces via temperatures. J. Funct. Anal., 55(1):39–62, January 1984.
bu94-2
[821] H.-Q. Bui. Remark on the characterization of weighted Besov spaces
via temperatures. Hiroshima Math. J., 24(3):647–655, 1994.
bu94-3
[822] H.-Q. Bui. Weighted Young’s inequality and convolution theorems on
weighted Besov spaces. Math. Nachr., 170:25–37, 1994.
bu97
[823] H.-Q. Bui. Bernstein’s theorem on weighted Besov spaces. Forum
Math., 9(6):739–750, 1997.
bula11
[824] H.-Q. Bui and R. Laugesen. Frequency-scale frames and the solution
of the Mexican hat problem. Constr. Approx., 33(2):163–189, 2011.
bula11-1
[825] H.-Q. Bui and R. Laugesen. Wavelets in Littlewood-Paley space, and
Mexican hat completeness. Appl. Comput. Harmon. Anal., 30(2):204–
213, 2011.
bula12
[826] H.-Q. Bui and R. Laugesen. Explicit interpolation bounds between
Hardy space and L2 ., 2012.
bula12-1
[827] H.-Q. Bui and R. Laugesen. Uniqueness for the continuous wavelet
transform. Far East J. Appl. Math., 65(1):1–11, 2012.
bula12-2
[828] H.-Q. Bui and R. Laugesen. Wavelet frame bijectivity on Lebesgue
and Hardy spaces. arXiv preprint arXiv:1206.2390, 2012.
bupa11
[829] H.-Q. Bui and M. Paluszynski. On the phi and psi transforms of
Frazier and Jawerth. Math. Nachr., 2011.
bupata97
[830] H.-Q. Bui, M. Paluszynski, and M. H. Taibleson. Characterization
of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case q < 1.
3(Special Issue):837–846, 1997.
74
budedesc14
[831] R. Bujack, B. De, S. De, and G. Scheuermann. Convolution products for hypercomplex Fourier transforms. J. Math. Imaging Vision,
48(3):606–624, 2014.
bubu06
[832] A. Bukhgeim and A. Bukhgeim. Inversion of the Radon transform,
based on the theory of a-analytic functions, with application to 3D
inverse kinematic problem with local data. J. Inverse Ill-Posed Probl.,
14(3):219–234, 2006.
buca03
[833] A. Bultheel and P. Carrette. Algebraic and spectral properties of
general Toeplitz matrices. SIAM J. Control Optimization, 41(5):1413–
1439, 2003.
bugo99
[834] A. Bultheel and P. Gonzalez Vera. Wavelets by orthogonal rational
kernels. In Continued fractions: from analytic number theory to constructive approximation (A volume in honor of L. J. Lange. Proceedings of the conference, University of Missouri-Columbia, Columbia,
MO, USA, May 20-23, 1998.), volume 236 of Contemp. Math., pages
101–126. American Mathematical Society, 1999.
bugohenj99
[835] A. Bultheel, P. Gonzalez Vera, E. Hendriksen, and O. Njastad. Orthogonal Rational Functions, volume 5 of Cambridge Monographs
on Applied and Computational Mathematics. Cambridge University
Press, Cambridge, 1999.
buma06
[836] A. Bultheel and H. Martinez Sulbaran. Recent developments in the
theory of the fractional Fourier and linear canonical transforms. Bulletin of the Belgian mathematical Society-Simon Stevin, 2006.
bupe77
[837] G. Burdet and M. Perrin. Weyl quantization and metaplectic representation. Lett. Math. Phys., 2(2):93–99, 1977/78.
bu93-1
[838] V. Burenkov. Fourier multipliers in weighted lp -spaces with exponential weights. In Proceedings of the 4th Finnish-Polish summer school
in complex analysis, 1992, volume 55 of Report, pages 5–12, Jyv¨askyl¨a,
Finland, 1993. Univ. Jyv¨askyl¨a.
bu12-2
[839] V. Burenkov. Recent progress in studying the boundedness of classical
operators of real analysis in general Morrey-type spaces. I. Eurasian
Math. J., 3(3):11–32, 2012.
75
bu13
[840] V. Burenkov. Recent progress in studying the boundedness of classical
operators of real analysis in general Morrey-type spaces. II. Eurasian
Math. J., 4(1):21–45, 2013.
budanu13
[841] V. Burenkov, D. Darbayeva, and E. Nursultanov. Description of interpolation spaces for general local Morrey-type spaces. Eurasian Math.
J., 4(1):46–53, 2013.
buevgo97
[842] V. Burenkov, W. Evans, and M. Goldman. On weighted Hardy and
Poincar´e-type inequalities for differences. J. Inequal. Appl., 1(1):1–10,
1997.
buga06
[843] V. Burenkov and A. Garcia. Estimates of regularized solutions of
integral equations of the first kind in anisotropic spaces with fractional
orders of smoothness. Inverse Problems, 22(5):1739–1759, 2006.
bugogumu10
[844] V. Burenkov, A. Gogatishvili, V. S. Guliyev, and R. Mustafayev.
Boundedness of the fractional maximal operator in local Morrey-type
spaces. Complex Var. Elliptic Equ., 55(8-10):739–758, 2010.
bugo81
[845] V. Burenkov and M. Gol’dman. On extension of Lp −functions. Proc.
Steklov Inst. Math., 150:33–53, 1981.
bugo84
[846] V. Burenkov and M. Gol’dman. On the interconnection of norms of
operators in periodic and nonperiodic function spaces. Proc. Steklov
Inst. Math., 161:53–112, 1984.
bugo14
[847] V. Burenkov and M. Goldman. Necessary and sufficient conditions
for the boundedness of the maximal operator from Lebesgue spaces
to Morrey-type spaces. Math. Inequal. Appl., 17(2):401–418, 2014.
buguseta10
[848] V. Burenkov, V. S. Guliyev, A. Serbetci, and T. V. Tararykova. Necessary and sufficient conditions for the boundedness of genuine singular
integral operators in local Morrey-type spaces. Eurasian Math. J.,
1(1):32–53, 2010.
bujata11
[849] V. Burenkov, P. Jain, and T. Tararykova. On boundedness of the
Hardy operator in Morrey-type spaces. Eurasian Math. J., 2(1):52–
80, 2011.
76
bunu10
[850] V. Burenkov and E. Nursultanov. Description of interpolation spaces
for local Morrey-type spaces. Tr. Mat. Inst. Steklova, 269(Teoriya
Funktsii i Differentsialnye Uravneniya):52–62, 2010.
buoi13
[851] V. Burenkov and R. Oinarov. Necessary and sufficient conditions for
boundedness of the Hardy-type operator from a weighted Lebesgue
space to a Morrey-type space. Math. Inequal. Appl., 16(1):1–19, 2013.
bugugu07
[852] V. I. Burenkov, H. V. Guliyev, and V. S. Guliyev. Necessary and sufficient conditions for the boundedness of fractional maximal operators
in local Morrey-type spaces. J. Comput. Appl. Math., 208:280–301,
2007.
bugu09
[853] V. I. Burenkov and V. S. Guliyev. Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type
Spaces. Potential Analysis, 30:211–249, 2009.
bulatats10
[854] M. Burger, Y. Landa, N. Tanushev, and R. Tsai. Discovering a point
source in unknown environments. Chirikjian, Gregory S. (ed.) et al.,
Algorithmic foundations of robotics VIII. Selected contributions of
the eighth international workshop on the algorithmic foundations of
robotics (WAFR 2008), Guanajuato, M´exico, December 7–9, 2008.
Berlin: Springer., 2010.
bebumoos11
[855] M. Burger, M. Moeller, M. Benning, and S. Osher. An adaptive inverse
scale space method for compressed sensing. Technical Report 11-08,
UCLA, 2011.
budywazw11
[856] N. Burq, S. Dyatlov, R. Ward, and M. Zworski. Weighted eigenfunction estimates with applications to compressed sensing. Arxiv preprint
arXiv:1111.2383, 2011.
bupa85
[857] C. Burrus and T. Parks. DFT/FFT and Convolution Algorithms Theory and implementation. Texas Instruments Inc., 1985.
bu11
[858] D. Burton. Elementary Number Theory. McGraw-Hill Education,
2011.
bupe07
[859] P. Busch and D. Pearson. Universal joint-measurement uncertainty
relation for error bars. J. Math. Phys., 48(8):082103, 10, 2007.
77
bu12
[860] J. Bustamante. Algebraic Approximation. A Guide to Past and Current Solutions. Frontiers in Mathematics. Basel: Birkh¨auser. viii,
205 p., 2012.
asbu12
[861] A. Butaev and R. Ashurov. On some class of nonseparable continuous
wavelet transforms. Appl. Anal., 91(12):2257–2265, 2012.
bu94-1
[862] L. Butler. Subgroup lattices and symmetric functions. Mem. Amer.
Math. Soc., 539:160 p., 1994.
budofehilasest11
[863] P. Butzer, M. Dodson, P. Ferreira, J. Higgins, O. Lange, P. Seidler,
and R. L. Stens. Multiplex signal transmission and the development
of sampling techniques: the work of Herbert Raabe in contrast to that
of Claude Shannon. Appl. Anal., 90(3-4):643–688, 2011.
bufehiscst11
[864] P. Butzer, P. Ferreira, J. Higgins, G. Schmeisser, and R. L. Stens.
The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals – their interconnections. Appl. Anal.,
90(3-4):431–461, 2011.
bufescst11
[865] P. Butzer, P. Ferreira, G. Schmeisser, and R. L. Stens. The summation
formulae of Euler-Maclaurin, Abel-Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis.
Result. Math., 59(3-4):359–400, 2011.
bunetr74
[866] P. Butzer, R. Nessel, and W. Trebels. On radial Mpq -Fourier multipliers. Math. Struct., comput. Math., math. Modelling (to appear),
1974.
buscst14
[867] P. Butzer, G. Schmeisser, and R. L. Stens. The classical and approximate sampling theorems and their equivalence for entire functions of
exponential type. J. Approx. Theory, 179(0):94 – 111, 2014.
bust08
[868] P. Butzer and R. L. Stens. Reconstruction of signals in Lp (R)-space by
generalized sampling series based on linear combinations of B-splines.
Integral Transforms Spec. Funct., 19(1):35–58, 2008.
busc84
[869] P. L. Butzer and D. Schulz. Limit theorems with O-rates for random
sums of dependent Banach-valued random variables. Math. Nachr.,
119:59–75, 1984.
78
busc07
[870] S. Buyalo and V. Schroeder. Elements of asymptotic geometry. EMS
monographs in mathematics. European Mathematical Society, 2007.
buniro10
[871] E. Buzano, F. Nicola, and L. Rodino. Global Pseudo-Differential Calculus on Euclidean Spaces. Springer Verlag, 2010.
byxu08
[872] R. Byers and H. Xu. A new scaling for Newton’s iteration for the
polar decomposition and its backward stability. SIAM J. Matrix Anal.
Appl., 30(2):822–843, 2008.
ca04-3
[873] A. Cabello. Bibliographic guide to the foundations of quantum mechanics and quantum information. Arxiv preprint quant-ph/0012089,
2004.
camoro13
[874] C. Cabrelli, U. Molter, and J. L. Romero. Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces. Adv.
Math., 232(1):98–120, 2013.
camopa13
[875] C. Cabrelli, C. Mosquera, and V. Paternostro. Linear combinations
of frame generators in systems of translates. J. Math. Anal. Appl.,
(0):–, 2013.
cach10
[876] N. Cadigan and J. Chen. Kernel regression estimators for nonparametric model calibration in survey sampling. J. Stat. Theory Pract.,
4(1):1–25, 2010.
cagoop08
[877] A. Caetano, A. Gogatishvili, and B. Opic. Sharp embeddings of Besov
spaces involving only logarithmic smoothness. J. Approx. Theory,
152(2):188–214, 2008.
ca11-1
[878] A. M. Caetano. On the type of convergence in atomic representations.
Complex Var. Elliptic Equ., 56(10-11):875–883, 2011.
cafa06
[879] A. M. Caetano and W. Farkas. Local growth envelopes of Besov spaces
of generalized smoothness. Z. Anal. Anwend., 25(3):265–298, 2006.
cagoop11
[880] A. M. Caetano, A. Gogatishvili, and B. Opic. Embeddings and the
growth envelope of Besov spaces involving only slowly varying smoothness. J. Approx. Theory, 163(10):1373–1399, 2011.
cadamawa11
[881] E. Cagnache, F. D’Andrea, P. Martinetti, and J. Wallet. The Spectral
distance in the Moyal plane. Journal of Geometry and Physics, 2011.
79
cacaehli13
[882] J. Cahill, P. Casazza, M. Ehler, and S. Li. Tight and random
nonorthogonal fusion frames. arXiv preprint arXiv:1309.0532, 2013.
cacaku13
[883] J. Cahill, P. Casazza, and G. Kutyniok. Operators and frames. J.
Operator Theory, 70(1):145–164, 2013.
cacali12
[884] J. Cahill, P. Casazza, and S. Li. Non-orthogonal fusion frames and the
sparsity of fusion frame operators. J. Fourier Anal. Appl., 18(2):287–
308, 2012.
cali11
[885] J. Cahill and S. Li. Dimension invariance of finite frames of translates
and Gabor frames. Adv. Comput. Math., Online first:1–16.
cata87
[886] J. Cahn and J. Taylor. An introduction to quasicrystals. In The legacy
of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass.,
1985), volume 64 of Contemp. Math., pages 265–286. Amer. Math.
Soc., Providence, 1987.
cash10
[887] J. Cai and Z. Shen. Framelet based deconvolution. J. Comput. Math.,
28(3):289–308, 2010.
cadoossh12
[888] J.-F. Cai, B. Dong, S. Osher, and Z. Shen. Image restoration: Total variation, wavelet frames, and beyond. J. Amer. Math. Soc.,
25(4):1033–1089, 2012.
cashye11
[889] J.-F. Cai, Z. Shen, and G.-B. Ye. Approximation of frame based
missing data recovery. Appl. Comput. Harmon. Anal., 31(2):185–204,
2011.
carezh13
[890] T. Cai, Z. Ren, and H. Zhou. Optimal rates of convergence for estimating Toeplitz covariance matrices. Probab. Theory Relat. Fields,
156:101–143, 2013.
cawaxu10-1
[891] T. Cai, L. Wang, and G. Xu. New bounds for restricted isometry
constants. IEEE Trans. Inform. Theory, 56(9):4388 –4394, 2010.
cazh14
[892] T. Cai and A. Zhang. Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices,. IEEE Trans. Inform.
Theory, 60(1):122–132, Jan, 2014.
cali02
[893] Y. Cai and Q. Lin. Decentered elliptical Gaussian beam. Appl. Opt,
41(21):4336–4340, Jul 2002.
80
cacomo11
[894] F. Cakoni, D. Colton, and P. Monk. The linear sampling method in
inverse electromagnetic scattering, volume 80 of CBMS-NSF Regional
Conference Series in Applied Mathematics 80. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
cafegamiza11
[895] A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mic’o. Resolution improvement by single-exposure superresolved interferometric
microscopy with a monochrome sensor. JOSA A, 28(11):2346–2358,
2011.
caganasa13
[896] J. Calabuig, F. Galaz Fontes, E. Navarrete, and E. S´anchez P´erez.
Fourier transform and convolutions on Lp of a vector measure on a
compact Hausdorff abelian group. J. Fourier Anal. Appl., 19(2):312–
332, 2013.
cacahekupeXX
[897] R. Calderbank, P. Casazza, A. Heinecke, G. Kutyniok, and
A. Pezeshki. Sparse fusion frames: existence and construction. Adv.
Comput. Math., pages 1–31.
cazy52
[898] A. Calder´on and A. Zygmund. On the existence of certain singular
integrals. Acta Math., 88:85–139, 1952.
ca66-2
[899] A. P. Calderon. Spaces between L1 and L∞ and the theorem of
Marcinkiewicz. Studia Math., 26:273–299, 1966.
ca76-1
[900] A. P. Calderon. Inequalities for the maximal function relative to a
metric. Studia Math., 57:297–306, 1976.
caguro14
[901] M. Calixto, J. Guerrero, and D. Rosca. Wavelet transform on the
torus: A group theoretical approach. Appl. Comput. Harmon. Anal.,
(0):–, 2014.
cagusa11
[902] M. Calixto, J. Guerrero, and J. C. Sanchez Monreal. Sampling theorem and discrete Fourier transform on the hyperboloid. J. Fourier
Anal. Appl., 17(2):240–264, 2011.
ca04-4
[903] G. Calugareanu. The total number of subgroups of a finite abelian
group. Scientiae Mathematicae japonicae, 60(1):157–167, 2004.
ca04-5
[904] G. Calugareanu. The total number of subgroups of a finite Abelian
group. Scientiae Mathematicae Japonicae, 60(1):157–168, 2004.
81
cama83
[905] S. Cambanis and E. Masry. Sampling designs for the detection of
signals in noise. IEEE Trans. Inform. Theory, 29:83–104, 1983.
ca63-4
[906] S. Campanato. Proprieta di H¨olderianita di alcune classi di funzioni.
Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 17:175–188,
1963.
ca63-3
[907] S. Campanato. Proprieta di inclusione per spazi di Morrey. Ric. Mat.,
12:67–86, 1963.
ca64-2
[908] S. Campanato. Proprieta di una famiglia di spazi funzionali. Ann.
Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 18:137–160, 1964.
ca07-1
[909] C. Candan. On higher order approximations for Hermite-Gaussian
functions and discrete fractional Fourier transforms. IEEE Signal
Processing Letters, 14(10):699 –702, oct. 2007.
cakuoz02
[910] C. Candan, M. Kutay, and H. Ozaktas. The discrete fractional Fourier
transform. IEEE Trans. Signal Process., 48(5):1329–1337, 2002.
caoz03
[911] C. Candan and H. M. Ozaktas. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process.,
83(11):2455–2457, 2003.
cala92
[912] J. Candeal Haro and H. Lai. Multipliers in continuous vector-valued
function spaces. Bull. Austral. Math. Soc., 46(2):199–204, 1992.
cala95
[913] J. Candeal Haro and H. Lai. Multipliers in vector-valued function
spaces under convolution. Acta Math. Hungar., 67(3):175–192, 1995.
ca04-6
[914] E. CANDES. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure Appl.
Math., 57(2):219–266, 2004.
caelstvoXX
[915] E. Cand`es, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval
via matrix completion. SIAM J. Imag. Sciences, to appear.
cafe13
[916] E. Candes and C. Fernandez Granda. Towards a mathematical theory
of super-resolution. Communications on Pure and Applied Mathematics, preprint:48, 2013.
82
cali13
[917] E. Cand`es and X. Li. Solving quadratic equations via PhaseLift when
there are about as many equations as unknowns. Found. Comput.
Math., pages 1–10, 2013.
caliXX
[918] E. Cand`es and X. Li. Solving quadratic equations via PhaseLift when
there are about as many equations as unknowns. Found. Comput.
Math., to appear.
caliso13
[919] E. Cand`es, X. Li, and M. Soltanolkotabi. Phase retrieval from masked
Fourier transforms. preprint, 2013.
caliso14
[920] E. Candes, X. Li, and M. Soltanolkotabi. Phase Retrieval via
Wirtinger Flow: Theory and Algorithms. ArXiv e-prints, jul 2014.
castvoXX
[921] E. Cand`es, T. Strohmer, and V. Voroninski. PhaseLift: Exact and
stable signal recovery from magnitude measurements via convex programming. Comm. Pure Appl. Math., 66:1241–1274, 2013.
cata07
[922] E. Candes and T. Tao. The Dantzig selector: statistical estimation
when p is much larger than n. Ann. Statist., 35(6):2313–2351, 2007.
caelnera11
[923] E. J. Cand`es, Y. C. Eldar, D. Needell, and P. Randall. Compressed
sensing with coherent and redundant dictionaries. Appl. Comput.
Harmon. Anal., 31(1):59 – 73, 2011.
capl09
[924] E. J. Cand`es and Y. Plan. Near-ideal model selection by
tion. Ann. Statist., 37(5A):2145–2177, 2009.
1
minimiza-
capl11-1
[925] E. J. Cand`es and Y. Plan. A probabilistic and RIPless theory of
compressed sensing. IEEE Trans. Information Theory, 57(11):7235 –
7254, November 2011.
casl95
[926] M. Cannon and J.-J. Slotine. Space-frequency localized basis function
networks for nonlinear system estimation and control. Neurocomputing, 9(3):293–342, 1995.
cahuquza06
[927] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral Methods Fundamentals in Single Domains. Scientific Computation. Berlin:
Springer. xxiii, 563 p. EUR 85.55, 2006.
cahe14
[928] G. Cao and L. He. Fredholmness of multipliers on HardySobolev
spaces. J. Math. Anal. Appl., 418(1):1 – 10, 2014.
83
cachjili08
[929] H.-X. Cao, L. Li, Q.-J. Chen, and G.-X. Ji. (p, Y )-operator frames
for a Banach space. J. Math. Anal. Appl., 347(2):583–591, 2008.
cako99
[930] M. Capinski and P. Kopp. Measure, Integral and Probability. Berlin:
Springer, 1999.
cadaga97
[931] L. Capogna, D. Danielli, and N. Garofalo. Subelliptic mollifiers and a
basic pointwise estimate of Poincar´e type. Math. Z., 226(1):147–154,
1997.
cadapaty07
[932] L. Capogna, D. Danielli, S. Pauls, and J. Tyson. An Introduction to
the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem,
volume 259 of Progress in Mathematics. Birkh¨auser Verlag, Basel,
2007.
caga98
[933] L. Capogna and N. Garofalo. Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for CarnotCarath´eodory metrics. J. Fourier Anal. Appl., 4(4-5):403–432, 1998.
cagrro06
[934] M. Cappiello, T. Gramchev, and L. Rodino. Super-exponential decay
and holomorphic extensions for semilinear equations with polynomial
coefficients. J. Funct. Anal., 237(2):634–654, 2006.
cagrro07
[935] M. Cappiello, T. Gramchev, and L. Rodino. Exponential decay and
regularity for SG-elliptic operators with polynomial coefficients. In
Hyperbolic problems and regularity questions, Trends Math., pages
49–58. 2007.
cagrro09
[936] M. Cappiello, T. Gramchev, and L. Rodino. Decay and regularity for
harmonic oscillator-type equations. Integral Transforms Spec. Funct.,
20(3-4):283–290, 2009.
cagrro10-1
[937] M. Cappiello, T. Gramchev, and L. Rodino. Entire extensions and
exponential decay for semilinear elliptic equations. J. Anal. Math.,
111:339–367, 2010.
cagrro10
[938] M. Cappiello, T. Gramchev, and L. Rodino. Sub-exponential decay
and uniform holomorphic extensions for semilinear pseudodifferential equations. Comm. Partial Differential Equations, 35(5):846–877,
2010.
84
cani12
[939] M. Cappiello and F. Nicola. Regularity and decay of solutions of
nonlinear harmonic oscillators. Adv. Math., 229(2):1266–1299, 2012.
brca03-1
[940] C. Capus and K. Brown. Fractional Fourier transform of the Gaussian
and fractional domain signal support. In Vision, Image and Signal
Processing, IEE Proceedings-, volume 150, pages 99–106, 2003.
brca03
[941] C. Capus and K. Brown. Short-time fractional Fourier methods for
the time-frequency representation of chirp signals. J. Acoust. Soc.
Amer., 113:3253, 2003.
calasc11
[942] D. Carando, S. Lassalle, and P. Schmidberg. The reconstruction formula for Banach frames and duality. J. Approx. Theory, 163(5):640 –
651, 2011.
ca56
[943] C. Caratheodory. Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung Bd I: Theorie Der Partiellen Differentialgleichungen Erster Ordnung. Leipzig: B. G. Teubner Verlagsgesellschaft
XI, 171 S., 1956.
caerkrla00
[944] G. Cariolaro, T. Erseghe, P. Kraniauskas, and N. Laurenti. Multiplicity of fractional Fourier transforms and their relationships. IEEE
Transactions on Signal Processing, 48(1):227–241, 2000.
caerkrla02
[945] G. Cariolaro, T. Erseghe, P. Kraniauskas, and N. Laurenti. A unified
framework for the fractional Fourier transform. IEEE Trans. Signal
Process., 46(12):3206–3219, 2002.
ca23
[946] T. Carleman. A theorem concerning Fourier series. Proc. Lond. Math.
Soc. (2), 21:483–492, 1923.
ca44
[947] T. Carleman. L’int´egrale de Fourier et questions qui s’y rattachent.
(Publ. Sci. Inst. Mittag-Leffler. 1) Uppsala. 119 p. (1944)., 1944.
ca91-1
[948] E. Carlen. Some integral identities and inequalities for entire functions
and their application to the coherent state transform. J. Funct. Anal.,
97(1):231–249, 1991.
ca10
[949] E. Carlen. Trace inequalities and quantum entropy: an introductory
course. In Entropy and the quantum, volume 529 of Contemp. Math.,
pages 73–140. Amer. Math. Soc., Providence, RI, 2010.
85
cali08
[950] E. Carlen and E. Lieb.
Brascamp–Lieb inequalities for noncommutative integration. Doc. Math., J. DMV, 13:553–584, 2008.
ca58
[951] L. Carleson. An interpolation problem for bounded analytic functions.
Amer. J. Math., 80:921–930, 1958.
ca62
[952] L. Carleson. Interpolations by bounded analytic functions and the
corona problem. Ann. of Math. (2), 76(3):547–559, 1962.
ca65-1
[953] L. Carleson. Maximal functions and capacities. Ann. Inst. Fourier
(Grenoble), 15(fasc. 1):59–64, 1965.
ca09-3
[954] G. Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.),
46(2):255–308, 2009.
cacegu12
[955] A. Carmi, Y. Censor, and P. Gurfil. Convex feasibility modeling
and projection methods for sparse signal recovery. J. Comput. Appl.
Math., In Press:26, 2012.
ca94-3
[956] M. Carmo. Differential Forms and Applications. Universitext (1979).
Springer-Verlag, 1994.
ca11-2
[957] G. Carneiro. Graph-based methods for the automatic annotation and
retrieval of art prints. In ICMR ’11, Proc. of the 1st ACM International Conference on Multimedia Retrieval, volume Article No.32,
page 8, Trento, Italy, April 17-20, 2011. ACM (Association for Computing Machinery) New York, NY.
cadi86
[958] N. Carothers and S. Dilworth. Geometry of Lorentz spaces via interpolation. In On non-norm-attaining functionals and the equivalence
of the weak∗ - KMP with the RNP, pages 107–133. 1986.
cafazo08
[959] I. Carrizo, S. Favier, and F. Z´o. Extension of the best approximation
operator in Orlicz spaces. 2008.
cafaz11
[960] I. Carrizo, S. Favier, and F. Z’o. A characterization of the extended best φ-approximation operator. Numer. Funct. Anal. Optim.,
32(3):254–266, 2011.
caro10
[961] M. Carro and S. Rodriguez. New results on restriction of Fourier
multipliers. Math. Z., 265(2):417–435, 2010.
86
caro12
[962] M. J. Carro and S. Rodriguez Lopez. On restriction of maximal multipliers in weighted settings. Trans. Amer. Math. Soc., 364(5):2241–
2260, 2012.
cawe13
[963] B. Carswell and R. Weir. Weighted reproducing kernels and the
Bergman space. J. Math. Anal. Appl., 399(2):617 – 624, 2013.
cago47
[964] H. Cartan and R. Godement. Theorie de la dualite et analyse harmonique dans les groupes abeliens localement compacts. Ann. Sci.
Ec. Norm. Super., III. Ser., 64:79–99, 1947.
ca64-3
[965] P. Cartier. Processus al´eatoires g´en´eralis´es. In S´eminaire Bourbaki, 16e ann´ee: 1963/64, Fasc. 3, Expos´e 272, page 10. Secr´etariat
math´ematique, Paris, 1964.
ca64-1
¨
[966] P. Cartier. Uber
einige Integralformeln in der Theorie der quadratischen Formen. Math. Z., 84:93–100, 1964.
ca66-3
[967] P. Cartier. Th´eorie analytique des formes quadratiques. I: Suites
quasi- p´eriodiques. S´emin. Bourbaki 1965/66, No.309, 12 p. (1966).,
1966.
ca95-1
[968] P. Cartier. Processus aleatoires generalises [ MR0175170 (30 #5355)].
In S´eminaire Bourbaki, Vol. 8, pages Exp. No. 272, 425–434. Soc.
Math. France, Paris, 1995.
ca99-2
[969] P. Cartier. Abschied von einem Freund: Andr´e Weil (1906–1998).
Mitt. Dtsch. Math.-Ver., (3):7–12, 1999.
ca99-1
[970] P. Cartier. Andr´e Weil (1906–1998): Adieu `a un ami. Gaz. Math.,
(80, suppl.):13–35, 1999.
ca00-1
[971] P. Cartier. My Andr´e Weil. Lett. Mat. Pristem, (36):43–58, 2000.
caheho94
[972] C. Carton Lebrun, H. P. Heinig, and S. C. Hofmann. Integral operators on weighted amalgams. Studia Math., 109(2):133–157, 1994.
ca05-1
[973] A. Carvalho. Box dimension, oscillation and smoothness in function
spaces. J. Funct. Spaces Appl., 3(3):287–320, 2005.
ca01-3
[974] P. Casazza. Approximation properties. Handbook of the geometry of
Banach spaces, 1:271–316, 2001.
87
cach08
[975] P. Casazza and O. Christensen. The reconstruction property in Banach spaces and a perturbation theorem. Canad. Math. Bull., 51:348–
358, 2008.
cafimi12
[976] P. Casazza, M. Fickus, and D. Mixon. Auto-tuning unit norm frames.
Appl. Comput. Harmon. Anal., 32(1):1–15, 2012.
cafimiwazh11
[977] P. Casazza, M. Fickus, D. Mixon, Y. Wang, and Z. Zhou. Constructing tight fusion frames. Appl. Comput. Harmon. Anal., 30(2):175–187,
2011.
cahekrku10
[978] P. Casazza, A. Heinecke, F. Krahmer, and G. Kutyniok. Optimally
Sparse Frames. Arxiv preprint arXiv:1009.3663, 2010.
cahekuXX
[979] P. Casazza, A. Heinecke, and G. Kutyniok. Optimally sparse fusion
frames: Existence and construction. Submitted 2010, page 4.
caka96
[980] P. Casazza and N. Kalton. Unconditional bases and unconditional
finite-dimensional decompositions in Banach spaces. Isr. J. Math.,
95:349–373, 1996.
caku12
[981] P. Casazza and G. Kutyniok. Finite frames. Springer, 2012.
caku13
[982] P. Casazza and G. Kutyniok. Finite Frames. Theory and Applications.
Applied and Numerical Harmonic Analysis. Boston, MA: Birkh¨auser.
xvi, 2013.
cakuph13
[983] P. Casazza, G. Kutyniok, and F. Philipp. Introduction to finite
frame theory. In Finite frames. Theory and applications., pages 1–
53. Boston, MA: Birkh¨auser, 2013.
capfXX
[984] P. Casazza and G. E. Pfander. Analyzing the algorithm for proving
the restricted invertibility theorem.
capf12
[985] P. Casazza and G. E. Pfander. Infinite dimensional restricted invertibility. J. Funct. Anal., 263(12):3784–3803, 2012.
catr09
[986] P. Casazza and J. C. Tremain. Revisiting the Bourgain-Tzafriri restricted invertibility theorem. Oper. Matrices, 3(1):97–110, 2009.
88
cakuliro07
[987] P. G. Casazza, G. Kutyniok, S. Li, and C. J. Rozell. Modeling sensor networks with fusion frames. In Wavelets Xll, Special Session on
Finite-Dimensional Frames, Time-Frequency Analysis, and Applications, volume 6701, page 11, San Diego, CA, USA, 2007.
ca85-1
[988] P. Cassereau. A new class of optimal unitary transforms for image
processing. PhD thesis, Massachusetts Institute of Technology, 1985.
cadest89
[989] P. Cassereau, D. Staelin, and J. De. Encoding of images based on a
lapped orthogonal transform. Communications, IEEE Transactions
on, 37(2):189–193, 1989.
cahehe11
[990] J. Castaneda, R. Heusdens, and R. Hendriks. A Generalized Poisson
Summation Formula and its Application to Fast Linear Convolution.
IEEE Signal Processing Letters, 18(9):501 –504, sept 2011.
carisaze13
[991] M. Castillo, S. Rivas, M. Sanoja, and I. Zea. Functions of bounded
κϕ-variation in the sense of Riesz-Korenblum. J. Funct. Spaces Appl.,
2013:12, 2013.
casz14
[992] A. Castro and T. Szarek. On fundamental harmonic analysis operators
in certain Dunkl and Bessel settings. J. Math. Anal. Appl., 412(2):943
– 963, 2014.
casatu12
[993] L. Castro, S. Saitoh, and N. Tuan. Convolutions, integral transforms
and integral equations by means of the theory of reproducing kernels.
Opusc. Math., 32(4):633–646, 2012.
cage07
[994] D. Cates and A. Gelb. Detecting derivative discontinuity locations
in piecewise continuous functions from Fourier spectral data. Numer.
Algorithms, 46(1):59–84, 2007.
cawi10
[995] A. Catherall and D. Williams. High resolution spectrograms using a
component optimized short-term fractional Fourier transform. Signal
Process., 90(5):1591–1596, 2010.
casz92
[996] H. Caulfield and H. H. Szu. Parallel discrete and continuous wavelet
transforms. Opt. Eng., 31(9):1835–1839, September 1992.
ca14
[997] F. Cavalletti. Decomposition of geodesics in the Wasserstein space
and the globalization problem. Geom. Funct. Anal., 24(2):493–551,
2014.
89
cesa08
[998] T. Ceccherini Silberstein and A. Samet Vaillant. Gromov’s translation
algebras, growth and amenability of operator algebras. Exposition.
Math., 26(2):141–162, 2008.
cefi74
[999] C. Cecchini and A. Fig`a Talamanca. Projections of uniqueness for
Lp (G). Pacific J. Math., 51:37–47, 1974.
ce98
[1000] B. Cengiz. The dual of the Bochner space Lp (µ, E) for arbitrary µ.
Turkish J. Math., 22(3):343–348, 1998.
ce99
[1001] B. Cengiz. The isometries of the Bochner space Lp (µ, H). Turkish J.
Math., 23(3):389–399, 1999.
ce07
[1002] J. Cerda. Lorentz capacity spaces. In Interpolation theory and applications. A conference in honor of Michael Cwikel on the occasion
of his 59th birthday, March 29–31, 2006 and AMS special session on
interpolation theory and applications, AMS sectional meeting, Miami,
FL, USA, April 1–2, 20, pages 45–59. 2007.
ce10
[1003] J. Cerda. Linear Functional Analysis. Graduate Studies in Mathematics 116. Providence, RI: American Mathematical Society (AMS)
and Madrid: Real Sociedad Matem’atica Espa nola. xiii, 330 p., 2010.
cekrma99
[1004] J. Cerd‘a, J. Martin, and N. Y. Kruglyak. Commutators for approximation spaces and Marcinkiewicz-type multipliers. J. Approx. Theory,
100(2):251–265, art. no. jath.1999.3349, 1999.
cemasi11
[1005] J. Cerda, J. Martin, and P. Silvestre. Capacitary function spaces.
Collect. Math., 62(1):95–118, 2011.
cesu83
[1006] J. Cerda and J. Sueiro. Approximate identities and convergence at
Lebesgue points. Rend. Circ. Mat. Palermo (2), 32:5–12, 1983.
cechka12
[1007] P. Cerejeiras, Q. Chen, and U. Kaehler. Bedrosian identity in Blaschke
product case. Complex Anal. Oper. Theory, 6(1):275–300, 2012.
cefekate11
[1008] P. Cerejeiras, M. Ferreira, U. K¨ahler, and G. Teschke. Inversion of the
noisy Radon transform on SO(3) by Gabor frames and sparse recovery
principles. Appl. Comput. Harmon. Anal., 31(3):325–345, 2011.
90
cefekavi06
[1009] P. Cerejeiras, M. Ferreira, U. K¨ahler, and N. Vieira. Monogenic frames
for an integral transform on the unit sphere. Complex Var. Elliptic
Equ., 51(1):51–61, 2006.
cechmc09
[1010] V. Cevher, R. Chellappa, and J. McClellan. Vehicle speed estimation
using acoustic wave patterns. IEEE Trans. Signal Process., 57(1):30–
47, 2009.
blchli13
[1011] N. Chacko, M. Liebling, and T. Blu. Discretization of continuous
convolution operators for accurate modeling of wave propagation in
digital holography. JOSA A, 30(10):2012–2020, 2013.
chgulepaXX
[1012] D. Chafai, O. Gu´edon, G. Lecu´e, and A. Pajor. Interactions between
Compressed Sensing, Random Matrices and high Dimensional Geometry. to appear.
ch09-2
[1013] N. Chakrabarti. A representation of non-uniformly sampled deterministic and random signals and their reconstruction using sample values
and derivatives. Arxiv preprint arXiv:0905.0397, 2009.
chfrti11
[1014] I. Chalendar, E. Fricain, and D. Timotin. A short note on the Feichtinger conjecture. Submitted on 17 Jun 2011, page 8, 2011.
cachcrnopo10
[1015] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock.
An introduction to total variation for image analysis. In Theoretical
foundations and numerical methods for sparse recovery, volume 9 of
Radon Ser. Comput. Appl. Math., pages 263–340. Walter de Gruyter,
Berlin, 2010.
chpo11
[1016] A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. J. Math. Imaging Vision, 40:120–145, 2011.
ch11
[1017] D. Chamorro. Improved Sobolev inequalities and Muckenhoupt
weights on stratified Lie groups. J. Math. Anal. Appl., 377(2):695–709,
2011.
chyuzh12
[1018] R. Chan, X. Yuan, and W. Zhang. Point-spread function reconstruction in ground-based astronomy by supsupsup model. JOSA A,
29(11):2263–2271, 2012.
91
chhupuzh09
[1019] T.-M. Chan, J. Zhang, J. Pu, and H. Huang. Neighbor embedding
based super-resolution algorithm through edge detection and feature
selection. Pattern Recognition Lett., 30(5):494 – 502, April 2009.
chparewi10
[1020] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky. The convex geometry of linear inverse problems. Found. Comput. Math.,
12(6):805–849, 2012.
ch71-1
[1021] R. Chaney. Note on Fourier series on the p-adic integers. Duke Math.
J., 38:387–393, 1971.
ch71
[1022] R. Chaney. Note on Fourier-Stieltjes transforms of continuous and
absolutely continuous measures. Pr. Mat., 15:147–149, 1971.
chmaya99
[1023] E.-C. Chang, S. Mallat, and C. Yap. Wavelet Foveation. Appl. Comput. Harmon. Anal., 9:312–335, 1999.
chchkisoyo08
[1024] K. Chang, D. Cho, B. Kim, T. Song, and I. Yoo. Sequential FourierFeynman transform, convolution and first variation. Trans. Amer.
Math. Soc., 360(4):1819–1838, 2008.
chkisoyo10
[1025] K. Chang, B. Kim, T. Song, and I. Yoo. Fourier-Feynman transforms,
convolutions and first variations on the space of abstract Wiener space
valued continuous functions. Rocky Mountain J. Math., 40(3):789–
812, 2010.
chlishwe06
[1026] L. Chang, Z. Wei, W. Shen, and Z. Lin. Wavefront fitting of interferogram with Zernike polynomials based on SVD. In L. Chang,
Z. Wei, W. Shen, Z. Lin, X. Hou, J. Yuan, J. C. Wyant, H. Wang,
and S. Han, editors, Proc. SPIE, 2nd International Symposium on
Advanced Optical Manufacturing and Testing Technologies: Optical
Test and Measurement Technology and Equipment, volume 6150 of
Session 3-3, page 61500G(6). SPIE, 2006.
ch66
[1027] R. Chang. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell System Tech. J., 45:1775–1796, Dec.
1966.
ch11-1
[1028] S. Chang. Conditional generalized Fourier-Feynman transform of
functionals in a Fresnel type class. Commun. Korean Math. Soc.,
26(2):273–289, 2011.
92
chch09
[1029] S. Chang and J. Choi. Transforms and convolutions on function space.
Commun. Korean Math. Soc., 24(3):397–413, 2009.
chchle09
[1030] S. Chang, J. Choi, and S. Lee. A Fresnel type class on function space.
J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math., 16(1):107–119,
2009.
chpask00
[1031] S. Chang, C. Park, and D. Skoug. Translation theorems for FourierFeynman transforms and conditional Fourier-Feynman transforms.
Rocky Mountain J. Math., 30(2):477–496, 2000.
chwh85
[1032] S. Chanillo and R. Wheeden. Weighted Poincar´e and Sobolev inequalities and estimates for weighted Peano maximal functions. Amer. J.
Math., 107(5):1191–1226, 1985.
chfokh10
[1033] V. Chari, G. Fourier, and T. Khandai. A categorical approach to
Weyl modules. Transform. Groups, 15(3):517–549, 2010.
chchhe10
[1034] M. Charina, C. Chui, and W. He. Tight frames of compactly
supported multivariate multi-wavelets. J. Comput. Appl. Math.,
233(8):2044–2061, 2010.
chst08-1
[1035] M. Charina and J. St¨ockler. Tight wavelet frames for irregular multiresolution analysis. Appl. Comput. Harmon. Anal., 25(1):98–113,
2008.
chchmuse09
[1036] P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman.
Application of Papoulis–Gerchberg method in image super-resolution
and inpainting. The Computer Journal, 52(1):80–89, 2009.
chun09
[1037] K. Chaudhury and M. Unser. Construction of Hilbert transform pairs
of wavelet bases and Gabor-like transforms. IEEE Trans. Signal Process., 57(9):3411–3425, 2009.
chcikawe14
[1038] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss. Variable density sampling with continuous trajectories. SIAM J. Imaging Sci., 7(4):1962–
1992, 2014.
chcomeou09
[1039] F. Chazal, D. Cohen Steiner, L. Memoli, and S. Oudot. GromovHausdorff Stable Signatures for Shapes using Persistence. Computer
Graphics Forum (proc. SGP 2009), 2009.
93
chfiko09
[1040] A. Chebira, M. Fickus, and J. Kovacevic. Classifying compact convex
sets with frames. Appl. Comput. Harmon. Anal., 27(1):73–86, 2009.
chgrta82
[1041] J. Cheeger, M. Gromov, and M. Taylor. Finite propagation speed,
kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom., 17:15–53,
1982.
chch96
[1042] C.-C. Chen and D. Chen. Multi-resolutional Gabor filter in texture
analysis. Pattern Recognition Lett., 17(10):1069 – 1076, 1996.
chro97
[1043] G. Chen and R. Rockafellar. Convergence rates in forward-backward
splitting. SIAM J. Optim., 7(2):421–444, 1997.
chxi10
[1044] G. Chen and W. Xie. Rotation invariant feature extraction by combining denoising with Zernike moments. In Wavelet Analysis and
Pattern Recognition (ICWAPR), 2010 International Conference on,
pages 186–189, July 2010.
ch12-2
[1045] G.-S. Chen. Local fractional Mellin transform in fractal space. Advances in Electrical Engineering Systems, 1(2):89–95, 2012.
chdedifa12
[1046] J. Chen, Q. Deng, Y. Ding, and D. Fan. Estimates on fractional power
dissipative equations in function spaces. Nonlinear Analysis: Theory,
Methods &amp Applications, 75(5):2959 – 2974, 2012.
chzh06
[1047] L. Chen and D. Zhao. Application of fractional Fourier transform on
spatial filtering. Optik - International Journal for Light and Electron
Optics, 117(3):107 – 110, 2006.
chmi12
[1048] Q. Chen and C. Micchelli. The Bedrosian identity for functions analytic in a neighborhood of the unit circle. Complex Anal. Oper.
Theory, 6(3):781–798, 2012.
chqi09
[1049] Q. Chen and T. Qian. Sampling theorem and multi-scale spectrum
based on non-linear Fourier atoms. Appl. Anal., 88(6):903–919, June
1009.
chwawa08
[1050] Q. Chen, Y. Wang, and Y. Wang. A sampling theorem for nonbandlimited signals using generalized sinc functions. Comput. Math.
Appl., 56(6):1650–1661, 2008.
94
chgitr12
[1051] R. Chen, A. Gittens, and J. Tropp. The masked sample covariance
estimator: An analysis via matrix concentration inequalities. Inform.
Inference, 1:2–20, 2012.
bichlu89
[1052] S. Chen, S. Billings, and W. Luo. Orthogonal least squares methods and their application to nonlinear system identification. Intl. J.
Contr., 50(5):18731896, 1989.
chmc97
[1053] S. Chen and S. McLaughlin. Blind channel identification based on
higherorder cumulant fitting using genetic algorithms. pages 184–188,
Jul. 1997.
chpo12
[1054] X. Chen and A. Powell. Almost sure convergence of the Kaczmarz algorithm with random measurements. J. Fourier Anal. Appl.,
18(6):1195–1214, 2012.
chtewayu08
[1055] X. Chen, R. Tessera, X. Wang, and G. Yu. Metric sparsification and
operator norm localization. Adv. Math., 218(5):1496–1511, 2008.
chwa01
[1056] X. Chen and Q. Wang. Notes on ideals of Roe algebras. The Quarterly
Journal of Mathematics, 52(4):437–446, 2001.
chwa06
[1057] X. Chen and Q. Wang. Rank distributions of coarse spaces and ideal
structure of Roe algebras. Bull. London Math. Soc., 38(5):847–856,
2006.
chwe03
[1058] X. Chen and S. Wei. Spectral invariant subalgebras of reduced crossed
product C*-algebras. J. Funct. Anal., 197(1):228–246, 2003.
bhchsawa13
[1059] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Completing any
low-rank matrix, provably. ArXiv e-prints, jun 2013.
chdi08
[1060] Y. Chen and Y. Ding. Rough singular integrals on Triebel-Lizorkin
space and Besov space. J. Math. Anal. Appl., 347(2):493–501, 2008.
chla75
[1061] Y.-K. Chen and H.-C. Lai. Multipliers of Lorentz spaces. Hokkaido
Math. J., 4(2):247–260, 1975.
chguve12
[1062] M. Cheraghchi, V. Guruswami, and A. Velingker. Restricted isometry of Fourier matrices and list decodability of random linear codes.
preprint, 2012.
95
ch91
[1063] I. Cherednik. A unification of Knizhnik-Zamolodchikov and Dunkl
operators via affine Hecke algebras. Invent. Math., 106(2):411–432,
1991.
bechwa03
[1064] J. Chessa, H. Wang, and T. Belytschko. On the construction of blending elements for local partition of unity enriched finite elements. Int.
J. Numer. Methods Eng., 57(7):1015–1038, 2003.
chtr10
[1065] C. Chettaoui and K. Trimeche. Bochner-Hecke theorems for the Weinstein transform and application. Fract. Calc. Appl. Anal., 13(3):261–
280, 2010.
ch11-2
[1066] H. Chiba. A spectral theory of linear operators on rigged Hilbert
spaces under certain analyticity conditions. ArXiv e-prints, jul 2011.
aj79
[1067] A. K. Chilana and A. Kumar. Spectral synthesis in Segal algebras on
hypergroups. Pacific J. Math., Volume 80(Number 1):59–76., 1979.
chki92
[1068] M. Chipot and D. Kinderlehrer. Book Review: Weak convergence
methods for nonlinear partial differential equations. Bull. Amer.
Math. Soc. (N.S.), 26(1):147–148, 1992.
chky01
[1069] G. Chirikjian and A. Kyatkin. Engineering Applications of Noncommutative Harmonic Analysis With Emphasis on Rotation and Motion
Groups. Boca Raton, FL: CRC Press. xxii, 2001.
ch12
[1070] G. S. Chirikjian. Applied and Numerical Harmonic Analysis - Stochastic Models, Information Theory and Lie Groups, volume 2. Birkh¨auser
Verlag, 2012.
chde12
[1071] J. Chiu and L. Demanet. Matrix probing and its conditioning. SIAM
J. Numer. Anal., 50(1):171–193, 2012.
chzh12
[1072] H. Cho and K. Zhu. Fock-Sobolev spaces and their Carleson measures.
J. Funct. Anal., 263(8):2483–2506, 2012.
chkile13
[1073] K. Cho, J. Kim, and H. Lee. Frames and Riesz bases for Banach
spaces, and Banach spaces of vector-valued sequences. Banach J.
Math. Anal., 7(2):172–193, 2013.
choz09
[1074] Y. Cho and T. Ozawa. Sobolev inequalities with symmetry. Commun.
Contemp. Math., 11(3):355–365, 2009.
96
ch10-1
[1075] Y.-K. Cho. Continuous characterization of the Triebel-Lizorkin spaces
and Fourier multipliers. Bull. Korean Math. Soc., 47(4):839–857,
2010.
chki06
[1076] Y.-K. Cho and J. Kim. Atomic decomposition on Hardy-Sobolev
spaces. Studia Math., 177(1):25–42, 2006.
chizko13
[1077] B. Choe, K. Izuchi, and H. Koo. Hardy-Carleson measures and their
dual Poisson-Szeg¨o transforms. Potential Anal., 38(1):143–168, 2013.
chna11
[1078] B. Choe and K. Nam. Double integral characterizations of harmonic
Bergman spaces. J. Math. Anal. Appl., 379(2):889 – 909, 2011.
chchsk12
[1079] J. Choi, D. Skoug, and S. Chang. A multiple generalized FourierFeynman transform via a rotation on Wiener space. Int. J. Math.,
2012.
chchsk13
[1080] J. Choi, D. Skoug, and S. Chang. Generalized analytic FourierFeynman transform of functionals in a Banach algebra. J. Funct.
Spaces Appl., 2013:12, 2013.
chlatswo08
[1081] W.-P. Choi, S.-H. Tse, K.-W. Wong, and K.-M. Lam. Simplified
Gabor wavelets for human face recognition. Pattern Recognition,
41(3):1186–1199, 2008.
ch54
[1082] G. Choquet. Theory of capacities. Ann. Inst. Fourier (Grenoble),
5:131–295, 1954.
ch05
[1083] F. Chouchene. Harmonic analysis associated with the Jacobi-Dunkl
operator on ] − π2 , π2 [. J. Comput. Appl. Math., 178(1-2):75–89, 2005.
chluni06
[1084] B. Chow, P. Lu, and L. Ni. Hamilton’s Ricci flow. Graduate studies in
mathematics. American Mathematical Society/Science Press, 2006.
chda11
[1085] S. Chr´etien and S. Darses. Invertibility of random submatrices via
tail decoupling and a matrix Chernoff inequality. preprint, 2011.
chge84
[1086] M. Christ and D. Geller. Singular integral characterizations of Hardy
spaces on homogeneous groups. Duke Math. J., 51(3):547–598, 1984.
97
chmaol11
[1087] J. Christensen, A. Mayeli, and G. Olafsson. Coorbit description and atomic decomposition of Besov spaces. Arxiv preprint
arXiv:1110.6676, 2011.
ch12-1
[1088] J. G. Christensen. Sampling in reproducing kernel Banach spaces on
Lie groups. J. Approx. Theory, 164(1):179–203, 2012.
chmaol12
[1089] J. G. Christensen, A. Mayeli, and G. Olafsson. Coorbit description
and atomic decomposition of Besov spaces. Numer. Funct. Anal. Optim., 33(7-9):847–871, 2012.
chol11
[1090] J. G. Christensen and G. Olafsson. Coorbit spaces for dual pairs.
Appl. Comput. Harmon. Anal., 31(2):303–324, 2011.
ch14
[1091] O. Christensen. Six (Seven) Problems in Frame Theory. In New
Perspectives on Approximation and Sampling Theory, pages 337–358.
Springer, 2014.
chgo12
[1092] O. Christensen and S. S. Goh. Pairs of dual periodic frames. Appl.
Comput. Harmon. Anal., 33(3):315 – 329, November 2012.
chgo14
[1093] O. Christensen and S. S. Goh. From dual pairs of Gabor frames to
dual pairs of wavelet frames and vice versa. Appl. Comput. Harmon.
Anal., 36(2):198 – 214, 2014.
chkiki12
[1094] O. Christensen, H. Kim, and R. Kim. Gabor windows supported on
[-1, 1] and dual windows with small support. Adv. Comput. Math.,
36(4):525–545, 2012.
chkikili06
[1095] O. Christensen, H. Kim, R. Kim, and J. Lim. Riesz sequences of
translates and generalized duals with support on [0, 1]. J. Geom.
Anal., 16(4):585–596, 2006.
chkiki10-1
[1096] O. Christensen, H. Kim, and R. Y. Kim. On the duality principle by
Casazza, Kutyniok and Lammers. Technical report, February 2010.
chki10
[1097] O. Christensen and R. Kim. On dual Gabor frame pairs generated by
polynomials. J. Fourier Anal. Appl., 16(1):1–16, 2010.
chla10
[1098] O. Christensen and R. S. Laugesen. Approximately dual frame pairs
in Hilbert spaces and applications to Gabor frames. Sampl. Theory
Signal Image Process., 9(1-3):77–89, 2010.
98
chst03-1
[1099] O. Christensen and T. Strohmer. Methods for approximation of the
inverse (Gabor) frame operator. Feichtinger, Hans G. (ed.) et al., Advances in Gabor analysis. Basel: Birkh¨auser. Applied and Numerical
Harmonic Analysis, 171-195 (2003)., 2003.
chxizh13
[1100] O. Christensen, X. Xiao, and Y. Zhu. Characterizing R-duality in
Banach spaces. Acta Math. Sin. (Engl. Ser.), 29(1):75–84, 2013.
chzw10
[1101] T. Christiansen and M. Zworski. Probabilistic Weyl laws for quantized
tori. Comm. Math. Phys., 299(2):305–334, 2010.
chwh11
[1102] S.-K. Chua and R. Wheeden. Self-improving properties of inequalities
of Poincar’e type on s-John domains. Pacific J. Math., 250(1):67–108,
2011.
chsiva13
[1103] R. Chugh, M. Singh, and L. Vashisht. On Λ-type duality of frames in
Banach spaces. International Journal of Analysis and Applications,
4(2):148–158, 2013.
chdi87
[1104] C. Chui and H. Diamond. A natural formulation of quasi-interpolation
by multivariate splines. Proc. Amer. Math. Soc., 99:643–646, 1987.
chdi90-1
[1105] C. Chui and H. Diamond. A characterization of multivariate quasiinterpolation formulas and its applications. Numer. Math., 57(2):105–
121, 1990.
chdi90
[1106] C. Chui and H. Diamond. Approximation and interpolation formulas for real-time applications. Applied mathematics and computing,
Trans. 7th Army Conf., West Point/NY (USA) 1989, ARO Rep. 90-1,
765-772 (1990)., 1990.
chdi91
[1107] C. Chui and H. Diamond. A general framework for local interpolation.
Numer. Math., 58(6):569–581, 1991.
chdira84-1
[1108] C. Chui, H. Diamond, and L. A. Raphael. Best local approximation
in several variables. J. Approximation Theory, 40:343–350, 1984.
chdira84
[1109] C. Chui, H. Diamond, and L. A. Raphael. On best data approximation. J. Approximation Theory Appl., 1(1):37–56, 1984.
99
chdira87
[1110] C. Chui, H. Diamond, and L. A. Raphael. Interpolation by bivariate
quadratic splines on a non-uniform rectangular grid. Applied mathematics and computing, Trans. 4th Army Conf., Ithaca/N. Y. 1986,
ARO Rep. 87-1, 1261-1266 (1987)., 1987.
chdira88
[1111] C. Chui, H. Diamond, and L. A. Raphael. Convexity-preserving quasiinterpolation and interpolation by box spline surfaces. Applied mathematics and computing, Trans. 5th Army Conf., West Point, NY 1987,
ARO Rep. 88-1, 301-310 (1988)., 1988.
chdira88-1
[1112] C. Chui, H. Diamond, and L. A. Raphael. Interpolation by multivariate splines. Math. Commun., 51(183):203–218, 1988.
chdira89
[1113] C. Chui, H. Diamond, and L. A. Raphael. Shape-preserving quasiinterpolation and interpolation by box spline surfaces. J. Comput.
Appl. Math., 25(2):169–198, 1989.
chli94
[1114] C. Chui and C. Li. A general framework of multivariate wavelets with
duals. Appl. Comput. Harmon. Anal., 1(4):368–390, 1994.
chli95-1
[1115] C. Chui and C. Li. Multivariate interpolating wavelets. Chui, C. K.
(ed.) et al., Approximation theory VIII. Vol. 2. Wavelets and multilevel approximation. Papers from the 8th Texas international conference, College Station, TX, USA, January 8–12, 1995. Singapore:
World Scientific. Ser. Approx. Decompos. 6, 9, 1995.
chsu07
[1116] C. Chui and Q. Sun. Characterizations of tight over-sampled affine
frame systems and over-sampling rates. Appl. Comput. Harmon.
Anal., 22(1):1–15, 2007.
chzh99
[1117] C. K. Chui and L. Zhong.
Polynomial interpolation and
Marcinkiewicz-Zygmund inequalities on the unit circle. J. Math. Anal.
Appl., 233(1):387–405, May 1999.
chla11
[1118] C.-K. Chun Kit and L. Lai. On Fourier frame of absolutely continuous
measures. J. Funct. Anal., 261(10):2877 – 2889, 2011.
brch78
[1119] R. Churchill and J. Brown. Fourier Series and Boundary Value Problems 3rd ed. D¨
usseldorf etc.: McGraw-Hill Book Company. VIII, 271
p., 1978.
100
cipereva10
[1120] O. Ciaurri, M. Perez, J. Reyes, and J. Varona. Mean convergence of
Fourier-Dunkl series. J. Math. Anal. Appl., 372(2):470–485, 2010.
ciro12
[1121] O. Ciaurri and L. Roncal. Higher order Riesz transforms for FourierBessel expansions. J. Fourier Anal. Appl., 18(4):770–789, 2012.
cirost13
[1122] O. Ciaurri, L. Roncal, and P. Stinga. Fractional integrals on compact
Riemannian symmetric spaces of rank one. Adv. Math., 235:627–647,
2013.
civa07
[1123] O. Ciaurri and J. Varona. A Whittaker-Shannon-Kotelnikov sampling
theorem related to the Dunkl transform. Proc. Amer. Math. Soc.,
135(9):2939–2947, 2007.
civa10
[1124] O. Ciaurri and J. Varona. An uncertainty inequality for Fourier-Dunkl
series. J. Comput. Appl. Math., 233(6):1499–1504, 2010.
cish03
[1125] D. Cichon and H. S. Shapiro. Toeplitz operators in Segal-Bargmann
spaces of vector-valued functions vector-valued functions. Math.
Scand., 93(2):275–296, 2003.
ciel12
[1126] K. Cieliebak and Y. Eliashberg. From Stein to Weinstein and Back
Symplectic Geometry of Affine Complex Manifolds. Colloquium Publications. American Mathematical Society 59. Providence, RI: American Mathematical Society (AMS). xii, 2012.
cikasa05
[1127] P. Cifuentes, K. S. Kazarian, and A. San Antolin. Characterization
of scaling functions in a multiresolution analysis. Proc. Amer. Math.
Soc., 133(4):1013–1023, 2005.
cisaso14
[1128] P. Cifuentes, A. San Antonil, and M. Soto Bajo. Anisotropic dilations
of shift-invariant subspaces and approximation properties in L2 (Rd ).
Math. Nachr., pages n/a–n/a, 2014.
cidifolalomascot14
[1129] P. Ciliegi, C. La, L. Schreiber, M. Bellazzini, M. Bertero, P. Boccacci,
E. Diolaiti, I. Foppiani, M. Lombini, D. Massari, and o. others. Image restoration with spatially variable PSF. In SPIE Astronomical
Telescopes+ Instrumentation, pages 91482O–91482O, 2014.
ciro00
[1130] J. Cima and W. Ross. The backward shift on the Hardy space, volume 79 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000.
101
ci79
[1131] J. A. Cima. The basic properties of Bloch functions. Int. J. Math.
Math. Sci., 2:369–413, 1979.
cits98
[1132] H. Cirpan and M. Tsatsanis. Stochastic Maximum Likelihood Methods for Semi Blind Channel Estimation. IEEE Signal Process. Letters,
5:21–24, Feb. 1998.
clmu73
[1133] J. Claerbout and F. Muir. Robust modeling of erratic data. Geophys.
J. Internat., 38:826–844, Oct. 1973.
clni11
[1134] M. Clausel and S. Nicolay. Wavelets techniques for pointwise antiH¨olderian irregularity. Constr. Approx., 33(1):41–75, 2011.
cl72
[1135] A. Cline. Rate of convergence of Lawson’s algorithm. Math. Commun.,
26:167–176, 1972.
clmi13
[1136] R. Cluckers and D. Miller. Lebesgue classes and preparation of real
constructible functions. J. Funct. Anal., 264(7):1599–1642, 2013.
cosc11
[1137] H. Cobian and A. Schulze Halberg. Time-dependent Schr¨odinger
equations with effective mass in (2+1) dimensions: intertwining relations and Darboux operators. J. Phys. A, 44(28):285301, 14p., 2011.
cofe88
[1138] F. Cobos and D. Fernandez. Hardy-Sobolev spaces and Besov spaces
with a function parameter. In Function spaces and applications
(Lund, 1986), volume 1302 of Lecture Notes in Math., pages 158–170.
Springer, Berlin, 1988.
coga94
[1139] F. Cobos and M. Garcia Davia. Remarks on interpolation properties
of Schatten classes. Bull. Lond. Math. Soc., 26(5):465–471, 1994.
cokr11
[1140] F. Cobos and N. Y. Kruglyak. Exact minimizer for the couple (l∞ , bv)
and the one-dimensional analogue of the Rudin-Osher-Fatemi model.
J. Approx. Theory, 163(4):481–490, 2011.
cope91
[1141] F. Cobos and J. Peetre. Interpolation of compact operators: The
multidimensional case. Proc. Lond. Math. Soc., III. Ser., 63(2):371–
400, 1991.
copepe98
[1142] F. Cobos, J. Peetre, and L. Persson. On the connection between real
and complex interpolation of quasi-Banach spaces. Bull. Sci. Math.,
122(1):17–37, 1998.
102
co12-1
co77
[1143] L. Coburn. Berezin transform and Weyl-type unitary operators on the
Bergman space. Proc. Amer. Math. Soc., 140(10):3445–3451, 2012.
[1144] W. G. Cochran. Sampling techniques. John Wiley & Sons, 1977.
co00-2
[1145] A. Cohen. Wavelet methods in numerical analysis. Ciarlet, P. G. (ed.)
et al., Handbook of numerical analysis. Vol. 7: Solution of equations in
Rn (Part 3). Techniques of scientific computing (Part 3). Amsterdam:
North-Holland/ Elsevier. 417-711 (2000)., 2000.
codade07-1
[1146] A. Cohen, W. Dahmen, and R. DeVore. A taste of compressed sensing. In Proc. SPIE 6576,Wavelets pioneer award; Independent component analyses, wavelets, unsupervised nano-biomimetic sensors, and
neural networks V, volume 6576, pages 65760C–165760C–8, Orlando,
Florida, USA — April 09, 2007, 2007. SPIE.
codadekepi12
[1147] A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, and D. Picard. Capturing Ridge Functions in High Dimensions from Point
Queries. Constr. Approx., 35:225–243, 2012.
codavi93
[1148] A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and
fast wavelet transforms. Appl. Comput. Harmon. Anal., 1(1):54–81,
1993.
codepexu99
[1149] A. Cohen, R. DeVore, P. Petrushev, and H. Xu. Nonlinear approximation and the space BV (R2 ). Amer. J. Math., 121(3):587–628, 1999.
codefora11
[1150] A. Cohen, R. A. DeVore, S. Foucart, and H. Rauhut. Recovery of
functions of many variables via compressive sensing. In Proc. SampTA
2011, Singapore,, 2011.
coza11
[1151] J. Cohen and A. Zayed. Wavelets And Multiscale Analysis Theory
And Applications. Birkh¨auser, 2011.
cota11
[1152] M. Cohen and C. O. Tan. A polynomial approximation for arbitrary
functions. to appear, page 6, 2011.
cohu98
[1153] P. Cohen and R. Hudson. Generators of quantum stochastic flows and
cyclic cohomology. Math. Proc. Cambridge Philos. Soc., 123(2):345–
363, 1998.
103
coluwa07
[1154] W. Cohn, G. Lu, and P. Wang. Sub-elliptic global high order Poincar´e
inequalities in stratified Lie groups and applications. J. Funct. Anal.,
249(2):393–424, 2007.
co09-1
[1155] R. Coifman. Wavelets and their applications past and future. In
Proc. SPIE, Wavelet pioneer award; Independent component analyses, wavelets, neural networks, biosystems, and nanoengineering VII,
volume 7343, pages 734302–1734302–13, Orlando, Florida, USA —
April 13, 2009, 2009. SPIE.
coda79
[1156] R. Coifman and B. Dahlberg. Singular integral characterizations
of nonisotropic H p spaces and the F. and M. Riesz theorem. In
Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math.,
Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos.
Pure Math., XXXV, Part, pages 231–234. Amer. Math. Soc., Providence, 1979.
codo95
[1157] R. Coifman and D. Donoho.
Translation-invariant de-noising.
LECTURE NOTES IN STATISTICS-NEW YORK-SPRINGER
VERLAG-, pages 125–125, 1995.
coro82
[1158] R. Coifman and R. Rochberg. Projections in weighted spaces, skew
projections and inversion of Toeplitz operators. Integr. Equ. Oper.
Theory, 5:145–159, 1982.
cocwrosawe80
[1159] R. Coifman, R. Rochberg, G. Weiss, M. Cwikel, and Y. Sagher. The
complex method for interpolation of operators acting on families of
Banach spaces. In Euclidean harmonic analysis (Proc. Sem., Univ.
Maryland, College Park, Md., 1979), volume 779 of Lecture Notes in
Math., pages 123–153. Springer, Berlin, 1980.
co06-1
[1160] R. R. Coifman. Geometric harmonic analysis in high dimensions:
challenges and opportunities. Jensen, Gary R. (ed.) et al., 150 years
of mathematics at Washington University in St. Louis. Sesquicentennial of mathematics at Washington University, St. Louis, MO, USA,
October 3–5, 2003. Providence, RI: American Mathematical Society
(AMS). Contempora, 2006.
cocwrosawe82
[1161] R. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, and G. Weiss. A
theory of complex interpolation for families of Banach spaces. Adv.
Math., 43(3):203–229, 1982.
104
come97-1
[1162] R. R. Coifman and F. Meyer. Brushlets: A tool for directional image analysis and image compression. Appl. Comput. Harmon. Anal.,
4(2):147–187, 1997.
cogrnepe98
[1163] D. Cojoc, P. Grattoni, R. Nerino, and G. Pettiti. Image description
using Gabor wavelets. In Proc. SPIE, OPTIKA ’98: 5th Congress
on Modern Optics, volume 3573 of Optical Systems, Imaging, and
Micro-Optics, page 4, Budapest, Hungary, 1998.
cogh10
[1164] P. Cojuhari and A. Gheondea. Closed embeddings of Hilbert spaces.
J. Math. Anal. Appl., 369(1):60–75, 2010.
bacoerpu02
[1165] S. Coleri, M. Ergen, A. Puri, and A. Bahai. Channel Estimation
Techniques Based on Pilot Arrangement in OFDM Systems. IEEE
Trans. Broadcasting, 48(3):223–229, Sep. 2002.
co92-2
[1166] M. Combescure. A generalized coherent state approach of the quantum dynamics for suitable time-dependent Hamiltonians. 1992.
co09
[1167] M. Combescure. Circulant matrices, Gauss sums and mutually unbiased bases. I: The prime number case. Cubo, 11(4):73–86, 2009.
coro12
[1168] M. Combescure and D. Robert. Coherent States and Applications in
Mathematical Physics. Springer, 2012.
coro12-1
[1169] M. Combescure and D. Robert. Fermionic coherent states. 2012.
cope07
[1170] P. Combettes and J.-C. Pesquet. A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery. IEEE J.
Sel. Topics Signal Process., 1(4):564 –574, 2007.
cope11
[1171] P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In H. Bauschke, R. Burachik, P. Combettes, V. Elser,
D. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212. Springer,
New York, 2011.
cowa05
[1172] P. Combettes and V. Wajs. Signal recovery by proximal forwardbackward splitting. Multiscale Model. Simul., 4(4):1168–1200 (electronic), 2005.
105
cowaot06
[1173] P. Combettes, V. Wajs, and o. others. Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation,
4:1168–1200, 2006.
coto07
[1174] F. Concetti and J. Toft. Trace ideals for Fourier integral operators
with non-smooth symbols. In Pseudo-differential operators: partial
differential equations and time-frequency analysis, volume 52 of Fields
Inst. Commun., pages 255–264. Providence, RI, 2007.
coto09
[1175] F. Concetti and J. Toft. Schatten-von Neumann properties for Fourier
integral operators with non-smooth symbols. I. Ark. Mat., 47(2):295–
312, 2009.
co88-1
[1176] A. Connes. Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules. K-Theory, 1(6):519–548,
1988.
co89-2
[1177] A. Connes. Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory Dynam. Systems, 9(2):207–220, 1989.
co95-3
[1178] A. Connes. Geometry from the spectral point of view. Lett. Math.
Phys., 34(3):203–238, 1995.
co00-3
[1179] A. Connes. A short survey of noncommutative geometry. J. Math.
Phys., 41(6):3832–3866, 2000.
co06-2
[1180] A. Connes. Noncommutative geometry and physics. Alimi, JeanMichel (ed.) et al., Albert Einstein century international conference,
Paris, France, 18–22 July 2005. Invited papers. With CD-ROM, which
contains the contributed papers of this confernce. Melville, NY: American Institute of Physics (AIP). AI, 2006.
co08-1
[1181] A. Connes. A unitary invariant in Riemannian geometry. Int. J.
Geom. Methods Mod. Phys., 5(8):1215–1242, 2008.
co08-2
[1182] A. Connes. On the spectral characterization of manifolds. Arxiv
preprint arXiv:0810.2088, 2008.
cocoma09
[1183] A. Connes, C. Consani, and M. Marcolli. The Weil proof and the geometry of the adel`es class space. Tschinkel, Yuri (ed.) et al., Algebra,
arithmetic, and geometry. In honor of Yu. I. Manin on the occasion of
106
his 70th birthday. Vol. I. Boston, MA: Birkh¨auser. Progress in Mathematics 269, 339-405 (2009)., 2009.
cohiXX
[1184] A. Connes and N. Higson. Asymptotic morphisms and operator Ktheory. In preparation for the Proceedings of the 1997 AMS meeting
on K-theory, Seattle, Washington.
cohi90
[1185] A. Connes and N. Higson. Deformations, asymptotic morphisms, and
bivariant K-theory. CR Acad. Sci. Paris I, 311:101–106, 1990.
cotr09
[1186] A. Connes and P. Tretkoff. The Gauss-Bonnet Theorem for the noncommutative two torus. Arxiv preprint arXiv:0910.0188, 2009.
cokrry12
[1187] D. Constales, S. Krausshar, and J. Ryan. Hyperbolic Dirac and
Laplace operators on examples of hyperbolic spin manifolds. Houston
J. Math., 38(2):405–420, 2012.
codivu14
[1188] M. Contreras, S. Diaz Madrigal, and D. Vukotic. Compact and weakly
compact composition operators from the Bloch space into M¨obius
invariant spaces. J. Math. Anal. Appl., (0):–, 2014.
co12
[1189] J. Conway. A Course in Abstract Analysis. Providence, RI: American
Mathematical Society (AMS), 2012.
cosh13
[1190] J.
√ Conway and J. Shipman. Extreme Proofs I: The Irrationality of
2. The Mathematical Intelligencer, 35(3):2–7, 2013.
cosl99
[1191] J. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups.
Volume 290. Third Edition edition, 1999.
conisa94
[1192] T. Cooklev, A. Nishihara, and M. Sablatash. Theory of filter banks
over finite fields. In Circuits and Systems, 1994. APCCAS’94., 1994
IEEE Asia-Pacific Conference on, pages 260–265, 1994.
co90-3
[1193] J. Cooley. How the FFT gained acceptance. In A history of scientific
computing (Proc. of the ACM, Princeton, NJ, 1987), ACM Press Hist.
Ser., pages 133–140. ACM, New York, 1990.
bocogarast69
[1194] J. Cooley, R. Garwin, C. Rader, B. Bogert, and T. J. Stockham.
The 1968 Arden house workshop on fast Fourier transform processing.
Audio and Electroacoustics, IEEE Transactions on, 17(2):66 – 76, jun
1969.
107
colewe67-1
[1195] J. Cooley, P. Lewis, and P. Welch. Application of the fast Fourier
transform to computation of Fourier integrals, Fourier series, and
convolution integrals,. Audio and Electroacoustics, IEEE Transactions on,, 15(2):79–84, 1967.
colewe67
[1196] J. Cooley, P. Lewis, and P. Welch. Historical notes on the fast Fourier
transform. Proceedings of the IEEE, 55(10):1675 – 1677, oct. 1967.
co87
[1197] J. W. Cooley. The re-discovery of the fast Fourier transform algorithm. Microchimica Acta, 93(3):33–45, 1987.
co10-1
[1198] T. Cooney. A Hausdorff-Young inequality for locally compact quantum groups. Internat. J. Math., 21(12):1619–1632, 2010.
co70
[1199] J. Cooper. Functional equations for linear transformations. Proc.
Lond. Math. Soc., III. Ser., 20:1–32, 1970.
coma11
[1200] E. Copuroglu and B. Mamedov. Use of binomial coefficients in fast and
accurate calculation of L¨owdin-α radial functions. J. Math. Chem.,
49(1):201–207, 2011.
cogi11
[1201] G. Corach and J. Giribet. Oblique projections and sampling problems.
Integr. Equ. Oper. Theory, 70(3):307–322, 2011.
co04
[1202] E. Cordero. Wavelet MRA on the interval with dilation factor m.
Rend. Sem. Mat. Univ. Politec. Torino, 62(1):39–57, 2004.
codenota10
[1203] E. Cordero, M. De, K. Nowak, and A. Tabacco. Dimensional upper
bounds for admissible subgroups for the metaplectic representation.
Mathematische Nachrichten, 283(7):982–993, 2010.
cogrni11
[1204] E. Cordero, K. Gr¨ochenig, and F. Nicola. Approximation of Fourier
integral operators by Gabor multipliers. J. Fourier Anal. Appl.,
18(4):661–684, 2012.
cogrniro12
[1205] E. Cordero, K. Gr¨ochenig, F. Nicola, and L. Rodino. The Wiener
property for a class of Fourier integral operators. Arxiv preprint
arXiv:1201.4079, 2012.
cogrniro13
[1206] E. Cordero, K. Gr¨ochenig, F. Nicola, and L. Rodino. Generalized
metaplectic operators and the Sch¨odinger equation with a potential
in the Sj¨ostrand class. Submitted on 22 Jun 2013, preprint:23, 2013.
108
cogrniro13-1
[1207] E. Cordero, K. Gr¨ochenig, F. Nicola, and L. Rodino. Wiener algebras
of Fourier integral operators. J. Math. Pures Appl. (9), 99(2):219–233,
2013.
comanota10
[1208] E. Cordero, F. Mari, K. Nowak, and A. Tabacco. Dimensional upper
bounds for admissible subgroups for the metaplectic representation.
Math. Nachr., 283(7):982–993, 2010.
coni10-1
[1209] E. Cordero and F. Nicola. Boundedness of Schr¨odinger type propagators on modulation spaces., 2010.
cook12
[1210] E. Cordero and K. A. Okoudjou. Dilation properties for weighted
modulation spaces. J. Funct. Spaces Appl., pages Art. ID 145491, 29,
2012.
cota14
[1211] E. Cordero and A. Tabacco. Triangular subgroups of Sp(d, R) and
reproducing formulae. arXiv preprint arXiv:1402.4604, 2014.
cotawa13
[1212] E. Cordero, A. Tabacco, and P. Wahlberg. Schr¨odinger-type propagators, pseudodifferential operators and modulation spaces. J. Lond.
Math. Soc. (2), 88(2):375–395, 2013.
cotowa14
[1213] E. Cordero, J. Toft, and P. Wahlberg. Sharp results for the Weyl
product on modulation spaces. J. Funct. Anal., 267(8):3016–3057,
2014.
co89-3
[1214] A. Cordoba. Dirac combs. Lett. Math. Phys., 17(3):191–196, 1989.
co89-5
[1215] A. Cordoba. The disc multiplier. Duke Math. J., 58(1):21–29, 1989.
co89-4
[1216] C. Corduneanu. Almost Periodic Functions. Chelsea, New York,
1989.
cojoto13
[1217] S. Coriasco, K. Johansson, and J. Toft. Global wave-front sets of
Banach, Frechet and modulation space types, and pseudo-differential
operators. J. Differential Equations, 254(8):3228–3258, 2013.
coru10
[1218] S. Coriasco and M. Ruzhansky. On the boundedness of Fourier integral operators on Lp (Rn ) (Sur la continuite des operateurs integraux
de Fourier sur Lp (Rn )). C. R., Math., Acad. Sci. Paris, 348(1516):847–851, 2010.
109
colerist09
[1219] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.
codadosc09
[1220] B. Cornelis, A. Dooms, I. Daubechies, and P. Schelkens. Report on
digital image processing for art historians. In Proc. of SAMPTA’09,
page 4, Marseille, May 18-22, 2009, 2009.
coioqustst07
[1221] C. Cornu, S. Stankovi´c, C. Ioana, A. Quinquis, and L. Stankovi´c.
Generalized representation of phase derivatives for regular signals.
IEEE Trans. Signal Process., 55(10):4831–4838, 2007.
co84-2
[1222] J. Costas. A study of a class of detection waveforms having nearly
ideal range-Doppler ambiguity properties. Proceedings of the IEEE,
72:996–1009, 1984.
coheje00
[1223] P. Coste, F. Hessel, and A. Jerraya. Multilanguage codesign using
SDL and Matlab. Proc. SASIMI 2000, pages 49–55, 2000.
cohejelerosusuze99
[1224] P. Coste, F. Hessel, M. Le, Z. Sugar, M. Romdhani, R. Suescun,
N. Zergainoh, and A. Jerraya. Multilanguage design of heterogeneous
systems. In Hardware/Software Codesign, 1999.(CODES’99) Proceedings of the Seventh International Workshop on, pages 54–58, 1999.
co09-2
[1225] S. Costea. Besov capacity and Hausdorff measures in metric measure
spaces. Publ. Mat., Barc., 53(1):141–178, 2009.
co55
[1226] M. Cotlar. A combinatorial inequality and its applications to L2 spaces. Rev. Mat. Cuyana, 1:41–55 (1956), 1955.
codepato10
[1227] Y. Cotte, M. Toy, N. Pavillon, and C. Depeursinge. Microscopy image
resolution improvement by deconvolution of complex fields. Optics
express, 18(19):19462–19478, 2010.
coenkrra05
[1228] S. Cotter, B. Rao, K. Engan, and K. Kreutz Delgado. Sparse solutions
to linear inverse problems with multiple measurement vectors. IEEE
Trans. Signal Process., 53:2477–2488, Jul. 2005.
co13
[1229] T. Coulhon. Heat kernel estimates, Sobolev-type inequalities and
Riesz transform on noncompact Riemannian manifolds. In Analysis and geometry of metric measure spaces. Lecture notes of the 50th
S´eminaire de Math´ematiques Sup´erieures (SMS), Montr´eal, Canada,
June 27 – July 8, 2011, pages 55–65. 2013.
110
cokepe12
[1230] T. Coulhon, G. Kerkyacharian, and P. Petrushev. Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl.,
18(5):995–1066, 2012.
cosi08-1
[1231] T. Coulhon and A. Sikora. Gaussian heat kernel upper bounds via the
Phragmen-Lindel¨of theorem. Proc. Lond. Math. Soc. (3), 96(2):507–
544, 2008.
cosi10
[1232] T. Coulhon and A. Sikora. Riesz meets Sobolev. Colloq. Math.,
118(2):685–704, 2010.
cohi62
[1233] R. Courant and D. Hilbert. Methods of mathematical physics. Vol. II:
Partial differential equations. (Vol. II by R. Courant.). Interscience
Publishers (a division of John Wiley & Sons), New York-Lon don,
1962.
come99
[1234] E. Coven and A. Meyerowitz. Tiling the integers with translates of
one finite set. J. Algebra, 212(1):161–174, 1999.
co12-2
[1235] M. Cowling. Isomorphisms of the Fig`a-Talamanca–Herz algebras
Ap (G) for connected Lie groups g. In Colloquium De Giorgi 2009,
volume 3 of Colloquia, pages 1–18. 2012.
codesu10
[1236] M. Cowling, B. Demange, and M. Sundari. Vector-valued distributions and Hardy’s uncertainty principle for operators. Rev. Mat.
Iberoam., 26(1):133–146, 2010.
codokori91
[1237] M. Cowling, A. Dooley, A. Kor´anyi, and F. Ricci. h-type groups and
Iwasawa decompositions. Adv. Math., 87(1):1–41, 1991.
coeskepove10
[1238] M. Cowling, L. Escauriaza, C. E. Kenig, G. Ponce, and
L. Vega. The Hardy uncertainty principle revisited. Arxiv preprint
arXiv:1005.1543, 2010.
co84-3
[1239] H. S. M. Coxeter. Surprising relationships among unitary reflection
groups. Proceedings of the Edinburgh Mathematical Society (Series
2), 27(02):185–194, 1984.
crfdafo02
[1240] M. Craizer, D. A. J. Fonini, and E. A. B. da Silva. Alpha-expansions:
a class of frame decompositions. Appl. Comput. Harmon. Anal.,
13(2):103–115, 2002.
111
cr38
[1241] H. Cram´er. Sur un nouveau th´eor`eme-limite de la th´eorie des probabilit´es. Actual. sci. industr., 736:5–23, 1938.
cr40
[1242] H. Cramer. On the Theory of Stationary Random Processes. Ann. of
Math., 41(1):215–230, 1940.
crcyfi06
[1243] M. Cranitch, M. Cychowski, and D. FitzGerald. Towards an Inverse
Constant Q Transform. In Audio Engineering Society Convention
120, 5 2006.
crrosa12
[1244] R. Criado, M. Romance, and . S´anchez. Interest point detection in
images using complex network analysis. J. Comput. Appl. Math.,
236(12):2975 – 2980, 2012.
cr04
[1245] R. Cristi. Modern Digital Signal Processing. Brooks/Cole Pub Co,
2004.
cr90-1
[1246] A. Crumeyrolle. Orthogonal and Symplectic Clifford Algebras, volume 57 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1990.
crfi10
[1247] D. Cruz Uribe and A. Fiorenza. Convergence in variable Lebesgue
spaces. (Convergence in variable Lebesque spaces.). Publ. Mat., Barc.,
54(2):441–459, 2010.
crfi13
[1248] D. Cruz Uribe and A. Fiorenza. Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Birkh¨auser, 2013.
crfine04
[1249] D. Cruz Uribe, A. Fiorenza, and C. Neugebauer. Corrections to “The
maximal function on variable Lp spaces. Ann. Acad. Sci. Fenn.,
Math., 29(1):247–249, 2004.
cuzh07
[1250] F. Cucker and D.-X. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2007.
cudy86
[1251] J. Cuellar and A. Dynin. Irreducibility of Toeplitz C ∗ -algebras. Int.
Equ. Op. Theory, 9(5):613–622, 1986.
cute04
[1252] T. Cui and C. Tellambura. Joint channel and frequency offset estimation and training sequence design for MIMO systems over frequency
112
selective channels. In Global Telecommunications Conference, 2004.
GLOBECOM’04. IEEE, volume 4, pages 2344–2348, 2004.
curi06
[1253] G. Curbera and W. Ricker. Banach lattices with the Fatou property
and optimal domains of kernel operators. Indag. Math., New Ser.,
17(2):187–204, 2006.
cuma11
[1254] B. Currey and A. Mayeli. Gabor fields and wavelet sets for the Heisenberg group. Monatsh. Math., 162(2):119–142, 2011.
cuma12
[1255] B. Currey and A. Mayeli. A density condition for interpolation on the
Heisenberg group. Rocky Mountain J. Math., 42(4):1135–1151, 2012.
cufaza14
[1256] T. Curtright, D. Fairlie, and C. Zachos. A Concise Treatise on Quantum Mechanics In Phase Space. Hackensack, NJ: World Scientific and
London: Imperial College Press, 2014.
cwni84
[1257] M. Cwikel and P. Nilsson. The coincidence of real and complex
interpolation methods for couples of weighted Banach lattices. In
M. Cwikel, P. Nilsson, M. Cwikel, and J. Peetre, editors, Interpolation Spaces and Allied Topics in Analysis(Proceedings of the Conference held in Lund, Sweden, August 29 September 1, 1983), volume
1070 of Lecture Notes in Mathematics, pages 54–65. Springer Berlin /
Heidelberg, 1984.
cwsash12
[1258] M. Cwikel, Y. Sagher, and P. Shvartsman. A new look at the John
Nirenberg and John Stroemberg theorems for BMO. J. Funct. Anal.,
263(1):129 – 166, 2012.
czki12
[1259] W. Czaja and E. King. Isotropic shearlet analogs for L2 (R)k and
localization operators. Numer. Funct. Anal. Optim., 33(7-9):872–905,
2012.
czta13
[1260] W. Czaja and J. Tanis. Kaczmarz algorithm and frames. Int. J.
Wavelets Multiresolut. Inf. Process., 11(5):13, 2013.
dapiri10
[1261] P. D Ancona, V. Pierfelice, and F. Ricci. On the wave equation associated to the Hermite and the twisted Laplacian. J. Fourier Anal.
Appl., 16(2):294–310, 2010.
113
da06-2
[1262] P. Da. An Introduction to Infinite-dimensional Analysis. Universitext.
Springer-Verlag, Berlin, 2006.
da03-2
[1263] S. da. Atomic decomposition with evolutionary pursuit. Digital Signal
Processing, 13(2):317–337, 2003.
dakrla00
[1264] L. Dabrowski, T. Krajewski, and G. Landi. Some properties of nonlinear σ-models in noncommutative geometry. In Proceedings of the
1999 Euroconference: On Non-commutative Geometry and Hopf Algebras in Field Theory and Particle Physics (Torino), volume 14, pages
2367–2382, 2000.
dakrla03
[1265] L. Dabrowski, T. Krajewski, and G. Landi. Non-linear σ-models in
noncommutative geometry: fields with values in finite spaces. Modern
Phys. Lett. A, 18(33-35):2371–2379, 2003.
datv97
[1266] M. Daehlen and A. Tveito. Numerical Methods and Software Tools in
Industrial Mathematics. Birkh¨auser Verlag, 1997.
dago11
[1267] U. Daepp and P. Gorkin. Reading, Writing, and Proving. Springer,
Second Edition edition, 2011.
dakaxi08
[1268] G. Dafni, G. E. Karadzhov, and J. Xiao. Classes of Carleson-type
measures generated by capacities. Math. Z., 258(4):827–844, 2008.
daxi05
[1269] G. Dafni and J. Xiao. The dyadic structure and atomic decomposition
of q spaces in several real variables. Tohoku Math. J., 57(1), 2005.
dala09
[1270] C. Dagnino and P. Lamberti. Spline“quasi-interpolants”with boundary conditions on criss-cross triangulations. Quaderni scientifici del
Dipartimento di Matematica, 2009.
da79-1
[1271] B. Dahlberg. A note on Sobolev spaces. In Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll.,
Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math.,
XXXV, Part, pages 183–185. Amer. Math. Soc., Providence, 1979.
da79-2
[1272] B. Dahlberg. Regularity properties of Riesz potentials. Indiana Univ.
Math. J., 28(2):257–268, 1979.
114
dadascwe95
[1273] S. Dahlke, W. Dahmen, I. Weinreich, and E. Schmitt. Multiresolution
analysis and wavelets on S 2 and S 3 . Numer. Funct. Anal. Optim.,
16(1-2):19–41, 1995.
dadedelasttevi14
[1274] S. Dahlke, M. De, V. De, D. Labate, G. Steidl, G. Teschke, and
S. Vigogna. Coorbit spaces with voice in a Frechet space. arXiv
preprint arXiv:1402.3917, 2014.
dastte12
[1275] S. Dahlke, Gabriele Steidl, and Gerd Teschke. Multivariate shearlet
transform, shearlet coorbit spaces and their structural properties. In
Shearlets. Multiscale analysis for multivariate data., pages 105–144.
Boston, MA: Birkh¨auser, 2012.
dahastte13
[1276] S. Dahlke, S. H¨auser, G. Steidl, and G. Teschke. Shearlet coorbit
spaces: traces and embeddings in higher dimensions. Monatsh. Math.,
169(1):15–32, 2013.
dahate12
[1277] S. Dahlke, S. H¨auser, and G. Teschke. Coorbit space theory for the
Toeplitz shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process., 10(04):1250037, 13 p., 2012.
dalomasate08
[1278] S. Dahlke, D. Lorenz, P. Maass, C. Sagiv, and G. Teschke. The
canonical coherent states associated with quotients of the affine WeylHeisenberg group. J. Appl. Funct. Anal., 3(2):215–232, 2008.
dastte11
[1279] S. Dahlke, G. Steidl, and G. Teschke. Shearlet coorbit spaces: Compactly supported analyzing shearlets, traces and embeddings. J.
Fourier Anal. Appl., 17(6):1232–1255, 2011.
dastte08
[1280] S. Dahlke, G. Teschke, and K. Stingl. Coorbit theory, multi-αmodulation frames, and the concept of joint sparsity for medical multichannel data analysis. EURASIP J. Adv. Signal Process., 2008:19,
2008.
daprsc93
[1281] W. Dahmen, S. Pr¨ossdorf, and R. Schneider. Wavelet approximation
methods for pseudodifferential equations II: Matrix compression and
fast solution. Adv. Comput. Math., 1:259–335,, oct 1993.
dag95
[1282] G.-m. Dai. Modal compensation of atmospheric turbulence with the
use of Zernike polynomials and KarhunenLo`eve functions. JOSA A,
12(10):2182–2193, 1995.
115
da08
[1283] G.-M. Dai. Wavefront optics for vision correction, volume 179. SPIE
press Bellingham, WA, 2008.
dadiguha03
[1284] X. Dai, Y. Diao, Q. Gu, and D. Han. The existence of subspace
wavelet sets. J. Comput. Anal. Appl., 155(1):83–90, June 2003.
lilupapasispwewe98
[1285] X. Dai, Q. Gu, D. Han, D. Larson, R. Liang, S. Lu, D. Speegle,
G. Garrigos, E. Hernandez, M. Paluszynski, M. Papadakis, H. Sikic,
D. Weiland, and G. Weiss. Basic properties of wavelets. J. Fourier
Anal. Appl., 4(4-5):575–594, 1998.
dalasp97
[1286] X. Dai, D. R. Larson, and D. M. Speegle. Wavelet sets in Rn . J.
Fourier Anal. Appl., 3(4):451–456, 1997.
da93-3
[1287] M. Dal. An introduction to Γ-convergence. Progress in Nonlinear
Differential Equations and their Applications, 8. Birkh¨auser Boston
Inc., Boston, MA, 1993.
da00
[1288] H. Dales. Banach Algebras and Automatic Continuity, volume 24 of
London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 2000.
dapo04
[1289] H. Dales and M. Polyakov. Homological properties of modules over
group algebras. Proc. Lond. Math. Soc. (3), 89(2):390–426, 2004.
dama12
[1290] F. D’Andrea and P. Martinetti. On Pythagoras’ theorem for products
of spectral triples. Arxiv preprint arXiv:1203.3184, 2012.
apbeblda13
[1291] H. Dang, K. Blanchfield, I. Bengtsson, and D. Appleby. Linear
dependencies in Weyl-Heisenberg orbits. Quantum Inf. Process.,
12(11):3449–3475, 2013.
daqiyo11
[1292] P. Dang, T. Qian, and Z. You. Hardy-Sobolev spaces decomposition
in signal analysis. J. Fourier Anal. Appl., 17(1):36–64, 2011.
da13
[1293] J. D’Angelo. Hermitian Analysis from Fourier Series to CauchyRiemann Geometry. New York, NY: Birkh¨auser/Springer, 2013.
bedaduhuzh10
[1294] A. Dani, B. Huang, J. Bergan, C. Dulac, and X. Zhuang. Superresolution imaging of chemical synapses in the brain. Neuron, 68(5):843
– 856, December 2010.
116
daga08
[1295] D. Danielli and N. Garofalo. Interior Cauchy-Schauder estimates for
the heat flow in Carnot-Carath´eodory spaces. Methods Appl. Anal.,
15(1):121–136, 2008.
daganh07
[1296] D. Danielli, N. Garofalo, and D.-M. Nhieu. Sub-Riemannian calculus
on hypersurfaces in Carnot groups. Adv. Math., 215(1):292–378, 2007.
dagaph11
[1297] D. Danielli, N. Garofalo, and N. Phuc. Hardy-Sobolev type inequalities with sharp constants in Carnot-Caratheodory spaces. Potential
Anal., 34(3):223–242, 2011.
dala13
[1298] N. Das and R. Lal. Algebraic and ergodicity properties of the Berezin
transform. Commun. Math. Anal., 14(1):85–103, 2013.
da09-1
[1299] S. Das. Mathematical methods for wireless channel estimation and
equalization. PhD thesis, University of Vienna, Vienna, Austria,
September, 2009.
dane11
[1300] S. Das and A. Neumaier. Regularized low rank approximation of
weighted data sets. preprint, 2011.
da09
[1301] A. Dasgupta. Rigged Hilbert Spaces. 2009.
damowo11
[1302] A. Dasgupta, S. Molahajloo, and M.-W. Wong. The spectrum of the
sub-Laplacian on the Heisenberg group. Tohoku Math. J., 63(2):269–
276, 2011.
dawo07
[1303] A. Dasgupta and M. Wong. Weyl transforms and the heat equation
for the sub-Laplacian on the Heisenberg group. Rodino, Luigi (ed.)
et al., New developments in pseudo-differential operators. Selected
papers of the 6th congress of the International Society for Analysis,
its Applications and Computation (ISAAC), the ISAAC Group in
Pseudo-Differential Operators (IGPDO, 2007.
dawo10-1
[1304] A. Dasgupta and M. Wong. Fourier-Wigner transforms and Liouville’s
theorems for the sub-Laplacian on the Heisenberg group. In Linear
and non-linear theory of generalized functions and its applications,
volume 88 of Banach Center Publ., pages 67–75. Polish Acad. Sci.
Inst. Math., Warsaw, 2010.
117
dawo10
[1305] A. Dasgupta and M. Wong. The semigroup and the inverse of the
Laplacian on the Heisenberg group. Cubo, 12(3):83–97, 2010.
dawo13
[1306] A. Dasgupta and M. Wong. Hilbert-Schmidt and trace class pseudodifferential operators on the Heisenberg group. J. Pseudo-Differ.
Oper. Appl., 4(3):345–359, 2013.
dagu03
[1307] S. Dasgupta and A. Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Structures Algorithms, 22(1):60–
65, 2003.
da99-2
[1308] G. Dattoli. Hermite-Bessel and Laguerre-Bessel functions: a byproduct of the monomiality principle, 1999.
daha04
[1309] I. Daubechies and B. Han. Pairs of dual wavelet frames from any two
refinable functions. Constr. Approx., 20(3):325–352, 2004.
dakl85
[1310] I. Daubechies and J. R. Klauder. Quantum-mechanical path integrals
with Wiener measure for all polynomials Hamiltonians. II. J. Math.
Phys., 26(9):2239–2256, 1985.
daluwu11
[1311] I. Daubechies, J. Lu, and H.-T. Wu. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput.
Harmon. Anal., 30(2):243–261, 2011.
damoto99
[1312] L. Daudet, M. Morvidone, and B. Torr´esani. Time-frequency and
time-scale vector fields for deforming time-frequency and time-scale
representations. In Proceedings of SPIE, volume 3813, pages 2–15,
1999.
da85
[1313] J. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical
filters. J. Opt. Soc. Amer. A, 2(7):1160–1169, Jul 1985.
dali00
[1314] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology Volume 2: Functional and
Variational methods With the Collaboration of Michel Artola, Marc
Authier, Philippe B’enilan, Michel Cessenat, Jean-Michel Combes,
H’el‘ene Lanchon, Bertr. Berlin: Springer, 2nd printing edition, 2000.
118
daer39
[1315] H. Davenport and P. Erd¨os. On sums of positive integral kth powers.
Ann. of Math. (2), 40:553–536, 1939.
da76
[1316] J. Davenport. Multipliers on a Banach algebra with a bounded approximate identity. Pacific J. Math., 63:131–135, 1976.
dawa10
[1317] M. Davenport and M. Wakin. Analysis of orthogonal matching pursuit
using the restricted isometry property. IEEE Trans. Inform. Theory,
56:4395–4401, Sep. 2010.
dawa11
[1318] M. Davenport and M. Wakin. Compressive Sensing of Analog Signals
Using Discrete Prolate Spheroidal Sequences. Appl. Comput. Harmon.
Anal., abs/1109.3649, 2011, submitted.
dawa12
[1319] M. Davenport and M. Wakin. Compressive sensing of analog signals
using discrete prolate spheroidal sequences. Appl. Comput. Harmon.
Anal., 33(3):438 – 472, 2012.
dajo84
[1320] G. David and J.-L. Journ´e. A boundedness criterion for generalized
Calder´on-Zygmund operators. Ann. Math. (2), 120:371–397, 1984.
cedahe09
[1321] R. Davidi, G. T. Herman, and Y. Censor. Perturbation-resilient blockiterative projection methods with application to image reconstruction
from projections. Int. Trans. Oper. Res., 16(4):505–524, 2009.
da89
[1322] E. Davies. Heat Kernels and Spectral Theory. Cambridge etc.: Cambridge University Press, 1989.
da95
[1323] E. Davies. Spectral Theory and Differential Operators. Cambridge:
Cambridge Univ. Press, 1995.
dasi84
[1324] E. Davies and B. Simon. Ultracontractivity and the heat kernel
for Schr¨odinger operators and Dirichlet Laplacians. J. Funct. Anal.,
59:335–395, 1984.
dael12
[1325] M. Davies and Y. Eldar. Rank Awareness in Joint Sparse Recovery.
IEEE Trans. Inform. Theory,, 58(2):1135 –1146, 2012.
daka12
[1326] R. Davies and M. Kasper. Adaptive optics for astronomy. arXiv
preprint arXiv:1201.5741, 2012.
119
da86
[1327] A. Davis. Almost periodic extension of band-limited functions and
its application to nonuniform sampling. IEEE Trans. on Circuits and
Systems, CAS-33(10):933–938,, 1986.
damazh94
[1328] G. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency decompositions. Opt. Eng., 33(7):21832191, 1994.
da75
[1329] P. Davis. Interpolation and approximation. Dover Publications Inc.,
New York, 1975.
daru10
[1330] M. Daws and V. Runde. Reiter’s properties (P1 ) and (P2 ) for locally compact quantum groups. J. Math. Anal. Appl., 364(2):352–365,
2010.
de86-1
[1331] B. de. Quasi-crystals and their Fourier transform. Indag. Math.,
48:123–152, 1986.
de02-3
[1332] B. de. The upper error bound of a new near-optimal code. IEEE
Trans. Information Theory, 21(4):441–445, 2002.
dede11
[1333] B. De and S. De. Fourier transforms of hypercomplex signals. In
Symposium on Fractional Signals and Systems (FSS-2011), pages 41–
49, 2011.
dede12
[1334] B. De and S. De. Fractional Fourier transforms of hypercomplex
signals. Signal, Image and Video Processing, 6(3):381–388, 2012.
pide82
[1335] B. de and A. Pinkus. The approximation of a totally positive band
matrix by a strictly banded totally positive one. Linear Algebra Appl.,
42:81–98, 1982.
dexu11
[1336] B. De and Y. Xu. On the Clifford–Fourier transform. International
Mathematics Research Notices, page rnq288, 2011.
de94-1
[1337] J. de. An uncertainty principle for integral operators. J. Funct. Anal.,
122(1):247–253, 1994.
de03-5
[1338] J. de. Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights. Ann. Probab., 31(3):1205–
1227, 2003.
120
de04-7
[1339] J. de. Subspaces with equal closure. Constr. Approx., 20(1):93–157,
2004.
sisvde09
[1340] J. de, C. Svensson, and S. Silvestrov. Algebraic curves for commuting elements in the q-deformed Heisenberg algebra. J. Algebra,
321(4):1239–1255, 2009.
dedero09
[1341] M. De, V. De, and L. Rosasco. Elastic-net regularization in learning
theory. J. Complexity, 25(2):201–230, 2009.
dehomu04
[1342] M. De, S. Munday, and A. Hood. Wavelet analysis: the effect of varying basic wavelet parameters. Solar Physics, 222(2):203–228, 2004.
dela12
[1343] N. De and G. Landi. Generalized TKNN-equations. Advances in
Theoretical and Mathematical Physics, 16(2):505–547, 2012.
dele11
[1344] N. De and M. Lein. Applications of magnetic ψDO techniques to
SAPT. Rev. Math. Phys., 23(3):233–260, 2011.
vade10
[1345] O. de and F. Vallentin. Fourier analysis, linear programming, and
densities of distance avoiding sets in Rn . J. Eur. Math. Soc. (JEMS),
12(6):1417–1428, 2010.
de47
[1346] S. de. Expansion theorems of Paley-Wiener type. Duke Math. J.,
14(4):975–978, 12 1947.
de06-6
[1347] S. De. Multi-dimensional continuous wavelet transforms and generalized Fourier transforms in Clifford analysis. PhD thesis, Ghent
University, 2006.
ghde07
[1348] S. de and R. Ghrist. Coverage in sensor networks via persistent homology. Algebraic & Geometric Topology, 7:339–358, 2007.
movede11
[1349] S. de, D. Morozov, and M. Vejdemo Johansson. Persistent cohomology
and circular coordinates. Discrete Comput. Geom., 45(4):737–759,
2011.
de11
[1350] M. De Gosson. Symplectic Methods in Harmonic Analysis and in
Mathematical Physics, volume 7 of Pseudo-Differential Operators.
Theory and Applications. Birkh¨auser/Springer Basel AG, Basel, 2011.
121
go11
[1351] M. De Gosson. Symplectic Methods in Harmonic Analysis and in
Mathematical Physics. Basel: Birkh¨auser, 2011.
de12
[1352] M. De Gosson. On the partial saturation of the uncertainty relations
of a mixed Gaussian state. Journal of Physics A: Mathematical and
Theoretical, 45(41):415301, 2012.
de13-1
[1353] M. De Gosson. Symplectic and Hamiltonian deformations of Gabor
frames. ArXiv e-prints, may 2013.
de13
[1354] M. De Gosson. Symplectic covariance properties for Shubin and
Born-Jordan pseudo-differential operators. Trans. Amer. Math. Soc.,
365(6):3287–3307, 2013.
lude12
[1355] M. De Gosson and F. Luef. Sub-Gaussian estimates for Wigner
functions and their relation with the notion of symplectic capacity.
preprint, 2011.
lude14
[1356] M. De Gosson and F. Luef. Metaplectic group, symplectic Cayley
transform, and fractional Fourier transforms. J. Math. Anal. Appl.,
416(2):947–968, 2014.
degrro14
[1357] M. V. de Hoop, K. Gr¨ochenig, and J. L. Romero. Exact and approximate expansions with pure Gaussian wave packets. SIAM J. Math.
Anal., 43(3):2229–2253, 2014.
de12-1
[1358] R. de la Madrid. The rigged Hilbert space approach to the Gamow
states. Journal of Mathematical Physics, 53(10):102113, oct 2012.
de85
[1359] J. De Sousa Pinto. A generalized Hankel convolution. SIAM J. Math.
Anal., 16:1335–1346, 1985.
de00-3
[1360] E. Decreux. Closed ideals of a quasianalytic Fr´echet algebra. Arch.
Math. (Basel), 75(6):430–437, 2000.
demose80
[1361] J. Deenen, M. Moshinsky, and T. Seligman. Canonical transformations to action and angle variables and their representations in
quantum mechanics: III. The general problem. Annals of Physics,
127(2):458–477, 1980.
122
dejola97
[1362] B. DeFacio, G. Johnson, and M. Lapidus. Feynman’s operational
calculus and evolution equations. Acta Appl. Math., 47(2):155–211,
1997.
defrorouse11
[1363] A. Defant, L. Frerick, J. Ortega Cerd`a, M. Ounaies, and K. Seip. The
Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2), 174(1):485–497, 2011.
demami02
[1364] A. Defant, M. Mastylo, and C. Michels. Summing inclusion maps
between symmetric sequence spaces. Trans. Amer. Math. Soc.,
354(11):4473–4492, 2002.
de07-7
[1365] P. Deift. Universality for mathematical and physical systems. In International Congress of Mathematicians. Vol. I, pages 125–152. Eur.
Math. Soc., Z¨
urich, 2007.
dedi10
[1366] A. Deitmar and N. Diamantis. A new multiple Dirichlet series induced
by a higher-order form. Acta Arith., 142(4):303–309, 2010.
dele04
[1367] S. Dekel and D. Leviatan. The Bramble–Hilbert Lemma for Convex
Domains. SIAM journal on mathematical analysis, 35(5):1203–1212,
2004.
depe09
[1368] S. Dekel and P. Petrushev. Anisotropic function spaces with applications. In Multiscale, nonlinear and adaptive approximation. Dedicated
to Wolfgang Dahmen on the occasion of his 60th birthday, pages 137–
167. Berlin: Springer, 2009.
depewe11
[1369] S. Dekel, P. Petrushev, and T. Weissblat. Hardy spaces on rn with
pointwise variable anisotropy. J. Fourier Anal. Appl., 17(5):1066–
1107, 2011.
fefemanade08
[1370] C. del, A. Fernandez, I. Ferrando, F. Mayoral, and F. Naranjo. Multiplication operators on spaces of integrable functions with respect to
a vector measure. J. Math. Anal. Appl., 343(1):514–524, 2008.
deha03
[1371] G. Del and M. Haardt. IlmProp: A flexible geometry-based simulation
environment for multiuser MIMO communications, Sep. 2003.
dejo97
[1372] C. Delfs and F. Jondral. Classification of piano sounds using timefrequency signal analysis. In Acoustics, Speech, and Signal Processing,
1997. ICASSP-97, volume 3, pages 2093–2096, 1997.
123
dejo98
[1373] C. Delfs and F. Jondral. Classification of transient time-varying signals using DFT and wavelet packet based methods. In Acoustics,
Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE
International Conference, volume 3, pages 1569–1572, 1998.
demi09
[1374] O. Delgado and P. Miana. Algebra structure for Lp of a vector measure. J. Math. Anal. Appl., 358(2):355–363, 2009.
desc89-1
[1375] F.-J. Delvos and W. Schempp. Boolean Methods in Interpolation and
Approximation. Pitman Research Notes in Mathematics Series, 230.
Harlow: Longman Scientific & Technical and New York: John Wiley
& Sons, Inc. 168 p., 1989.
desc89
[1376] F.-J. Delvos and W. Schempp. Interpolation projectors and closed
ideals. Approximation and function spaces, Proc. 27th Semest., Warsaw/Pol. 1986, Banch Cent. Publ. 22, 89-98 (1989)., 1989.
degomeratatowiwo09
[1377] E. Demaine, F. Gomez Martin, H. Meijer, D. Rappaport, P. Taslakian,
G. Toussaint, T. Winograd, and D. Wood. The distance geometry of
music. Computational Geometry, 42(5):429–454, 2009.
de11-4
[1378] L. DEMANET. Discrete symbol calculus. SIAM Rev., 53(1):71–104,
2011.
dehaXX
[1379] L. Demanet and P. Hand. Stable optimizationless recovery from
phaseless linear measurements. J. Fourier Anal. Appl., to appear.
deyi11
[1380] L. Demanet and L. Ying. Discrete symbol calculus. SIAM Rev.,
53(1):71–104, 2011.
de09-2
[1381] B. Demange. Uncertainty principles associated to non-degenerate
quadratic forms. M´em. Soc. Math. Fr. (N.S.), (119):98 pp. (2010),
2009.
dedeXX
[1382] F. DeMari and E. DeVito. Admissible vectors for mock metaplectic
representations. Appl. Comput. Harmon. Anal.
mano01
[1383] F. DeMari and K. Nowak. Analysis of the affine transformations of
the time-frequency plane. Bull. Austral. Math. Soc., 63(2):195–218,
2001.
124
dede12-3
[1384] F. Demengel and G. Demengel. Fractional Sobolev Spaces. In Functional Spaces for the Theory of Elliptic Partial Differential Equations,
pages 179–228. Springer, 2012.
dede12-2
[1385] F. Demengel and G. Demengel. Sobolev spaces and embedding theorems. In Functional Spaces for the Theory of Elliptic Partial Differential Equations, pages 57–112. Springer, 2012.
dede12-1
[1386] F. Demengel and G. Demengel. Traces of functions on Sobolev spaces.
In Functional Spaces for the Theory of Elliptic Partial Differential
Equations, pages 113–177. Springer, 2012.
de99-2
[1387] G. Demengel. Transformations de Fourier g´en´eralis´ees: S´eries et
transformations de Fourier et de Walsh, leurs extensions, transformations discr`etes et rapides, cours et probl`emes r´esolus. Universit’es.
Math’ematiques. Ellipses, 1999.
bobebedepo96
[1388] G. Demengel, P. B´enichou, R. B´enichou, N. Boy, and J.-P. Pouget.
Distributions et applications. S´eries de Fourier, transformations de
Fourier et de Laplace. Outils pour l’ing´enieur. Paris: Ellipses, 1996.
dede12-4
[1389] G. Demengel and F. Demengel. Functional Spaces for the Theory of
Elliptic Partial Differential Equations. Berlin: Springer, 2012.
dega13
[1390] C. Demeter and S. Z. Gautam. On the finite linear independence of
lattice Gabor systems. Proc. Amer. Math. Soc., 141(5):1735–1747,
2013.
de77-2
[1391] S. Demko. Local approximation properties of spline projections. J.
Approx. Theory, 19:176–185, 1977.
de79
[1392] S. Demko. On bounding ||A−1 ||∞ for banded A. Math. Commun.,
33:1283–1288, 1979.
deva74
[1393] S. Demko and R. Varga. Extended lp -error bounds for spline and
l-spline interpolation. J. Approx. Theory, 12:242–264, 1974.
deduho07
[1394] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is stable.
Numerische Mathematik, 108(1):59–91, 2007.
deka90
[1395] J. Demmel and W. Kahan. Accurate Singular Values of Bidiagonal
Matrices. SIAM J. Sci. Stat. Comput, 11:873–912, 1990.
125
de86
[1396] N. Dencker. The Weyl calculus with locally temperate metric and
weights. Ark. Mat., 24:59–79, 1986.
detawa06
[1397] B. Deng, R. Tao, and Y. Wang. Convolution theorems for the linear
canonical transform and their applications. Science in China Series
F: Information Sciences, 49(5):592–603, 2006.
cudezh10
[1398] C. Deng, J. Zhao, and S. Cui. Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces. Nonlinear
Anal., Theory Methods Appl., Ser. A, Theory Methods, 73(7):2088–
2100, 2010.
dehaya04
[1399] D. Deng, Y. Han, and D. Yang. Inhomogeneous Plancherel-P´olya
inequalities on spaces of homogeneous type and their applications.
Commun. Contemp. Math., 6(2):221–243, 2004.
dedisu13
[1400] Q. Deng, Y. Ding, and L. Sun. Estimate for generalized unimodular
multipliers on modulation spaces. Nonlinear Anal., Theory Methods
Appl., Ser. A, Theory Methods, 85:78–92, 2013.
dediya12
[1401] Q. Deng, Y. Ding, and X. Yao. Characterizations of Hardy spaces
associated to higher order elliptic operators. J. Funct. Anal.,
263(3):604–674, 2012.
de11-3
[1402] L. DENIS. Fast model of space-variant blurring and its application
to deconvolution in astronomy. Image Processing (ICIP), 2011.
de14
[1403] L. DENIS. Fast approximations of shift-variant blur. 2014.
dehupe11
[1404] L. Denis, M. Hu, and S. Peng. Function spaces and capacity related
to a sublinear expectation: application to G-Brownian motion paths.
Potential Analysis, 34(2):139–161, 2011.
desoth11
[1405] L. Denis, E. Thiebaut, and F. Soulez. Fast model of space-variant
blurring and its application to deconvolution in astronomy. In Image Processing (ICIP), 2011 18th IEEE International Conference on,
pages 2817–2820, 2011.
bedemosoth14
[1406] L. Denis, E. Thiebaut, F. Soulez, J.-M. Becker, and R. Mourya. Fast
approximations of shift-variant blur. HAL archives-ouvertes.fr, 2014.
126
deli54
[1407] J. Deny and J.-L. Lions. Les espaces du type de Beppo Levi. In
Annales de l’institut Fourier, volume 5, pages 305–370, 1954.
de11-2
[1408] A. Derighetti. Convolution Operators on Groups. Springer Berlin /
Heidelberg, 2011.
degusa14
[1409] F. Deringoz, V. S. Guliyev, and S. Samko. Boundedness of the maximal and singular operators on generalized Orlicz–Morrey spaces. In
Operator Theory, Operator Algebras and Applications, pages 139–158.
Springer, 2014.
de11-1
[1410] P. Devaraj. Reconstruction from local discrete averages on the plane.
J. Math. Anal. Appl., 373(1):13–19, 2011.
de07-6
[1411] R. DeVore. Optimal computation. Sanz-Sol´e, Marta (ed.) et al.,
Proceedings of the international congress of mathematicians (ICM),
Madrid, Spain, August 22–30, 2006. Volume I: Plenary lectures and
ceremonies. Z¨
urich: European Mathematical Society (EMS). 187-215
(2007)., 2007.
desc79
[1412] R. DeVore and K. Scherer. Interpolation of linear operators on Sobolev
spaces. Ann. Math. (2), 109:583–599, 1979.
dh89
[1413] J. D’Haeyer. Gaussian filtering of images: A regularization approach.
Signal Process., 18(2):169–181, 1989.
chdhki07
[1414] B. Dhungana, S.-Y. Chung, and D. Kim. Characterization of Fourier
hyperfunctions by solutions of the Hermite heat equation. Integral
Transforms Spec. Funct., 18(7):471–480, 2007.
digi04
[1415] B. Di and G. Giancola. Understanding ultra wide band radio fundamentals. Prentice Hall, 2004.
dijala11
[1416] C. Di, G. Jacovitti, and A. Laurenti. On the inter-conversion between
Hermite and Laguerre local image expansions. IEEE Transactions on
Image Processing, 20(5762347):3553–3565, 2011.
disa12
[1417] P. Diaconis and L. Saloff Coste. Convolution powers of complex functions on Z. Submitted on 29 May 2012, page 31, 2012.
127
diluprdeXX
[1418] N. Dias, M. De Gosson, F. Luef, and J. Prata. Quantum mechanics in
phase space: the Schr¨odinger and the Moyal representations. Journal
of Pseudo-Differential Operators and Applications, pages 1–32.
dedilupr12
[1419] N. Dias, M. De Gosson, F. Luef, and J. Prata. Quantum mechanics
in phase space: the Schr¨odinger and the Moyal representations. J.
Pseudo-Differ. Oper. Appl., 3(4):367–398, 2012.
diluprde12
[1420] N. Dias, M. De Gosson, F. Luef, and J. Prata. Quantum mechanics in phase space: The Schroedinger and the Moyal representations.
Journal of Pseudo-Differential Operators and Applications, 2012.
digolupr11
[1421] N. Dias, M. De Gosson, F. Luef, and J. N. Prata. Quantum mechanics in phase space: The Schroedinger and the Moyal representations.
preprint, 2011.
dipr05
[1422] N. Dias and J. N. Prata. Deformation quantization and Wigner functions. Modern Phys. Lett. A, 20(17-18):1371–1385, 2005.
dipr09
[1423] N. Dias and J. N. Prata. The Narcowich-Wigner spectrum of a pure
state. Rep. Math. Phys., 63(1):43–54, 2009.
dipr04
[1424] N. C. Dias and J. N. Prata. Time dependent transformations in deformation quantization. J. Math. Phys., 45(3):887–901, 2004.
disest09
[1425] S. Didas, S. Setzer, and G. Steidl. Combined l2 data and gradient
fitting in conjunction with l1 regularization. Adv. Comput. Math.,
30(1):79–99, 2009.
dikasc12
[1426] L. Diening, P. Kaplicky, and S. Schwarzacher. BMO estimates for the
p-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory
Methods, 75(2):637–650, 2012.
dileru11
[1427] L. Diening, D. Lengeler, and M. Ruzicka. The Stokes and Poisson
problem in variable exponent spaces. Complex Variables and Elliptic
Equations, 56(7-9):789–811, 2011.
dijato95
[1428] J. Diestel, H. Jarchow, and A. Tonge. Absolutely Summing Operators,
volume 43 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.
128
di80-1
[1429] J. Dieudonn’e. Special Functions And Linear Representations Of Lie
Groups. AMS, 1980.
dihe76
[1430] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Trans. Information Theory, IT-22(6):644–654, 1976.
diwe09
[1431] T. Digernes and D. Weisbart. Matrix-valued Schr¨odinger operators
over local fields. p-Adic Numbers Ultrametric Anal. Appl., 1(2):136–
144, 2009.
discst09
[1432] T. Dijkema, C. Schwab, and R. Stevenson. An adaptive wavelet
method for solving high-dimensional elliptic PDEs. Constr. Approx.,
30(3):423–455, 2009.
dist10
[1433] T. Dijkema and R. Stevenson. A sparse Laplacian in tensor product
wavelet coordinates. Numer. Math., 115(3):433–449, 2010.
di88
[1434] S. Dilworth. Interpolation of intersections of Lp spaces. Arch. Math.
(Basel), 50(1):51–55, 1988.
dimo93
[1435] S. Dilworth and S. Montgomery Smith. The distribution of vectorvalued Rademacher series. Ann. Probab., 21(4):2046–2052, 1993.
dimu92
[1436] A. Dimakis and F. M¨
uller Hoissen. Quantum mechanics as noncommutative symplectic geometry. J. Phys. A, 25(21):5625–5648, 1992.
dimu92-1
[1437] A. Dimakis and F. M¨
uller Hoissen. Quantum mechanics on a lattice
and q-deformations. Phys. Lett. B, 295(3-4):242–248, 1992.
dimu98
[1438] A. Dimakis and F. M¨
uller Hoissen. Connes’ distance function on onedimensional lattices. Internat. J. Theoret. Phys., 37(3):907–913, 1998.
dimu99
[1439] A. Dimakis and F. M¨
uller Hoissen. Discrete Riemannian geometry. J.
Math. Phys., 40(3):1518–1548, 1999.
dimu05
[1440] A. Dimakis and F. M¨
uller Hoissen. Algebraic identities associated
with KP and AKNS hierarchies. Czechoslovak J. Phys., 55(11):1385–
1390, 2005.
dimust96
[1441] A. Dimakis, F. M¨
uller Hoissen, and T. Striker. Umbral calculus,
discretization, and quantum mechanics on a lattice. J. Phys. A,
29(21):6861–6876, 1996.
129
di02
[1442] M. Dimassi. Resonances for slowly varying perturbations of a periodic
Schr¨odinger operator. Canad. J. Math., 54(5):998–1037, 2002.
di05-1
[1443] M. Dimassi. Spectral shift function and resonances for slowly varying perturbations of periodic Schr¨odinger operators. J. Funct. Anal.,
225(1):193–228, 2005.
ac96
[1444] D. Dimitrovski and R. Aceska. Un calcul immediat de l’Integrale
Theodorescu. Annuaire, Facult´e des Sciences de l’Universit´e ’Sv. Kiril
et Metodij’ L’Institute des Math´ematiques, 37:13–27, 1996.
acdiil97
[1445] D. Dimitrovski, R. Aceska, and A. Ilievska. Approximately equal
integrals Theodorescu. Annuaire, Facult´e des Sciences de l’Universit´e
’Sv. Kiril et Metodij’ L’Institute des Math´ematiques, 1997.
di74
[1446] N. Dinculeanu. Integration on Locally Compact Spaces. Translation in
English of a Romanian Version. Monographs and Textbooks on Pure
and Applied Mathematics. Leyden: Noordhoff International Publishing. XV, 626 p., 1974.
di82-2
[1447] N. Dinculeanu. On Kolmogorov-Tamarkin and M. Riesz compactness
criteria in function spaces over a locally compact group. J. Math.
Anal. Appl., 89:67–85, 1982.
di82-3
[1448] N. Dinculeanu. Weak compactness criteria in function spaces over
a locally compact group. Measure theory, Proc. Conf., Oberwolfach
1981, Lect. Notes Math. 945, 213-225 (1982)., 1982.
di88-1
[1449] N. Dinculeanu. Vector-valued stochastic processes. I. Vector measures and vector-valued stochastic processes with finite variation. J.
Theoret. Probab., 1(2):149–169, 1988.
di14
[1450] M. DiPasquale. Lattice-supported splines on polytopal complexes.
Advances in Applied Mathematics, (0):–, 2014.
di13
[1451] S. Dirksen. Tail bounds via generic chaining. preprint, 2013.
dito87
[1452] Z. Ditzian and V. Totik. Moduli of Smoothness. Springer Series in
Computational Mathematics, 9. New York etc.: Springer- Verlag. IX,
1987.
130
dije77
[1453] J. Dixmier and F. Jellett. C*-algebras. North-Holland Amsterdam,
1977.
dj95-1
[1454] A. Djemai. Introduction to Dubois-Violette’s noncommutative differential geometry. Internat. J. Theoret. Phys., 34(6):801–887, 1995.
dj95
[1455] A. Djemai. The lattice quantum phase space and the Yang-Baxter
equation. Internat. J. Modern Phys. A, 10(23):3303–3318, 1995.
dj96
[1456] A. Djemai. Quantum mechanics as a matrix symplectic geometry.
Internat. J. Theoret. Phys., 35(3):519–556, 1996.
dj96-1
[1457] A. Djemai. Quantum mechanics, knot theory, and quantum doubles.
Internat. J. Theoret. Phys., 35(10):2029–2056, 1996.
dj04
[1458] A. Djemai. Noncommutative classical mechanics. Internat. J. Theoret.
Phys., 43(2):299–314, 2004.
dj04-1
[1459] A. Djemai. On quantum mechanics on noncommutative quantum
phase space. Commun. Theor. Phys. (Beijing), 41(6):837–844, 2004.
djpist01
[1460] I. Djurovic, S. Stankovic, and I. Pitas. Digital watermarking in the
fractional Fourier transformation domain. Journal of Network and
Computer Applications, 24(2):167 – 173, April 2001.
dl87
[1461] J. Dlugosz. Lp -multipliers for the Laguerre expansions. Colloq. Math.,
54(2):285–293, 1987.
dmkrov77
[1462] V. Dmitriev, S. Krein, and V. I. Ovchinnikov. Fundamentals of the
theory of interpolation of linear operators. In Geometry of linear
spaces and operator theory (Russian), pages 31–74. Jaroslav. Gos.
Univ., Yaroslavl, 1977.
dosi85
[1463] M. Dodson and A. Silva. Fourier analysis and the sampling theorem.
Proc. Roy. Irish Acad. Sect. A, 85(1):81–108, 1985.
dosiso86
[1464] M. M. Dodson, A. M. Silva, and V. Soucek. A note on Whittaker’s cardinal series in harmonic analysis. Proc. Edinb. Math. Soc., 29(03):349–
357, 1986.
dogu00
[1465] M. Dogan and A. G¨
urkanli. On functions with Fourier transforms in
Sω . Bull. Calcutta Math. Soc., 92(2):111–120, 2000.
131
dokupo10
[1466] M. D¨ohler, S. Kunis, and D. Potts. Nonequispaced hyperbolic cross
fast Fourier transform. SIAM J. Numer. Anal., 47(6):4415–4428,
2010.
donasa09
[1467] J. Dolbeault, B. Nazaret, and G. Savare. A new class of transport distances between measures. Calc. Var. Partial Differ. Equ., 34(2):193–
231, 2009.
do75
[1468] Y. Domar. On the analytic transform of bounded linear functionals
on certain Banach algebras. Studia Math., 53:203–224, 1975.
doli75
[1469] Y. Domar and L.-A. Lindahl. Three spectral notions for representations of commutative Banach algebras. Ann. Inst. Fourier (Grenoble),
25(2):xi, 1–32, 1975.
do89-1
[1470] P. Domich. Residual Hermite normal form computations.
Trans. Math. Softw., 15(3):275–286, 1989.
ACM
dokatr87
[1471] P. Domich, R. Kannan, and L. Trotter. Hermite normal form computation using modulo determinant arithmetic. Math. Oper. Res.,
12:50–59, 1987.
domuvowa10
[1472] G. Don, K. Muir, G. Volk, and J. Walker. Music: Broken symmetry,
geometry, and complexity. Notices Amer. Math. Soc., 57(1):30–49,
2010.
dotr71
[1473] T. Donaldson and N. Trudinger. Orlicz-Sobolev spaces and imbedding
theorems. J. Funct. Anal., 8:52–75, 1971.
doma12-1
[1474] M. Donatelli and N. Mastronardi. Fast deconvolution with approximated PSF by RSTLS with antireflective boundary conditions. J.
Comput. Appl. Math., 236(16):3992–4005, 2012.
doxu13
[1475] A. Dong and F. Xue. Image segmentation algorithm based on random
spectral clustering. Math. Pract. Theory, 43(23):169–174, 2013.
dodyho10
[1476] B. Dong, N. Dyn, and K. Hormann. Properties of dual pseudo-splines.
Appl. Comput. Harmon. Anal., 29(1):104–110, 2010.
dojilishxu12
[1477] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu. Wavelet frame based
blind image inpainting. Appl. Comput. Harmon. Anal., 32(2):268–
279, 2012.
132
doru12
[1478] Z. Dong and Z.-J. Ruan. A Hilbert module approach to the Haagerup
property. Integr. Equ. Oper. Theory, 73(3):431–454, 2012.
do95
[1479] D. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform.
Theory, 41(3):613 –627, 1995.
dojokepi95
[1480] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet
shrinkage: asymptopia? J. Roy. Statist. Soc. Ser. B, 57(2):301–369,
1995.
dojokepi96
[1481] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Density estimation by wavelet thresholding. Ann. Statist., 24(2):508–539,
1996.
doyu99
[1482] D. Donoho and T. Yu. Deslauriers-Dubuc: ten years after. Spline
functions and the theory of wavelets (Montreal, PQ, 1996), 18:355–
370, 1999.
dohu04
[1483] D. L. Donoho and X. Huo. BeamLab and reproducible research. Int.
J. Wavelets Multiresolut. Inf. Process., 2(4):391–414, 2004.
dokuXX
[1484] D. L. Donoho and G. Kutyniok. Microlocal analysis of the geometric
separation problem. Comm. Pure Appl. Math., to appear.
domarashst09
[1485] D. L. Donoho, A. Maleki, I. Rahman, M. Shahram, and V. Stodden.
Reproducible research in computational harmonic analysis. Computing in Science & Engineering, 11(1):8–18, 2009.
dota09-1
[1486] D. L. Donoho and J. Tanner. Observed universality of phase transitions in high-dimensional geometry, with implications for modern
data analysis and signal processing. Philos. Trans. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci., 367(1906):4273–4293, 2009.
doga84
[1487] A. Dooley and G. I. Gaudry. An extension of deLeeuw’s theorem
to the n-dimensional rotation group. Ann. Inst. Fourier (Grenoble),
34(2):111–135, 1984.
doga86
[1488] A. Dooley and G. I. Gaudry. On Lp multipliers of Cartan motion
groups. J. Funct. Anal., 67:1–24, 1986.
dowi06
[1489] A. Dooley and N. Wildberger. Orbital convolution theory for semidirect products. J. Lie Theory, 16(4):743–776, 2006.
133
doow11
[1490] A. Doostan and H. Owahdi. A non-adapted sparse approximation of
PDEs with stochastic inputs. J. Comput. Phys., 230:3015–3034, 2011.
do12
[1491] K. D¨opfner. Quality of Gabor Multipliers for Operator Approximation. Master’s thesis, University of Vienna, 2012.
dojo06
[1492] F. Dopico and C. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one. Linear Algebra and
Appl., 419(2-3):772–778, 2006.
doguve82
[1493] G. Dore, D. Guidetti, and A. Venni. Some properties of the sum
and the intersection of normed spaces. Atti Semin. Mat. Fis. Univ.
Modena, 31:325–331, 1982.
do12-1
[1494] M. D¨orfler. Allocating, detecting and mining sound structures: An
overview of technical tools. In L. Iliadis, I. Maglogiannis, H. Papadopoulos, K. Karatzas, and S. Sioutas, editors, Artificial Intelligence Applications and Innovations, volume 382 of IFIP Advances in
Information and Communication Technology, pages 470–479. Springer
Boston, 27-30 September 2012, Halkidiki, Greece, 2012.
do12-3
[1495] M. D¨orfler. Constructing Quilted Gabor Frames. preprint, 2012.
do13
[1496] M. D¨orfler. Local and Global Aspects of Time-Frequency Analysis
With Applications to Sound Analysis. 2013.
doma12
[1497] M. D¨orfler and E. Matusiak. Nonstationary Gabor Frames - Existence and Construction. Int. J. Wavelets Multiresolut. Inf. Process.,
to appear, http://arxiv.org/abs/1112.5262, 2012.
doma13-3
[1498] M. D¨orfler and E. Matusiak. Identifying novelty and sound objects in
texture sounds by sparse adaptation of Gabor coefficients. 10th International Symposium on Computer Music Multidisciplinary Research
(CMMR), Marseille, Oct. 2013.
doma13-1
[1499] M. D¨orfler and E. Matusiak. Nonstationary Gabor frames - approximately dual frames and reconstruction errors. Adv. Comput. Math.,
accepted, arXiv:1301.1802, 2013.
doma13
[1500] M. D¨orfler and E. Matusiak. Tracing Sound Objects in Audio Textures. 2013.
134
doma14
[1501] M. D¨orfler and E. Matusiak. Sparse Gabor multiplier estimation for
identification of sound objects in texture sound. preprint, Submitted,
2014.
doroXX
[1502] M. D¨orfler and J. L. Romero. Frames of eigenfunctions and localization of signal components.
doro13
[1503] M. D¨orfler and J. L. Romero. Frames of eigenfunctions and localization of signal components. In Proceedings of the 10th International
Conference on Sampling Theory and Applications (SampTA2013),
July 2013.
doro14
[1504] M. D¨orfler and J. L. Romero. Frames adapted to a phase-space cover.
Constr. Approx., 39(3):445–484, 2014.
doto11
[1505] M. D¨orfler and B. Torr´esani. Representation of operators by sampling
in the time-frequency domain. Sampl. Theory Signal Image Process.,
10(1-2):171–190, 2011.
dove14
[1506] M. D¨orfler and G. Velasco. Adaptive Gabor frames by projection
onto time-frequency subspaces. In Proc. ICASSP14, volume accepted,
2014.
do13-1
[1507] M. Dorina. Groupoid metrization theory. With applications to analysis on quasi-metric spaces and functional analysis. New York, NY:
Birkh´auser/Springer, 2013.
do68
[1508] R. Doss. On the transform of a singular or an absolutely continuous
measure. Proc. Amer. Math. Soc., 19:361–363, 1968.
dozh08
[1509] M. Dostanic and K. Zhu. Integral operators induced by the Fock
kernel. Integr. Equ. Oper. Theory, 60(2):217–236, 2008.
dora56
[1510] J. Douglas and H. Rachford. On the numerical solution of heat conduction problems in two or three space variables. Trans. Amer. Math.
Soc., 82:421–439, 1956.
dopuwa12
[1511] R. Douglas, M. Putinar, and K. Wang. Reducing subspaces for analytic multipliers of the Bergman space. J. Funct. Anal., 263(6):1744
– 1765, 2012.
135
dode07
[1512] H. Douma and M. V. De Hoop. Leading-order seismic imaging using
curvelets. Geophys. J. Internat., 72(6):S231–S248, 2007.
dora03
[1513] P. N. Dowling and N. Randrianantoanina. Riemann-Lebesgue properties of Banach spaces associated with subsets of countable discrete
abelian groups. Glasgow Mathematical Journal, 45(01):159–166, 2003.
drme96
[1514] J. Dr¨ager and N. Mermin. Superspace groups without the embedding: the link between superspace and Fourier-space crystallography.
Physical review letters, 76(9):1489–1492, 1996.
dr98
[1515] B. Dragovich. On generalized functions in adelic quantum mechanics.
Integral Transform. Spec. Funct., 6(1-4):197–203, 1998.
drkhra07
[1516] B. Dragovich, Y. Radyno, and A. Khrennikov. Distributions on adeles.
Journal of Mathematical Sciences, 142:2105–2112, 2007.
drha01
[1517] A. Dragt and T. Hakiouglu. The Moyal-Lie theory of phase space
quantum mechanics. J. Phys. A, Math. Gen., 34(34):6603–6615, 2001.
dr06-1
[1518] A. Dranishnikov. Groups with a polynomial dimension growth. Geometriae Dedicata, 119(1):1–15, 2006.
dr12
[1519] D. Drihem. Atomic decomposition of Besov spaces with variable
smoothness and integrability. J. Math. Anal. Appl., 389(1):15–31,
2012.
drhero97
[1520] J. Driscoll, J. Healy, and D. Rockmore. Fast discrete polynomial
transforms with applications to data analysis for distance transitive
graphs. SIAM J. Comput., 26(4):1066–1099, 1997.
dr09-1
[1521] C. Dructu. Relatively hyperbolic groups: geometry and quasiisometric invariance. Comment. Math. Helv.., 84(3):503–546, 2009.
drsa05
[1522] C. Dructu and M. Sapir. Relatively hyperbolic groups with rapid
decay property. Internat. Math. Res. Notices, (19):1181–1194, 2005.
dr85
[1523] D. Dryanov. Generalization of the Whittaker-Kotelnikov-Shannon
sampling theorem. C. R. Acad. Bulg. Sci., 38:1319–1322, 1985.
dugu97
[1524] L. Duan and G. Guo. Noise of quantum solitons and their quasicoherent states. Sci. China Ser. A, 40(1):83–92, 1997.
136
bacedu08
[1525] M. Duarte, V. Cevher, and R. G. Baraniuk. Model-based compressive
sensing for signal ensembles. Sep. 2008.
duhesm00
[1526] D. Dubin, M. Hennings, and T. Smith. Mathematical aspects of Weyl
quantization and phase. World Scientific, 2000.
andude10
[1527] A. A. Duchkov, F. Andersson, and M. de Hoop. Discrete almostsymmetric wave packets and multiscale geometrical representation of
(seismic) waves. Geoscience and Remote Sensing, IEEE Transactions
on, 48(9):3408–3423, 2010.
du99
[1528] R. Dudley. Uniform Central Limit Theorems, volume 63 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
duve86
[1529] P. Duhamel and M. Vetterli. Cyclic convolution of real sequences:
Hartley versus Fourier and new schemes. In Acoustics, Speech, and
Signal Processing, IEEE International Conference on ICASSP ’86,
volume 11, pages 229 – 232, apr 1986.
duve87
[1530] P. Duhamel and M. Vetterli. Improved Fourier and Hartley transform
algorithms: Application to cyclic convolution of real data. Acoustics,
Speech and Signal Processing, IEEE Transactions on, 35(6):818 – 824,
jun 1987.
duko10
[1531] J. J. Duistermaat and J. Kolk. Distributions Theory and Applications
Transl from the Dutch By J P Van Braam Houckgeest. Cornerstones.
Basel: Birkh¨auser. xvi, 445 p., 2010.
du08
[1532] R. Duits. Image processing. I. Scores. (Onderzoek: partituren in de
beeldanalyse I. Schaalpartituren.). 2008.
dufr10
[1533] R. Duits and E. Franken. Left-invariant parabolic evolutions on se(2)
and contour enhancement via invertible orientation scores. II: Nonlinear left-invariant diffusions on invertible orientation scores. Q. Appl.
Math., 68(2):293–331, 2010.
dufujabrflas11
[1534] R. Duits, H. F¨
uhr, B. Janssen, M. Bruurmijn, L. Florack, and H. van
Assen. Evolution equations on Gabor transforms and their applications. Arxiv preprint arXiv:1110.6087, 2011.
137
du85-1
[1535] D. Dunavant. High degree efficient symmetrical Gaussian quadrature
rules for the triangle. Int. J. Numer. Methods Eng., 21:1129–1148,
1985.
duhoso10
[1536] D. Duncan, T. Hoffman, and J. Solazzo. Equiangular tight frames and
fourth root Seidel matrices. Linear Algebra Appl., 432(11):2816–2823,
2010.
dupe40
[1537] N. Dunford and B. Petter. Linear operations on summable functions.
Trans. Amer. Math. Soc., 47:323–392, 1940.
du70
[1538] C. Dunkl. Modules over commutative Banach algebras. Monatshefte
f¨
ur Mathematik, 74(1):6–14, 1970.
du92
[1539] C. Dunkl. Hankel transforms associated to finite reflection groups.
Contemp. Math, 138:123–138, 1992.
dufr86
[1540] J. Duoandikoetxea and J. Francia. Maximal and singular integral
operators via Fourier transform estimates. Invent. Math., 84:541–561,
1986.
du96-2
[1541] X. Duong. From the L1 norms of the complex heat kernels to a
H¨ormander multiplier theorem for sub-Laplacians on nilpotent Lie
groups. Pacific J. Math., 173(2):413–424, 1996.
dusiya11
[1542] X. Duong, A. Sikora, and L. Yan. Weighted norm inequalities,
Gaussian bounds and sharp spectral multipliers. J. Funct. Anal.,
260(4):1106–1131, 2011.
dusc78
[1543] T. Dupont and R. Scott. Constructive polynomial approximation
in Sobolev spaces. In Recent advances in numerical analysis (Proc.
Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978),
volume 41 of Publ. Math. Res. Center Univ. Wisconsin, pages 31–44.
Academic Press, New York-London, 1978.
dusc80
[1544] T. Dupont and R. Scott. Polynomial approximation of functions in
Sobolev spaces. Math. Comp., 34(150):441–463, 1980.
dugl02
[1545] M. Dupr’e and J. Glazebrook. Holomorphic framings for projections
in a Banach algebra. Georgian Mathematical Journal, 9(3):481–494,
2002.
138
duglpr11
[1546] M. Dupre, J. Glazebrook, and E. Previato. Differential algebras with
Banach-algebra coefficients II: The operator cross-ratio tau-function
and the Schwarzian derivative. Complex Analysis and Operator Theory, pages 1–22, 2011.
duglpr12
[1547] M. Dupre, J. Glazebrook, and E. Previato. Differential algebras with
Banach-algebra coefficients I: From C*-algebras to the K-theory of
the spectral curve. Complex Analysis and Operator Theory, pages
1–25, 2012.
ardu02
[1548] L. Durak and O. Arikan. Generalized time-bandwidth product optimal short-time Fourier transformation. In Acoustics, Speech, and Signal Processing, 2002. Proceedings.(ICASSP’02). IEEE International
Conference on, volume 2, pages 1465–1468, 2002.
arduoz08
¨
[1549] L. Durak, A. Ozdemir,
and O. Arikan. Efficient computation of joint
fractional Fourier domain signal representation. J. Opt. Soc. Amer.
A, 25(3):765–772, 2008.
du12
[1550] P. Duren. Invitation to Classical analysis. Pure and Applied Undergraduate Texts 17. Providence, RI: American Mathematical Society
(AMS). xiii, 2012.
duhapi09
[1551] D. Dutkay, D. Han, and G. Picioroaga. Parseval frames for ICC
groups. J. Funct. Anal., 256(9):3071–3090, 2009.
chdu04
[1552] L. Duval and C. Chaux. Lapped transforms and hidden Markov models for seismic data filtering. Int. J. Wavelets Multiresolut. Inf. Process., 2(4):455–476, 2004.
dusa02
[1553] C. Duyar and B. Sagir. Multipliers and relative completions of vectorvalued Lp (G, A) spaces. N. Z. J. Math., 31(1):33–38, 2002.
du10
[1554] J. Duzelovic. Weyl Darstellung der metaplektischen Operatoren und
die fraktionale Fourier Transformation der Gaussfunktion. Master’s
thesis, 2010.
dvel09
[1555] T. Dvorkind and Y. C. Eldar. Robust and consistent sampling. IEEE
Signal Processing Letters, 16(9):739 –742, sept. 2009.
139
dw82
[1556] B. Dwork. Lectures on p-adic differential equations. Grundlehren der
Mathematischen Wissenschaften, 253. New York Heidelberg - Berlin:
Springer-Verlag. VIII and $ 47.20, 1982.
dykanu14
[1557] M. Dyachenko, E. Nursultanov, and A. Kankenova. On summability
of Fourier coefficients of functions from Lebesgue space. J. Math.
Anal. Appl., 419(2):959–971, 2014.
dy92
[1558] K. Dyakonov. Interpolating functions of minimal norm, star-invariant
subspaces, and kernels of Toeplitz operators. Proc. Amer. Math. Soc.,
116(4):1007–1013, 1992.
dy00-1
[1559] K. Dyakonov. Kernels of Toeplitz operators via Bourgain’s factorization theorem. J. Funct. Anal., 170(1):93–106, art. no. jfan.1999.3499,
2000.
dy09-1
[1560] K. Dyakonov. Kolmogorov averages and approximate identities. Constr. Approx., 30(1):17–31, 2009.
dyho08
[1561] J. Dydak and C. Hoffland. An alternative definition of coarse structures. Topology and its Applications, 155(9):1013–1021, 2008.
dyfiwewo04
[1562] K. Dykema, T. Figiel, G. Weiss, and M. Wodzicki. Commutator
structure of operator ideals. Adv. Math., 185(1):1–79, 2004.
dy75
[1563] A. Dynin. Pseudodifferential operators on the Heisenberg group. Dokl.
Akad. Nauk SSSR, 225(6):1245–1248, 1975.
dy76
[1564] A. Dynin. An algebra of pseudodifferential operators on the Heisenberg groups. Symbolic calculus. Dokl. Akad. Nauk SSSR, 227(4):792–
795, 1976.
dy78
[1565] A. Dynin. Pseudodifferential operators on Heisenberg groups. In Pseudodifferential operator with applications (Bressanone, 1977), pages 5–
18. Liguori, Naples, 1978.
dy11
[1566] A. Dynin. Pseudo-differential operators on Heisenberg groups. In
Pseudodifferential Operators with Applications, pages 5–18. Springer,
2011.
dy09-2
[1567] F. Dyson. Birds and frogs. Notices Amer. Math. Soc., 56(2):212–223,
2009.
140
dz74
[1568] M. Dzrbasjan. Biorthogonal systems of rational functions, and best
approximation of the Cauchy kernel on the real axis. Mat. Sb. (N.S.),
95(137):418–444, 1974.
baeaha08
[1569] J. Eaton, D. Bateman, and S. Hauberg. GNU Octave Manual, Version
3. Network Theory Limited, 3 for Octave Version 3.0.2 edition, 2008.
brebsc88
[1570] E. Eberlein, K. H. Branderburg, and H. Schott. Signalprozessor
codiert Musik in CD-Qualit¨at. Chip Plus, 11:4–14, November 1988.
ebwi11
[1571] S. Ebert and J. Wirth. Diffusive wavelets on groups and homogeneous
spaces. Proc. Roy. Soc. Edinburgh Sect. A, 141(3):497–520, 2011.
ebli05
[1572] C. Ebmeyer and W. Liu. Quasi-norm interpolation error estimates
for the piecewise linear finite element approximation of p-Laplacian
problems. Numerische Mathematik, 100(2):233–258, 2005.
eb00
[1573] F. B. Ebobisse. Fine properties of the functions with bounded deformation and their applications to variational problems. (Abstract of
thesis). Boll. Unione Mat. Ital., Sez. A, Mat. Soc. Cult. (8), pages
77–80, 2000.
ecluphwa10
[1574] S. Echterhoff, W. L¨
uck, N. Phillips, and S. Walters. The structure of
crossed products of irrational rotation algebras by finite subgroups of
SL2 (Z). J. Reine Angew. Math., 639:173–221, 2010.
ecgakn11
[1575] C. Eck, H. Garcke, and P. Knabner. Mathematical Modelling (Mathematische Modellierung) 2nd Revised ed. Springer-Lehrbuch. Berlin:
Springer. xiv, 513 p., 2011.
ec11
[1576] M. Eckstein. On projections in the noncommutative 2-torus algebra.
arXiv preprint arXiv:1103.6054, 2011.
ed12
[1577] J. Edelman. Julia: A Fast Dynamic Language for Technical Computing. CoRR, abs/1209.5145, 2012.
edha10
[1578] H. Edelsbrunner and J. Harer. Computational Topology. American
Mathematical Society, Providence, RI, 2010.
141
edke11
[1579] H. Edelsbrunner and M. Kerber. Covering and packing with spheres
by diagonal distortion in Rn . In Rainbow of computer science, volume 6570 of Lecture Notes in Comput. Sci., pages 20–35. Springer,
Heidelberg, 2011.
edszuy06
[1580] A. Eden, M. Uyttendaele, and R. Szeliski. Seamless image stitching
of scenes with large motions and exposure differences. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2498–2505, 2006.
edguop95
[1581] D. Edmunds, P. Gurka, and B. Opic. Double exponential integrability,
Bessel potentials and embedding theorems. Studia Math., 115(2):151–
181, 1995.
edguop97
[1582] D. Edmunds, P. Gurka, and B. Opic. On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal., 146(1):116–150, art. no.
fu963037, 1997.
edguop05
[1583] D. Edmunds, P. Gurka, and B. Opic. Compact and continuous embeddings of logarithmic Bessel potential spaces. Studia Math., 168(3):229–
250, 2005.
edkepi00
[1584] D. Edmunds, R. Kerman, and L. Pick. Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal.,
170(2):307–355, art. no. jfan.1999.3508, 2000.
edne02
[1585] D. Edmunds and A. Nekvinda. Averaging operators on lpn and Lp(x) .
Math. Inequal. Appl., 5(2):235–246, 2002.
edev13
[1586] D. E. Edmunds and W. D. Evans. Representations of Linear Operators
between Banach Spaces, volume 238 of Operator Theory: Advances
and Applications. Basel: Birkh¨auser/Springer, 2013.
ed06
[1587] J. Edward. Ingham-type inequalities for complex frequencies and applications to control theory. J. Math. Anal. Appl., 324(2):941–954,
2006.
ef09
[1588] E. G. Effros. A matrix convexity approach to some celebrated quantum inequalities. Proc. Natl. Acad. Sci. USA, 106(4):1006–1008, 2009.
142
ef94
[1589] U. Efron. Spatial Light Modulator Technology: Materials, Devices,
and Applications, volume 47. CRC Press, 1994.
eg71
[1590] Y. V. Egorov. Canonical transformations and pseudodifferential operators. Trans. Moscow Math. Soc, 24:1–28, 1971.
eh07
[1591] M. Ehler. The construction of Nonseparable Wavelet Bi-Frames and
Associated Approximation Schemes. PhD thesis, 2007.
eh10
[1592] M. Ehler. The multiresolution structure of pairs of dual wavelet frames
for a pair of Sobolev spaces. Jaen J. Approx., 2(2):193 – 214, December 2010.
ehfimh12
[1593] M. Ehler, F. Filbir, and H. N. Mhaskar. Locally learning biomedical data using diffusion frames. Journal of Computational Biology,
19(11):1251–1264, November 2012.
ehfosi14
[1594] M. Ehler, M. Fornasier, and J. Sigl. Quasi-linear compressed sensing.
Multiscale Model. Simul., 12(2):725–754, 2014.
eh04
[1595] M. Ehlers. Spectral characteristics preserving image fusion based on
Fourier domain filtering. In Remote Sensing, pages 1–13, 2004.
eivo11
[1596] A. Eichler and M. Vogel. Leitfaden Stochastik F¨
ur Studierende und
Aus¨
ubende des Lehramts. Vieweg+Teubner, 2011.
eima12
[1597] K. Eikrem and E. Malinnikova. Radial growth of harmonic functions
in the unit ball. Math. Scand., 110(2):273–296, 2012.
eirash86
[1598] P. Einziger, S. Raz, and M. Shapira. Gabor representation and aperture theory. JOSA A, 3(4):508–522, 1986.
ei12
[1599] D. Eiwen. Compressive Channel Estimation - Compressed Sensing
Methods for Estimating Doubly Selective Channels in Multicarrier
Systems. PhD thesis, University of Vienna, Vienna, 2012.
elfrgaha10
[1600] B. El, R. Fresneda, J.-P. Gazeau, and Y. Hassouni. Coherent state
quantization of paragrassmann algebras. J. Phys. A, 43(38):385202,
15, 2010.
143
elfrgaha12
[1601] B. El, R. Fresneda, J.-P. Gazeau, and Y. Hassouni. Corrigendum:
Coherent state quantization of paragrassmann algebras [MR2718322].
J. Phys. A, 45(7):079501, 2, 2012.
elelna14
[1602] O. El Fallah, I. El, and H. Naqos. Composition operators with univalent symbol in Schatten classes. J. Funct. Anal., 266(3):1547–1564,
2014.
elkemara12
[1603] O. El Fallah, K. Kellay, J. Mashreghi, and T. Ransford. A selfcontained proof of the strong-type capacitary inequality for the Dirichlet space. In Complex analysis and potential theory, volume 55 of CRM
Proc. Lecture Notes, pages 1–20. Amer. Math. Soc., Providence, 2012.
elkemara14
[1604] O. El Fallah, K. Kellay, J. Mashreghi, and T. Ransford. A Primer on
the Dirichlet Space, volume 203 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2014.
elkese12
[1605] O. El Fallah, K. Kellay, and K. Seip. Cyclicity of singular inner
functions from the corona theorem. J. Inst. Math. Jussieu, 11(4):815–
824, 2012.
ahel06
[1606] M. Elad and M. Aharon. Image denoising via sparse and redundant
representations over learned dictionaries. IEEE Trans. Image Process., 15(12):3736 –3745, 2006.
elst98
[1607] B. Elbel and G. Steidl. Fast Fourier transforms for nonequispaced
data. Chui, Charles K. (ed.) et al., Approximation theory IX. Volume
2. Computational aspects. Proceedings of the 9th international conference, Nashville, TN, USA, January 3–6, 1998. Nashville, TN: Vanderbilt University Press. Innovations in Applied Mathematic, 1998.
boelku10
[1608] Y. Eldar, P. Kuppinger, and H. B¨olcskei. Compressed sensing of
Block-sparse signals: Uncertainty relations and efficient recovery.
IEEE Trans. Signal Process., 58:3042–3054, Jun. 2010.
elku12
[1609] Y. Eldar and G. Kutyniok, editors. Compressed Sensing - Theory and
Applications. Cambridge Univ. Press, 2012.
elme14
[1610] Y. Eldar and S. Mendelson. Phase retrieval: Stability and recovery
guarantees. Appl. Comput. Harmon. Anal., 36(3):473 – 494, 2014.
144
elmeXX
[1611] Y. Eldar and S. Mendelson. Phase retrieval: Stability and recovery
guarantees. Appl. Comput. Harmon. Anal., to appear.
elne11
[1612] Y. Eldar and D. Needell. Acceleration of randomized Kaczmarz
method via the Johnson-Lindenstrauss lemma. Numer. Algorithms,
58(2):163–177, 2011.
el03
[1613] Y. C. Eldar. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl.,
9(1):77–96, January 2003.
elmi09-1
[1614] Y. C. Eldar and T. Michaeli. Beyond bandlimited sampling. IEEE
Signal Processing Magazine, 26(3):48 –68, may 2009.
elhalu11
[1615] M. Eleuteri, P. Harjulehto, and T. Lukkari. Global regularity and
stability of solutions to elliptic equations with nonstandard growth.
Complex Variables and Elliptic Equations, 56(7-9):599–622, 2011.
daduel03
[1616] A. Elgammal, R. Duraiswami, and L. Davis. Efficient Kernel density
estimation using the fast Gauss transform with applications to color
modeling and tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25:1499–1504, 2003.
elrato01
[1617] A. Elias Juarez, N. Razo Razo, and M. Torres Cisneros. Estimation of
interferogram aberration coefficients using wavelet bases and Zernike
polynomials. In A. A. Elias Juarez, N. Razo Razo, M. Torres Cisneros,
A. F. Laine, M. A. Unser, and A. Aldroubi, editors, Proc. SPIE,
Wavelets: Applications in Signal and Image Processing IX, volume
4478 of Feature Extraction, pages 373–382, San Diego, CA, USA,
2001. SPIE.
eljats12
[1618] M. Eliashvili, G. Japaridze, and G. Tsitsishvili. The quantum group,
Harper equation and structure of Bloch eigenstates on a honeycomb
lattice. 2012.
brel08
[1619] D. Ellinas and A. Bracken. Phase-space-region operators and the
Wigner function: Geometric constructions and tomography. Physical
Review A, 78(5):52106(9), 2008.
145
elts06
[1620] D. Ellinas and I. Tsohantjis. Region operators of wigner function: Transformations, realizations and bounds. Rep. Math. Phys.,
57(1):69–87, 2006.
el84
[1621] G. Elliott. On the k-theory of the c∗ -algebra generated by a projective
representation of a torsion-free discrete abelian group. In Operator
algebras and group representations, Vol. I (Neptun, 1980), volume 17
of Monogr. Stud. Math., pages 157–184. Pitman, Boston, MA, 1984.
elli07
[1622] G. Elliott and H. Li. Morita equivalence of smooth noncommutative
tori. Acta Math., 199(1):1–27, 2007.
elli08
[1623] G. Elliott and H. Li. Strong Morita equivalence of higher-dimensional
noncommutative tori. II. Math. Ann., 341(4):825–844, 2008.
elhu12
[1624] A. Elmabrok and O. Hutnik. Induced representations of the affine
group and intertwining operators: I. Analytical approach. J. Phys.
A, 45(24):244017, 15, 2012.
em86
[1625] G. Emch. New classical properties of quantum coherent states. In
Operator algebras and mathematical physics (Iowa City, Iowa, 1985),
volume 27 of Contemp. Math., pages 2731–2737. Amer. Math. Soc.,
Providence, RI, 1986.
em87
[1626] G. Emch. KMS structures in geometric quantization. In Operator
algebras and mathematical physics (Iowa City, Iowa, 1985), volume 62
of Contemp. Math., pages 175–186. Amer. Math. Soc., Providence, RI,
1987.
emgr67
[1627] W. Emerson and F. Greenleaf. Covering properties and Følner conditions for locally compact groups. Math. Z., 102:370–384, 1967.
en10-1
[1628] J. Ender. On compressive sensing applied to radar. Signal Process.,
90(5):1402 – 1414, 2010.
enna06
[1629] K.-J. Engel and R. Nagel. A Short Course on Operator Semigroups.
Springer-Verlag, 2006.
en15
[1630] N. Engelputzeder. Linear Time Variant Systems and Gabor Riesz
Bases. PhD thesis, University of Vienna, 2015.
146
en07-1
[1631] M. Englis. Toeplitz operators and group representations. J. Fourier
Anal. Appl., 13(3):243–265, 2007.
enup10
[1632] M. Englis and H. Upmeier. Toeplitz quantization and asymptotic
expansions: Peter-Weyl decomposition. Integr. Equ. Oper. Theory,
68(3):427–449, 2010.
enporo10
[1633] M. Entov, L. Polterovich, and D. Rosen. Poisson brackets, quasi-states
and symplectic integrators. Discrete Contin. Dyn. Syst., 28(4):1455–
1468, 2010.
babeenma11
[1634] E. Enzinger, P. Balazs, D. Marelli, and T. Becker. A logarithmic
based pole-zero vocal tract model estimation for speaker verification.
In Proceedings of the International Conference on Acoustics, Speech
and Signal Processing 2011, Prague, May 2011.
er38
[1635] A. Erdelyi. On some expansions in Laguerre polynomials. J. London
Math. Soc., 13:154–156, 1938.
er61
[1636] A. Erdelyi. Asymptotic forms for Laguerre polynomials. J. Indian
Math. Soc., n. Ser., 24:235–250, 1961.
erno04
[1637] A. Eremenko and D. Novikov. Oscillation of functions with a spectral
gap. Proc. Natl. Acad. Sci. USA, 101(16):5872–5873, 2004.
ergr05-1
[1638] S. Ericsson and N. Grip. Efficient wavelet prefilters with optimal
time-shifts. IEEE Trans. Signal Process., 53(7):2451–2461, 2005.
ergr11
[1639] S. Ericsson and N. Grip. Using a natural deconvolution for analysis of
perturbed integer sampling in shift-invariant spaces. J. Math. Anal.
Appl., 373(1):271–286, 2011.
er11
[1640] J. Erven.
Taschenbuch der Ingenieurmathematik. Grundlagen,
Formelsammlung, Tabellen. M¨
unchen: Oldenbourg Verlag, 2011.
ererho10
[1641] J. Erven, M. Erven, and J. H¨orwick. Vorkurs Mathematik. Ein kompakter Leitfaden. M¨
unchen: Oldenbourg Verlag, 4., korrigierte und
erweiterte Auflage edition, 2010.
ersc11
[1642] J. Erven and D. Schw¨agerl. Mathematik f¨
ur Ingenieure. M¨
unchen:
Oldenbourg Verlag, 4., korrigierte Auflage edition, 2011.
147
erXX
[1643] A. Erwin. Common fundamental domains for lattices of the same
volume. PhD thesis.
duer11
[1644] I. Eryilmaz and C. Duyar. Multipliers on some Lorentz spaces. 19(1),
2011.
esra11
[1645] R. Escalante and M. Raydan. Alternating projection methods, volume 8 of Fundamentals of Algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2011.
eswe14
[1646] P. Escande and P. Weiss. Numerical computation of spatially varying
blur operators: a review of existing approaches with a new one. arXiv,
2014.
esmaweot12
[1647] P. Escande, P. Weiss, and F. Malgouyres. Spatially varying blur recovery. diagonal approximations in the wavelet domain, 2012.
esmawe13
[1648] P. Escande, P. Weiss, and F. Malgouyres. Image restoration using sparse approximations of spatially varying blur operators in the
wavelet domain. In Journal of Physics: Conference Series, volume
464, page 012004, 2013.
esmawe13-1
[1649] P. Escande, P. Weiss, and F. Malgouyres. Spatially Varying Blur Recovery. Diagonal Approximations in the Wavelet Domain. Proceedings
of ICPRAM, 2013,.
eskepove10
[1650] L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega. The sharp
Hardy uncertainty principle for Schr¨odinger evolutions. Duke Math.
J., 155(1):163–187, 2010.
es12
[1651] G. Eshel. Spatiotemporal data analysis. Princeton University Press,
2012.
esgoonozuz07
[1652] G. Esmer, V. Uzunov, L. Onural, H. Ozaktas, and A. Gotchev.
Diffraction field computation from arbitrarily distributed data points
in space. Signal Processing: Image Communication, 22(2):178 – 187,
2007.
esjapexi00
[1653] M. Essen, S. Janson, L. Peng, and J. Xiao. q spaces of several real
variables. Indiana Univ. Math. J., 49(2):575–615, 2000.
148
es09
[1654] E. Esser. Applications of Lagrangian-based alternating direction
methods and connections to split Bregman. preprint, 2009.
esfoko11
[1655] M. Essoh, I. Fofana, and K. Koua. In´egalit´es de type faible pour
l’op´erateur maximal fractionnaire dans les espaces de Morrey par rapport `a la capacit´e de Hausdorff. Ital. J. Pure Appl. Math., (28):81–92,
2011.
esme12
[1656] S. Esterhazy and J. Melenk. On stability of discretizations of the
Helmholtz equation. Graham, Ivan G. (ed.) et al., Numerical analysis
of multiscale problems. Selected papers based on the presentations
at the 91st London Mathematical Society symposium, Durham, UK,
July 5–15, 2010. Berlin: Springer. Lecture Notes in Computational
Science a, 2012.
es12-1
[1657] D. Estevez. Explicit traces of functions on Sobolev spaces and quasioptimal linear interpolators. arXiv preprint arXiv:1211.1498, 2012.
euXX
[1658] K. Eugenijus.
Biomedical Signals and Sensors I.
Biological
and
Medical
Physics,
Biomedical
Engineering.
http://link.springer.com/book/10.1007/978-3-642-24843-6/page/1,
2012.
ev01
[1659] G. Evangelista. Flexible wavelets for music signal processing. Journal
of New Music Research, 30(1):13–22, 2001.
doevma12
[1660] G. Evangelista, M. D¨orfler, and E. Matusiak. Phase vocoders with
arbitrary frequency band selection. Proceedings of the 9th Sound and
Music Computing Conference, July 11-14th 2012 Kopenhagen, 2012.
doevma13
[1661] G. Evangelista, M. D¨orfler, and E. Matusiak. Arbitrary phase
vocoders by means of warping. Musica/Tecnologia, 7, 2013.
blevya00
[1662] G. Evans, J. Blackledge, and P. Yardley. Numerical Methods for Partial Differential Equations. Springer Verlag, 2000.
ev96
[1663] E. Evgenij. A unifying approach to some old and new theorems
on distribution and clustering. Linear Algebra and its Applications,
232(1):1–43, 1996.
149
exlo91
[1664] R. Exel and T. Loring. Invariants of almost commuting unitaries. J.
Funct. Anal., 95(2):364–376, 1991.
ey75
[1665] P. Eymard. Initiation ‘a la th’eorie des groupes moyennables. In
Analyse harmonique sur les groupes de Lie, pages 89–107. Springer,
1975.
fa14-1
[1666] B. Fabio. Functional analysis and applied optimization in Banach
spaces. Applications to non-convex variational models. With contributions by Anderson Ferreira and Alexandre Molter. Springer, 2014.
fa10
[1667] D. Faifman. A characterization of Fourier transform by Poisson summation formula. C. R., Math., Acad. Sci. Paris, 348(7-8):407–410,
2010.
elfami10
[1668] T. Faktor, T. Michaeli, and Y. C. Eldar. Nonlinear and nonideal
sampling revisited. IEEE Signal Processing Letters, 17(2):205 –208,
feb. 2010.
abfawa03
[1669] P. E. Falloon, P. Abbott, and J. Wang. Theory and computation of
spheroidal wavefunctions. J. Phys. A, 36(20):5477–5495, 2003.
faho55
[1670] K. Fan and A. Hoffman. Some metric inequalities in the space of
matrices. Proc. Amer. Math. Soc., 6:111–116, 1955.
fa11-1
[1671] X. Fan. Anisotropic variable exponent Sobolev spaces and -Laplacian
equations. Complex Variables and Elliptic Equations, 56(7-9):623–
642, 2011.
anfashXX
[1672] Z. Fan, H. Andreas, and Z. Shen. Duality for Frames.
fajish14
[1673] Z. Fan, H. Ji, and Z. Shen. Dual Gramian analysis: duality principle
and unitary extension principle. Math. Commun., 2014.
fashsu14
[1674] Q. Fang, C. Shin, and Q. Sun. Wiener’s lemma for singular integral
operators of Bessel potential type. Monatsh. Math., 173(1):35–54,
2014.
fa11-2
[1675] D. Farenick. Arveson’s criterion for unitary similarity. Linear Algebra
Appl., 435(4):769–777, 2011.
150
fakrkrle96
[1676] D. Farenick, M. Krupnik, N. Krupnik, and W. Lee. Normal Toeplitz
matrices. SIAM J. Matrix Anal. Appl., 17(4):1037–1043, 1996.
fa92
[1677] M. Farge. Wavelet transforms and their applications to turbulence.
Annual Review of Fluid Mechanics, 24(1):395–458, 1992.
fa06
[1678] A. Faridani. Fan-beam tomography and sampling theory. Proceedings
of Symposia in Applied Mathematics, 63:43–66, 2006.
faha08
[1679] G. Farin and D. Hansford. Mathematical Principles for Scientific
Computing and Visualization. A K Peters Ltd., Wellesley, MA, 2008.
fa78
[1680] W. G. Faris. Inequalities and uncertainty principles. J. Mathematical
Phys., 19(2):461–466, 1978.
fageguknpeta13
[1681] H. Farkas, R. Gunning, M. Knopp, B. A. Taylor, I. Z. Pesenson, and
D. Geller. Cubature Formulas and Discrete Fourier Transform on
Compact Manifolds. In H. M. Farkas, R. C. Gunning, M. I. Knopp,
and B. A. Taylor, editors, From Fourier Analysis and Number Theory
to Radon Transforms and Geometry, volume 28 of Developments in
Mathematics, pages 431–453. 2013.
fa00
[1682] W. Farkas. Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr., 209:83–113, 2000.
fajosi00
[1683] W. Farkas, J. Johnsen, and W. Sickel. Traces of anisotropic BesovLizorkin-Triebel spaces–a complete treatment of the borderline cases.
Math. Bohem., 125(1):1–37, 2000.
fara93
[1684] S. Farkash and S. Raz. The legality problem of linear systems in
Gabor time-frequency space. Signal Process., 34(3):283–295, 1993.
fa97-1
[1685] Y. Farkov. Orthogonal wavelets on locally compact abelian groups.
Funct. Anal. Appl., 31(4):294–296, 1997.
fa11
[1686] D. Farnsworth. Hankel operators, the Segal-Bargmann space, and
symmetrically-normed ideals. J. Funct. Anal., 260(5):1523 – 1542,
2011.
faos11
[1687] M. Faroughi and E. Osgooei. Continuous p-Bessel mappings and continuous p-frames in Banach spaces. Involve, 4(2):167–186, 2011.
151
faja12
[1688] A. Fattahi and H. Javanshiri. Discretization of continuous frame.
Proc. Indian Acad. Sci. Math. Sci., 122(2):189–202, 2012.
fa14
[1689] M. Faulhuber. Geometry and Gabor Frames. Master’s thesis, 2014.
fe78
[1690] W. Fechner. On general function spaces with and without weights.
Math. Nachr., 84:123–144, 1978.
fe07-1
[1691] C. Fefferman. cm extension by linear operators. Ann. Math. (2),
166(3):779–835, 2007.
fe07
[1692] C. Fefferman. Smooth interpolation of functions on n . In Rosenblatt, Joseph M. (ed.) et al., Topics in harmonic analysis and ergodic
theory. Based on talks delivered by plenary speakers at a conference
on harmonic analysis and ergodic theory, Chicago, IL, USA, December 2-4, 2005, volume 444, pages 167–173. American Mathematical
Society (AMS), 2007.
fe09-5
[1693] C. Fefferman. Extension of cm,ω -smooth functions by linear operators.
Rev. Mat. Iberoam., 25(1):1–48, 2009.
fe09-4
[1694] C. Fefferman. Fitting a cm -smooth function to data III. Ann. Math.
(2), 170(1):427–441, 2009.
fe09-3
[1695] C. Fefferman. Whitney’s extension problems and interpolation of
data. Bull. Amer. Math. Soc. (N.S.), 46(2):207–220, 2009.
fe10-2
[1696] C. Fefferman. The cm norm of a function with prescribed jets I. Rev.
Mat. Iberoam., 26(3):1075–1098, 2010.
fegr12
[1697] C. Fefferman and R. C. Graham. The Ambient Metric. Annals of
Mathematics Studies 178. Princeton, NJ: Princeton University Press.
v, 2012.
fekl09-1
[1698] C. Fefferman and B. Klartag. Fitting a cm -smooth function to data
I. Ann. Math. (2), 169(1):315–346, 2009.
fekl09
[1699] C. Fefferman and B. Klartag. Fitting a cm -smooth function to data
II. Rev. Mat. Iberoam., 25(1):49–273, 2009.
ferisa74
[1700] C. Fefferman, N. Riviere, and Y. Sagher. Interpolation between H p
spaces: the real method. Trans. Amer. Math. Soc., 191:75–81, 1974.
152
fest72
[1701] C. Fefferman and E. M. Stein. H p spaces of several variables. Acta
Math., 129(3-4):137–193, 1972.
fe83-5
[1702] R. Fefferman. On an operator arising in the Calder’on-Zygmund
method of rotations and the Bramble-Hilbert lemma. Proceedings
of the National Academy of Sciences, 80(12):3877–3878, 1983.
felowe12
[1703] J. Fehrenbach, P. Weiss, and C. Lorenzo. Variational algorithms to
remove stationary noise: applications to microscopy imaging. IEEE
Trans. Image Process., 21(10):4420–4430, 2012.
fe13-1
[1704] H. Feichtinger. Group theoretical methods and wavelet theory (coorbit theory and applications). 2013.
fe14
[1705] H. G. Feichtinger. Elements of Postmodern Harmonic Analysis,
page 27. Springer, 2014.
fe15
[1706] H. G. Feichtinger. Choosing Function Spaces in Harmonic Analysis.
2015.
fe15-1
[1707] H. G. Feichtinger. Numerical and Conceptual Harmonic Analysis. In
CIMPA notes. 2015.
acfe07
[1708] H. G. Feichtinger and R. Aceska. Variable Bandwidth from TFA
point of view. page 10, 2007.
fegron14
[1709] H. G. Feichtinger, A. Grybos, and D. Onchis. Approximate dual
Gabor atoms via the adjoint lattice method. Adv. Comput. Math.,
40(3):651–665, 2014.
fehe10
[1710] H. G. Feichtinger and S. B. Heineken. Spline-like spaces with slowly
varying kernels. preprint, 2010.
felu12
[1711] H. G. Feichtinger and F. Luef. Gabor analysis and time-frequency
methods. Encyclopedia of Applied and Computational Mathematics,
2012.
felu15
[1712] H. G. Feichtinger and F. Luef. Banach Gelfand Triples for analysis.
Notices Amer. Math. Soc., in preparation, 2015.
153
fenopa14
[1713] H. G. Feichtinger, K. Nowak, and M. Pap. Spectral properties of
Toeplitz operators acting on Gabor type reproducing kernel Hilbert
spaces. MATHEMATICS WITHOUT BOUNDARIES : SURVEYS
IN PURE MATHEM, 2014.
feon10-1
[1714] H. G. Feichtinger and D. Onchis. Constructive reconstruction from
irregular sampling in multi-window spline-type spaces. In Progress in
analysis and its applications, pages 257–265. World Sci. Publ., Hackensack, 2010.
feonritowi12
[1715] H. G. Feichtinger, D. Onchis, B. Ricaud, B. Torr´esani, and C. Wiesmeyr. A method for optimizing the ambiguity function concentration.
In Proceedings of the European Signal Processing Conference, pages
804–808. IEEE, 2012.
feonwi14
[1716] H. G. Feichtinger, D. Onchis, and C. Wiesmeyr. Construction of
approximate dual wavelet frames. Adv. Comput. Math., 40:273 – 282,
2014.
fepa13-1
[1717] H. G. Feichtinger and M. Pap. Connection between the coorbit theory
and the theory of Bergman spaces. In A. Vasilevksii, editor, Harmonic
and Complex Analysis and Applications (HCAA). 2013.
fepa13
[1718] H. G. Feichtinger and M. Pap. Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane. Blaschke Products
and Their Applications: Fields Institute Communications, 65:193–
208, 2013.
fepa14
[1719] H. G. Feichtinger and M. Pap. Coorbit Theory and Bergman Spaces,
pages 231–260. Birkh¨auser, 2014.
feprrosive12
[1720] H. G. Feichtinger, J. Principe, J. L. Romero, A. Singh Alvarado, and
G. A. Velasco. Approximate reconstruction of bandlimited functions
for the integrate and fire sampler. Adv. Comput. Math., 36(1):67–78,
2012.
femunopo12
[1721] E. Feireisl, P. Mucha, A. Novotny, and M. Pokorny. Time-periodic solutions to the full Navier-Stokes-Fourier system. Arch. Ration. Mech.
Anal., 204(3):745–786, 2012.
154
fe48-1
[1722] L. Fejes Toth. On the densest packing of convex domains. Proc. Akad.
Wet. Amsterdam, 51:544–547, 1948.
fe23-1
[1723] M. Fekete. On the distribution of roots of algebraic equations with
¨
integral coefficients (Uber
die Verteilung der Wurzeln bei gewissen
algebraischen Gleichungen mit ganzzahligen Koeffizienten). Math.
Zeitschr., 17:228–249, 1923.
fe06-2
[1724] C. Felber. 50 Vorschl¨age f¨
ur eine gerechtere Welt. Zsolnay, Paul,
2006.
fe09-2
[1725] C. Felber. Neue Werte f¨
ur die Wirtschaft. Eine Alternative zwischen
Kommunismus und Kapitalismus. Wien, Deuticke, 2009.
fe10-1
¨
[1726] C. Felber. Die Gemeinwohl-Okonomie:
Das Wirtschaftsmodell der
Zukunft. Deuticke, 2010.
fe91-4
[1727] M. Feldman. Mean oscillation, weighted Bergman spaces, and Besov
spaces on the Heisenberg group and atomic decomposition. J. Math.
Anal. Appl., 158(2):376–395, 1991.
dofe88
[1728] J. Fell and R. Doran. Representations of *-algebras, Locally Compact
Groups, and Banach *- Algebraic Bundles Vol 1: Basic representation
theory of Groups and Algebras. Pure and Applied Mathematics, 125.
Nosten, 1988.
dofe88-1
[1729] J. Fell and R. Doran. Representations of *-algebras, Locally Compact
Groups, and Banach *-algebraic Bundles Vol 2: Banach *-algebraic
Bundles, Induced Representations, and the Generalized Mackey analysis. Pure and Applied Mathematics, 126. Boston, 1988.
fe87-2
[1730] G. Fendler. Herz Schur multipliers and coefficients of bounded representations. PhD thesis, Ruprecht-Karls-University Heidelberg, 1987.
fegrle10
[1731] G. Fendler, K. Gr¨ochenig, and M. Leinert. Convolution-dominated
integral operators. Banach Center Publications, 89:121–127, 2010.
feka13
[1732] G. Fendler and N. Kaiblinger. Discrete Fourier transform of prime
order: Eigenvectors with small support. Linear Algebra and its Applications, 438(1):288 – 302, 2013.
155
fekr14
[1733] J.-M. Feng and F. Krahmer. An RIP-based approach to σδ quantization for compressed sensing. IEEE Signal Proc. Letters, 21(11):1351–
1355, 2014.
feyayu14
[1734] Y. Feng, D. Yuan, and S. Yang. Construction of orthogonal shearlet
tight frames with symmetry. J. Comput. Anal. Appl., 16(5):887–894,
2014.
fesa11
[1735] A. Fereydooni and A. Safapour. Pair frames. Results in Mathematics,
pages 1–17, 2011.
ferasa12
[1736] A. Fereydooni, A. Safapour, and A. Rahimi. Adjoint of pair
frames. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar.,
74(4):131–140, 2012.
fetovi09
[1737] J. Fernandes, S. Victer, and J. Torre˜ao. A model for neuronal signal representation by stimulus-dependent receptive fields. Artificial
Neural Networks–ICANN 2009, pages 356–362, 2009.
femana11
[1738] A. Fernandez, F. Mayoral, and F. Naranjo. Real interpolation method
on spaces of scalar integrable functions with respect to vector measures. J. Math. Anal. Appl., 376(1):203–211, 2011.
femanasa10
[1739] A. Fernandez, F. Mayoral, F. Naranjo, and E. A. Sanchez P’erez.
Complex interpolation of spaces of integrable functions with respect
to a vector measure. Collect. Math., 61(3):241–252, 2010.
fegajo05
[1740] C. Fernandez, A. Galbis, and D. Jornet. Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math.,
167(2):99–131, 2005.
fegama13
[1741] C. Fernandez, A. Galbis, and J. Martinez. Multilinear Fourier multipliers related to time-frequency localization. J. Math. Anal. Appl.,
398(1):113–122, 2013.
fe77-6
[1742] D. Fernandez. Lorentz spaces, with mixed norms. J. Funct. Anal.,
25:128–146, 1977.
fevawe09
[1743] R. Fernandez, V. Varadarajan, and D. Weisbart. Airy functions over
local fields. Lett. Math. Phys., 88(1-3):187–206, 2009.
156
fepape08
[1744] C. Fernandez Gonzalez, C. Palazuelos, and D. Perez Garcia. The natural rearrangement invariant structure on tensor products. J. Math.
Anal. Appl., 343(1):40–47, July 2008.
fe75-1
[1745] X. Fernique. Regularit´e des trajectoires des fonctions al´eatoires gaussi´
´ e de Probabilit´es de Saint-Flour, IV-1974, pages
ennes. In Ecole
d’Et´
1–96. Lecture Notes in Math., Vol. 480. Springer, Berlin, 1975.
fe97-1
[1746] X. Fernique. Fonctions Al’eatoires Gaussiennes, Vecteurs Al’eatoires
Gaussiens.
Universit´e de Montr´eal Centre de Recherches
Math´ematiques, Montreal, QC, 1997.
fe09-1
[1747] M. Ferreira. Spherical continuous wavelet transforms arising from sections of the Lorentz group. Appl. Comput. Harmon. Anal., 26(2):212–
229, 2009.
fe99
[1748] P. Ferreira. Sampling and generalized almost periodic extension of
functions. IEEE Trans. on Circuits and Systems - II: Analog and
Digital Signal Process., 46(4):475–478,, 1999.
fehi11
[1749] P. J. S. G. Ferreira and J. R. Higgins. The establishment of sampling
as a scientific principle -A striking case of multiple discovery. Notices
of the American Mathematical Society, 58(10):1446–1450, November
2011.
fe00
[1750] J. Fessler. Statistical image reconstruction methods for transmission
tomography. Handbook of Medical Imaging, 2:1–70, 2000.
fe12
[1751] J. Feuto. Norm inequalities in a class of function spaces including
weighted Morrey. arXiv preprint arXiv:1205.6516, 2012.
fefoko03
[1752] J. Feuto, I. Fofana, and K. Koua. Spaces of functions with integrable fractional mean on locally compact groups (Espaces de fonctions a` moyenne fractionnaire int´egrable sur les groupes localement
compacts). Afr. Mat., S´er. III, 15:73–91, 2003.
fefoko10
[1753] J. Feuto, I. Fofana, and K. Koua. Weighted norm inequalities for
a maximal operator in some subspace of amalgams. Canad. Math.
Bull., 53(2):263–277, 2010.
157
fe51
[1754] R. Feynman. An operator calculus having applications in quantum
electrodynamics. Phys. Rev., II. Ser., 84(1):108–128, 1951.
fehi05
[1755] R. Feynman and A. Hibbs. Quantum Mechanics and Path Integrals.
Daniel F. Styer, Emended Edition edition, 2005.
fijamipe12
[1756] M. Fickus, J. Jasper, D. Mixon, and J. Peterson. Group-theoretic
constructions of erasure-robust frames. arXiv, 2012.
fi82-1
[1757] J. Fienup. Phase retrieval algorithms: A comparison. Appl. Opt.,
21(15):2758–2769, 1982.
firi10
[1758] A. Figalli and L. Rifford. Mass transportation on sub-Riemannian
manifolds. Geom. Funct. Anal., 20(1):124–159, 2010.
fimh11
[1759] F. Filbir and H. Mhaskar. Marcinkiewicz-Zygmund measures on manifolds. J. Complexity, 27(6):568–596, 2011.
fimh10
[1760] F. Filbir and H. N. Mhaskar. A quadrature formula for diffusion
polynomials corresponding to a generalized heat kernel. J. Fourier
Anal. Appl., 16(5):629–657, 2010.
fimote08
[1761] S. Filippas, L. Moschini, and A. Tertikas. On a class of weighted
anisotropic Sobolev inequalities. J. Funct. Anal., 255(1):90–119, 2008.
fi82
[1762] A. Filippenko. The importance of atmospheric differential refraction
in spectrophotometry. Publications of the Astronomical Society of the
Pacific, 94:715–721, 1982.
fima11
[1763] S. Filippov and V. Manko. Unitary and non-unitary matrices as a
source of different bases of operators acting on hilbert spaces. Journal
of Russian Laser Research, pages 1–12, 2011.
fimi06
[1764] W. Fink and D. Micol. simEye: computer-based simulation of visual perception under various eye defects using Zernike polynomials.
Journal of Biomedical Optics, 11(5):054011(12), October 2006.
fi84
[1765] C. Finol. Linear transformations intertwining with group representations. Notas Mat., 63:89 p., 1984.
158
fi11
[1766] G. Fischer. Lernbuch Lineare Algebra Und Analytische Geometrie
Das Wichtigste Ausf¨
uhrlich F¨
ur Das Lehramts- Und Bachelorstudium.
Vieweg+Teubner, 2011.
crfiperesr07
[1767] S. Fischer, F. Sroubek, L. Perrinet, R. Redondo, and G. Cristobal. Self-invertible 2D log-Gabor wavelets. Int. J. Computer Vision,
75(2):231–246, 2007.
firiya12
[1768] V. Fischer, F. Ricci, and O. Yakimova. Nilpotent Gelfand pairs and
spherical transforms of Schwartz functions. I: Rank-one actions on the
centre. Math. Z., 271(1-2):221–255, 2012.
firiya13
[1769] V. Fischer, F. Ricci, and O. Yakimova. Nilpotent Gelfand pairs and
spherical transforms of Schwartz functions. II: Taylor expansions on
singular sets. In Lie groups: structure, actions, and representations.
In honor of Joseph A. Wolf on the occasion of his 75th birthday, pages
81–112. New York, NY: Birkh¨auser/Springer, 2013.
firu13
[1770] V. Fischer and M. Ruzhansky. Lower bounds for operators on graded
Lie groups. C. R., Math., Acad. Sci. Paris, 351(1-2):13–18, 2013.
firu14
[1771] V. Fischer and M. Ruzhansky. Un calcul pseudo-diff´erentiel sur le
groupe de Heisenberg. C. R., Math., Acad. Sci. Paris, 352(3):197–
204, 2014.
figuhasasc12
[1772] A. Fish, S. Gurevich, R. A. Haddad, A. Sayeed, and O. Schwartz.
Delay-Doppler Channel Estimation with Almost Linear Complexity,
2012.
fiyu05
[1773] J. Fish and Z. Yuan. Multiscale enrichment based on partition of
unity. International Journal for Numerical Methods in Engineering,
62(10):1341–1359, 2005.
fi76
[1774] M. Fisher. On the algebra of multipliers of a p-Fourier algebra. Amer.
J. Math., 98:171–181, 1976.
fimowu81
[1775] S. Fisher, P. Morris, and D. Wulbert. Unique minimality of Fourier
projections. Trans. Amer. Math. Soc., 265:235–246, 1981.
fi91
[1776] C. Fisk. Traffic performance analysis at roundabouts. Transportation
Research Part B: Methodological, 25(2-3):89 – 102, 1991.
159
befi08
[1777] A. Fitouhi and R. Bettaieb. Wavelet transforms in the q 2 -analogue
Fourier analysis. Math. Sci. Res. J., 12(9):202–214, 2008.
fl57-1
[1778] C. Flammer. Spheroidal wave functions. Stanford University Press,
Stanford, California, 1957.
fl14
[1779] C. Flammer. Spheroidal Wave Functions. Courier Dover Publications,
2014.
fl88
[1780] P. Flandrin. Maximum signal energy concentration in a timefrequency domain. volume 4, pages 2176 – 2179, 1988.
flgora07
[1781] A. K. Fletcher, S. Rangan, and V. K. Goyal. Rate-distortion bounds
for sparse approximation. In IEEE/SP 14th Workshop on Statistical
Signal Processing (SSP), pages 254–258, 2007.
fl72
[1782] T. M. Flett. Lipschitz spaces of functions on the circle and the disc.
J. Math. Anal. Appl., 39:125–158, 1972.
flri05
[1783] R. Flicker and F. Rigaut. Anisoplanatic deconvolution of adaptive
optics images. JOSA A, 22(3):504–513, 2005.
flkasa90
[1784] Y. Flicker, D. Kazhdan, and G. Savin. Explicit realization of a metaplectic representation. J. Analyse Math., 55:17–39, 1990.
coflsl09
[1785] F. Flitti, C. Collet, and E. Slezak. Image fusion based on pyramidal multiband multiresolution markovian analysis. Signal, image and
video processing, 3(3):275–289, 2009.
fl98
[1786] K. Flornes. Sampling and interpolation in the Paley-Wiener spaces
[...]. Publicacions matematiques, 42(1):103–118, 1998.
flgrhoto94
[1787] K. Flornes, A. Grossmann, M. Holschneider, and B. Torresani.
Wavelets on discrete fields. Appl. Comput. Harmon. Anal., 1(2):137–
146, 1994.
fllyse99
[1788] K. Flornes, Y. Lyubarskii, and K. Seip. A direct interpolation method
for irregular sampling. Appl. Comput. Harmon. Anal., 7(3):305–314,
art. no. acha.1998.0273, 1999.
160
fosa11
[1789] I. Fofana and M. Sanogo. Fourier transform and compactness in
(Lq , lp )α and M p,α spaces. Commun. Math. Anal., 11(2):139–153,
2011.
fo58
[1790] C. Foias. On a commutative extension of a commutative Banach
algebra. Pacific J. Math., 8:407–410, 1958.
foli61
[1791] C. Foias and J. Lions. Sur certains theoremes d’interpolation. Acta
Sci. Math. (Szeged), 22:269–282, 1961.
fo75-1
[1792] G. B. Folland. Spherical harmonic expansion of the Poisson-Szeg¨o
kernel for the ball. Proc. Amer. Math. Soc., 47:401–408, 1975.
fo75
[1793] G. B. Folland. Subelliptic estimates and function spaces on nilpotent
Lie groups. Ark. Mat., 13(2):161–207, 1975.
fo77-1
[1794] G. B. Folland. Applications of analysis on nilpotent groups to partial
differential equations. Bull. Amer. Math. Soc., 83:912–930, 1977.
fo94-1
[1795] G. B. Folland. Meta-Heisenberg groups. In Fourier analysis: analytic
and geometric aspects. Proceedings of the 6th international workshop
on analysis and its applications, IWAA, held at the University of
Maine, Orono, USA, June 15-21, 1992, pages 121–147. New York:
Marcel Dekker, 1994.
folive11
[1796] V. Fonf, J. Lindenstrauss, and L. Vesely. Best approximation in polyhedral Banach spaces. J. Approx. Theory, 163(11):1748–1771, 2011.
fohavy11
[1797] M. Fornasier, J. Haskovec, and J. Vyb´ıral. Particle systems and kinetic
equations modeling interacting agents in high dimension. preprint,
2011.
folasc10
[1798] M. Fornasier, A. Langer, and C. Sch¨onlieb. A convergent overlapping domain decomposition method for total variation minimization.
Numerische Mathematik, 116(4):645–685, 2010.
foscvy12
[1799] M. Fornasier, K. Schnass, and J. Vybiral. Learning Functions of Few
Arbitrary Linear Parameters in High Dimensions. Foundations of
Computational Mathematics, 12:229–262, 2012.
161
fozu07
[1800] B. Fornberg and J. Zuev. The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl.,
54(3):379–398, August 2007.
befoze02
[1801] H. Foroosh, J. B. Zerubia, and M. Berthod. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process., 11(3):188
–200, mar 2002.
fo98
[1802] B. Forrest. Fourier analysis on coset spaces. Rocky Mountain J.
Math., 28(1):173–190, 1998.
fofo98
[1803] B. Forrest. Fourier analysis on coset spaces. Rocky Mountain Journal
of Mathematics, 28(1):18, 1998.
fo11
[1804] B. Forrest. Projective operator spaces, almost periodicity and completely complemented ideals in the Fourier algebra. Rocky Mountain
J. Math., 41(1):155–176, 2011.
fogrgrli13
[1805] S. Fors´en, H. Gray, L. Lindgren, and S. Gray. Was something wrong
with Beethoven’s metronome? Notices Amer. Math. Soc., 60(9):1146–
1153, 2013.
fohasc10
[1806] L. Forzani, E. Harboure, and R. Scotto. Harmonic analysis related to
Hermite expansions. Cabrelli, Carlos (ed.) et al., Recent developments
in real and harmonic analysis. In honor of Carlos Segovia. Boston, MA:
Birkh´auser. Applied and Numerical Harmonic Analysis, 2010.
fo11-1
[1807] S. Foucart. Stability and robustness of weak orthogonal matching pursuits. In AMS Spring 2011 Southeastern Conference, Springer Proceedings in Mathematics, 2011.
fo12
[1808] S. Foucart. Stability and robustness of 1 -minimizations with Weibull
matrices and redundant dictionaries. Linear Algebra and Appl., 441:4–
21, 2014.
fora13
[1809] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkh¨auser,
2013.
fo03-3
[1810] K. Fourmont. Non-equispaced fast Fourier transforms with applications to tomography. J. Fourier Anal. Appl., 9(5):431–450, 2003.
162
foma14
[1811] R. Foygel and L. Mackey. Corrupted sensing: Novel guarantees
for separating structured signals. IEEE Trans. Inform. Theory,
60(2):1223–1247, Feb 2014.
frluwh95
[1812] B. Franchi, G. Lu, and R. Wheeden. Representation formulas and
weighted Poincar´e inequalities for H¨ormander vector fields. Ann. Inst.
Fourier (Grenoble), 45(2):577–604, 1995.
fr99-2
[1813] M. Frank. Geometrical aspects of Hilbert C ∗ -modules. Positivity,
3(3):215–243, 1999.
fr01-1
[1814] M. Frank. Hilbertian versus Hilbert W ∗ -modules and applications to
L2 - and other invariants. Acta Appl. Math., 68(1-3):227–242, 2001.
frpati02
[1815] M. Frank, V. I. Paulsen, and T. Tiballi. Symmetric approximation
of frames and bases in Hilbert spaces. Trans. Amer. Math. Soc.,
354(2):777–793, 2002.
frsh10
[1816] M. Frank and K. Sharifi. Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C ∗ -modules. J. Operator Theory, 64(2):377–386, 2010.
ol10-2
[1817] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles
W. Clark, editors. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.
cofrwo10
[1818] T. Frankcombe, M. Collins, and G. Worth. Converged quantum dynamics with modified Shepard interpolation and Gaussian wave packets. Chemical Physics Letters, 489(4-6):242–247, 2010.
fr86
[1819] J. Franke. On the spaces Fspq of Triebel-Lizorkin type: pointwise
multipliers and spaces on domains. Math. Nachr., 125:29–68, 1986.
fr98-2
[1820] J. Franke. Harmonic analysis in weighted L2 -spaces. 1998.
frsc98
[1821] J. Franke and J. Schwermer. A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups.
Math. Ann., 311(4):765–790, 1998.
163
bofr94
[1822] G. Fraser and B. Boashash. Multiple window spectrogram and timefrequency distributions. In Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on, volume 4, pages IV–293, 1994.
frnave14
[1823] M. Frazier, F. Nazarov, and I. Verbitsky. Global estimates for kernels
of Neumann series and Green’s functions. arXiv, 2014.
frgesc98
[1824] W. Freeden, T. Gervens, and M. Schreiner. Constructive approximation on the sphere. With applications to geomathematics. Numerical
Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York, 1998.
frgu13
[1825] W. Freeden and M. Gutting. Special Functions of Mathematical (geo)Physics. Birkh¨auser, 2013.
frnaso10-1
[1826] W. Freeden, M. Nashed, and T. Sonar. Handbook of Geomathematics
Vol 2. Springer, 2010.
blfrhemowo08
[1827] F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, and S. Bl¨
ugel.
Maximally localized Wannier functions within the FLAPW formalism.
Physical Review B, 78(3):035120, 2008.
frgiva08
[1828] R. Fresneda, D. M. Gitman, and D. Vassilevich. Nilpotent noncommutativity and renormalization. Physical Review D, 78(2):025004,
2008.
frkova02
[1829] B. Frey, R. Koetter, and A. Vardy. Signal-space characterization of
iterative decoding. IEEE Trans. Information Theory, 47(2):766–781,
2002.
fr71
[1830] S. Friedberg. The Fourier transform is onto only when the group is
finite. Proc. Amer. Math. Soc., 27:421–422, 1971.
fr98-3
[1831] S. Friedberg. An analytical proof of the Cayley-Hamilton theorem.
Int. J. Math. Educ. Sci. Technol., 29(4):598–600, 1998.
fr98-4
[1832] S. Friedberg. Applications of the binomial theorem. Int. J. Math.
Educ. Sci. Technol., 29(3):459–471, 1998.
frinsp03
[1833] S. Friedberg, A. Insel, and L. Spence. Linear Algebra Fourth Edition.
PHI, 2003.
164
fr05
[1834] S. Friedland. A new approach to generalized singular value decomposition. SIAM J. Matrix Anal. Appl., 27(2):434–444 (electronic), 2005.
frjo98-2
[1835] F. Friedlander and M. Joshi. Introduction to the Theory of Distributions. Cambridge Univ Pr, 1998.
frst81
[1836] J. Friedman and W. Stuetzle. Projection pursuit regressions. J. Amer.
Statist. Soc., 76:817823, 1981.
befr07
[1837] T.-P. Fries and T. Belytschko. The intrinsic partition of unity method.
Comput. Mech., 40(4):803–814, 2007.
frjo98
[1838] M. Frigo and S. Johnson. FFTW: An adaptive software architecture
for the FFT. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998., volume 3,
pages 1381–1384, 1998.
frjo98-1
[1839] M. Frigo and S. Johnson. FFTW users manual. Massachusetts Institute of Technology, 1998.
defr09
[1840] J. Fripiat and J. Delhalle. Efficient calculation of the exchange in
the Fourier representation of HF-LCAO-CO equations for 1D periodic
systems. International Journal of Quantum Chemistry, 109(13):2960–
2967, 2009.
cefuka13
[1841] Y. Fu, U. Kaehler, and P. Cerejeiras. The Balian-Low theorem for a
new kind of Gabor system. Appl. Anal., 92(4):799–813, 2013.
fusa03
[1842] C. Fuchs and M. Sasaki. Squeezing quantum information through a
classical channel: measuring the “quantumness” of a set of quantum
states. Quantum Inf. Comput., 3(5):377–404, 2003.
fu13
[1843] D. Fuchs. Gabor Analysis of Structured Sparsity and some Applications. Master’s thesis, University of Vienna, 2013.
fu11
[1844] M. Fuchs. Computable upper bounds for the constants in Poincar´etype inequalities for fields of bounded deformation. Math. Methods
Appl. Sci., 34(15):1920–1932, 2011.
fu64
[1845] W. Fuchs. On the eigenvalues of an integral equation arising in the
theory of band-limited signals. J. Math. Anal. Appl., 9:317–330, 1964.
165
fu97
[1846] M. Fugarolas. Entropy ideals and matrix operators of Besov-type.
Acta Math. Hungar., 75(1-2):55–64, 1997.
fu99
[1847] M. Fugarolas. Besov spaces and a trace ideal. Acta Math. Hungar.,
82(1-2):75–81, 1999.
fuXX
[1848] H. F¨
uhr. Admissible vectors for the regular representation. Proc.
Amer. Math. Soc.
fu10
[1849] H. F¨
uhr. Generalized Calderon conditions and regular orbit spaces.
Colloq. Math., 120(1):103–126, 2010.
fuma12
[1850] H. F¨
uhr and A. Mayeli. Homogeneous Besov spaces on stratified Lie
groups and their wavelet characterization. J. Funct. Spaces Appl.,
pages Art. ID 523586, 41, 2012.
fupe13
[1851] H. F¨
uhr and I. Z. Pesenson. Poincare and Plancherel-Polya inequalities in harmonic analysis on weighted combinatorial graphs. SIAM J.
Discrete Math., 27(4):2007–2028, 2013.
fuvo14
[1852] H. F¨
uhr and F. Voigtlaender. Wavelet coorbit spaces viewed as decomposition spaces. arXiv preprint arXiv:1404.4298, 2014.
fu81
[1853] P. Fuhrmann. Linear systems and operators in Hilbert space. New
York etc.: McGraw-Hill International Book Company. X, 325 p., 1981.
fu12
[1854] P. Fuhrmann. A Polynomial Approach to Linear algebra 2nd Ed.
Universitext. New York, NY: Springer. xvi, 2012.
fuho05
[1855] M. Fukuda and A. S. Holevo. On Weyl-covariant channels. Arxiv
preprint quant-ph/0510148, 2005.
bafujo09
[1856] K. Fukumizu, F. Bach, and M. Jordan. Kernel dimension reduction
in regression. Ann. Statist., 37(4):1871–1905, 2009.
fuosta11
[1857] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Symmetric Markov Processes 2nd revised and Extended Ed. de Gruyter
Studies in Mathematics 19. Berlin: Walter de Gruyter. x, 489 p., 2011.
fugr00
[1858] L. Funar and R. Grimaldi. On the spectrum obtained from packing
balls on Riemann manifolds. Southeast Asian Bull. Math., 24(4):543–
552, 2000.
166
fumeve06
[1859] G. Furioli, C. Melzi, and A. Veneruso. Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth. Math.
Nachr., 279(9-10):1028–1040, 2006.
fufi11
[1860] I. Fuss and A. Filinkov.
A rigorous description of optical
phase. In Quantum Electronics Conference Lasers and Electro-Optics
(CLEO/IQEC/PACIFIC RIM), 2011, pages 1424–1426, Aug, 2011.
cocrfigagare04
[1861] S. Gabarda, G. Cristobal, S. Fischer, R. Redondo, L. Galleani, and
L. Cohen. Volumetric image fusion using the pseudo-Wigner distribution. In Proc. of SPIE Vol, volume 5558, page 625, 2004.
ga00
[1862] J.-P. Gabardo. Hilbert spaces of distributions having an orthogonal
basis of exponentials. J. Fourier Anal. Appl., 6(3):277–298, 2000.
gana98
[1863] J.-P. Gabardo and M. Nashed. Nonuniform multiresolution analyses
and spectral pairs. J. Funct. Anal., 158(1):209–241, 1998.
ga83
[1864] D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Numerical Solution
of Boundary-Value Problems, pages 299–331. North-Holland, Amsterdam, 1983.
game76
[1865] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput.
Math. Appl., 2:17–40, 1976.
ga74
[1866] O. Gabisonija. Points of strong summability of Fourier series. Math.
Notes, 14:913–918, 1974.
ga58
[1867] E. Gagliardo. Proprieta di alcune classi di funzioni in piu variabili.
Ricerche Mat., 7:102–137, 1958.
ga63
[1868] E. Gagliardo. A common structure in various families of functional
spaces II. Quasilinear interpolation spaces. Ricerche Mat., 12:87–107,
1963.
ga69-4
[1869] E. Gagliardo. Caratterizzazione costruttiva di tutti gli spazi di interpolazione tra spazi di Banach. In Symposia Mathematica (INDAM,
Rome, 1968), volume 2, pages 95–106. Academic Press, London, 1969.
167
ga08-1
[1870] A. Gal´antai. Subspaces, angles and pairs of orthogonal projections.
Linear and Multilinear Algebra, 56(3):227–260, May 2008.
gapy97
[1871] J. Gal’e and T. Pytlik. Functional calculus for infinitesimal generators
of holomorphic semigroups. J. Funct. Anal., 150(2):307–355, 1997.
gawa11
[1872] J. E. Gale and A. Wawrzynczyk. Standard ideals in weighted algebras of Korenblyum and Wiener types. Math. Scand., 108(2):291–319,
2011.
gasi10
[1873] I. Gallagher and Y. Sire. Besov algebras on Lie groups of polynomial
growth. :1010.0154, 2010.
cogano06
[1874] L. Galleani, L. Cohen, and A. Noga. A time-frequency approach to the
adjustable bandwidth concept. Digital Signal Processing, 16(5):454 –
467, 2006.
gasa12
[1875] W. Gan and G. Savin. Representations of metaplectic groups II:
Hecke algebra correspondences. Reres. Theory Amer. Math. Soc.,
16(14):513–539, 2012.
gakipa11
[1876] W. Gangbo, H. Kim, and T. Pacini. Differential forms on Wasserstein
space and infinite-dimensional Hamiltonian systems. 2011.
gagrnist11
[1877] W. Gansterer, G. Niederbrucker, S. Grotthoff, and H. Strakov´a. Robust Distributed Orthogonalization Based on Randomized Aggregation. In Proceedings of the Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (ScalA) held in conjunction with
the 24th IEEE/ACM International Conference on High Performance
Computing, Networking, Storage and Analysis (SC) 2011, New York,
NY, USA, 2011. ACM.
gagrnist12
[1878] W. Gansterer, G. Niederbrucker, H. Strakov´a, and S. Grotthoff. Scalable and Fault Tolerant Orthogonalization Based on Randomized Aggregation. Journal of Computational Science, 2012.
gastze11
[1879] W. Gansterer, T. Zemen, and H. Strakov´a. Distributed QR Factorization Based on Randomized Algorithms. In Proceedings of the 9th
International Conference on Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Torun, Poland, 2011.
Springer Verlag.
168
gahukelo09
[1880] W. Gao, N. Huyen, H. Loi, and Q. Kemao. Real-time 2D parallel
windowed Fourier transform for fringe pattern analysis using graphics
processing unit. Optics Express, 17(25):23147–23152, 2009.
gawu12
[1881] W. Gao and Z. Wu. Quasi-interpolation for linear functional data. J.
Comput. Appl. Math., 236(13):3256 – 3264, 2012.
chgazhzh04
[1882] Z. Gao, L. Chen, S. Zhou, and R. Zhu. Computer-aided alignment
for a reference transmission sphere of an interferometer. Opt. Eng.,
43(1):69–74, 2004.
game78
[1883] C. Gapaillard and C. Merucci. Espaces fonctionnels de Banach M´ethode discrete l’interpolation. Ark. Mat., 16:161–170, 1978.
gakikwyo12
[1884] A. Garcia, J. Kim, K. Kwon, and G. Yoon. Multi-channel sampling
on shift-invariant spaces with frame generators. Int. J. Wavelets Multiresolut. Inf. Process., 10(1):1250003, 20, 2012.
gamupe11
[1885] A. G. Garc´ıa, M. Muoz Bouzo, and G. P´erez Villal´on. Regular multivariate sampling and approximation in Lp shift-invariant spaces. J.
Math. Anal. Appl., 380(2):607 – 627, 2011.
gapo08
[1886] A. G. Garcia and A. Portal. A general sampling theory in the functional Hilbert space induced by a Hilbert space valued kernel. J. Appl.
Funct. Anal., 3(3):299–313, 2008.
gapo13
[1887] A. G. Garcia and A. Portal. Sampling in reproducing kernel Banach
spaces. Mediterr. J. Math., 10(3):1401–1417, 2013.
galawo86
[1888] M. Garcia Bulle, W. Lassner, and K. Wolf. The metaplectic group
within the Heisenberg–Weyl ring. J. Math. Phys., 27(1):29–36, 1986.
gaka95
[1889] J. Garcia Cuerva and K. S. Kazarian. Spline wavelet bases of weighted
spaces. Garc´ıa-Cuerva, Jos´e (ed.) et al., Fourier analysis and partial
differential equations. Proceedings of the conference held in Miraflores
de la Sierra, Madrid, Spain, June 15–20, 1992. Boca Raton, FL: CRC
Press. Studies in Advanced Mathematics. 169-, 1995.
gamato93
[1890] J. Garcia Cuerva, R. Macias, and J.-L. Torrea. The Hardy-Littlewood
property of Banach lattices. Israel J. Math., 83(1-2):177–201, 1993.
169
gathwe90
[1891] C. Gardner, B. Welsh, and L. Thompson. Design and performance
analysis of adaptive optical telescopes using lasing guide stars. Proceedings of the IEEE, 78(11):1721–1743, 1990.
gahoob09
[1892] C. Garetto, G. H¨ormann, and M. Oberguggenberger. Generalized
oscillatory integrals and Fourier integral operators. Proc. Edinburgh
Math. Soc. (2), 52(2):351–386, 2009.
ga66-3
[1893] D. Garling. On symmetric sequence spaces. Proc. Lond. Math. Soc.
(3), 16:85–106, 1966.
gayo01
[1894] J. Garnett and S. Yoshinobu. Large sets of zero analytic capacity.
Proc. Amer. Math. Soc., 129(12):3543–3548, 2001.
gajo82
[1895] J. B. Garnett and P. W. Jones. BMO from dyadic BMO. Pacific J.
Math., 99(2):351–371, 1982.
gaty12
[1896] N. Garofalo and J. Tyson. Riesz potentials and p-superharmonic
functions in Lie groups of Heisenberg type. Bull. Lond. Math. Soc.,
44(2):353–366, 2012.
gahema08
[1897] G. Garrigos, E. Hernandez, and J. M. Martell. Wavelets, Orlicz
spaces, and greedy bases. Appl. Comput. Harmon. Anal., 24(1):70–93,
2008.
gahesiso06
[1898] G. Garrigos, E. Hernandez, H. Sikic, and F. Soria. Further results on
the connectivity of Parseval frame wavelets. Proc. Amer. Math. Soc.,
134(11):3211–3221, 2006.
gahesisowewi03
[1899] G. Garrigos, E. Hernandez, H. Sikic, F. Soria, G. Weiss, and E. Wilson. Connectivity in the set of tight frame wavelets (TFW). Glas.
Mat., III. Ser., 38(1):75–98, 2003.
flgagrXX
[1900] M. Gasser, A. Flexer, and T. Grill. On Computing Morphological
Similarity of Audio Signals,. Proceedings of the 8th Sound and Music
Computing Conference , Padova, Italy, 2011.
ga09-5
[1901] G. Gat. On almost everywhere convergence of Fourier series on unbounded Vilenkin groups. Publ. Math., 75(1-2):85–94, 2009.
gapi86
[1902] G. I. Gaudry and R. Pini. Bernstein’s theorem for compact, connected
Lie groups. Math. Proc. Cambridge Philos. Soc., 99:297–305, 1986.
170
gapi87
[1903] G. I. Gaudry and R. Pini. Motion groups and absolutely convergent
Fourier transforms. J. Austral. Math. Soc. Ser. A, 43:385–397, 1987.
ga08
[1904] S. Z. Gautam. A critical-exponent Balian-Low theorem. Math. Res.
Lett., 15(3):471–783, May 2008.
ga11
[1905] L. Gavruta. Frames for operators. Appl. Comput. Harmon. Anal.,
32(1):139–144, 2011.
gaga10
[1906] L. Gavruta and P. Gavruta. Frames in duality. In Proceedings of
the 12th symposium of mathematics and its applications, ’Politehnica’
University of Timisoara, pages 100–107, Timisoara, Romania, November 5-7, 2009, 2010.
ga13
[1907] P. Gavruta. On the Feichtinger Conjecture. preprint-last revised 12
Feb 2013. This paper has been withdrawn by the author due to a sign
error in the proof of Theorem 1, 2013.
gaga10-1
[1908] P. Gavruta and L. Gavruta. psi-aditive mappings and HyersUlam
stability. In P. Gavruta, L. Gavruta, P. M. Pardalos, T. M. Rassias,
and A. A. Khan, editors, Nonlinear Analysis and Variational Problems, volume 35 of Springer Optimization and Its Applications, pages
81–86. Springer New York, 2010.
gajukrwu07
[1909] V. Gayral, J.-H. Jureit, T. Krajewski, and R. Wulkenhaar. Quantum
field theory on projective modules. J. Noncommut. Geom., 1(4):431–
496, 2007.
ge65-1
[1910] S. Geisberg. Quasianalytic functions in L(−∞, ∞). 1965.
ge88-1
[1911] M. Geisler. Besov spaces on compact Lie groups. Math. Nachr.,
139:193–205, 1988.
gegr08
[1912] P. Geladi and H. F. Grahn. Multivariate and Hyperspectral Image
Analysis, volume 15 (General articles), page 26. Wiley, Online Library,
2008.
ge07
[1913] A. Gelb. Reconstruction of piecewise smooth functions from nonuniform grid point data. J. Sci. Comput., 30(3):409–440, 2007.
171
gegrpi90
[1914] I. Gelfand, M. Graev, and I. Piatetski Shapiro. Representation theory
and automorphic functions. Transl. from the Russian by K.A. Hirsch.
Reprint of the 1969 edition. Academic Press, 1990.
geko55
[1915] I. Gelfand and A. Kostyucenko. Expansion in eigenfunctions of differential and other operators. Dokl. Akad. Nauk SSSR (N.S.), 103:349–
352, 1955.
ge84
[1916] D. Geller. Spherical harmonics, the Weyl transform and the Fourier
transform on the Heisenberg group. Canad. J. Math., 36:615–684,
1984.
gema11
[1917] D. Geller and D. Marinucci. Mixed needlets. J. Math. Anal. Appl.,
375(2):610–630, 2011.
gema09-2
[1918] D. Geller and A. Mayeli. Continuous wavelets on compact manifolds.
Math. Z., 262(4):895–927, 2009.
gema11-1
[1919] D. Geller and A. Mayeli. Wavelets on manifolds and statistical applications to cosmology. In Wavelets and multiscale analysis, Appl.
Numer. Harmon. Anal., pages 259–277. Springer, 2011.
gepe11
[1920] D. Geller and I. Pesenson. Band-limited localized Parseval frames and
Besov spaces on compact homogeneous manifolds. J. Geom. Anal.,
21(2):334–371, 2011.
gest82
[1921] D. Geller and E. M. Stein. Singular convolution operators on the
Heisenberg group. Bull. Amer. Math. Soc. (N.S.), 6:99–103, 1982.
gewr11
[1922] Q. Geng and J. Wright. On the local correctness of ell1 -minimization
for dictionary learning. preprint, 2011.
ge90
[1923] P. Gerard. Moyennisation et r´egularit´e deux-microlocale. Ann. Sci.
´
Ecole
Norm. Sup. (4), 23(1):89–121, 1990.
gesa72
[1924] R. Gerchberg and W. Saxton. Phase retrieval by iterated projection.
Optik, 35, 1972.
ge97
[1925] P. Gerdes. Ethnomathematics -described by the example of Sona geometry. (Ethnomathematik -dargestellt am Beispiel der Sona Geometrie).
Heidelberg: Spektrum Akademischer Verlag, 1997.
172
geto95
[1926] I. Gertner and R. Tolimieri. Multiplicative Zak Transform. Journal of
Visual Communication and Image Representation, 6(1):89–95, 1995.
geze90
[1927] I. Gertner and Y. Y. Zeevi. Zak-Gabor representation of images. In
Proc. SPIE, Visual Communications and Image Processing ’90: Fifth
in a Series, volume 1360 of Pattern Recognition, pages 1738–1748,
Lausanne, Switzerland, October 1990.
bogegopa02
[1928] D. Gesbert, H. B¨olcskei, D. Gore, and A. Paulraj. Outdoor MIMO
Wireless Channels: Models and Performance Prediction. IEEE Trans.
Comm., 50:1926–1934, Dec. 2002.
gekima02
[1929] F. Gesztesy, A. Kiselev, and K. Makarov. Uniqueness results for
matrix-valued Schr¨odinger, Jacobi, and Dirac-type operators. 2002.
gh12
[1930] A. Ghaani Farashahi. Abstract Non-Commutative Harmonic Analysis
of Coherent State Transforms (Non-commutative time-frequency analysis). PhD thesis, Department Of Mathematics, Ferdowsi University
of Mashhad, 2012.
gh14
[1931] A. Ghaani Farashahi. Continuous partial Gabor transform for semidirect product of locally compact groups. Bull. Malaysian Math. Soc.,
pages 1–25, 2014.
ghXX
[1932] A. Ghaani Farashahi. Generalized WeylHeisenberg (GWH) groups.
Anal.Math.Phys., 4:187–197, 2014.
gh80
[1933] F. Ghahramani. Homomorphisms and derivations on weighted convolution algebras. J. London Math. Soc. (2), 21(1):149–161, 1980.
gh84
[1934] F. Ghahramani. Weighted group algebra as an ideal in its second dual
space. Proc. Amer. Math. Soc., 90(1):71–76, 1984.
ghja11
[1935] S. Ghobber and P. Jaming. On uncertainty principles in the finitedimensional setting. Linear Algebra and its Applications, 435:751–768,
2011.
gh10
[1936] R. Ghrist. Configuration spaces, braids, and robotics. Berrick, A. Jon
(ed.) et al., Braids. Introductory lectures on braids, configurations
and their applications. Based on the program “Braids, 2010.
173
gi97
[1937] G. Giannakis. Filterbanks for blind channel identification and equalization. IEEE Signal Process. Letters, pages 184–187, Jun. 1997.
giis11
[1938] P. Gibilisco and T. Isola. On a refinement of Heisenberg uncertainty
relation by means of quantum Fisher information. J. Math. Anal.
Appl., 375(1):270–275, 2011.
gisk74
[1939] I. Gihman and A. Skorohod. The theory of stochastic processes. I.
Translated from the Russian by S. Kotz. Die Grundlehren der mathematischen Wissenschaften. Band 210. Springer, 1974.
giha06
[1940] E. Gilad and J. Von Hardenberg. A fast algorithm for convolution integrals with space and time variant kernels. Journal of Computational
Physics, 216(1):326–336, 2006.
gimu08
[1941] J. Gilbert and M. Murray. Clifford Algebras and Dirac operators in
Harmonic Analysis Paperback Reprint of the Hardback Edition 1991.
Cambridge Studies in Advanced Mathematics 26. Cambridge: Cambridge University Press. vi, 334 p., 2008.
gi94
[1942] P. Gilkey. Invariance Theory: The Heat Equation and the AtiyahSinger Index Theorem. CRC Press, 2nd edition, 1994.
gisi12
[1943] F. Gilles and K. Sinuk. Average sampling of band-limited stochastic
processes. Appl. Comput. Harmon. Anal., 2012.
gi14
[1944] J. Gilman. The non-Euclidean Euclidean algorithm. Adv. Math.,
250(0):227 – 241, 2014.
gi65
[1945] J. Ginibre. Statistical ensembles of complex, quaternion, and real
matrices. J. Mathematical Phys., 6:440–449, 1965.
gi09
[1946] N. Ginoux. The Dirac Spectrum, volume 1976 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 2009.
giha10
[1947] N. Ginoux and G. Habib. A spectral estimate for the Dirac operator
on Riemannian flows. Cent. Eur. J. Math., 8(5):950–965, 2010.
gimamape12
[1948] J. Giribet, A. Maestripieri, F. Peria, and P. Massey. On frames for
Krein spaces. J. Math. Anal. Appl., 393(1):122–137, 2012.
174
daelgigrna14
[1949] R. Giryes, S. Nam, M. Elad, R. Gribonval, and M. Davies. Greedylike algorithms for the cosparse analysis model. Linear Algebra and
Appl., 441(0):22 – 60, 2014.
gi85
[1950] S. Giulini. Bernstein and Jackson theorems for the Heisenberg group.
J. Austral. Math. Soc. Ser. A, 38:241–254, 1985.
gi86
[1951] S. Giulini. Approximation and Besov spaces on stratified groups. Proc.
Amer. Math. Soc., 96(4):569–578, 1986.
gi13
[1952] H. Giv. Directional short-time Fourier transform. J. Math. Anal.
Appl., 399(1):100 – 107, 2013.
glmo90
[1953] B. R. Glasberg and B. Moore. Derivation of auditory filter shapes
from notched-noise data. Hearing Research, 47:103–138, 1990.
baglir09
[1954] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single
image. In Computer Vision, 2009 IEEE 12th International Conference
on, pages 349 –356, Kyoto, October 2009.
glgo04
[1955] L. Glebsky and E. I. Gordon. On approximation of locally compact
groups by finite algebraic systems. Electron. Res. Announc. Amer.
Math. Soc., 10:21–28 (electronic), 2004.
glja81
[1956] J. Glimm and A. Jaffe. Quantum physics. A functional integral point
of view. New York - Heidelberg - Berlin: Springer-Verlag. XX, 417
p., 43 ill. $ 26.40 (1981)., 1981.
glporasisovo04
[1957] J. Glover, Z. Pop Stojanovic, M. Rao, H. Sikic, R. Song, and Z. Vondracek. Harmonic functions of subordinate killed Brownian motion.
J. Funct. Anal., 215(2):399–426, 2004.
glle89
[1958] R. Glowinski and T. Le. Augmented Lagrangian and OperatorSplitting Methods. SIAM, Philadelphia, 1989.
gl88
[1959] E. Gluskin. Extremal properties of orthogonal parallelepipeds and
their applications to the geometry of Banach spaces. Mat. Sb. (N.S.),
136(178)(1):85–96, 1988.
glol11
[1960] E. Gluskin and A. Olevskii. Invertibility of sub-matrices and the
octahedron width theorem. Israel Journal of Mathematics, 186:61–
68, 2011.
175
go10
[1961] M. Gockenbach. Finite-Dimensional Linear Algebra. Taylor and Francis, 2010.
go03-1
[1962] R. Godement. Analyse Mathematique IV Integration et Theorie Spectrale, Analyse Harmonique, Le Jardin des Delices Modulaires. Berlin:
Springer, xii, 599 p. edition, 2003.
gosi13
[1963] N. Goel and K. Singh. A modified convolution and product theorem
for the linear canonical transform derived by representation transformation in quantum mechanics. Int. J. Appl. Math. Comput. Sci.,
23(3):685–695, 2013.
dagoko14
[1964] A. Gogatishvili, A. Danelia, and T. Kopaliani. Local HardyLittlewood maximal operator in variable Lebesgue spaces. Banach
J. Math. Anal., 8(2):229–244, 2014.
gokosh10
[1965] A. Gogatishvili, P. Koskela, and N. Shanmugalingam. Interpolation
properties of Besov spaces defined on metric spaces. Mathematische
Nachrichten, 283(2):215–231, 2010.
gokozh11
[1966] A. Gogatishvili, P. Koskela, and Y. Zhou. Characterizations of Besov
and Triebel-Lizorkin spaces on metric measure spaces. In Forum
Math., to appear, 2011.
gokozh13
[1967] A. Gogatishvili, P. Koskela, and Y. Zhou. Characterizations of Besov
and Triebel–Lizorkin spaces on metric measure spaces. In Forum
Mathematicum, volume 25, pages 787–819, 2013.
gomu11
[1968] A. Gogatishvili and R. Mustafayev. Dual spaces of local Morrey-type
spaces. Czechoslovak Math. J., 61(136)(3):609–622, 2011.
gomu11-1
[1969] A. Gogatishvili and R. Mustafayev. On a theorem of MuckenhouptWheeden in generalized Morrey spaces. Eurasian Math. J., 2(2):134–
138, 2011.
gomu12
[1970] A. Gogatishvili and R. Mustafayev. Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces.
Collect. Math., 63(1):11–28, 2012.
gomu13
[1971] A. Gogatishvili and R. Mustafayev. New characterization of Morrey
spaces. Eurasian Math. J., 4(1):54–64, 2013.
176
gomu13-1
[1972] A. Gogatishvili and R. Mustafayev. New pre-dual space of Morrey
space. J. Math. Anal. Appl., 397(2):678–692, 2013.
goneop11
[1973] A. Gogatishvili, J. Neves, and B. Opic. Compact embeddings of
Bessel-potential-type spaces into generalized H¨older spaces involving
k-modulus of smoothness. Zeitschrift f¨
ur Analysis und ihre Anwendungen, 30(1):1–27, 2011.
gopi03
[1974] A. Gogatishvili and L. Pick. Discretization and anti-discretization
of rearrangement-invariant norms. Publ. Mat., Barc., 47(2):311–358,
2003.
gopisc12
[1975] A. Gogatishvili, L. Pick, and J. Schneider. Characterization of a
rearrangement-invariant hull of a Besov space via interpolation. Rev.
Mat. Complut., 25(1):267–283, 2012.
go13
[1976] U. Goginava. Negative order Cesaro means of double Fourier series
and bounded generalized variation. Siberian Math. J., 54(6):1005–
1012, 2013.
gowe12
[1977] U. Goginava and F. Weisz. Maximal operator of the Fej´er means
of triangular partial sums of two-dimensional Walsh-Fourier series.
Georgian Math. J., 19(1):101–115, 2012.
gowe12-1
[1978] U. Goginava and F. Weisz. Pointwise convergence of MarcinkiewiczFejer means of two-dimensional Walsh-Fourier series. Studia Sci.
Math. Hungar., 49(2):236–253, 2012.
gohash11
[1979] S. S. Goh, B. Han, and Z. Shen. Tight periodic wavelet frames and
approximation orders. Appl. Comput. Harmon. Anal., 31(2):228–248,
2011.
gola94
[1980] I. Gohberg and H. J. Landau. Prediction and the inverse of Toeplitz
matrices. Zahar, R. V. M. (ed.), Approximation and computation: a
Festschrift in honor of Walter Gautschi. Proceedings of the Purdue
conference, West Lafayette, IN, USA, December 2-5, 1993. Boston,
US: Birkh¨auser. ISNM, Int. Ser. Numer. Math. 119, 219-229 (1994).,
1994.
go12
[1981] J. Golan. The Linear Algebra a Beginning Graduate Student ought to
know. 3rd ed. Dordrecht: Springer. xii, 497 p., 2012.
177
gosi08
[1982] B. Gold and R. Simons. Proof and other dilemmas. Mathematics
and philosophy. Spectrum Series. The Mathematical Association of
America (MAA), Washington, DC, 2008.
gohu11
[1983] D. Goldfeld and J. Hundley. Automorphic representations and Lfunctions for the general linear group. Volume II, volume 130 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2011.
go84-1
[1984] M. Gol’dman. Imbedding theorems for anisotropic Nikol’skii-Besov
spaces with moduli of continuity of a general type. Trudy Matematicheskogo Instituta im. VA Steklova, 170:86–104, 1984.
goos09
[1985] T. Goldstein and S. Osher. The split Bregman method for L1regularized problems. SIAM J. Imag. Sciences, 2(2):323–343, 2009.
go14
[1986] M. Golitschek. On the -norm of the orthogonal projector onto splines.
A short proof of A. Shadrina’s theorem. J. Approx. Theory, (0):–,
2014.
gogo05
[1987] S. Golomb and G. Gong. Signal Design for Good Correlation. Cambridge University Press, Cambridge, 2005.
gova12
[1988] G. Golub and L. Van. Matrix computations, volume 3. JHU Press,
2012.
gora89
[1989] A. Gonchar and E. Rakhmanov. Equilibrium distributions and degree of rational approximation of analytic functions. Math. USSR-Sb.,
62(2):305–348, 1989.
goyo10
[1990] J. Gonessa and E. Youssfi. Hankel operators and the Stieltjes moment
problem. J. Funct. Anal., 258(3):978–998, 2010.
goyo12
[1991] J. Gonessa and E. H. Youssfi. The Bergman projection in spaces of
entire functions. Ann. Pol. Math., 104(2):161–174, 2012.
gove14
[1992] D. Gontier and M. Vetterli. Sampling based on timing: Time encoding
machines on shift-invariant subspaces. Appl. Comput. Harmon. Anal.,
36(1):63 – 78, 2014.
178
gogoja99
[1993] M. Gonz´alez, R. Gonzalo, and J. Jaramillo. Symmetric polynomials
on rearrangement invariant function spaces. J. Lond. Math. Soc. (2),
59(2), 1999.
gogr07
[1994] V. Gonzalez and C. C. Graham. On the support of tempered distributions. Arch. Math. (Basel), 88(2):133–142, 2007.
argohelosatovi06
[1995] J. Gonzalez Nuevo, F. Argueso, M. Lopez Caniego, L. Toffolatti,
J. Sanz, P. Vielva, and D. Herranz. The Mexican Hat Wavelet Family.
Application to point source detection in CMB maps, 2006.
go92-1
[1996] E. Gonzalez Velasco. Connections in Mathematical Analysis: the case
of Fourier series. Amer. Math. Monthly, pages 427–441, 1992.
go03
[1997] F. Gonz´alez Vieli. Characterization of the support of pseudomeasures
on R. Math. Proc. Cambridge Philos. Soc., 135(3):431–442, 2003.
go71
[1998] I. Good. The relationship between two fast Fourier transforms. IEEE
Trans. Comput., 20:310–317, 1971.
gone84
[1999] A. Goodman and D. Newman. A Wiener type theorem for Dirichlet
series. Proc. Amer. Math. Soc., 92:521–527, 1984.
go04-1
[2000] R. Goodman. Alice through looking glass after looking glass: the
mathematics of mirrors and kaleidoscopes. Amer. Math. Monthly,
111(4):281–298, 2004.
gowa85
[2001] R. Goodman and N. R. Wallach. Projective unitary positive-energy
representations of diff (S1). J. Funct. Anal., 63(3):299 – 321, 1985.
goha06
[2002] T. Goodman and D. Hardin. Refinable multivariate spline functions.
In Topics in multivariate approximation and interpolation, volume 12
of Stud. Comput. Math., pages 55–83. Elsevier B. V., Amsterdam,
2006.
gorita09
[2003] A. G¨opfert, T. Riedrich, and C. Tammer. Applied Functional Analysis
Motivations and Methods for Mathematicians and Economists (Angewandte Funktionalanalysis Motivationen Und Methoden f¨
ur Mathematiker Und Wirtschaftswissenschaftler). Studium. Studienb¨
ucher
Wirtschaftsmathematik. Wiesbaden: Vieweg+Teubner. xiv, 390 p.
EUR 29.90, 2009.
179
go95
[2004] R. Gopinath. Nonlinear recovery of sparse signals from narrowband
data. In Proceedings of the Acoustics, Speech, and Signal Processing,
1995 - Volume 02, ICASSP ’95, page 3, Washington, DC, USA,, 1995.
IEEE Computer Society.
goti12
[2005] D. Gorbachev and S. Tikhonov. Moduli of smoothness and growth
properties of Fourier transforms: Two-sided estimates. Journal of
Approximation Theory,, 164(9):1283 – 1312, 2012.
go05-1
[2006] E. Gordon. I.I. Gordon who was an addressee of L. S. Pontryagin
(introductory notes). 2005.
go85-1
[2007] Y. Gordon. Some inequalities for Gaussian processes and applications.
Israel J. Math., 50(4):265–289, 1985.
go87
[2008] Y. Gordon. Elliptically contoured distributions. Probab. Theory Related Fields, 76(4):429–438, 1987.
go88-1
[2009] Y. Gordon. Gaussian processes and almost spherical sections of convex
bodies. Ann. Probab., 16(1):180–188, 1988.
go88-2
[2010] Y. Gordon. On Milman’s inequality and random subspaces which
escape through a mesh in rn . In Geometric aspects of functional analysis (1986/87), volume 1317 of Lecture Notes in Math., pages 84–106.
1988.
golere73
[2011] Y. Gordon, D. Lewis, and J. Retherford. Banach ideals of operators
with applications. J. Funct. Anal., 14:85–129, 1973.
golere73-1
[2012] Y. Gordon, D. Lewis, and J. Retherford. Banach ideals of operators with applications to the finite dimensional structure of Banach
spaces. Proc. internat. Sympos. partial diff. Equ. Geometry normed
lin. Spaces II. Israel J. Math., 13:348–360, 1973.
gokore13
[2013] P. Gorka, T. Kostrzewa, and E. Reyes. The Rellich lemma on compact
abelian groups and equations of infinite order. 2013.
gozh98
[2014] P. Gorkin and D. Zheng. Harmonic extensions and the B¨ottcherSilbermann conjecture. Studia Math., 127(3):201–222, 1998.
180
gogori05
[2015] J. Gosme, C. Richard, and P. Goncalves. Adaptive diffusion as a versatile tool for time-frequency and time-scale representations processing:
a review. IEEE Trans. Sign. Proc., 53(11):4136–4146, 2005.
gomo01
[2016] Y. Gousseau and J.-M. Morel. Are natural images of bounded variation? SIAM Journ. Math. Anal., 33(3):634–648, 2001.
gokove99
[2017] V. K. Goyal, J. Kovacevic, and M. Vetterli. Quantized frame expansions as source channel codes for erasure channels. In dcc, page 326,
1999.
chgovezh02
[2018] V. K. Goyal, J. Zhuang, M. Vetterli, and C. Chan. Transform coding
using adaptive bases and quantization. In Image Processing, 1996.
Proceedings., International Conference on, volume 1, pages 365–368,
2002.
grva93
[2019] J. M. Gracia Bondia and J. Varilly. On the metaplectic representation in quantum field theory. In Proc. of the II International Wigner
Symposium. Foundations and Symmetries-Goslar 1991, pages 611–
614. World Scientific, 1993.
grry07
[2020] I. Gradshteyn and I. Ryzhik. Table of Integrals, Series, and Products,.
Academic Press,, seventh edition, 2007.
gr05-1
[2021] M. Grady. A group theoretic approach to a famous partition formula.
The American Mathematical Monthly, 112(7):645–651, 2005.
grpo09
[2022] M. Graef and D. Potts. Sampling sets and quadrature formulae on the
rotation group. Numer. Funct. Anal. Optim., 30(7-8):665–688, 2009.
grsc11
[2023] E. Graefe and R. Schubert. Wave-packet evolution in non-Hermitian
quantum systems. Physical Review A, 83(6):060101, 2011.
grku08
[2024] M. Gr¨af and S. Kunis. Stability results for scattered data interpolation
on the rotation group. Electron. Trans. Numer. Anal., 31:30–39, 2008.
dogrgrku02
[2025] R. Graf, C. Kuo, A. Dowling, and W. Graham. On the horn effect of
a tyre/road interface, Part l: Experiment and computation. Journal
of Sound and Vibration, 256(3):417 – 431, September 2002.
181
gr11-5
[2026] L. Grafakos. Multilinear harmonic analysis. In Nonlinear analysis,
function spaces and applications. Vol. 9 (NAFSA 9) Proceedings of
the 9th International School held in Trest, September 11-17, 2010,
page 33, 2011.
grhe14
[2027] L. Grafakos and D. He. Multilinear Calderon-Zygmund operators on
Hardy spaces, II. J. Math. Anal. Appl., (0):–, 2014.
grliya09
[2028] L. Grafakos, L. Liu, and D. Yang. Radial maximal function characterizations for Hardy spaces on RD-spaces. Bull. Soc. Math. France,
137(2):225–251, 2009.
grmito10
[2029] L. Grafakos, A. Miyachi, and N. Tomita. On multilinear Fourier
multipliers of limited smootheness. to appear, page 22, 2010.
gr73
[2030] C. Graham. The Fourier transform is onto only when the group is
finite. Proc. Amer. Math. Soc., 38:365–366, 1973.
gr07-1
[2031] C. C. Graham. The support of pseudomeasures on R. Math. Proc.
Cambridge Philos. Soc., 142(1):149–152, 2007.
gr08-3
[2032] C. C. Graham. The support of tempered distributions. Math. Proc.
Cambridge Philos. Soc., 144(2):495–498, 2008.
grko09
[2033] A. Gramfort and M. Kowalski. Improving M/EEG source localization
with an inter-condition sparse prior. pages 141–144, Paris, France,
Jun. 2009.
gr84-1
[2034] B. Gramsch. Relative Inversion in der St¨orungstheorie von Operatoren
und Ψ-Algebren. Math. Ann., 269(1):27–71, 1984.
gr92-5
[2035] A. Granville. Zaphod Beeblebrox’s brain and the fifty-ninth row of
Pascal’s triangle. Amer. Math. Monthly, 99(4):318–331, 1992.
gr05-2
[2036] A. Granville. It is easy to determine whether a given integer is prime.
Bull. Amer. Math. Soc. (N.S.), 42(1):3–38, 2005.
gr08-4
[2037] A. Granville. Prime number patterns.
115(4):279–296, 2008.
gr10
Amer. Math. Monthly,
[2038] A. Granville. Different approaches to the distribution of primes. Milan
J. Math., 78(1):65–84, 2010.
182
gr95
[2039] A. Graps. An introduction to wavelets. IEEE Comput. Science and
Engineering, 2(2):50–61, 1995.
gr93-4
[2040] G. Gr¨atzer. Math into TeX. A simple introduction to AM S- LATeX.
Birkh¨auser, 1993.
gr99-1
[2041] G. Gr¨atzer. First steps in LaTeX. Boston, MA: Birkh¨auser. New
York, 1999.
grkorosh13
[2042] N. Gravin, M. Kolountzakis, S. Robins, and D. Shiryaev. Structure results for multiple tilings in 3D. Discrete Comput. Geom., 50(4):1033–
1050, 2013.
gr11-4
[2043] J. Grcar. How ordinary elimination became Gaussian elimination.
Historia Math., 38(2):163–218, 2011.
gr11-3
[2044] J. Grcar. Mathematicians of Gaussian elimination. Notices Amer.
Math. Soc., 58(6):782–792, 2011.
gr12-1
[2045] U. Grenander. A Calculus of Ideas A mathematical Study of Human
Thought. Hackensack, NJ: World Scientific. xv, 2012.
grle14-1
[2046] S. Grepstad and N. Lev. Multi-tiling and Riesz bases. Adv. Math.,
252:1–6, 2014.
grle14
[2047] S. Grepstad and N. Lev. Universal sampling, quasicrystals and
bounded remainder sets. C. R. Math. Acad. Sci. Paris, 352(7-8):633–
638, 2014.
gr76-4
[2048] W. Greub. Lineare Algebra Korr Nachdruck Der 1 Aufl. Springer,
1976.
gr81-2
[2049] T. Greville. Moving-weighted-average smoothing extended to the extremities of the data. III. Stability and optimal properties. J. Approximation Theory, 33:43–58, 1981.
badegrmaro02
[2050] R. Gribonval, E. Bacry, S. Mallat, P. Depalle, and X. Rodet. Analysis
of sound signals with high resolution matching pursuit. In TimeFrequency and Time-Scale Analysis, 1996., Proceedings of the IEEESP International Symposium on, pages 125–128, Paris , France, 2002.
183
grni13
[2051] R. Gribonval and M. Nielsen. The restricted isometry property meets
nonlinear approximation with redundant frames. J. Approx. Theory,
165(1):1–19, 2013.
gr11-7
[2052] R. Griesmaier. Multi-frequency orthogonality sampling for inverse obstacle scattering problems. Inverse Problems, 27(8):Article ID 085005,
23p., 2011.
gr11-6
[2053] R. Grigorchuk. Milnor’s Problem on the Growth of Groups and its
Consequences. Arxiv preprint arXiv:1111.0512, 2011.
grpa06
[2054] R. Grigorchuk and I. Pak. Groups of intermediate growth: an introduction for beginners. Arxiv preprint math.GR/0607384, 78, 2006.
gr96-2
[2055] D. R. Grigore. The projective unitary irreducible representations of
the Galilei group in 1+2 dimensions. J. Math. Phys., 37(1):460–473,
1996.
07
p
[2056] M. Grigorian. Quasiuniversal in l[0,1]
orthogonal series. 3(2):139–150,
2007.
grpa11
[2057] R. Grimaldi and P. Pansu. Bounded geometry, growth and topology.
J. Math. Pures Appl. (9), 95(1):85–98, 2011.
gr93-5
[2058] G. Gripenberg. Wavelet bases in Lp (R). Studia Math., 106(2):175–
187, 1993.
gr66
[2059] P. Grisvard. Commutativite de deux foncteurs d’interpolation et applications. J. Math. Pures Appl. (9), 45:207–290, 1966.
gr85-4
[2060] P. Grisvard. Elliptic Problems in Nonsmooth Domains, volume 24 of
Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.
gr07-3
[2061] K. Gr¨ochenig. Wiener’s Lemma: Theme and variations. Short course
at summer school on ’Harmonic Analysis, Wavelets, and Image Processing’, September 2007.
gr09-3
[2062] K. Gr¨ochenig. Representation and approximation of pseudodifferential
operators by sums of Gabor multipliers. to appear in Appl. Anal.,
page 16, 2009.
184
gr11-1
[2063] K. Gr¨ochenig. Multivariate Gabor frames and sampling of entire functions of several variables. Appl. Comput. Harmon. Anal., 31(2):218–
227, September 2011.
grma11
[2064] K. Gr¨ochenig and E. Malinnikova. Phase space localization of Riesz
bases for L2 (Rd ). arXiv preprint arXiv:1102.3097, 2011.
grma13
[2065] K. Gr¨ochenig and E. Malinnikova. Phase space localization of Riesz
bases for l2 (Rd ). Rev. Mat. Iberoam., 29(1):115–134, 2013.
grorro15
[2066] K. Gr¨ochenig, J. Ortega Cerd`a, and J. L. Romero. Deformation of
Gabor systems. Adv. Math., To appear, 2015.
grpa14
[2067] K. Gr¨ochenig and E. Pauwels. Uniqueness and reconstruction theorems for pseudodifferential operators with a bandlimited KohnNirenberg symbol. Adv. Comput. Math., 40:49–63, 2014.
grrounve14
[2068] K. Gr¨ochenig, J. L. Romero, J. Unnikrishnan, and M. Vetterli. On
minimal trajectories for mobile sampling of bandlimited fields. Appl.
Comput. Harmon. Anal., To appear., 2014.
grst13
[2069] K. Gr¨ochenig and J. St¨ockler. Gabor frames and totally positive functions. Duke Math. J., 162(6):1003–1031, 2013.
grto13
[2070] K. Gr¨ochenig and J. Toft. The range of localization operators and
lifting theorems for modulation and Bargmann-Fock spaces. Trans.
Amer. Math. Soc., 365:4475–4496, 2013.
gr11-8
[2071] P. Grohs. Continuous shearlet frames and resolution of the wavefront
set. Monatsh. Math., 164(4):393–426, 2011.
gr11
[2072] P. Grohs. Continuous shearlet tight frames. J. Fourier Anal. Appl.,
17(3):506–518, 2011.
gr12
[2073] P. Grohs. Ridgelet-type frame decompositions for Sobolev spaces related to linear transport. J. Fourier Anal. Appl., 18(2):309–325, 2012.
gr12-2
[2074] P. Grohs. Shearlets and microlocal analysis. In Shearlets. Multiscale
analysis for multivariate data., pages 39–67. 2012.
gr12-3
[2075] P. Grohs. Tree approximation with anisotropic decompositions. Appl.
Comput. Harmon. Anal., 33(1):44 – 57, 2012.
185
gr13
[2076] P. Grohs. Bandlimited shearlet-type frames with nice duals. J. Comput. Appl. Math., 243:139–151, 2013.
gr13-2
[2077] P. Grohs. Intrinsic localization of anisotropic frames. Appl. Comput.
Harmon. Anal., 35(2):264–283, 2013.
gr13-1
[2078] P. Grohs. Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal., 33(3):849–874, 2013.
grku14
[2079] P. Grohs and G. Kutyniok. Parabolic molecules. Found. Comput.
Math., 14(2):299–337, 2014.
grvi14
[2080] P. Grohs and S. Vigogna. Intrinsic localization of anisotropic frames
II: α-molecules. ArXiv e-prints, mar 2014.
gr81-1
[2081] M. Gromov. Groups of polynomial growth and expanding maps. Publications Math’ematiques de l’IH’ES, 53(1):53–78, 1981.
gr93-3
[2082] M. Gromov. Asymptotic invariants of infinite groups. In Geometric
group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc.
Lecture Note Ser., pages 1–295. Cambridge Univ. Press, Cambridge,
1993.
bagrkapase06
[2083] M. Gromov, M. Katz, P. Pansu, S. Bates, and S. Semmes. Metric structures for Riemannian and non-Riemannian spaces. Modern
Birkhuser Classics. Birkh¨auser, 2006.
grpa91
[2084] M. Gromov and P. Pansu. Rigidity of lattices: an introduction. In
Geometric topology: recent developments (Montecatini Terme, 1990),
volume 1504 of Lecture Notes in Math., pages 39–137. Springer, Berlin,
1991.
grwe95
[2085] A. Gross and A. Weron. On measure-preserving transformations
and doubly stationary symmetric stable processes. Studia Math.,
114(3):275–287, 1995.
grkrku14
[2086] D. Gross, F. Krahmer, and R. Kueng. Improved recovery guarantees
for phase retrieval from coded diffraction patterns. preprint, 2014.
grkrku13
[2087] D. Gross, F. Krahmer, and R. Kueng. A partial derandomization of
PhaseLift using spherical designs. J. Fourier Anal. Appl., to appear.
186
gr75-1
[2088] L. Gross. Logarithmic Sobolev inequalities.
97(4):1061–1083, 1975.
grpo93
[2089] R. Grossman and H. Poor. Wavelet transforms associated with finite
cyclic groups. IEEE Trans. Inform. Theory, 39:1157–1166, 1993.
grsi01
[2090] S. M. Grudsky and B. Silbermann. Approximate identities, almostperiodic functions and Toeplitz operators. Acta Appl. Math., 65(13):237–271, 2001.
grva02
[2091] S. M. Grudsky and N. Vasilevski. Toeplitz operators on the Fock
space: Radial component effects. Integr. Equ. Oper. Theory, 44(1):10–
37, 2002.
dogrmapa09
[2092] M. Grundland, J. Patera, Z. Masakova, and N. A. Dodgson. Image
Sampling with Quasicrystals. Symmetry, Integrability and Geometry:
Methods and Applications, 5(075):23pages, 2009.
gr99-2
[2093] A. Grybos. Fractal Image Compression. Master’s thesis, Jagiellonian
University in Krakow, 1999.
grke11
[2094] W. Gryc and T. Kemp. Duality in Segal-Bargmann spaces. J. Funct.
Anal., 261(6):1591 – 1623, 2011.
guzh97
[2095] C. Gu and D. Zheng. The semi-commutator of Toeplitz operators on
the bidisc. J. Operator Theory, 38:173–193, 1997.
gulushto02
[2096] J. Gu, H. Shu, C. Toumoulin, and L. Luo. A novel algorithm for fast
computation of Zernike moments. Pattern Recognition, 35(12):2905–
2911, 2002.
eigu95
[2097] M. Gu and S. Eisenstat. A divide-and-conquer algorithm for the
symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl.,
16(1):172–191, 1995.
guha00
[2098] Q. Gu and D. Han. On multiresolution analysis (MRA) wavelets in
Rn . J. Fourier Anal. Appl., 6(4):437–447, 2000.
guha09-3
[2099] Q. Gu and D. Han. Wavelet frames for (not necessarily reducing)
affine subspaces II: The structure of affine subspaces. Appl. Comput.
Harmon. Anal., 27(1):47–54, 2009.
187
Amer. J. Math.,
guxixi09-2
[2100] X. Guanlei, W. Xiaotong, and X. Xiaogang. Generalized entropic
uncertainty principle on fractional Fourier transform. Signal Process.,
89(12):2692–2697, 2009.
guxixi09-1
[2101] X. Guanlei, W. Xiaotong, and X. Xiaogang. Uncertainty inequalities
for linear canonical transform. Signal Processing, IET, 3(5):392–402,
2009.
guth13
[2102] A. Gudadhe and P. Thakare. Fractional Shift Invariant System in
the Linear Canonical Transform Domain. International Journal of
Engineering, 2(12), 2013.
gu85
[2103] D. Guedj. Nicholas Bourbaki, collective mathematician. An interview
with Claude Chevalley. 7(2):18–22, 1985.
gu00-1
[2104] E. Guentner. Wick quantization and asymptotic morphisms. Houston
J. Math., 26:361–375, 2000.
gu03
[2105] E. Guentner. Berezin quantization and K-homology. Communications
in mathematical physics, 240(3):423–446, 2003.
guhitr00
[2106] E. Guentner, N. Higson, and J. Trout. Equivariant E-theory for C ∗ algebras. Mem. Amer. Math. Soc., 148(703):viii+86, 2000.
gu10
[2107] J. Guerci. Cognitive radar: a knowledge-aided fully adaptive approach. In Radar Conference, 2010 IEEE, pages 1365–1370, 2010.
gulu05
[2108] N. Guglielmi and C. Lubich. Numerical periodic orbits of neutral delay
differential equations. Discrete Contin. Dyn. Syst., 13(4):1057–1067,
2005.
gulu12
[2109] N. Guglielmi and C. Lubich. Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking. SIAM J.
Numer. Anal., 50(2):977–981, 2012.
guis06
[2110] D. Guido and T. Isola. The problem of completeness for GromovHausdorff metrics on C ∗ -algebras. J. Funct. Anal., 233(1):173–205,
2006.
guis11
[2111] M. Guillemard and A. Iske. Curvature analysis of frequency modulated manifolds in dimensionality reduction. Calcolo, 48(1):107–125,
2011.
188
gust80
[2112] V. Guillemin and S. Sternberg. The metaplectic representation, Weyl
operators and spectral theory. In Differential geometrical methods
in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca,
1979), volume 836 of Lecture Notes in Math., pages 420–431. Springer,
Berlin, 1980.
gust83
[2113] V. Guillemin and S. Sternberg. The Frobenius reciprocity theorem
from a symplectic point of view. In Nonlinear partial differential operators and quantization procedures (Clausthal, 1981), volume 1037 of
Lecture Notes in Math., pages 242–256. Springer, Berlin, 1983.
gust86
[2114] V. Guillemin and S. Sternberg. A generalization of the notion of
polarization. Ann. Global Anal. Geom., 4(3):327–347, 1986.
gust05
[2115] V. Guillemin and S. Sternberg. The moment map revisited. J. Differential Geom., 69(1):137–162, 2005.
gu70-1
[2116] F. Gulick. Actions of functions in Banach algebras. Pacific J. Math.,
34:657–673, 1970.
gugu76
[2117] F. Gulick and D. Gulick. Boundedness for spaces of continuous functions. Rocky Mountain J. Math., 6:247–263, 1976.
guliro70-1
[2118] S. Gulick, T. Liu, and A. Rooij. Group algebra modules. III. Trans.
Amer. Math. Soc., 152:561–579, 1970.
guliro70
[2119] S. L. Gulick, T. Liu, and A. C. M. van Rooji. Group Algebra Modules.
IV. Trans. Amer. Math. Soc., 152(2):581–596, 1970.
gu12
[2120] V. S. Guliyev. Generalized weighted Morrey spaces and higher order
commutators of sublinear operators. Eurasian Math. J., 3(3):33–61,
2012.
gu13
[2121] V. S. Guliyev. Generalized local Morrey spaces and fractional integral
operators with rough kernel. J. Math. Sci. (N. Y.), 193(2):211–227,
2013.
gunese05
[2122] H. Gunawan, O. Neswan, and W. Setya Budhi. A Formula for Angles
between Subspaces of Inner Product Spaces. Contributions to Algebra
and Geometry, 46(2):311–320, 2005.
189
gulaposayi10
¨ Yilmaz. Sobolev
[2123] C. G¨
unt¨
urk, M. Lammers, A. Powell, R. Saab, and O.
duals for random frames and sigma-delta quantization of compressed
sensing measurements. preprint, 2010.
gulaposayi13
¨ Yilmaz. Sobolev
[2124] C. G¨
unt¨
urk, M. Lammers, A. Powell, R. Saab, and O.
duals for random frames and σδ quantization of compressed sensing
measurements. preprint, 13(1):1–36, 2013.
gula08-1
[2125] K. Guo and D. Labate. Sparse shearlet representation of Fourier
integral operators. Electron. Res. Announc. Math. Sci., 14:7–19, 2008.
gula10
[2126] K. Guo and D. Labate. Optimally sparse 3D approximations using
shearlet representations. Electron. Res. Announc. Math. Sci., 17:125–
137, 2010.
gula13-1
[2127] K. Guo and D. Labate. Optimal recovery of 3D X-ray tomographic
data via shearlet decomposition. Adv. Comput. Math., 39(2):227–255,
2013.
gula13
[2128] K. Guo and D. Labate. The construction of smooth Parseval frames
of shearlets. Math. Model. Nat. Phenom., 8(1):82–105, 2013.
fagu08
[2129] Q. Guo and H.-Y. Fan. Husimi operator for describing probability
distribution of electron states in uniform magnetic field studied by
virtue of entangled state representation. Internat. J. Theoret. Phys.,
47(12):3234–3247, 2008.
gumowo10
[2130] Q. Guo, S. Molahajloo, and M. Wong. Phases of modified Stockwell
transforms and instantaneous frequencies. Journal of Mathematical
Physics, 51:052101, 2010.
guji12
[2131] Y. Guo and Y. Jiang. Weighted Herz spaces and regularity results.
J. Funct. Spaces Appl., 2012(Article ID 283730):13, 2012.
gukaru86
[2132] M. Gupta, P. Kamthan, and W. Ruckle. Symmetric sequence spaces,
bases, and applications. J. Math. Anal. Appl., 113:210–229, 1986.
guha10
[2133] S. Gurevich and R. Hadani. Notes on canonical quantization of sym¨ ur (ed.) et al.,
plectic vector spaces over finite fields. Ceyhan, Ozg¨
Arithmetic and geometry around quantization. Basel: Birkh¨auser.
Progress in Mathematics 279, 233-251 (2010)., 2010.
190
guha12
[2134] S. Gurevich and R. Hadani. The Weil representation in characteristic
two. Adv. Math., 230(3):894–926, 2012.
guhaho10
[2135] S. Gurevich, R. Hadani, and R. Howe. Quadratic reciprocity and the
sign of the Gauss sum via the finite Weil representation. Internat.
Math. Res. Notices, 2010(19):3729–3745, 2010.
gu00-2
[2136] P. Gurka. On embeddings of logarithmic Bessel potential and Sobolevtype spaces. In Function spaces, differential operators and nonlinear
analysis. Proceedings of the conference, FSDONA-99, Sy¨ote, Finland,
June 10–16, 1999, pages 87–98. Prague: Mathematical Institute of
the Academy of Sciences of the Czech Republic, 2000.
guumva07
[2137] V. Guruswani, C. Umans, and S. Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes. In IEEE
Conference on Computational Complexity, pages 237–246, 2007.
gupe77
[2138] J. Gustavsson and J. Peetre. Interpolation of Orlicz spaces. Studia
Math., 60(1):33–59, 1977.
baceguoz08
[2139] H. Guven, H. Ozaktas, A. Cetin, and B. Barshan. Signal recovery from
partial fractional Fourier domain information and its applications.
Signal Processing, IET, 2(1):15 –25, march 2008.
haka64
[2140] R. Haag and D. Kastler. An algebraic approach to quantum field
theory. J.Math.Phys., 5:848–861, 1964.
ha79-2
[2141] U. Haagerup. Lp -spaces associated with an arbitrary von Neumann
algebra. Algebres d’operateurs et leurs applications en physique mathematique, Colloq. int. CNRS No.274, Marseille 1977, 175-184 (1979).,
1979.
har95
[2142] U. Haagerup and M. Rordam. Perturbations of the rotation C ∗ algebras and of the Heisenberg commutation relation. Duke Math.
J., 77(3):627–656, 1995.
ha33
[2143] A. Haar. Der Massbegriff in der Theorie der kontinuierlichen Gruppen.
Ann. of Math., 34(1):147–169, 1933.
haso87
[2144] H. Haario and E. Somersalo. The Backus-Gilbert method revisited:
Background, implementation and examples. Numer. Funct. Anal. Optim., 9:917–943, 1987.
191
ha06-1
[2145] M. Haase. The Functional Calculus for Sectorial Operators. Basel:
Birkh¨auser, 2006.
ha13-1
[2146] M. Haase. The functional calculus approach to operator cosine functions. In Recent trends in analysis. Proceedings of the conference
in honor of Nikolai Nikolski on the occasion of his 70th birthday,
Bordeaux, France, August 31 – September 2, 2011, pages 123–147.
Bucharest: The Theta Foundation, 2013.
dahaseze09
[2147] J. Haber, F. Zeilfelder, O. Davydov, and H. Seidel. Smooth approximation and rendering of large scattered data sets. In Visualization,
2001. VIS’01. Proceedings, pages 341–571, 2009.
hasi11-1
[2148] R. Hadani and A. Singer. Representation theoretic patterns in three
dimensional cryo-electron microscopy. I: The intrinsic reconstitution
algorithm. Ann. Math., 174(2):1219–1241, 2011.
hasi11-2
[2149] R. Hadani and A. Singer. Representation theoretic patterns in threedimensional cryo-electron microscopy. II: The class averaging problem.
Annals of Mathematics, 11(5):589–616, 2011.
ha78-2
[2150] G. Haemmerlin. Numerische Mathematik I. Bibliographisches Institut, 1978.
hasj08
[2151] M. Hager and J. Sj¨ostrand. Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann., 342(1):177–243, 2008.
haru90
[2152] T. Hagerup and C. R¨
ub. A guided tour of Chernoff bounds. Inform.
Process. Lett., 33(6):305–308, 1990.
chha11
[2153] L. Hai and Y. Chuping. Two-dimensional multiscale windowed Fourier
transform based on two-dimensional wavelet transform for fringe pattern demodulation. Optics & Laser Technology, 43(1), 201172-81.
ha13
[2154] A. Haimi. Polyanalytic Bergman kernels. PhD thesis, 2013.
hahe11
[2155] A. Haimi and H. Hedenmalm. The polyanalytic Ginibre ensembles.
Submitted on 15 Jun 2011, preprint:31, 2011.
hahe14
[2156] A. Haimi and H. Hedenmalm. Asymptotic expansion of polyanalytic
Bergman kernels. J. Funct. Anal., 267(12):4567–4806, December 2014.
192
bechfahape10
[2157] N. Hajlaoui, C. Chaux, G. Perrin, F. Falzon, and A. Benazza
Benyahia. Satellite image restoration in the context of a spatially
varying point spread function. JOSA A, 27(6):1473–1481, 2010.
ha03-2
[2158] P. Hajlasz. A new characterization of the Sobolev space. Studia Math.,
159(2):263–275, 2003.
hali10-2
[2159] P. Hajlasz and Z. Liu. A compact embedding of a Sobolev space is
equivalent to an embedding into a better space. Proc. Amer. Math.
Soc., 138(9):3257–3266, 2010.
haki10
[2160] H. Hakkarainen and J. Kinnunen. The BV-capacity in metric spaces.
Manuscripta Math., 132(1-2):51–73, 2010.
hanu14
[2161] H. Hakkarainen and M. Nuortio. The variable exponent BV-Sobolev
capacity. Rev. Mat. Complut., 27(1):13–40, 2014.
haheli11
[2162] J. Haldar, D. Hernando, and Z. Liang. Compressed-sensing MRI with
random encoding. IEEE Trans. Med. Imaging, 30(4):893–903, 2011.
anhata13
[2163] K. Halder, M. Tahtali, and S. Anavatti. An improved restoration
method for non-uniformly warped images using optical flow technique.
In Digital Image Computing: Techniques and Applications (DICTA),
2013 International Conference on, pages 1–6, 2013.
hayizh08
[2164] E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for 1 minimization: methodology and convergence. SIAM J. Optim.,
19(3):1107–1130, 2008.
hayizh10
[2165] E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation applied to
compressed sensing: implementation and numerical experiments. J.
Comput. Math., 28(2):170–194, 2010.
ha12-2
[2166] T. Hales. Dense Sphere packings A blueprint for formal proofs. London Mathematical Society Lecture Note Series 400. Cambridge: Cambridge University Press. xiv, 271 p., 2012.
hama95-1
[2167] G. Haley and B. Manjunath. Rotation-invariant texture classification
using modified Gabor filters. In Image Processing, 1995. Proceedings.,
International Conference on, volume 1, pages 262 –265, Washington,
DC , USA, oct 1995.
193
ha08-2
[2168] B. Hall. Berezin-Toeplitz quantization on Lie groups. J. Funct. Anal.,
255(9):2488–2506, 2008.
ha92
[2169] K. Hallatschek. Fouriertransform on sparse grids with hierarchical
bases. (Fouriertransformation auf d¨
unnen Gittern mit hierarchischen
Basen.). Numer. Math., 63(1):83–97, 1992.
ha14
[2170] K. Hallatschek. An ultra-fast smoothing algorithm for timefrequency
transforms based on Gabor functions. Appl. Comput. Harmon. Anal.,
36(1):158 – 166, 2014.
ha99
[2171] G. Haller. Chaos Near Resonance. Applied Mathematical Sciences.
138. New York, NY: Springer. xvi, 1999.
ha63
[2172] P. Halmos. What does the spectral theorem say?
Monthly, 70:241–247, 1963.
Amer. Math.
ha11-1
[2173] U. Hammarqvist. Audio editing in the time-frequency domain using
the Gabor Wavelet Transform, 2011.
haha64
[2174] J. Hammersley and D. Handscomb. Monte Carlo Methods. London:
Methuen & Co Ltd, 1964.
ha80-1
[2175] R. Hamming. The unreasonable effectiveness of mathematics. Amer.
Math. Monthly, 87(2):81–90, 1980.
grhava11
[2176] D. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on
graphs via spectral graph theory. Appl. Comput. Harmon. Anal.,
30(2):129–150, 2011.
hahotowi12
[2177] M. Hampejs, N. Holighaus, L. T´oth, and C. Wiesmeyr. On the subgroups of the group Zm ×Zn . ArXiv e-prints, (arXiv:1211.1797), 2012.
hato13
[2178] M. Hampejs and L. T´oth. On the subgroups of finite Abelian groups
of rank three. Annales Univ. Sci. Budapest., Sect. Comp., 39:111–124,
2013.
ha10-2
[2179] B. Han. Pairs of frequency-based nonhomogeneous dual wavelet
frames in the distribution space. Appl. Comput. Harmon. Anal.,
29(3):330–353, 2010.
194
ha12-1
[2180] B. Han. Nonhomogeneous wavelet systems in high dimensions. Appl.
Comput. Harmon. Anal., 32(2):169 – 196, March 2012.
hakwpa06
[2181] B. Han, S.-G. Kwon, and S. Park. Riesz multiwavelet bases. Appl.
Comput. Harmon. Anal., 20(2):161–183, 2006.
ha09-7
[2182] D. Han. Dilations and completions for Gabor systems. J. Fourier
Anal. Appl., 15(2):201–217, 2009.
hajilamo08
[2183] D. Han, W. Jing, D. Larson, and R. Mohapatra. Riesz bases and their
dual modular frames in Hilbert C ∗ -modules. J. Math. Anal. Appl.,
343(1):246–256, 2008.
hala08
[2184] D. Han and D. Larson. Frame duality properties for projective unitary
representations. Bull. Lond. Math. Soc., 40(4):685–695, 2008.
ha07-3
[2185] F. Han. Hexagonal multicarrier modulation: a robust transmission
scheme for time-frequency dispersive channels. IEEE Trans. Signal
Process., 55(5):1955–1961, 2007.
hama07
[2186] J. Han and K.-K. Ma. Rotation-invariant and scale-invariant Gabor
features for texture image retrieval. Image and Vision Computing,
25(9):1474 – 1481, 2007.
halelisu04
[2187] K.-Y. Han, S.-W. Lee, J.-S. Lim, and K.-M. Sung. Channel estimation
for OFDM with fast fading channels by modified Kalman filter. IEEE
Trans. Consumer Electronics, 50:443–449, May 2004.
guhawa11
[2188] L. Han, B. Wang, and B. Guo. Inviscid limit for the derivative Ginzburg-Landau equation with small data in modulation and
Sobolev spaces. Appl. Comput. Harmon. Anal., In Press, Corrected
Proof:–, 2011.
ha97-4
[2189] Y. Han. Plancherel-P´olya type inequality and its applications. Approx.
Theory Appl., 13(3):104–111, 1997.
ha09-6
[2190] Y. Han. New characterizations of inhomogeneous Besov and TriebelLizorkin spaces over spaces of homogeneous type. Acta Math. Sin.
(Engl. Ser.), 25(11):1787–1804, 2009.
195
hamuya08
[2191] Y. Han, D. M¨
uller, and D. Yang. A theory of Besov and TriebelLizorkin spaces on metric measure spaces modeled on CarnotCaratheodory spaces. 2008.
haho10
[2192] H. Hanche Olsen and H. Holden. The Kolmogorov-Riesz compactness
theorem. Exposition. Math., 28(4):385–394, 2010.
ha11
[2193] A. C. Hansen.
On the solvability complexity index, the npseudospectrum and approximations of spectra of operators. J. Amer.
Math. Soc., 24(1):81–124, 2011.
ha10-3
[2194] C. Hansen. Discrete inverse problems: Insight and algorithms, volume 7 of Fundamentals of Algorithms. Society for Industrial and
Applied Mathematics (SIAM), 2010.
hape82
[2195] F. Hansen and G. K. Pedersen. Jensen’s inequality for operators and
L¨owner’s theorem. Math. Ann., 258(3):229–241, 1982.
hape03
[2196] F. Hansen and G. K. Pedersen. Jensen’s operator inequality. Bull.
Lond. Math. Soc., 35(4):553–564, 2003.
hasc11
[2197] M. Hansen and C. Schwab. Analytic regularity and nonlinear approximation of a class of parametric, semilinear elliptic PDEs. preprint,
2011.
hasi11
[2198] M. Hansen and W. Sickel. Best m-term approximation and LizorkinTriebel spaces. J. Approx. Theory, 163(8):923 – 954, 2011.
hanaol06
[2199] P. Hansen, J. Nagy, and D. O’leary. Deblurring images: matrices,
spectra, and filtering. Siam, 2006.
ha94-1
[2200] P. C. Hansen. Regularization tools: A Matlab package for analysis
and solution of discrete ill-posed problems. Numer. Algorithms, 6(12):1–35, 1994.
hawr71
[2201] D. Hanson and F. Wright. A bound on tail probabilities for quadratic
forms in independent random variables. Ann. Math. Statist., 42:1079–
1083, 1971.
ha79-1
[2202] K. Hansson. Imbedding theorems of Sobolev type in potential theory.
Math. Scand., 45:77–102, 1979.
196
hasa05
[2203] M. Hansson and J. Sandberg. Multiple windows for estimation of locally stationary transients in the electroencephalogram. In M. Hansson and J. Sandberg, editors, Annual International Conference of the
IEEE Engineering in Medicine and Biology - Proceedings, volume 7
VOLS, pages 7293–7296, 2005.
chhakemu12
[2204] L. Hanzo, M. Muenster, B. Choi, and T. Keller. OFDM Transmission over Wideband Channels. OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting, pages
75–116, 2012.
hasavi07
[2205] E. Harboure, O. Salinas, and B. Viviani. A look at BMOϕ (ω) through
Carleson measures. J. Fourier Anal. Appl., 13(3):267–284, 2007.
hahala11
[2206] P. Harjulehto, P. H¨ast¨o, and V. Latvala. Boundedness of solutions of
the non-uniformly convex, non-standard growth Laplacian. Complex
Variables and Elliptic Equations, 56(7-9):643–657, 2011.
hamawi11
[2207] Z. Harmany, R. Marcia, and R. Willett. Spatio-temporal Compressed
Sensing with Coded Apertures and Keyed Exposures. preprint, 2011.
ha72
[2208] H. Harmuth. Transmission of Information By Orthogonal Functions
2nd Ed. Berlin-Heidelberg-New York: Springer-Verlag. XII, 393 p.
with 210 fig., 1972.
hasc09
[2209] D. Haroske and C. Schneider. Besov spaces with positive smoothness on n , embeddings and growth envelopes. J. Approx. Theory,
161(2):723–747, 2009.
hask14
[2210] D. Haroske and L. Skrzypczak. On Sobolev and Franke-Jawerth
embeddings of smoothness Morrey spaces. Rev. Mat. Complut.,
27(2):541–573, 2014.
ha02-2
[2211] F. Harris. Comments on “Ewald summation technique for onedimensional charge distributions”.
Comput. Phys. Commun.,
146(2):271–273, 2002.
ha93
[2212] R. Harrison. Phase problem in crystallography. JOSA A, 10(5):1046–
1055, 1993.
197
ha12-3
[2213] J. Hart. Bilinear square functions and vector-valued Calder´onZygmund operators. J. Fourier Anal. Appl., 18(6):1291–1313, 2012.
ha14-2
[2214] J. Hart. A new proof of the bilinear T (1) Theorem. Proc. Amer.
Math. Soc., 142(9):3169–3181, 2014.
hazi04
[2215] R. Hartley and A. Zisserman. Multiple view geometry in computer
vision. With foreword by Olivier Faugeras. 2nd edition. Cambridge:
Cambridge University Press, 2004.
hainkapr12-1
[2216] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal
sparse Fourier transform. In STOC, 2012.
hainkapr12
[2217] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical
algorithm for sparse Fourier transform. In SODA, 2012.
ha07-2
[2218] H. Hassanpour. Improved SVD-based technique for enhancing the
time-frequency representation of signals. IEEE International Symposium on Circuits and Systems, pages 1819 – 1822, May 2007.
bohame02
[2219] H. Hassanpour, M. Mesbah, and B. Boashash. SVD-based technique
for enhancing the time-frequency representation of signals. pages 113–
116, December 2002.
haka03
[2220] B. Hasselblatt and A. Katok. A First Course in Dynamics with a
Panorama of Recent Developments. Cambridge: Cambridge University Press. x, 424 p., 2003.
ha14-1
[2221] B. Hauchecorne. Les fonctions a` variation born´ee. Quadrature, 91:15–
17, 2014.
ha09-5
[2222] J. D. Haupt. New theory and methods in adaptive and compressive
sampling for sparse discovery. PhD thesis, The University of Wisconsin - Madison, August 2009.
bacahano09
[2223] J. D. Haupt, R. G. Baranuik, R. M. Castro, and R. D. Nowak. Compressive distilled sensing: Sparse recovery using adaptivity in compressive measurements. In Proc. 43rd Asilomar Conf. Signals, Systems,
and Computers, pages 1551 – 1555, Pacific Grove, CA, November
2009.
198
cahano09
[2224] J. D. Haupt, R. M. Castro, and R. D. Nowak. Distilled sensing: Selective sampling for sparse signal recovery. In Proc. 12th International
Conference on Artificial Intelligence and Statistics (AISTATS), pages
216–223, Clearwater Beach, Florida, April 2009.
cahano10
[2225] J. D. Haupt, R. M. Castro, and R. D. Nowak. Distilled sensing:
Adaptive sampling for sparse detection and estimation. Arxiv preprint
arXiv:1001.5311, 2010.
cahano10-1
[2226] J. D. Haupt, R. M. Castro, and R. D. Nowak. Improved bounds for
sparse recovery from adaptive measurements. In IEEE International
Symposium on Information Theory Proceedings (ISIT), pages 1563–
1567, Austin, TX, June 2010.
hano10
[2227] J. D. Haupt and R. D. Nowak. Adaptive sensing for sparse recovery.
preprint, 2010.
halu11
[2228] F. Haußer and Y. Luchko. Mathematische Modellierung mit MATLAB
- Eine praxisorientierte Einf¨
uhrung. Spektrum Akademischer Verlag
Heidelberg 2011, 2011.
ha99-01
[2229] P. Hawkes. Advances in Imaging and Electron Physics. volume 106,
page 353. Academic Press, 1999.
ha06
[2230] S. Haykin. Cognitive radar: a way of the future. Signal Processing
Magazine, IEEE, 23(1):30–40, 2006.
coha00
[2231] P. Haynes and M. Cote. Parallel fast Fourier transforms for electronic
structure calculations. Comput. Phys. Commun., 130(1-2):130–136,
2000.
heyu12
[2232] B. He and X. Yuan. Convergence analysis of primal-dual algorithms
for a saddle-point problem: from contraction perspective. SIAM J.
Imaging Sci., 5(1):119–149, 2012.
heli10
[2233] T.-X. He and E.-B. Lin. Wavelet Analysis and its Applications. Numerical Methods, Computer Graphics and Economics. Hackensack,
NJ: World Scientific. 250 p., 2010.
hela11
[2234] X.-G. He and K.-S. Lau. On the Weyl-Heisenberg frames generated
by simple functions. J. Funct. Anal., 261(4):1010–1027, 2011.
199
hekoro04
[2235] J. Healy, P. Kostelec, and D. Rockmore. Towards safe and effective
high-order Legendre transforms with applications to FFTs for the 2sphere. Adv. Comput. Math., 21(1-2):59–105, 2004.
hehekokororo04
[2236] J. Healy, P. Kostelec, D. Rockmore, J. Healy, P. Kostelec, and
D. Rockmore. Towards safe and effective high-order Legendre transforms with applications to FFTs for the 2-sphere. Adv. Comput.
Math., 21(1-2):59–105, 2004.
hehesh08
[2237] J. J. Healy, B. M. Hennelly, and J. T. Sheridan. Additional sampling
criterion for the linear canonical transform. Opt. Lett., 33(22):2599–
2601, 2008.
hesh08
[2238] J. J. Healy and J. Sheridan. Cases where the linear canonical transform of a signal has compact support or is band-limited. Opt. Lett.,
33(3):228–230, February 2008.
hesh10
[2239] J. J. Healy and J. Sheridan. Fast linear canonical transforms. J. Opt.
Soc. Amer. A, 27(1):21–30, 2010.
hesh10-1
[2240] J. J. Healy and J. Sheridan. Reevaluation of the direct method of
calculating Fresnel and other linear canonical transforms. Opt. Lett.,
35(7):947–949, 2010.
he96-1
[2241] E. Hebey. Sobolev spaces on Riemannian manifolds. Lecture Notes in
Mathematics. 1635. Berlin: Springer. x, 116 p., 1996.
hemame05
[2242] W. Hebisch, G. Mauceri, and S. Meda. Spectral multipliers for subLaplacians with drift on Lie groups. Math. Z., 251(4):899–927, 2005.
heop87
[2243] G. Heckman and E. Opdam. Root systems and hypergeometric functions. I. Compos. Math., 64:329–352, 1987.
he12-1
[2244] H. Hedenmalm. Heisenberg’s uncertainty principle in the sense of
Beurling. J. Anal. Math., 118(2):691–702, 2012.
he12-2
[2245] H. Hedenmalm. The Beurling operator for the hyperbolic plane. Ann.
Acad. Sci. Fenn., Math., 37(1):3–18, 2012.
helise97
[2246] H. Hedenmalm, P. Lindqvist, and K. Seip. A Hilbert space of Dirichlet
series and systems of dilated functions in L2 (0, 1). Duke Math. J.,
86(1):1–37, 1997.
200
helise99
[2247] H. Hedenmalm, P. Lindqvist, and K. Seip. Addendum to: “A Hilbert
space Dirichlet series and systems of dilated functions in l2 (0, 1). Duke
Math. J., 99(1):175–178, 1999.
he69-1
[2248] J. Hedlund. Multipliers of H 1 and Hankel matrices. Proc. Amer.
Math. Soc., 22:20–23, 1969.
buhejo84
[2249] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history
of the fast fourier transform. ASSP Magazine, IEEE, 1(4):14 –21,
october 1984.
buhejo85
[2250] M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and the
history of the fast Fourier transform. Arch. Hist. Exact Sci., 34:265–
277, 1985.
hekotu07
[2251] T. Heikkinen, P. Koskela, and H. Tuominen. Sobolev-type spaces from
generalized Poincar´e inequalities. Studia Math., 181(1):1–16, 2007.
he08-1
[2252] C. Heil. The density theorem and the Homogeneous Approximation
Property for Gabor frames. In Representations, wavelets, and frames.
A celebration of the mathematical work of Lawrence W. Baggett, Appl.
Numer. Harmon. Anal., pages 71–102. Birkh¨auser, 2008.
he11
[2253] C. Heil. A Basis Theory Primer. Expanded ed. Applied and Numerical
Harmonic Analysis. Basel: Birkh¨auser, 2011.
hekoli09
[2254] C. Heil, Y. Koo, and J. Lim. Duals of frame sequences. Acta Appl.
Math., 107(1-3):75–90, 2009.
hemapa14
[2255] S. Heineken, E. Matusiak, and V. Paternostro. Perturbed frame sequences: canonical dual systems, approximate reconstructions and
applications. Int. J. Wavelets Multiresolut. Inf. Process., 12(2):19,
2014.
behemoza14
[2256] S. B. Heineken, P. Morillas, A. Benavente, and M. Zakowicz. Dual
fusion frames. Arch. Math. (Basel), 103(4):355–365, 2014.
he03-3
[2257] P. Heinlein. Discretizing continuous wavelet transforms using integrated wavelets. Appl. Comput. Harmon. Anal., 14(3):238–256, 2003.
201
drhesc03
[2258] P. Heinlein, J. Drexl, and W. Schneider. Integrated wavelets for enhancement of microcalcifications in digital mammography. Medical
Imaging, IEEE Transactions on, 22(3):402 –413, march 2003.
he01-1
[2259] J. Heinonen. Lectures on analysis on metric spaces. Springer Verlag,
2001.
hehowo10
[2260] T. Heinosaari, A. S. Holevo, and M. Wolf. The semigroup structure
of Gaussian channels. Quantum Inf. Comput., 10(7-8):619–635, 2010.
heklvi09
[2261] T. Heittola, A. Klapuri, and T. Virtanen. Musical instrument recognition in polyphonic audio using source-filter model for sound separation. In Proc. 10th International Society for Music Information
Retrieval Conference (ISMIR 2009), pages 327–332, 2009.
he12
[2262] J. Heitzer. Orthogonality and Approximation. From Raising a Perpendicular to the JPEG Format. From School Mathematics to Modern
Applications (Orthogonalit¨at und Approximation. Vom Lotf¨allen bis
zum JPEG-Format. Von der Schulmathematik zu Modernen Anwendungen). Wiesbaden: Springer Spektrum, 2012.
heti12-1
[2263] J. Heitzer and G. Tischel. Spiralen – ein Ph¨anomen an der
Schnittstelle von Kunst und Mathematik. Mitt. Math. Ges. Hamb.,
32:63–94, 2012.
he10-2
[2264] A. Y. Helemskii. Quantum Functional Analysis: Non-coordinate Approach, volume 56 of University Lecture Series. American Mathematical Society, December 2010.
he84-1
[2265] B. Helffer. Th’eorie Spectrale Pour des Op’erateurs Globalement Elliptiques. 1984.
he10-1
[2266] P. Hellekalek. A notion of diaphony based on p-adic arithmetic. Acta
Arith., 145(3):273–284, 2010.
he52-2
[2267] H. Helson. Spectral synthesis of bounded functions. Ark. Mat., 1:497–
502, 1952.
cehe12
[2268] T. Hemant and V. Cevher. Learning non-parametric basis independent models from point queries via low-rank methods. preprint, 2012.
202
hemo84
[2269] W. Hendee and C. Morgan. Magnetic resonance imaging Part I Physical principles. West J. Med., 141(4):491–500, 1984.
heorsovl13
[2270] D. Hendrik, B. Orsted, P. Somberg, and S. Vladimir. The Clifford
deformation of the Hermite semigroup. Symmetry, Integrability and
Geometry: Methods and Applications, 9:010–22, 2013.
hesh03
[2271] B. Hennelly and J. Sheridan. Optical image encryption by random
shifting in fractional Fourier domains. Opt. Lett., 28(4):269–271, Feb
2003.
hesh05
[2272] B. Hennelly and J. Sheridan. Fast numerical algorithm for the linear
canonical transform. JOSA A, 22(5):928–937, 2005.
hema07
[2273] D. Henrion and J. Malick. SDLS: a Matlab package for solving conic
least-squares problems. Arxiv preprint arXiv:0709.2556, 2007.
hena14
[2274] J. Herbert and V. Naibo. Bilinear pseudodifferential operators with
symbols in Besov spaces. J. Pseudo-Differ. Oper. Appl., 5(2):231–254,
2014.
hemc12
[2275] A.-K. Herbig and J. McNeal. A smoothing property of the Bergman
projection. Math. Ann., 354(2):427–449, 2012.
hemcst14
[2276] A.-K. Herbig, J. Mcneal, and E. Straube. Duality of holomorphic
function spaces and smoothing properties of the Bergman projection.
Trans. Amer. Math. Soc., 366(2):647–665, 2014.
frhe14
[2277] G. Herman and J. Frank. Computational Methods for ThreeDimensional Microscopy Reconstruction, 2014.
he04-2
[2278] M. Hermann. Numerik Gew¨ohnlicher Differentialgleichungen. Oldenbourg, 2004.
hesi07
[2279] E. Hernandez and H. Sikic. Schauder bases of integer translates. Appl.
Comput. Harmon. Anal., 23(2):259–262, 2007.
hesiwewi10-1
[2280] E. Hernandez, H. Sikic, G. Weiss, and E. Wilson. Cyclic subspaces
for unitary representations of LCA groups; generalized Zak transform.
Colloq. Math., 118(1):313–332, 2010.
203
hesiwewi10
[2281] E. Hernandez, H. Sikic, G. Weiss, and E. Wilson. On the properties of
the integer translates of a square integrable function. In P. Cifuentes,
editor, Harmonic analysis and partial differential equations (8th international conference,El Escorial, Madrid, Spain, June 16-20, 2008),
volume 505 of Contemporary Mathematics, pages 233–249. American
Mathematical Society (AMS), 2010.
hese00
[2282] F. Hernandez and E. M. Semenov. A characterization of Lp among rearrangement invariant function spaces. Positivity, 4(3):253–258, 2000.
hehuma14
[2283] Y. C. Herrera, O. Hutnik, and E. A. Maximenko. Vertical symbols,
Toeplitz operators on weighted Bergman spaces over the upper halfplane and very slowly oscillating functions. C. R. Math. Acad. Sci.
Paris, 352(2):129–132, 2014.
frheyi12
¨ Yilmaz. Fighting the Curse
[2284] F. Herrmann, M. Friedlander, and O.
of Dimensionality: Compressive Sensing in Exploration Seismology.
Signal Processing Magazine, IEEE, 29(3):88–100, 2012.
heliwa11
[2285] F. Herrmann, H. Wason, and T. Lin. Compressive sensing in seismic exploration: an outlook on a new paradigm. CSEG Recorder,
36(4):19–33, 2011.
he69
[2286] R. Hersh. A class of ’central limit theorems’ for convolution products
of generalized functions. Trans. Amer. Math. Soc., 140:71–85, 1969.
he54
[2287] C. Herz. On the mean inversion of Fourier and Hankel transforms.
Proc. Nat. Acad. Sci. , USA, 40(10):996, 1954.
he60
[2288] C. Herz. The spectral theory of bounded functions. Trans. Amer.
Math. Soc., 94:181–232, 1960.
he73
[2289] C. Herz. Harmonic synthesis for subgroups.
(Grenoble), 23(3):91–123, 1973.
he14
[2290] N. Heuer. On the equivalence of fractional-order Sobolev semi-norms.
J. Math. Anal. Appl., 417(2):505–518, 2014.
he89-1
[2291] H. Heuser. Gew¨ohnliche Differentialgleichungen. Mathematische
Leitf¨aden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart, 1989.
204
Ann. Inst. Fourier
hi91-1
[2292] J. Higgins. Sampling and aliasing for functions band-limited to a thin
shell. Num. Funct. Anal. Opt., 12(3-4):327–337, 1991.
hi86
[2293] N. J. Higham. Computing the polar decomposition-with applications.
SIAM J. Sci. Statist. Comput., 7(4):1160–1174, 1986.
hi93
[2294] N. Higson. On the K-theory proof of the index theorem. In Index
theory and operator algebras: proceedings of a CBMS regional conference held August 6-10, 1991 with support from the National Science
Foundation, volume 148, page 67, 1993.
hipero97
[2295] N. Higson, E. Pedersen, and J. Roe. C*-algebras and controlled topology. K-theory, 11(3):209–239, 1997.
hi08-1
[2296] S. Hildebrandt. Analisys 2. Springer, 2008.
hiocscwi84
[2297] M. Hillery, R. O’Connell, M. Scully, and E. P. Wigner. Distribution
functions in physics: Fundamentals. Physics Reports, 106(3):121 –
167, 1984.
hi81
[2298] M. Hilsum. Les espaces Lp d’une algebre de von Neumann definies
par la derivee spatiale. J. Funct. Anal., 40:151–169, 1981.
behist84
[2299] B. Hinman, J. Bernstein, and D. Staelin. Short-space Fourier transform image processing. In Acoustics, Speech, and Signal Processing,
IEEE International Conference on ICASSP’84., volume 9, pages 166–
169, 1984.
hi10
[2300] A. Hinrichs. Optimal importance sampling for the approximation of
integrals. J. Complexity, 26(2):125–134, 2010.
hiun07
[2301] A. Hirabayashi and M. Unser. Consistent sampling and signal recovery. IEEE Trans. Signal Process., 55(8):4104–4115, August 2007.
hile01
[2302] J.-B. Hiriart Urruty and C. Lemar´echal. Fundamentals of Convex
Analysis. Grundlehren Text Editions. Springer-Verlag, Berlin, 2001.
hahiscsc11
[2303] M. Hirsch, C. Schuler, S. Harmeling, and B. Scholkopf. Fast removal of
non-uniform camera shake. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 463–470, 2011.
205
hahiscsr10
[2304] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. Efficient filter
flow for space-variant multiframe blind deconvolution. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 607–614, 2010.
hi57
[2305] I. Hirschman. A note on entropy. Amer. J. Math., 79(1):152–156,
1957.
hihu77
[2306] J. Hirschman and D. Hughes. Extreme eigenvalues of Toeplitz operators. Lecture Notes in Mathematics, Vol. 618. Springer-Verlag,
Berlin, 1977.
hisc91
[2307] F. Hirzebruch and W. Scharlau. Einf¨
uhrung in die Funktionalanalysis.
Mannheim: BI-Wissenschaftsverlag, Unver¨and. Nachdr. der 1. Aufl.
1971 edition, 1991.
hisj08
[2308] M. Hitrik and J. Sj¨ostrand. Rational invariant tori, phase space tunneling, and spectra for non-selfadjointoperators in dimension 2. 2008.
hisa13
[2309] E. Hitzer and S. Sangwine. Quaternion and Clifford Fourier Transforms and Wavelets. Birkh¨auser, 2013.
hjlimath98
[2310] P. Hjorth, P. Lisonuek, S. Markvorsen, and C. Thomassen. Finite
metric spaces of strictly negative type. Linear Algebra Appl., 270:255–
273, 1998.
hlkr92
[2311] F. Hlawatsch and W. Krattenthaler. Bilinear signal synthesis. IEEE
Trans. Signal Process., 40(2):352–363, 1992.
hlma11
[2312] F. Hlawatsch and G. Matz, editors. Wireless Communications Over
Rapidly Time-Varying Channels. 2011.
hl93
[2313] E. Hlawka. Nachruf auf Nikolaus Hofreiter (Obituary for Nikolaus
Hofreiter). Monatsh. Math., 116(3-4):263–273, 1993.
ho11-2
[2314] C.-L. Ho. Dirac (-Pauli), Fokker–Planck equations and exceptional
Laguerre polynomials. Annals of Physics, 326(4):797–807, 2011.
ho07-3
[2315] K.-P. Ho. Annihilator, completeness and convergence of wavelet system. Nagoya Math. J., 188:59–105, 2007.
206
ho10-3
[2316] K.-P. Ho. Littlewood-Paley theory for the differential operator
∂2 ∂2
∂2
− ∂x
2 . Z. Anal. Anwend., 29(2):183–217, 2010.
∂x2 ∂x2
1
2
3
ho11-4
[2317] K.-P. Ho. Littlewood-Paley spaces. Math. Scand., 108(1):77–102,
2011.
ho11-3
[2318] K.-P. Ho. Wavelet bases in Littlewood-Paley spaces. East J. Approx.,
17(4):333–345 (2012), 2011.
ho12
[2319] K.-P. Ho. Atomic decomposition of Hardy spaces and characterization
of BMO via Banach function spaces. Anal. Math., 38(3):173–185,
2012.
ho13-2
[2320] K.-P. Ho. Atomic decompositions of weighted Hardy-Morrey spaces.
Hokkaido Math. J., 42(1):131–157, 2013.
hosc10
[2321] V. Hoang and C. Schwab. Sparse tensor Galerkin discretizations for
parametric and random parabolic PDEs. I: Analytic regularity and
gpc-approximation. preprint, 2010.
hoscXX
[2322] V. Hoang and C. Schwab. Analytic regularity and gpc approximation
for parametric and random 2nd order hyperbolic PDEs. Anal. Appl.
(Singap.), to appear.
ho70
[2323] D. Hodge. Eigenvalues and eigenfunctions of the spheroidal wave
equation. J. Mathematical Phys., 11:2308–2312, 1970.
auho04
[2324] V. Hodge and J. Austin. A survey of outlier detection methodologies.
Artif. Intell. Rev., 22(2):85–126, 2004.
hool14
[2325] D. Hoff and P. Olver. Automatic Solution of Jigsaw Puzzles. J. Math.
Imaging Vision, 49(1):234–250, 2014.
howi88
[2326] M. Hoffman and W. Withers. Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. Amer. Math. Soc., 308(1):91–
104, 1988.
ho14
[2327] A. H¨ofler. Necessary Density Conditions for Frames on Homogeneous
Groups. PhD thesis, 2014.
207
hola12
[2328] J. Hogan and J. Lakey. Duration and Bandwidth Limiting. Prolate
Functions, Sampling, and Applications. Applied and Numerical Harmonic Analysis. Boston, MA: Birkh¨auser. xvii and SFR 106.50 and
sterling 72.00, 2012.
hoizla10
[2329] J. A. Hogan, S. Izu, and J. D. Lakey. Sampling approximations for
time- and bandlimiting. Sampl. Theory Signal Image Process., 9(13):91–117, 2010.
hola06-2
[2330] J. A. Hogan and J. Lakey. Periodic nonuniform sampling in shiftinvariant spaces. In C. Heil, editor, Harmonic analysis and applications. In Honor of John J. Benedetto, volume Part V Sampling
Theory and Shift-Invariant Spaces of Appl. Numer. Harmon. Anal.,
chapter 12, pages 253–287. Birkh¨auser Boston, 2006.
hola09
[2331] J. A. Hogan and J. Lakey. Non-translation-invariance and the synchronization problem in wavelet sampling. Acta Appl. Math., 107(13):373–398, 2009.
ho74-1
[2332] J. H¨ogborn. Aperture synthesis with a non-regular distribution of
interferometer baselines. Astronom. and Astrophys., 15:417, 1974.
hopr07
[2333] M. Hohenwarter and J. Preiner. Dynamic mathematics with GeoGebra. AMC, 10:12, 2007.
alhoth03
[2334] A. Hohoueto, S. Ali, and T. Kengatharam. Coherent state lattices
and square integrability of representations. Journal of Physics A:
Mathematical and General, 36:11817, 2003.
ho78-1
[2335] A. S. Holevo. Estimation of shift parameters of a quantum state. Rep.
Math. Phys., 13(3):379–399, 1978.
ho79-6
[2336] A. S. Holevo. Covariant measurements and uncertainty relations. Rep.
Math. Phys., 16(3):385–400, 1979.
ho11
[2337] A. S. Holevo. Information capacity of quantum observable. Arxiv
preprint arXiv:1103.2615, 2011.
ho11-1
[2338] A. S. Holevo. Probabilistic and Statistical Aspects of Quantum Theory,
volume 1 of Quaderni. Monographs. Edizioni della Normale, Pisa,
Second edition, 2011.
208
ho13
[2339] N. Holighaus. Theory and implementation of adaptive time-frequency
transforms. PhD thesis, University of Vienna, 2013.
ho14-1
[2340] N. Holighaus. Structure of nonstationary Gabor frames and their dual
systems. Appl. Comput. Harmon. Anal., 37(3):442–463, November
2014.
dogrhove13
[2341] N. Holighaus, M. D¨orfler, G. A. Velasco, and T. Grill. A framework
for invertible, real-time constant-Q transforms. IEEE Trans. Audio
Speech Lang. Process., 21(4):775 –785, 2013.
hahotowi14
[2342] N. Holighaus, M. Hampejs, C. Wiesmeyr, and L. T´oth. Representing
and counting the subgroups of the group Zm × Zn . J. Number Theory,
2014:6, 2014.
ho81-1
[2343] A. Holland. A survey of degree of approximation of continuous functions. SIAM Rev., 23(3):344–379, 1981.
boglhoni11
[2344] D. Holland, M. Bostock, L. Gladden, and D. Nietlispach. Fast multidimensional NMR spectroscopy using compressed sensing. Angew.
Chem. Int. Ed., 50(29):6548–6551, 2011.
ho95-2
[2345] P. Holland. The Quantum Theory of Motion An Account of the De
Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge: Cambridge Univ. Press. xx, 618 p., 1995.
ho90-3
[2346] R. Holmes. Signal processing on finite groups. Technical report, DTIC
Document, 1990.
ho67-1
[2347] T. Holmstedt. Interpolation d’espaces quasi-norm´es. C. R. Acad. Sci.
Paris S´er. A-B, 264:A242–A244, 1967.
ho70-1
[2348] T. Holmstedt. Interpolation of quasi-normed spaces. Math. Scand.,
26:177–199, 1970.
hope69
[2349] T. Holmstedt and J. Peetre. On certain functionals arising in the
theory of interpolation spaces. J. Funct. Anal., 4:88–94, 1969.
ho91-2
[2350] M. Holschneider. Inverse Radon transforms through inverse wavelet
transforms. Inverse Problems, 7(6):853–861, 1991.
209
ho95-3
[2351] M. Holschneider. Wavelet analysis over Abelian groups. Appl. Comput. Harmon. Anal., 2(1):52–60, 1995.
ho95-1
[2352] M. Holschneider. Wavelets - An Analysis Tool. Oxford Mathematical
Monographs. Clarendon Press, 1995.
hotowa10
[2353] A. Holst, J. Toft, and P. Wahlberg. Weyl product algebras and classical modulation spaces. Warszawa: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications, 2010.
ho81-2
[2354] J. Holub. On bases and the shift operator. Studia Math., 71(2):191–
202, 1981.
ho83-3
[2355] J. Holub. Shift basic sequences in the Wiener disc algebra. Proc.
Amer. Math. Soc., 88(3):464–468, 1983.
ho86-2
[2356] J. Holub. A Wiener inversion-type theorem. Proc. Amer. Math. Soc.,
97(3):399–402, 1986.
ho94
[2357] J. Holub. Pre-frame operators, Besselian frames, and near-Riesz bases
in Hilbert spaces. Proc. Amer. Math. Soc., 122(3):779–785, 1994.
doflhohove11
[2358] A. Holzapfel, G. A. Velasco, N. Holighaus, M. D¨orfler, and A. Flexer.
Advantages of nonstationary Gabor transforms in beat tracking. In
Proceedings of MIRUM11, November 2011.
duhove94
[2359] J. Hong, M. Vetterli, and P. Duhamel. Basefield transforms with the
convolution property. In Proceedings of the IEEE, volume 82, pages
400 –412, mar 1994.
zh13-1
[2360] Hongkai Zhao. Mathematics in Image Processing, volume 19. American Mathematical Soc., 2013.
fuho97
[2361] C. Hope and D. Furlong. Time-Frequency Distributions for Timbre
Morphing: The Wigner Distribution versus the STFT. 1997.
ho86-1
[2362] K. Horne. An optimal extraction algorithm for CCD spectroscopy.
Publications of the Astronomical Society of the Pacific, pages 609–
617, 1986.
210
hokoze12
[2363] I. Horova, J. Kolavcek, and J. Zelinka. Kernel Smoothing in MATLAB. Theory and Practice of Kernel Smoothing. Hackensack, NJ:
World Scientific, 2012.
hoob75
[2364] C. Horowicz and D. M. Oberlin. Restrictions of Hp functions to the
diagonal of Un. Indiana U. Math. J., 24:767–772, 1975.
hokopi97
[2365] C. Horowitz, B. Korenblum, and B. Pinchuk. Sampling sequences for
A− ∞. Michigan Math. J., 44(2):389–398, 1997.
ho09-1
[2366] R. Hoskins. Delta Functions: An Introduction to Generalised Functions 2nd Ed. Chichester: Horwood Publishing. vi, 270 p., 2009.
ho43
[2367] H. Hotelling. Some new methods in matrix calculation. Ann. Math.
Stat., 14:1–34, 1943.
ho49
[2368] H. Hotelling. Practical problems of matrix calculation. Proc. Berkeley
Sympos. Math. Statist. and Probability (August, 1945 and January,
1946), 275-293 (1949)., 1949.
hoshta14
[2369] T. Hou, Z. Shi, and P. Tavallali. Convergence of a data-driven timefrequency analysis method. Appl. Comput. Harmon. Anal., (0):–,
2014.
ho12-1
[2370] R. Houska. The nonexistence of shearlet scaling functions. Appl.
Comput. Harmon. Anal., 32(1):28–44, 2012.
ho10-2
[2371] A. Howard. Elementary Linear Algebra with Supplemental Applications: International Student Version. 2010.
ho03-3
[2372] A. Howard and R. C. Busby. Contemporary Linear Algebra, Student
Solutions Manual. John Wiley & Sons Inc., 2003.
ho10-1
[2373] R. Howard. PDF estimation via characteristic function and an orthonormal basis set. In N. E. Mastorakis and Mladenov, editors, Proc.
of the 14th WSEAS international conference on Systems: part of the
14th WSEAS CSCC multiconference, volume 1 of ICS’10, page 6,
Stevens Point, Wisconsin, USA, 2010. World Scientific and Engineering Academy and Society (WSEAS).
211
hrya03
[2374] N. Hritonenko and Y. Yatsenko. Applied Mathematical Modelling of
Engineering Problems. Applied Optimization. 81. Dordrecht: Kluwer
Academic Publishers. xxi, 286 p., 2003.
ma12-2
[2375] T. Hrycak, S. Das, and G. Matz. Inverse methods for reconstruction
of channel taps in OFDM systems. IEEE Trans. Signal Process.,
60(5):2666–2671, 2012.
hswe98
[2376] M.-H. Hsieh and C.-H. Wei. Channel estimation for OFDM systems
based on comb-type pilot arrangement in frequency selective fading
channels. IEEE Trans. Consumer Electronics, 44(1):217–225, February 1998.
huli13
[2377] L. Hu and Y. Liu. Shearlet approximations to the inverse of a family
of linear operators. J. Inequal. Appl., 2013:10, 2013.
huma04
[2378] Z. Hu and Z. Ma. Beurling-Deny formula of semi-Dirichlet forms.
Comptes Rendus Mathematique, 338(7):521–526, 2004.
huneru10
[2379] Z. Hu, M. Neufang, and Z. Ruan. Multipliers on a new class of Banach
algebras, locally compact quantum groups, and topological centres.
Proc. London Math. Soc., 100(2):429–458, 2010.
hu12
[2380] J. Huang. The boundedness of Riesz transforms for Hermite expansions on the Hardy spaces. J. Math. Anal. Appl., 385(1):559–571,
2012.
avhu06
[2381] K. Huang and S. Aviyente. Rotation invariant texture classification
with ridgelet transform and Fourier transform. In Image Processing,
2006 IEEE International Conference on,, pages 2141 –2144, Atlanta,
GA, oct. 2006.
ashukepa10
[2382] L. Huang, Q. Kemao, B. Pan, and A. Asundi. Comparison of Fourier
transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Optics and Lasers in Engineering, 48(2):141 – 148,
2010.
cahu10
[2383] S. Huang and G. Cao. Trace class Toeplitz operators with unbounded
symbols on weighted Bergman spaces. Acta Math. Sin. (Engl. Ser.),
26(8):1567–1574, 2010.
212
chhahu09
[2384] Y. Huang, Z. Cheng, and H. Han. The characterization of compact
support of Fourier transform for scaling function and orthonormal
wavelets of l2 ( s ). Acta Math. Sci., Ser. A, Chin. Ed., 29(4):1104–
1118, 2009.
bohuxi14
[2385] Z. Huang, J. Xiao, and J. Boyd. Adaptive radial basis function and
Hermite function pseudospectral methods for computing eigenvalues
of the prolate spheroidal wave equation for very large bandwidth parameter. Journal of Computational Physics, 2014.
humaperaru05
[2386] R. Huber, H. Ramoser, K. Mayer, H. Penz, and M. Rubik. Classification of coins using an eigenspace approach. 26(1):61–75, January
2005.
huno93
[2387] N. Hubin and L. Noethe. Active optics, adaptive optics, and laser
guide stars. Science, 262(5138):1390–1394, 1993.
bagrhulalo05
[2388] C. Huck, M. Baake, B. Langfeld, P. Gritzmann, and K. Lord. Discrete
tomography of mathematical quasicrystals: a primer. Herman, Gabor
T. (ed.) et al., Proceedings of the workshop on discrete tomography
and its applictions, New York, NY, USA, June 13–15, 2005. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 20, 179-191
(2005)., 2005.
huklmoqirevi00
[2389] R. Huesman, G. Klein, W. Moses, J. Qi, B. Reutter, and P. Virador.
List-mode maximum-likelihood reconstruction applied to positron
emission mammography (PEM) with irregular sampling. Medical
Imaging, IEEE Transactions on, 19(5):532–537, 2000.
hu92-1
[2390] S. Huestis. Interpolation formulas for oversampled band-limited functions. SIAM Rev., 34(3):477–481, 1992.
hu92-2
[2391] S. Huestis. Optimum kernels for oversampled signals. J. Acoust. Soc.
Amer., 92:1172, 1992.
hu92-3
[2392] S. Huestis. The Backus-Gilbert problem for sampled band-limited
functions. Inverse Problems, 8(6):873–887, 1992.
hupask95
[2393] T. Huffman, C. Park, and D. Skoug. Analytic Fourier-Feynman transforms and convolution. Trans. Amer. Math. Soc., 347(2):661–673,
1995.
213
hupl03
[2394] W. Huffman and V. Pless. Fundamentals of Error-correcting Codes.
Cambridge University Press, Cambridge, 2003.
hrast14
[2395] M. H¨
ugel, H. Rauhut, and T. Strohmer. Remote sensing via l1minimization. Found. Comput. Math., 14:115–150, 2014.
hu81-2
[2396] J. Hughes. Representations of osp (2, 1) and the metaplectic representation. J. Math. Phys., 22(2):245–250, 1981.
hu96
[2397] P. Hughett. A discrete-time linear shift-invariant system not representable as a convolution,. 1996.
hu97-1
[2398] P. Hughett. Linearity and sigma-linearity in discrete-time linear shiftinvariant systems,. Signal processing,, 59,(3,):329–333,, 1997,.
hu07
[2399] M. Huhtanen. Factoring matrices into the product of two matrices.
BIT Numerical Mathematics, 47(4):793–808, 2007.
hu70
[2400] A. Hulanicki. On symmetry of group algebras of discrete nilpotent
groups. Studia Math., 35:207–219 (errata insert), 1970.
hu70-1
[2401] A. Hulanicki. On the spectral radius in group algebras. Studia Math.,
34:209–214, 1970.
hu70-2
[2402] A. Hulanicki. On positive functionals on a group algebra multiplicative
on a subalgebra. Studia Math., 37:163–171, 1970/71.
hule09
[2403] A. Hulanicki and M. Letachowicz. Functional calculi for convolution
operators on a discrete, periodic, solvable group. J. Funct. Anal.,
256(3):700–717, 2009.
hu66-1
[2404] R. Hunt. On L(p, q)-spaces. Enseignement Math. (2), 12:249–276,
1966.
hu74
[2405] R. Hunt. Comments on Lusin’s conjecture and Carleson’s proof for L2
Fourier series. Linear Operators Approx. II, Proc. Conf. Oberwolfach
1974, ISNM 25, 235-245 (1974)., 1974.
huta71
[2406] R. Hunt and M. H. Taibleson. Almost everywhere convergence of
Fourier series on the ring of integers of a local field. SIAM J. Math.
Anal., 2:607–625, 1971.
214
hu40
[2407] K. Husimi. Some formal properties of the density matrix. Proc. Phys.Math. Soc. Japan, III. Ser., (22):264–314, 1940.
hu10
[2408] O. Hutnik. A note on wavelet subspaces. Monatsh. Math., 160(1):59–
72, 2010.
hu11
[2409] O. Hutnik. On boundedness of Calderon-Toeplitz operators. Integr.
Equ. Oper. Theory, 70(4):583–600, 2011.
hu11-2
[2410] O. Hutnik. On Toeplitz localization operators. Archiv der Mathematik, 97:333–344, 2011.
hu11-1
[2411] O. Hutnik. Wavelets from Laguerre polynomials and Toeplitz-type
operators. Integr. Equ. Oper. Theory, 71(3):357–388, 2011.
hu13
[2412] O. Hutnik. On weighted strong type inequalities for the generalized
weighted mean operator. Arch. Math. (Basel), 100(5):449–463, 2013.
hu13-1
[2413] M. Hutnikova. On the range of Stockwell transforms. Appl. Math.
Comput., 219(17):8904–8909, 2013.
huhu10
[2414] M. Hutnikova and O. Hutnik. An alternative description of Gabor
spaces and Gabor-Toeplitz operators. Rep. Math. Phys., 66(2):237–
250, 2010.
huhu12
[2415] M. Hutnikov’a and O. Hutnik. Affine coherent states and Toeplitz
operators. J. Phys. A: Math. Theor, 45:24, 2012.
hu06
[2416] D. Huybrechs. Multiscale and hybrid methods for the solution of oscillatory integral equations. PhD thesis, Dept. of Computer Science,
Faculty of Engineering, Katholieke Universiteit Leuven. Leuven, Belgium, 2006.
hu10-1
[2417] D. Huybrechs. On the Fourier extension of nonperiodic functions.
SIAM J. Numer. Anal., 47(6):4326–4355, 2010.
huva06
[2418] D. Huybrechs and S. Vandewalle. On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal.,
44(3):1026–1048 (electronic), 2006.
215
huva07-1
[2419] D. Huybrechs and S. Vandewalle. A sparse discretization for integral
equation formulations of high frequency scattering problems. SIAM
J. Sci. Comput., 29(6):2305–2328 (electronic), 2007.
huva07
[2420] D. Huybrechs and S. Vandewalle. The construction of cubature
rules for multivariate highly oscillatory integrals. Math. Comp.,
76(260):1955–1980 (electronic), 2007.
hupesivo04-1
[2421] M. Huzak, M. Perman, H. Sikic, and Z. Vondracek. Ruin probabilities
and decompositions for general perturbed risk processes. Ann. Appl.
Probab., 14(3):1378–1397, 2004.
hupesivo04
[2422] M. Huzak, M. Perman, H. Sikic, and Z. Vondracek. Ruin probabilities
for competing claim processes. J. Appl. Probab., 41(3):679–690, 2004.
hyliyaya12
[2423] T. Hyt¨onen, S. Liu, D. Yang, and D. Yang. Boundedness of
Calderon-Zygmund operators on non-homogeneous metric measure
spaces. Canad. J. Math., 64(4):892–923, 2012.
hyro13
[2424] T. Hyt¨onen and A. Rosen. On the Carleson duality. Ark. Mat.,
51(2):293–313, 2013.
ibmamasive10
[2425] A. Ibort, V. Man’ko, G. Marmo, A. Simoni, and F. Ventriglia.
On the tomographic picture of quantum mechanics. Phys. Lett. A,
374(26):2614–2617, 2010.
ib10
[2426] N. Ibragimov. A Practical Course in Differential Equations and Mathematical Modelling Classical and New methods Nonlinear Mathematical Models Symmetry and Invariance Principles. Hackensack, NJ:
World Scientific and Beijing: Higher Education Press. xiv, 348 p.,
2010.
ig74
[2427] S. Igari. Functions of Lp -multipliers. II. Tˆohoku Math. J. (2), 26:555–
561, 1974.
ig74-1
[2428] S. Igari. On the (Lp , Lp ) multipliers. In Functional analysis and its
applications (Internat. Conf., Eleventh Anniversary of Matscience,
Madras, 1973; dedicated to Alladi Ramakrishnan), pages 254–257.
Lecture Notes in Math., Vol. 399. 1974.
216
igku71
[2429] S. Igari and S. Kuratsubo. A sufficient condition for Lp -multipliers.
Pacific J. Math., 38(1):85–88, 1971.
igsa94
[2430] S. Igari and E. Sato. Operating functions on Fourier multipliers.
Tohoku Math. J., 46(3):357–366, 1994.
hoig10
[2431] I. Iglewska Nowak and M. Holschneider. Frames of Poisson wavelets
on the sphere. Appl. Comput. Harmon. Anal., 28(2):227–248, 2010.
hoig13
[2432] I. Iglewska Nowak and M. Holschneider. Irregular Gabor frames.
Kyushu J. Math., 67(1):237–247, 2013.
ih98
[2433] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Applied
Mathematical Sciences. 132. New York, NY: Springer. xiv, 1998.
ihva13
[2434] L. Ihnatsyeva and A. Vaehaekangas. Hardy inequalities in Triebel–
Lizorkin spaces II. Aikawa dimension. Annali Mat. Pura Appl., pages
1–15, 2013.
il75
[2435] R. Illner. A class of Lp -bounded pseudo-differential operators. Proc.
Amer. Math. Soc., 51:347–355, 1975.
il06
[2436] N. Il’yasov. Structural properties of periodic functions with absolutely
convergent Fourier series. Russ. Math., 50(1):23–31, 2006.
giin10
[2437] P. Indyk and A. C. Gilbert. Sparse recovery using sparse matrices.
Proc. IEEE, 98(6):937 – 947, 2010.
inru08
[2438] P. Indyk and M. Ruzic. Near-optimal sparse recovery in the L1 norm.
In Proc. FOCS, 2008.
inso10
[2439] A. Infante and F. Soria. On the maximal operator associated with
certain rotational invariant measures. Acta Math. Sin. (Engl. Ser.),
26(6):993–1004, 2010.
in34
[2440] A. Ingham. A note on Fourier transforms. J. London Math. Soc.,
9:29–32, 1934.
in36
[2441] A. Ingham. Some trigonometrical inequalities with applications to the
theory of series. Math. Z., 41(1):367–379, 1936.
217
in82
[2442] I. Inglis. Weak and strong mapping properties of translation invariant
operators. Boll. Unione Mat. Ital., VI. Ser., B, 1:523–533, 1982.
iowi11
[2443] M. Ionescu and D. Williams. A classic Morita equivalence result for
Fell bundle C ∗ -algebras. Math. Scand., 108(2):251–263, 2011.
ioio69
[2444] T. Ionescu and T. Ionescu. Topics in the theory of lifting. Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 48. Springer-Verlag
New York Inc., New York, 1969.
ioli13
[2445] A. Iosevich and E. Liflyand. Decay of the Fourier Transform. Analytic
and Geometric Aspects. New York, NY: Birkh¨auser/Springer, 2013.
bair13
[2446] Z. Irace and H. Batatia. Motion-based interpolation to estimate spatially variant PSF in Positron Emission Tomography. In Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pages 1–5, 2013.
irka93
[2447] T. Irino and H. Kawahara. Signal reconstruction from modified auditory wavelet transform. IEEE Trans. Signal Process., 41(12):3549–
3554, 1993.
ir80
[2448] I. Irodova. On the properties of the scale of spaces bp , (λθ) for 0 <
p < 1. Sov. Math., Dokl., 21:53–55, 1980.
iska84
[2449] C. Isham and A. Kakas. A group theoretical approach to the canonical
quantisation of gravity. II. Unitary representations of the canonical
group. Classical and Quantum Gravity, 1(6):633, 1984.
is06-1
[2450] H. Ishi. Wavelet transforms for semidirect product groups with not
necessarily commutative normal subgroups. J. Fourier Anal. Appl.,
12(1):37–52, 2006.
is74
[2451] H. Ishii. On some Fourier multipliers and partial differential equations. Math. Jap., 19:139–163, 1974.
guisXX
[2452] A. Iske and M. Guillemard. On groupoid C*-algebras, persistent homology and time-frequency analysis. preprint, to appear.
isna04
[2453] I. Ismail and T. Nabil. Applying wavelet recursive translationinvariant to window low-pass filtered images. Int. J. Wavelets Multiresolut. Inf. Process., 2(1):99–110, 2004.
218
akis08
[2454] D. Israfilov and R. Akg¨
un. Approximation by polynomials and rational functions in weighted rearrangement invariant spaces. J. Math.
Anal. Appl., 346(2):489–500, 2008.
is10
[2455] J. Isralowitz. Size estimates of Toeplitz and Hankel operators on the
Bergman and Fock space. PhD thesis, 2010.
is11
[2456] J. Isralowitz. Compact Toeplitz operators on the Segal-Bargmann
space. J. Math. Anal. Appl., 374(2):554–557, 2011.
is13-1
[2457] J. Isralowitz. Compactness and essential norm properties of operators
on generalized Fock spaces. arxiv, 2013.
is13
[2458] J. Isralowitz. Schatten p class commutators on the weighted Bergman
space L2a (Bn , dvγ ) for 2n/(n + 1 + γ) < p < ∞. Indiana Univ. Math.
J., 62(1):201–233, 2013.
is14
[2459] J. Isralowitz. Invertible Toeplitz products, weighted norm inequalities,
and Ap weights. J. Operator Theory, 71(2):381–410, 2014.
isviwo15
[2460] J. Isralowitz, J. Virtanen, and L. Wolf. Schatten class Toeplitz operators on generalized Fock spaces. J. Math. Anal. Appl., 421(1):329–337,
2015.
itkako12
[2461] S. Ito, K. Kato, and M. Kobayashi. Representation of Schr¨odinger
operator of a free particle via short-time Fourier transform and its
applications. Tohoku Math. J., 64(2):223–231, 2012.
iv07
[2462] Y. Ivakhno. The Riemann-Lebesgue property is equivalent to the
complete continuity property. Bull. Lond. Math. Soc., 39(4):583–585,
2007.
ivpe14
[2463] K. Ivanov and P. Petrushev. Irregular sampling of band-limited functions on the sphere. Appl. Comput. Harmon. Anal., 37(3):545–562,
2014.
ivpexu10
[2464] K. Ivanov, P. Petrushev, and Y. Xu. Sub-exponentially localized
kernels and frames induced by orthogonal expansions. Math. Z.,
264(2):361–397, 2010.
iw10-3
[2465] T. Iwabuchi. Existence of solution for Navier-Stokes equations in
modulation spaces. 2010.
219
iw10-2
[2466] T. Iwabuchi. Navier-Stokes equations and nonlinear heat equations in
modulation spaces with negative derivative indices. J. Differ. Equations, 248(8):1972–2002, 2010.
iw10-1
[2467] M. Iwen. Improved approximation guarantees for sublinear-time
Fourier algorithms. preprint, 2010.
iwte10
[2468] M. A. Iwen and A. H. Tewfik. Adaptive group testing strategies
for target detection and localization in noisy environments. preprint,
2010.
izrosa05
[2469] S. H. Izen, D. P. Rohler, and S. KL A. Exploiting symmetry in
fan beam CT: Overcoming third generation undersampling. SIAM J.
Appl. Math., 65(3):1027–1052, 2005.
iz11
[2470] K. Izuchi. Wandering subspaces and quasi-wandering subspaces in
the Bergman space. New York J. Math., 17A:301–305, 2011.
iziziz10-2
[2471] K. Izuchi, K. Izuchi, and Y. Izuchi. Quasi-wandering subspaces in the
Bergman space. Integr. Equ. Oper. Theory, 67(2):151–161, 2010.
iziziz10-1
[2472] K. Izuchi, K. Izuchi, and Y. Izuchi. Wandering subspaces and the
Beurling type Theorem I. Arch. Math. (Basel), 95(5):439–446, 2010.
iziziz10
[2473] K. Izuchi, K. Izuchi, and Y. Izuchi. Wandering subspaces and the
Beurling type theorem. II. New York J. Math., 16:489–505, 2010.
iziziz11
[2474] K. Izuchi, K. Izuchi, and Y. Izuchi. Blaschke products and the rank
of backward shift invariant subspaces over the bidisk. J. Funct. Anal.,
261(6):1457 – 1468, 2011.
iziziz12
[2475] K.-J. Izuchi, K.-H. Izuchi, and Y. Izuchi. Wandering subspaces and
the Beurling type theorem, III. J. Math. Soc. Japan, 64(2):627–658,
2012.
izsa10
[2476] M. Izuki and Y. Sawano. The Haar wavelet characterization of
weighted Herz spaces and greediness of the Haar wavelet basis. J.
Math. Anal. Appl., 362(1):140–155, 2010.
izsa12
[2477] M. Izuki and Y. Sawano. Atomic decomposition for weighted Besov
and Triebel-Lizorkin spaces. Math. Nachr., 285(1):103–126, 2012.
220
jaobve09
[2478] L. Jacob, G. Obozinski, and J. Vert. Group Lasso with overlap and
graph Lasso. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 433–440, 2009.
ja09-1
[2479] L. Jacques. A Short Note on Compressed Sensing with Partially
Known Signal Support. Technical report, 2009.
dedeja13
[2480] L. Jacques, K. Degraux, and V. De. Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed
Sensing. ArXiv e-prints, may 2013.
chdujape11
[2481] L. Jacques, L. Duval, C. Chaux, and G. Peyre. A panorama on multiscale geometric representations, intertwining spatial, directional and
frequency selectivity. Signal Process., 91(12):2699–2730, 2011.
babojala11
[2482] L. Jacques, J. Laska, P. Boufounos, and R. G. Baraniuk. Robust 1-bit
compressive sensing via binary stable embeddings of sparse vectors.
Preprint, 2011.
ja83-1
[2483] K. Jaenich. Analysis F¨
ur Physiker und Ingenieure. Springer-Verlag,
Berlin, 1983.
brbrdahujapo09
[2484] S. Jafarpour, G. Polatkan, E. Brevdo, S. Hughes, A. Brasoveanu, and
I. Daubechies. Stylistic analysis of paintings using complex wavelets
and random forest learning algorithm. In 17th European Signal Processing Conference (EUSIPCO 2009), Color and multispectral image
acquisition and processing of artworks, pages 1220–1224, Glasgow,
Scotland, UK, August 24-28, 2009.
ja91-4
[2485] S. Jaffard. Wavelets and applications. In Proceedings of the Fifth
European Conference on Mathematics in Industry (Lahti, 1990), volume 7 of European Consort. Math. Indust., pages 25–34. Teubner,
Stuttgart, 1991.
jaqu93
[2486] A. Jaffe and F. Quinn. Theoretical mathematics: Toward a cultural
synthesis of mathematics and theoretical physics. Bull. Amer. Math.
Soc. (N.S.), 29(1):1–13, 1993.
ja04
[2487] G. J¨ager. A New Algorithm for Computing the Smith Normal Form
and its Implementation on Parallel Machines. In Proceedings of
6th Workshop on Advances in Parallel and Distributed Computation
221
Models, International Parallel and Distributed Processing Symposium
(IPDPS 2004) :, 2004.
anja74
[2488] A. Jain and E. Angel. Image restoration, modelling, and reduction of
dimensionality. IEEE Trans. Comput., 23:470–476, 1974.
jaku09-1
[2489] P. Jain and S. Kumar. Boundedness of Hardy operators on generalized
amalgams. Math. Inequal. Appl., 12(3):549–562, 2009.
jaku09
[2490] P. Jain and S. Kumar. Weighted inequalities of Hardy-type on amalgams. Real Anal. Exchange, 34(2):483–499, 2009.
ja90-3
[2491] A. Jakimovski. Spline interpolation of data of power growth, 1990.
jaru79
[2492] A. Jakimovski and D. Russell. On beta-duals of matrix fields, 1979.
jarust84
[2493] A. Jakimovski, D. Russell, and M. Stieglitz. Spline interpolation of
power-dominated data. In P. L. Butzer and B. Sz. Nagy, editors, Approximation theory and functional analysis, Anniv. Vol., Proc. Conf.,
Oberwolfach 1983, ISNM 65, pages 403–414, 1984.
jaru84
[2494] A. Jakimovski and D. C. Russell. Hermite spline interpolation of data
of power growth. In Constructive theory of functions, Proc. Int. Conf.,
Varna/Bulg. 1984, pages 430–438, 1984.
jaru85
[2495] A. Jakimovski and D. C. Russell. Spline interpolation of data of power
growth applied to discrete and continuous Riesz means. Analysis,
5:287–299, 1985.
ja51
[2496] R. James. A non-reflexive Banach space isometric with its second
conjugate space. Proceedings of the National Academy of Sciences of
the United States of America, 37(3):174, 1951.
ja94-6
[2497] P. Jaming. Restricted invertibility, Kadison-Singer extension problem and applications to harmonic analysis. (Inversibilit´e restreinte,
probl`eme d’extension de Kadison-Singer et applications `a l’analyse
harmonique. (D’apr`es J. Bourgain et L. Tzafriri).). D´echamps, Myriam (ed.) et al., Cours: Analyse fonctionnelle et harmonique 19921993. Orsay: Universit´e de Paris-Sud, Publ. Math. Orsay. 94-24, 71154 (1994)., 1994.
222
ja07
[2498] P. Jaming. Nazarov’s uncertainty principles in higher dimension. J.
Approx. Theory, 149(1):30–41, 2007.
ja09-2
[2499] P. Jaming. A characterization of Fourier transforms. arXiv preprint
arXiv:0912.3129, 2009.
ja10
[2500] P. Jaming. A characterization of Fourier transforms. Colloq. Math.,
118(2):569–580, 2010.
jaol94
[2501] R. Jane and S. Olmos. A comparative study of adaptive algorithms
for ECG data compression using Hermite models. In Engineering in
Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual
International Conference of the IEEE, volume 2, pages 1262–1263,
1994.
ja78
[2502] S. Janson. Mean oscillation and commutators of singular integral
operators. Ark. Mat., 16:263–270, 1978.
ja81-6
[2503] S. Janson. Minimal and maximal methods of interpolation. J. Funct.
Anal., 44:50–73, 1981.
ja83
[2504] S. Janson. Minimal and maximal methods of interpolation of Banach
spaces. Harmonic analysis, Conf. in Honor A. Zygmund, Chicago
1981, Vol. 2, 732-739 (1983)., 1983.
janipe84
[2505] S. Janson, P. Nilsson, and J. Peetre. Notes on Wolff’s note on interpolation spaces (with appendix by Zafran, Misha). Proc. Lond. Math.
Soc., III. Ser., 48:283–299, 1984.
jape84
[2506] S. Janson and J. Peetre. Higher order commutators of singular integral
operators. In Proc. Conf. Interpolation spaces and allied topics in
analysis (Lund, 1983), volume 1070 of Lecture Notes in Math., pages
125–142. Springer, Berlin, 1984.
jawo82
[2507] S. Janson and T. Wolff. Schatten classes and commutators of singular
integral operators. Ark. Mat., 20:301–310, 1982.
ja06-2
[2508] A. Janssen. Zak transform characterization of s0 . Sampl. Theory
Signal Image Process., 5(2):141–162, 2006.
223
ja06-3
[2509] B. Janssens. Unifying decoherence and the Heisenberg principle. Arxiv
preprint quant-ph/0606093, 2006.
ja89-5
[2510] H. Jarchow. Factoring absolutely summing operators through HilbertSchmidt operators. Glasgow Math. J., 31(2):131–135, 1989.
ja94-7
[2511] H. Jarchow. Absolutely summing composition operators. In Functional analysis (Essen, 1991), volume 150 of Lecture Notes in Pure
and Appl. Math., pages 193–202. Dekker, New York, 1994.
ja00-1
[2512] K. Jarosz. Uniqueness of translation invariant norms. J. Funct. Anal.,
174(2):417–429, 2000.
jast04
[2513] F. Jarre and J. Stoer. Optimierung. Springer, 2004.
ja77-2
[2514] B. Jawerth. Some observations on Besov and Lizorkin-Triebel spaces.
Math. Scand., 40(1):94–104, 1977.
ja10-1
[2515] J. Jayakumari. MIMO-OFDM for 4G wireless systems. Int. J. Eng.
Sc. Tech., 2:2886–2889, Jul. 2010.
jeru10
[2516] A. Jencova and M. Ruskai. A unified treatment of convexity of relative
entropy and related trace functions, with conditions for equality. Rev.
Math. Phys., 22(9):1099–1121, 2010.
jekuposc11
[2517] F. Jensen, W. Kuperman, M. Porter, and H. Schmidt. Computational
Ocean Acoustics. Springer, second edition edition, 2011.
jeni96
[2518] O. R. Jensen and E. B. Nielsen. A Bose-Fock space quantization of
the Witt algebra. Rep. Math. Phys., 37(1-3):157–161, 1996.
chjepa00
[2519] W. Jeon, K. Paik, and Y. Cho. An efficient channel estimation technique for OFDM systems with transmitter diversity. Proc. IEEE
PIMRC-00, 2:1246–1250, Sep. 2000.
jewi92
[2520] J. Jeong and W. Williams. Time-varying filtering and signal synthesis. In 1990 Special Conf On Time-Frequency Analysis/International
Symp On Signal Processing and its Applications (Isspa 90), pages
389–405, 1992.
224
jeneth04
[2521] A. Jeremic, T. Thomas, and A. Nehorai. OFDM channel estimation in
the presence of interference. IEEE Trans. Signal Process., 52(12):3429
– 3439, December 2004.
je86
[2522] D. Jerison. The Poincar´e inequality for vector fields satisfying
H¨ormander’s condition. Duke Math. J., 53(2):503–523, 1986.
je11
[2523] A. Jerri. Advances in The Gibbs Phenomenon. Sampling Publishing,
2011.
je87-2
[2524] K. Jetter. A short survey on cardinal interpolation by box splines.
Fachbereich Mathematik, UD, 1987.
je87-1
[2525] K. Jetter. Uniqueness of Gauss-Birkhoff quadrature formulas. SIAM
J. Numer. Anal., 24:147–154, 1987.
je87-3
[2526] M. Jevtic. Bounded projections and duality in mixed-norm spaces of
analytic functions. Complex Var. Theory Appl., 8:293–301, 1987.
je97-1
[2527] M. Jevtic. Besov spaces on bounded symmetric domains. Mat. Vesn.,
49(3-4):229–233, 1997.
je98-1
[2528] M. Jevtic. Holomorphic Besov spaces B p , 0 < p < 1, on bounded
symmetric domains. Filomat, 12(1):53–64, 1998.
jepa13
[2529] M. Jevtic and M. Pavlovic. Besov-Lipschitz and mean Besov-Lipschitz
spaces of holomorphic functions on the unit ball. Potential Anal.,
38(4):1187–1206, 2013.
hujishxu11
[2530] H. Ji, S. Huang, Z. Shen, and Y. Xu. Robust video restoration by
joint sparse and low rank matrix approximation. SIAM J. Imaging
Sci., 4(4):1122–1142, 2011.
jisc96
[2531] R. Ji and L. Schweitzer. Spectral invariance of smooth crossed products, and rapid decay locally compact groups. K-theory, 10(3):283–
305, 1996.
jilixi10
[2532] X. Jia, T. Xing, and W. Lin. Analysis of absolute testing based
on even-odd functions by Zernike polynomials. In X. Jia, T. Xing,
W. Lin, Y. Zhang, J. Sasi’an, L. Xiang, and S. To, editors, Proc. SPIE,
5th International Symposium on Advanced Optical Manufacturing and
225
Testing Technologies: Optical Test and Measurement Technology and
Equipment, volume 7656 of Poster Session, page 76563E(6). SPIE,
2010.
haji07
[2533] M. Jiang and L. Hanzo. Multiuser MIMO-OFDM for next-generation
wireless systems. Proc. IEEE, 95:1430–1469, Jul. 2007.
jiyaya12
[2534] R. Jiang, D. Yang, and D. Yang. Maximal function characterizations
of Hardy spaces associated with magnetic Schr¨odinger operators. Forum Math., 24(3):471–494, 2012.
jiyayu11
[2535] X. Jiang, D. Yang, and W. Yuan. Real interpolation for grand Besov
and Triebel-Lizorkin spaces on RD-spaces. Ann. Acad. Sci. Fenn.,
Math., 36(2):509–529, 2011.
jileli12
[2536] M. Jin, X. Lei, and S. Lin. Improved DFT-based channel estimation
in OFDM systems based on phase compensation. Appl. Math. Inf.
Sci., 6(3):629–638, August 2012.
jita11
[2537] Q. Jin and U. Tautenhahn. Implicit iteration methods in Hilbert
scales under general smoothness conditions. 2011.
jimasp11
[2538] S. Jin, P. Markowich, and C. Sparber. Mathematical and computational methods for semiclassical Schr¨odinger equations. Acta Numer.,
20:121–209, 2011.
jizh12
[2539] Q. Jiu and X. Zheng. Global well-posedness of the compressible
Euler with damping in Besov spaces. Math. Methods Appl. Sci.,
35(13):1570–1586, 2012.
jo13
[2540] J. Jo. Iterative hard thresholding for weighted sparse approximation.
ArXiv e-prints, dec 2013.
jo70
[2541] M. Jodeit. Restrictions and extensions of Fourier multipliers. Studia
Math., 34:215–226, 1970.
jopiteto12
[2542] K. Johansson, S. Pilipovic, N. Teofanov, and J. Toft. Gabor pairs, and
a discrete approach to wave-front sets. Monatsh. Math., 166(2):181–
199, 2012.
226
jola88
[2543] G. Johnson and M. Lapidus. Noncommutative operations on Wiener
functionals and Feynman’s operational calculus. J. Funct. Anal.,
81(1):74 – 99, 1988.
jola00
[2544] G. Johnson and M. Lapidus. The Feynman Integral and Feynmans
Operational Calculus. Oxford Science Publications, 2000.
jo97-2
[2545] M. J. Johnson. An upper bound on the approximation power of principal shift-invariant spaces. Constr. Approx., 13(2):155–176, 1997.
jowa10
[2546] R. Johnson and C. Warner. The convolution algebra H 1 (R). J. Funct.
Spaces Appl., 8(2):167–179, 2010.
joli84
[2547] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. In Conference in modern analysis and probability
(New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189–
206. Amer. Math. Soc., Providence, RI, 1984.
jome09
[2548] S. Jokar and V. Mehrmann. Sparse solutions to underdetermined
Kronecker product systems. Linear Algebra and Its Applications,
431(12):2437–2447, 2009.
jomepfys10
[2549] S. Jokar, V. Mehrmann, M. Pfetsch, and H. Yserentant. Sparse approximate solution of partial differential equations. Applied numerical
mathematics, 60(4):452–472, 2010.
jo10-1
[2550] L. Jolissaint. Synthetic modeling of astronomical closed loop adaptive
optics. arXiv preprint arXiv:1009.1581, 2010.
jomave04
[2551] L. Jolissaint, J.-P. Veran, and J. Marino. OPERA, an automatic PSF
reconstruction software for Shack-Hartmann AO systems: application
to Altair. In Astronomical Telescopes and Instrumentation, pages
151–163, 2004.
jo05
[2552] P. Jolissaint. On property (T) for pairs of topological groups. Enseign.
Math. (2), 51(1-2):31–45, 2005.
jopa90
[2553] D. L. Jones and T. Parks. A high resolution data-adaptive timefrequency representation. IEEE Trans. Signal Process., 38(12):2127–
2135, 1990.
227
joosro13
[2554] P. W. Jones, A. Osipov, and V. Rokhlin. A randomized approximate nearest neighbors algorithm. Appl. Comput. Harmon. Anal.,
34(3):415–444, 2013.
gajole02
[2555] V. Jones, J. Leary, and J. Gardner. OFDM channel estimation in the
presence of interference, 2002.
jowa84
[2556] A. Jonsson and H. Wallin. Function spaces on subsets of Rn , volume 2
of Math. Rep. 1984.
jo12
[2557] R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo. Deep and clear optical imaging
of thick inhomogeneous samples. PLoS ONE, 7, 04 2012.
jo06-1
[2558] C. Jordan. R´eduction d’un r´eseau de formes quadratiques ou
bilin´eaires. Journal de Math´ematiques Pures et Appliqu´ees, pages
403–438, 1906.
jomepa08
[2559] P. E. T. Jorgensen, K. D. Merrill, and J. A. Packer. Representations,
Wavelets, and Frames. Applied and Numerical Harmonic Analysis.
Birkh¨auser, Boston, MA, 2008.
joscwe94
[2560] P. E. T. Jorgensen, L. Schmitt, and R. Werner. q-canonical commutation relations and stability of the Cuntz algebra. Pacific J. Math.,
165(1):131–151, 1994.
joth11
[2561] K. Jotsaroop and S. Thangavelu. Toeplitz operators with special symbols on Segal-Bargmann spaces. Integr. Equ. Oper. Theory, 69(3):317–
346, 2011.
joki11
[2562] D. Joyner and J.-L. Kim. Selected Unsolved Problems In Coding Theory. Birkh¨auser, 2011.
ju14
[2563] G. Jumarie. Fractional Differential Calculus via Fractional Difference
theory and applications A Non-standard Fractional Calculus and its
applications (to appear). Hackensack, NJ: World Scientific, 2014.
juka85
[2564] O. Juneja and G. Kapoor. Analytic functions - growth aspects. Research Notes in Mathematics, 104. Pitman Advanced Publishing Program, 1985.
228
beelhljusc12
[2565] A. Jung, S. Schmutzhard, F. Hlawatsch, Y. Eldar, and Z. Ben Haim.
Minimum Variance Estimation of sparse vectors within the Linear
Gaussian Model: An RKHS Approach. IEEE Trans. Information
Theory, 60(10):6555 – 6575, 2014.
jush04
[2566] J.-H. Jung and B. Shizgal. Generalization of the inverse polynomial
reconstruction method in the resolution of the Gibbs phenomenon. J.
Comput. Appl. Math., 172(1):131–151, 2004.
jush05
[2567] J.-H. Jung and B. Shizgal. Inverse polynomial reconstruction of two
dimensional Fourier images. J. Sci. Comput., 25(3):367–399, 2005.
ju00
[2568] K. Jung. Phase space tunneling for operators with symbols in a Gevrey
class. J. Math. Phys., 41(7):4478–4496, 2000.
jume10
[2569] M. Junge and T. Mei. Noncommutative Riesz transforms—a probabilistic approach. Amer. J. Math., 132(3):611–680, 2010.
juno13
[2570] K. Juschenko and P. Nowak. Uniformly bounded representations and
exact groups. J. Funct. Anal., (0):–, 2013.
ka11
[2571] W. Kaballo. Grundkurs Funktionalanalysis. Spektrum Akademischer
Verlag, 2011.
kara13
[2572] M. Kabanava and H. Rauhut. Analysis
Gaussian measurements. preprint, 2013.
kara14
[2573] M. Kabanava and H. Rauhut. Cosparsity in compressed sensing.
preprint, 2014.
kasi59
[2574] R. V. Kadison and I. M. Singer. Extensions of pure states. Amer. J.
Math., 81(2):383–400, 1959.
kalazh08
[2575] V. Kaftal, D. Larson, and S. Zhang. Operator-valued frames on C ∗ modules. In Frames and operator theory in analysis and signal processing, volume 451 of Contemp. Math., pages 171–185. Amer. Math.
Soc., Providence, RI, 2008.
kalazh09
[2576] V. Kaftal, D. Larson, and S. Zhang. Operator-valued frames. Trans.
Amer. Math. Soc., 361(12):6349–6385, 2009.
229
1 -recovery
with frames and
ka11-3
[2577] C. Kahane. A note on the convolution theorem for the Fourier transform. Czechoslovak Math. J., 61(136)(1):199–207, 2011.
ka60
[2578] J.-P. Kahane. Propri´et´es locales des fonctions a` s´eries de Fourier
al´eatoires. Studia Math., 19:1–25, 1960.
ka61
[2579] J.-P. Kahane. Fonctions pseudo-p´eriodiques dans rp . In Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pages 274–281.
Jerusalem Academic Press, Jerusalem and Pergamon, Oxford, 1961.
ka62-1
[2580] J.-P. Kahane. On the generalized almost periodic functions with void
spectrum. (Sur les fonctions presque-p´eriodiques g´en´eralis´ees dont le
spectre est vide.). Studia Math., 21:231–236, 1962.
ka63-1
[2581] J.-P. Kahane. Transformees de Fourier des fonctions sommables. Proc.
Int. Congr. Math. 1962, 114-131 (1963)., 1963.
ka05-4
[2582] J.-P. Kahane. The heritage of Fourier. In Perspectives in analysis,
volume 27 of Math. Phys. Stud., pages 83–95. Springer, Berlin, 2005.
kaka63
[2583] J.-P. Kahane and V. Katznelson. Contribution a deux problemes,
concernant les fonctions de la classe A. Israel J. Math., 1:110–131,
1963.
ka10
[2584] N. Kaiblinger. On the Lehmer constant of finite cyclic groups. Acta
Arith., 142(1):79–84, 2010.
ka11-1
[2585] N. Kaiblinger. Cyclotomic rings with simple Euclidean algorithm. JP
J. Algebra Number Theory Appl., 2011.
ka01-1
[2586] A. Kain. High resolution voice transformation. PhD thesis, Rockford
College, 2001.
kakasova99
[2587] J. Kaipio, P. Karjalainen, E. Somersalo, and M. Vauhkonen. State Estimation in Time-Varying Electrical Impedance Tomography. Annals
of the New York Academy of Sciences, 873(1):430–439, 1999.
ka85-1
[2588] Y. Kakihara. A note on harmonizable and V-bounded processes. J.
Multivariate Anal., 16(1):140–156, 1985.
230
ka86-1
[2589] Y. Kakihara. Strongly and weakly harmonizable stochastic processes
of H-valued random variables. J. Multivariate Anal., 18:127–137,
1986.
kamaro03
[2590] J. Kalifa, S. Mallat, and B. Roug’e. Deconvolution by Thresholdong
in Mirror Wavelet Bases. IEEE Trans. Image Process., 12:446–457,
2003.
kala07
[2591] I. Kalliomaki and J. Lampinen. On steerability of Gabor-type filters
for feature detection. Pattern Recognition Lett., 28(8):904 – 911, 2007.
ka14
[2592] A. Kalybay. On boundedness of the conjugate multidimensional
Hardy operator from a Lebesgue space to a local Morrey-type space.
Int. J. Math. Anal. (Ruse), 8(9-12):539–553, 2014.
kapepi04
[2593] A. Kaminski, D. Perisic, and S. Pilipovic. On the convolution in
the space of tempered ultradistributions of Beurling type. Integral
Transforms Spec. Funct., 15(4):323–330, 2004.
kana98
[2594] J. Kamm and J. Nagy. Kronecker product and SVD approximations
in image restoration. Linear Algebra Appl., 284(1-3):177–192, 1998.
kana72
[2595] W. Kammerer and M. Nashed. On the convergence of the conjugate gradient method for singular linear operator equations. SIAM J.
Numer. Anal., 9(1):165–181, 1972.
guka81
[2596] P. Kamthan and M. Gupta. Sequence Spaces and Series. Marcel
Dekker, 1981.
kami13
[2597] A. Kanaev and C. Miller. Multi-frame super-resolution algorithm for
complex motion patterns. Optics express, 21(17):19850–19866, 2013.
kame12
[2598] J. Kane and J. Mertz. Debunking myths about gender and mathematics performance. Notices of the American Mathematical Society,
59(1):10–21, 2012.
kako07
[2599] H. Kaneko and A. Kochubei. Weak solutions of stochastic differential equations over the field of p-adic numbers. Tohoku Math. J.,
59(4):547–564, 2007.
kakw11
[2600] S. Kang and K. Kwon. Generalized average sampling in shift invariant
spaces. J. Math. Anal. Appl., 377(1):70 – 78, 2011.
231
kascta95
[2601] E. Kaniuth, G. Schlichting, and K. F. Taylor. Minimal primal and
Glimm ideal spaces of group C ∗ -algebras. J. Funct. Anal., 130(1):43–
76, 1995.
kata96
[2602] E. Kaniuth and K. F. Taylor. Minimal projections in L1 -algebras and
open points in the dual spaces of semi-direct product groups. J. Lond.
Math. Soc. (2), 53(1):141–157, 1996.
kata12
[2603] E. Kaniuth and K. F. Taylor. Induced Representations of Locally
Compact Groups. Cambridge, 2012.
ka91
[2604] Y. Kanjin. A transplantation theorem for Laguerre series. J. Fourier
Anal. Appl., 43(4):537–555, 1991.
ka99-3
[2605] Y. Kanjin. On Hardy-type inequalities and Hankel transforms.
Monatsh. Math., 127(4):311–319, 1999.
ka11-2
[2606] Y. Kanjin. Hardy’s inequalities for Hermite and Laguerre expansions
revisited. J. Math. Soc. Japan, 63(3):753–767, 2011.
ka13-2
[2607] Y. Kanjin. Laguerre and disk polynomial expansions with nonnegative
coefficients. J. Fourier Anal. Appl., 19(3):495–513, 2013.
kasc05
[2608] A. Kannu and P. Schniter. MSE-optimal training for linear timevarying channels. volume 3, pages 789–792, Mar. 2005.
kasc08
[2609] A. Kannu and P. Schniter. Design and analysis of MMSE pilot-aided
cyclic-prefixed block trans mission for doubly selective channels. IEEE
Trans. Signal Process., 56:1148–1160, Mar. 2008.
akka64
[2610] L. Kantorovich and G. Akilov. Functional Analysis In Normed Spaces
Translated From The Russian. Pergamon Press, 1964.
katk02
[2611] E. Kapanadze and G. Tkebuchava. Wavelet bases properties in some
rearrangement invariant function spaces. Bull. Georgian Acad. Sci.,
166(3):454–455, 2002.
kamu03
[2612] L. Kaplan and R. Murenzi. Pose estimation of SAR imagery using
the two dimensional continuous wavelet transform. Pattern Recognit.
Lett., 24(14):2269–2280, 2003.
ka49-1
[2613] I. Kaplansky. Normed algebras. Duke Math. J., 16:399–418, 1949.
232
ka49
[2614] I. Kaplansky. Primary ideals in group algebras. Proc. Natl. Acad. Sci.
USA, 35:133–136, 1949.
ka06-3
[2615] M. Kapovich. Triangle inequalities in path metric spaces. Arxiv
preprint math/0611118, 2006.
ka07-7
[2616] M. Kapovich. Energy of harmonic functions and Gromov’s proof of
Stallings’ theorem. Arxiv preprint arXiv:0707.4231, 2007.
ka07-6
[2617] M. Kapovich. On sequences of finitely generated discrete groups.
Arxiv preprint arXiv:0708.2671, 2007.
kanevo13
[2618] A. Karabegov, Y. Neretin, and T. Voronov. Felix Alexandrovich
Berezin and his work. In Geometric methods in physics. XXX workshop, Bialowieza, Poland, June 26 – July 2, 2011. Selected papers based on the presentations at the workshop, pages 3–33. Basel:
Birkh¨auser, 2013.
ka13-1
[2619] M. Karaev. Erratum : use of reproducing kernels and Berezin symbols technique in some questions of operator theory. Forum Math.,
25(5):1107, 2013.
ka13
[2620] M. Karaev. Reproducing kernels and Berezin symbols techniques in
various questions of operator theory. Complex Anal. Oper. Theory,
7(4):983–1018, 2013.
iska13
[2621] M. Karaev and N. Iskenderov. Berezin number of operators and related questions. Methods Funct. Anal. Topol., 19(1):68–72, 2013.
ka30
[2622] J. Karamata. Sur un mode de croissance r´eguli`ere des functions. Mathematica, Cluj, 4:38–53, 1930.
ka33
[2623] J. Karamata. Sur un mode de croissance reguliere. Theoremes fondamentaux. Bull. Soc. Math. France, 61:55–62, 1933.
atbakapo07
[2624] C. Karanikas, N. Atreas, A. Bakalakos, and P. Polychronidou. Discrete transforms on symbolic sequences for string matching, pattern
recognition and grammar detection. In R. W. Ognyan Kounchev, editor, NATO science for peace and security series - D: Information and
communication security, Vol.12: Scientific support for the decision
making in the security sector, pages 126–137. IOS Press, 2007.
233
atka08-1
[2625] C. Karanikas and N. D. Atreas. Discrete type-Riesz products. In
R. Stankovic, editor, Proceedings of the workshop: Walsh and dyadic
analysis, pages 185–191, Nis, Serbia, 2008.
atka08
[2626] C. Karanikas and N. D. Atreas. On a large class of non-linear coding
methods based on Boolean invertible matrices. Facta Universitatis Series: Electronics and Energetics, 21(3):365–372, 2008.
kana78
[2627] M. Karasev and V. Nazauikinskiui. Quantization of rapidly oscillating
symbols. Mat. Sb. (N.S.), 106(148)(2):183–213, 1978.
ka97-2
[2628] K. Karlander. On a property of the Fourier transform. Math. Scand.,
80(2):310–312, 1997.
heka13
[2629] Y. Karlovich and I. Hern´andez. Algebras of convolution type operators with piecewise slowly oscillating data. II: Local spectra and
Fredholmness. Integr. Equ. Oper. Theory, 75(1):49–86, 2013.
13
[2630] Y. I. Karlovich, L. Rodino, B. Silbermann, and I. M. Spitkovsky,
editors. Operator Theory, Pseudo-differential Equations, and Mathematical Physics, volume 228 of Operator Theory: Advances and Applications. Birkh¨auser/Springer Basel AG, Basel, 2013.
ka10-1
[2631] A. Karoui. Uncertainty principles, prolate spheroidal wave functions,
and applications. Barral, Julien (ed.) et al., Recent developments in
fractals and related fields. Based on the international conference on
fractals and related fields, Monastir, Tunisia, September 2007 held
in honor of Jacques Peyriere. Boston, MA: Birkh¨auser. Applied and,
2010.
ka11-4
[2632] A. Karoui. Unidimensional and bidimensional prolate spheroidal wave
functions and applications. J. Franklin Inst., 348(7):1668–1694, 2011.
kamo09-1
[2633] A. Karoui and T. Moumni. Spectral analysis of the finite Hankel
transform and circular prolate spheroidal wave functions. J. Comput.
Appl. Math., 233(2):315–333, 2009.
kaku02
[2634] B. Kashin and T. Kulikova. A note on the description of frames of
general form. Math. Notes, 72(6):863–867 (2002); translation from
mat. zametki 72, no., 2002.
234
kaku05
[2635] B. Kashin and T. Kulikova. On the validity for frames of a result
concerning orthogonal systems. Math. Notes, 77(2):280–282, 2005.
ka03-2
[2636] M. Kassmann. On Regularity for Beurling–Deny Type Dirichlet
Forms. Potential Analysis, 19(1):69–87, 2003.
itkako13
[2637] K. Kato, M. Kobayashi, and S. Ito. Characterization of wave front
sets in Fourier-Lebesgue spaces and its application. Funkc. Ekvacioj,
Ser. Int., 56(1):1–17, 2013.
itkako14
[2638] K. Kato, M. Kobayashi, and S. Ito. Estimates on modulation spaces
for Schr¨odinger evolution operators with quadratic and sub-quadratic
potentials. J. Funct. Anal., 266(2):733 – 753, 2014.
ka50
[2639] T. Kato. Upper and lower bounds of eigenvalues. Physical Review,
77(3):413–413, 1950.
ka08-2
[2640] A. Katsevich. Motion compensated local tomography. 2008.
kano12
[2641] G. Katz and V. Nodelman. The Shape of Algebra In the Mirrors
of Mathematics A Visual, Computer-aided Exploration of Elementary
Algebra and Beyond With CD-ROM. Hackensack, NJ: World Scientific. xxiv, 2012.
karuot61
[2642] Y. Katznelson, W. Rudin, and o. others. The Stone-Weierstrass property in Banach algebras. Pacific J. Math, 11:253–265, 1961.
kana86
[2643] S. Kaul and S. Naimpally. Local compactness in function spaces. Atti
Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 120(3-4):48–54 (1987),
1986.
kama13
[2644] J. Kauppi and M. Mathieu. C ∗ -Segal algebras with order unit. J.
Math. Anal. Appl., 398(2):785 – 797, 2013.
kaku10
[2645] S. Kaushik and V. Kumar. A note on fusion Banach frames. Arch.
Math. (Brno), 46(3):203–209, 2010.
kash11
[2646] S. Kaushik and S. Sharma. On unconditional atomic decompositions
in Banach spaces. J. Appl. Funct. Anal., 6(4):343–355, 2011.
kaposh13
[2647] S. Kaushik, S. Sharma, and K. Poumai. On Schauder frames in conjugate Banach spaces. J. Math., 2013:4, 2013.
235
kakhva14
[2648] S. Kaushik, L. Vashisht, and G. Khattar. Reconstruction property
and frames in Banach spaces. Palest. J. Math., 3(1):11–26, 2014.
ka49-2
[2649] T. Kawata. The Lipschitz condition of a function and Fejer means of
Fourier series. K¯odai Math. Semin. Rep., 1949:1–4, 1949.
ka88-1
[2650] T. Kawata. Lipschitz classes and Fourier series of stochastic processes.
Tokyo J. Math., 11(2):269–280, 1988.
buka04
[2651] S. Kazantsev and A. Bukhgeim. Singular value decomposition for the
2D fan-beam Radon transform of tensor fields. J. Inverse Ill-Posed
Probl., 12(3):245–278, 2004.
buka07
[2652] S. Kazantsev and A. Bukhgeim. Inversion of the scalar and vector
attenuated X-ray transforms in a unit disc. J. Inverse Ill-Posed Probl.,
15(7):735–765, 2007.
keya94
[2653] B. Kedem and S. Yakowitz. Practical aspects of a fast algorithm
for frequency detection. Communications, IEEE Transactions on,
42(9):2760–2767, 1994.
ke06
[2654] K. Kedlaya. Fourier transforms and p-adic ‘Weil II’. Compos. Math.,
142(6):1426–1450, 2006.
ke10
[2655] K. Kedlaya. p-adic Differential Equations. Cambridge Studies in
Advanced Mathematics 125. Cambridge: Cambridge University Press.
xvii, 380 p., 2010.
kekupo09
[2656] J. Keiner, S. Kunis, and D. Potts. Using NFFT 3—a software library
for various nonequispaced fast Fourier transforms. ACM Trans. Math.
Software, 36(4):Art. 19, 30, 2009.
ke04-1
[2657] F. Keinert. Wavelets And Multiwavelets. Boca Raton, FL: Chapman
and Hall/CRC. xii, 2004.
ke75-1
[2658] J. Keller. Closest unitary, orthogonal and Hermitian operators to a
given operator. Math. Mag., 48:192–197, 1975.
ke71-1
[2659] C. N. Kellogg. An extension of the Hausdorff-Young theorem. Michigan Math. J., 18:121–127, 1971.
236
kekora94-1
[2660] S. E. Kelly, M. A. Kon, and L. A. Raphael. Pointwise convergence
of wavelet expansions. Bull. Amer. Math. Soc. (N.S.), 30(1):87–94,
1994.
ke07
[2661] Q. Kemao. Two-dimensional windowed Fourier transform for fringe
pattern analysis: Principles, applications and implementations. Optics and Lasers in Engineering, 45(2):304 – 317, 2007.
gakewa08-1
[2662] Q. Kemao, W. Gao, and H. Wang. Windowed Fourier-filtered and
quality-guided phase-unwrapping algorithm. Appl. Opt, 47(29):5420–
5428, Oct 2008.
gakewa08
[2663] Q. Kemao, H. Wang, and W. Gao. Windowed Fourier transform for
fringe pattern analysis: theoretical analyses. Appl. Opt, 47(29):5408–
5419, Oct 2008.
kevy13
[2664] H. Kempka and J. Vybiral. A note on the spaces of variable integrability and summability of Almeida and H¨ast¨o. Proc. Amer. Math.
Soc., 141(9):3207–3212, 2013.
kevy14
[2665] H. Kempka and J. Vybiral. Lorentz spaces with variable exponents.
Math. Nachr., 287(8-9):938–954, 2014.
gike11
[2666] J. Kepner and J. Gilbert. Graph algorithms in the language of linear
algebra. SIAM, 2011.
kekylepepi10
[2667] G. Kerkyacharian, G. Kyriazis, P. Le, P. Petrushev, and D. Picard.
Inversion of noisy Radon transform by SVD based needlets. Appl.
Comput. Harmon. Anal., 28(1):24–45, 2010.
kengpi11
[2668] G. Kerkyacharian, T. Ngoc, and D. Picard. Localized spherical deconvolution. Ann. Statist., 39(2):1042–1068, 2011.
kenipi12
[2669] G. Kerkyacharian, R. Nickl, and D. Picard. Concentration inequalities and confidence bands for needlet density estimators on compact
homogeneous manifolds. Probab. Theory Related Fields, 153(1-2):363–
404, 2012.
kepe12
[2670] G. Kerkyacharian and P. Petrushev. Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces.
preprint, Submitted on 23 Oct 2012, 2012.
237
kepepixu09
[2671] G. Kerkyacharian, P. Petrushev, D. Picard, and Y. Xu. Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre
expansions. J. Funct. Anal., 256(4):1137–1188, 2009.
kephpi11
[2672] G. Kerkyacharian, N. Pham, and D. Picard. Localized spherical deconvolution. Ann. Statist., 39(2):1042–1068, 2011.
ke83
[2673] R. Kerman. Convolution theorems with weights. Trans. Amer. Math.
Soc., 280(1):207–219, 1983.
ke03-2
[2674] D. Kerr. Matricial quantum Gromov-Hausdorff distance. J. Funct.
Anal., 205(1):132–167, 2003.
keli09
[2675] D. Kerr and H. Li. On Gromov-Hausdorff convergence for operator
metric spaces. J. Operator Theory, 62(1):83–109, 2009.
gekh04
[2676] K. Khare and N. George. Fractional finite Fourier transform. JOSA
A, 21(7):1179–1185, 2004.
khsh94
[2677] D. Khavinson and H. S. Shapiro. Invariant subspaces in Bergman
spaces and Hedenmalm’s boundary value problem. Ark. Mat.,
32(2):309–321, 1994.
kh77
[2678] G. Khenkin. The Lewy equation and analysis on pseudoconvex manifolds. Russian Mathematical Surveys, 32(3):59–130, 1977.
khkh11
[2679] A. Khosravi and B. Khosravi. Fusion frames and g-frames in Banach
spaces. Proc. Indian Acad. Sci., Math. Sci., 121(2):155–164, 2011.
khkosh12
[2680] A. Khrennikov, A. Kosyak, and V. Shelkovich. Wavelet analysis
on adeles and pseudo-differential operators. J. Fourier Anal. Appl.,
18(6):1215–1264, 2012.
khra03
[2681] A. Khrennikov and Y. Radyno. On adelic analogue of Laplacian. Proc.
Jangjeon Math. Soc., 6(1):1–18, 2003.
khshsk09-1
[2682] A. Khrennikov, V. Shelkovich, and M. Skopina. p-adic orthogonal
wavelet bases. p-Adic Numbers Ultrametric Anal. Appl., 1(2):145–
156, 2009.
238
khyu13
[2683] A. Khrennikov and E. Yurova. Criteria of measure-preserving for padic dynamical systems in terms of the Van der Put basis. J. Number
Theory, 133(2):484–491, 2013.
ravo06
[2684] A. Y. Khrennikov and Raki´c, editors. P-adic Mathematical Physics,
volume 826 of AIP Conference Proceedings, Melville, NY, 2006. American Institute of Physics.
khrova12
[2685] A. Y. Khrennikov, E. E. Rosinger, and A. J. van Zyl. Graded tensor
products and the problem of tensor grade computation and reduction.
p-Adic Numbers Ultrametric Anal. Appl., 4(1):20–26, 2012.
ki09-3
[2686] M. Kibler. An angular momentum approach to quadratic Fourier
transform, Hadamard matrices, Gauss sums, mutually unbiased bases,
the unitary group and the Pauli group. Journal of Physics A: Mathematical and Theoretical, 42(35):353001, 2009.
kiprse97
[2687] T. Kilgore, J. Prestin, and K. Selig. Polynomial wavelets and wavelet
packet bases. Studia Sci. Math. Hungar., 33(4):419–431, 1997.
ki14-2
[2688] A. Kim. Generalized Riesz points for perturbations of Toeplitz operators. Commun. Korean Math. Soc., 29(2):257–262, 2014.
alcakima11
[2689] D. Kim, S. Ali, C. Cafaro, and S. Mancini. Information geometry of quantum entangled Gaussian wave-packets. Arxiv preprint
arXiv:1104.1250, 2011.
kikili05
[2690] H. Kim, R. Kim, and J. Lim. The infimum cosine angle between two
finitely generated shift-invariant spaces and its applications. Appl.
Comput. Harmon. Anal., 19(2):253–281, 2005.
kikw08
[2691] J. Kim and K. Kwon. Vector sampling expansion in Riesz bases setting
and its aliasing error. Appl. Comput. Harmon. Anal., 25(3):315–334,
2008.
kiki00
[2692] W.-Y. Kim and Y.-S. Kim. A region-based shape descriptor using Zernike moments. Signal Processing: Image Communication,
16(1):95–102, 2000.
ki09-4
[2693] Y.-C. Kim. Carleson measures and the BMO space on the p-adic
vector space. Math. Nachr., 282(9):1278–1304, 2009.
239
kiwa99
[2694] D. Kinderlehrer and N. Walkington. Approximation of parabolic equations using the Wasserstein metric. M2AN Math. Model. Numer.
Anal., 33(4):837–852, 1999.
ki09-2
[2695] E. King. Wavelet and frame theory: frame bound gaps, generalized
shearlets, Grassmannian fusion frames, and p-adic wavelets. PhD
thesis, 2009.
ki89
[2696] J. King. A minimal error conjugate gradient method for ill-posed
problems. J. Optim. Theory Appl., 60(2):297–304, 1989.
ki04-2
[2697] A. Kirillov. Lectures on the Orbit Method. Providence, RI: American
Mathematical Society (AMS), 2004.
bekisc88
[2698] A. Kirsch, B. Schomburg, and G. Berendt. The Backus-Gilbert
method. Inverse Problems, 4(3):771–783, 1988.
kipo09
[2699] H. Kirshner and M. Porat. On the role of exponential splines in image
interpolation. IEEE Trans. Image Process., 18(10):2198 –2208, oct.
2009.
kisaun11
[2700] H. Kirshner, D. Sage, and M. Unser. 3D PSF Models for Fluorescence Microscopy in ImageJ. In Proceedings of the Twelfth International Conference on Methods and Applications of Fluorescence Spectroscopy, Imaging and Probes (MAF’11), pages 154,, 2011.
ki02-1
[2701] V. Kisil. Spaces of Analytical Functions and Wavelets–Lecture Notes.
arXiv, 2002.
ki10-1
[2702] V. Kisil. Wavelets beyond admissibility. Progress in analysis and its
applications, pages 219–225, 2010.
ki12
[2703] V. Kisil. Geometry of M¨obius Transformations Elliptic, Parabolic and
Hyperbolic Actions of SL2 (R) With DVD-ROM. 2012.
ki12-1
[2704] V. Kisil. Hypercomplex representations of the Heisenberg group and
mechanics. Internat. J. Theoret. Phys., 51(3):964–984, 2012.
ki14
[2705] V. Kisil. Calculus of operators: covariant transform and relative convolutions. Banach J. Math. Anal., 8(2):156–184, 2014.
240
ki14-1
[2706] V. Kisil. The real and complex techniques in harmonic analysis from
the point of view of covariant transform. Eurasian Mathematical Journal, 5(1):95–121, 2014.
kiro93
[2707] J. Kitchen and D. Robbins. Integral operators on the section space of
a Banach bundle. Int. J. Math. Math. Sci., 16(3):449–458, 1993.
kiro94
[2708] J. Kitchen and D. Robbins. Bundles of Banach algebras. Int. J. Math.
Math. Sci., 17(4):671–680, 1994.
kiro94-1
[2709] J. Kitchen and D. Robbins. Bundles of Banach algebras. II. Houston
J. Math., 20(3):435–451, 1994.
kikuli11
[2710] P. Kittipoom, G. Kutyniok, and W.-Q. Lim. Construction of compactly supported shearlet frames. Constr. Approx., In Press, 2011.
kikuli12
[2711] P. Kittipoom, G. Kutyniok, and W.-Q. Lim. Construction of compactly supported shearlet frames. Constr. Approx., 35(1):21–72, 2012.
kismwi04
[2712] J. Kivinen, A. Smola, and R. Williamson. Online learning with kernels. IEEE Trans. Signal Process., 52(8):2165–2176, 2004.
kita09
[2713] A. Kivinukk and G. Tamberg. Interpolating generalized Shannon sampling operators, their norms and approximation properties. Sampl.
Theory Signal Image Process., 8(1):77–95, 2009.
klrari11
[2714] E. Klann, R. Ramlau, and W. Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems Imaging, 5(1):137–166, 2011.
klvi08
[2715] A. Klapuri and T. Virtanen. Automatic music transcription. In David
Havelock, Sonoko Kuwano, and MIchael Vorl¨ander, editors, Handbook
of signal processing in acoustics, Vol.1, Part IV, chapter 20, Musical acoustics, pages 277–303. Springer Science+Business Media, LLC,
2008.
heklvi10
[2716] A. Klapuri, T. Virtanen, and T. Heittola. Sound source separation
in monaural music signals using excitation-filter model and em algorithm. In Proc. Acoustics Speech and Signal Processing (ICASSP),
IEEE International Conference on, pages 5510 –5513, march 2010.
241
klsk11
[2717] J. Klauder and B.-S. Skagerstam. Extension of Berezin-Lieb Inequalities. arXiv preprint arXiv:1106.5966, 2011.
kl11
[2718] J. R. Klauder. A Modern Approach to Functional Integration. Boston,
MA: Birkh¨auser. xv, 2011.
kl11-1
[2719] J. R. Klauder. The utility of affine variables and affine coherent states.
Arxiv preprint arXiv:1108.3380, 2011.
dakl84
[2720] J. R. Klauder and I. Daubechies. Quantum mechanical path integrals
with Wiener measures for all polynomials Hamiltonians. Phys. Rev.
Lett., 52(14):1161–1164, 1984.
kllisave08
[2721] C. Klein, P. Venema, L. Sagis, and E. Linden. Rheological discrimination and characterization of carrageenans and starches by Fourier
transform-rheology in the nonlinear viscous regime. J. Non-Newton.
Fluid Mech., 151(1-3):145–150, 2008.
kl65-1
[2722] A. Kleppner. Multipliers on abelian groups. Math. Ann., 158:11–34,
1965.
flgrkl12
[2723] V. Klien, T. Grill, and A. Flexer. On Automated Annotation of Acousmatic Music. Journal of New Music Research, 41(2):153–173, 2012.
klmuro06
[2724] A. Klimov, J. L. Romero, and C. Munoz. Geometrical approach to
the discrete Wigner function in prime power dimensions. J. Phys. A,
Math. Gen., 39(46):14471–14497, 2006.
kl12
[2725] A. Klotz. Spectral invariance of Besov-Bessel subalgebras. J. Approx.
Theory, 164:268–296, 2012.
brclknstue11
[2726] F. Knoll, C. Clason, K. Bredies, M. Uecker, and R. Stollberger. Parallel Imaging With Nonlinear Reconstruction Using Variational Penalties. Magnetic Resonance in Medicine, 2011.
kn80
[2727] P. Knopf. Weak-type multipliers. Studia Math., 67:73–84, 1980.
kn10
[2728] M. Knorrenschild. Numerische Mathematik Eine beispielorientierte
Einf¨
uhrung. Hanser Verlag, 2010.
kn13
[2729] S. Knudby. Semigroups of Herz-Schur multipliers. J. Funct. Anal.,
(0):–, 2013.
242
ankn03
[2730] H. Knutsson and M. Andersson. Loglets: generalized quadrature and
phase for local spatio-temporal structure estimation. In Proceedings of
the 13th Scandinavian conference on Image analysis, SCIA’03, page 8,
Berlin, Heidelberg,, 2003. Springer-Verlag.
dykosc11
[2731] J. Kobarg, A. Dyatlov, and S. Schiffler. MALDI data preprocessing.
Technical Report 7.1, 2011.
kosu11
[2732] M. Kobayashi and M. Sugimoto. The inclusion relation between
Sobolev and modulation spaces. J. Funct. Anal., 260(11):3189 – 3208,
June 2011.
kosuto09-1
[2733] M. Kobayashi, M. Sugimoto, and N. Tomita. On the L2 -boundedness
of pseudo-differential operators and their commutators with symbols
in α-modulation spaces. J. Math. Anal. Appl., 350(1):157–169, 2009.
kopeuno09
[2734] T. Kobayashi, B. Orsted, M. Pevzner, and A. Unterberger. Composition formulas in the Weyl calculus. J. Funct. Anal., 257(4):948–991,
2009.
cakokuozot08
[2735] A. Koc, H. Ozaktas, C. Candan, A. Kutay, and o. others. Digital computation of linear canonical transforms. IEEE Trans. Signal Process.,
56(6):2383–2394, June 2008.
hekooz10
[2736] A. Koc, H. Ozaktas, and L. Hesselink. Fast and accurate algorithm
for the computation of complex linear canonical transforms. J. Opt.
Soc. Amer. A, 27(9):1896–1908, Sep 2010.
kokosaso14
[2737] H. Koch, P. Koskela, E. Saksman, and T. Soto. Bounded compositions
on scaling invariant Besov spaces. J. Funct. Anal., (0):–, 2014.
kosi02
[2738] H. Koch and W. Sickel. Pointwise multipliers of Besov spaces of
smoothness zero and spaces of continuous functions. Rev. Mat.
Iberoam., 18(3):587–626, 2002.
ko91-1
[2739] A. Kochubei. Schr¨odinger-type operator over p-adic number field.
Theoretical and Mathematical Physics, 86(3):221–228, 1991.
ko08-1
[2740] A. Kochubei. A non-Archimedean wave equation. Pacific J. Math.,
235(2):245–261, 2008.
243
ko09-3
[2741] A. Kochubei. Analysis In Positive Characteristic. Cambridge Tracts
in Mathematics 178. Cambridge: Cambridge University Press. ix,
210 p., 2009.
ko09-2
[2742] A. Kochubei. p-adic spherical coordinates and their applications.
2009.
ko01-2
[2743] A. N. Kochubei. Pseudo-differential equations and stochastics over
non-Archimedean fields. Monographs and Textbooks in Pure and Applied Mathematics, 244. Marcel Dekker, 2001.
kome08
[2744] V. Kokilashvili and A. Meskhi. On the maximal and Fourier operators in weighted Lebesgue spaces with variable exponent. Proc. A.
Razmadze Math. Inst., 146:120–123, 2008.
komera14
[2745] V. Kokilashvili, A. Meskhi, and H. Rafeiro. Grand BochnerLebesgue
space and its associate space. J. Funct. Anal., 266(4):2125 – 2136,
2014.
hiko00
[2746] B. Kolman and D. Hill. Elementary linear algebra. 7th ed. Upper
Saddle River, NJ: Prentice Hall, 7th ed. edition, 2000.
ko97-4
[2747] M. Kolountzakis. Lattice-tiling properties of integral self-affine functions. Appl. Math. Lett., 10(5):1–4, 1997.
ko98-3
[2748] M. Kolountzakis. Lattice tilings by cubes: whole, notched and extended. Electron. J. Combin., 5:Research Paper 14, 11 pp. (electronic), 1998.
ko00-1
[2749] M. Kolountzakis. On the structure of multiple translational tilings by
polygonal regions. Discrete Comput. Geom., 23(4):537–553, 2000.
ko00
[2750] M. Kolountzakis. Packing, tiling, orthogonality and completeness.
Bull. London Math. Soc., 32(5):589–599, 2000.
ko03
[2751] M. Kolountzakis. Translational tilings of the integers with long periods. Electron. J. Combin., 10:Research Paper 22, 9 pp. (electronic),
2003.
ko04-2
[2752] M. Kolountzakis. The study of translational tiling with Fourier analysis. pages 131–187. 2004.
244
ko04-3
[2753] M. Kolountzakis. The study of translational tiling with Fourier analysis. In Fourier analysis and convexity, Appl. Numer. Harmon. Anal.,
pages 131–187. Birkh¨auser Boston, Boston, 2004.
ko13-1
[2754] M. Kolountzakis. Multiple lattice tiles and Riesz bases of exponentials.
arXiv, 2013.
koli04
[2755] M. Kolountzakis and I. Laba. Tiling and spectral properties of nearcubic domains. Studia Math., 160(3):287–299, 2004.
kola96
[2756] M. Kolountzakis and J. Lagarias. Structure of tilings of the line by a
function. Duke Math. J., 82(3):653–678, 1996.
koma09
[2757] M. Kolountzakis and M. Matolcsi. Algorithms for translational tiling.
J. Math. Music, 3(2):85–97, 2009.
kopa02
[2758] M. Kolountzakis and M. Papadimitrakis. The Steinhaus tiling problem and the range of certain quadratic forms. Illinois J. Math.,
46(3):947–951, 2002.
kowo99
[2759] M. Kolountzakis and T. Wolff. On the Steinhaus tiling problem.
Mathematika, 46(2):253–280, 1999.
kome13
[2760] V. Koltchinskii and S. Mendelson. Bounding the smallest singular
value of a random matrix without concentration. ArXiv e-prints, dec
2013.
ko01-3
[2761] V. I. Kolyada. Embeddings of fractional Sobolev spaces and estimates
of Fourier transforms. Sbornik: Mathematics, 192(7):979, 2001.
ko13
[2762] A. Komech. Quantum Mechanics: Genesis and Achievements. Dordrecht: Springer, 2013.
koko13
[2763] A. Komech and A. Komech. On the Titchmarsh convolution theorem
for distributions on the circle. Funct. Anal. Appl., 47(1):21–26, 2013.
komanasa13
[2764] Y. Komori Furuya, K. Matsuoka, E. Nakai, and Y. Sawano. Integral operators on bσ -Morrey-Campanato spaces. Rev. Mat. Complut.,
26(1):1–32, 2013.
245
koro12
[2765] W. Kong and V. Rokhlin. A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions. Appl.
Comput. Harmon. Anal., 33(2):226 – 260, 2012.
kolizh03
[2766] W. Kong, D. Zhang, and W. Li. Palmprint feature extraction using
2-D Gabor filters. Pattern Recognition, 36(10):2339 – 2347, 2003.
koli07
[2767] Y. Koo and J. Lim. Perturbation of frame sequences and its applications to shift-invariant spaces. Linear Algebra and its Applications,
420(2-3):295 – 309, 2007.
cokoliuy07
[2768] J. Kopf, M. Cohen, D. Lischinski, and M. Uyttendaele. Joint bilateral
upsampling. In ACM SIGGRAPH 2007 papers, pages 96–es, 2007.
kopo10
[2769] K. A. Kopotun and B. Popov. Moduli of smoothness of splines and
applications in constrained approximation. Jaen J. Approx., 2(1):79
– 91, June 2010.
ko81
[2770] B. Korenblum. Cyclic elements in some spaces of analytic functions,.
Bull. Amer. Math. Soc., 5,(3,):317–318,, 1981.
ko06-2
[2771] B. Korenblum. Blaschke sets for Bergman spaces. In Bergman spaces
and related topics in complex analysis. Proceedings of a conference in
honor of Boris Korenblum’s 80th birthday, Barcelona, Spain, November 20–22, 2003, pages 145–152. Providence, RI: American Mathematical Society (AMS) and Ramat Gan: Bar-Ilan University, 2006.
ko11
[2772] A. Kornell. Quantum Functions. Arxiv preprint arXiv:1101.1694,
2011.
ko81-1
[2773] H. Kosaki. Non-commutative Lorentz spaces associated with a semifinite von Neumann algebra and applications. Proc. Japan Acad., Ser.
A, 57:303–306, 1981.
ko81-2
[2774] H. Kosaki. Positive cones and Lp −spaces associated with a von Neumann algebra. J. Operator Theory, 6:13–23, 1981.
kole07
[2775] P. Koskela and J. Lehrb¨ack. Quasihyperbolic growth conditions and
compact embeddings of Sobolev spaces. Michigan Math. J., 55(1):183–
193, 2007.
246
koyazh10-1
[2776] P. Koskela, D. Yang, and Y. Zhou. A characterization of Hajasz
Sobolev and Triebel Lizorkin spaces via grand Littlewood Paley
functions. J. Funct. Anal., 258:2637–2661, 2010.
kosl54-1
[2777] G. Koster and J. Slater. Wave Functions for Impurity Levels. Phys.
Rev. A, 95(5):9, Sep 1954.
cadujako11
[2778] V. Kostina, M. Duarte, S. Jafarpour, and R. Calderbank. The value of
redundant measurement in compressed sensing. In Acoustics Speech
and Signal Processing (ICASSP), 2011 IEEE International Conference on, page 4, 2011.
komamo07
[2779] V. Kostrykin, K. Makarov, and A. Motovilov. Perturbation of spectra
and spectral subspaces. Trans. Amer. Math. Soc., 359(1):77–89, 2007.
komask07
[2780] V. Kostrykin, K. Makarov, and A. Skripka. The Birman–Schwinger
principle in von Neumann algebras of finite type. J. Funct. Anal.,
247(2):492–508, 2007.
koze99
[2781] A. Kosyak and R. Zekri. Anti-Wick symbols on infinite tensor product
spaces. Methods Funct. Anal. Topol., 5(2):29–39, 1999.
ko33
[2782] V. Kotelnikov. On the transmission capacity of the ether and of cables
in electrical communications. 1933.
hakoliso12
[2783] I. Kotzer, S. Har Nevo, S. Sodin, and S. Litsyn. A model for OFDM
signals with applications. Trans. Emerging Tel. Tech, April 2012.
koqi06
[2784] K.-I. Kou and T. Qian. Shannon sampling in the Clifford analysis
setting. Z. Anal. Anwend., 24(4):853–870, 2006.
koxuzh12
[2785] K.-I. Kou, R.-H. Xu, and Y.-H. Zhang. Paley – Wiener theorems and
uncertainty principles for the windowed linear canonical transform.
Math. Methods Appl. Sci., 35(17):2122–2132, 2012.
kopu10
[2786] J. Kovacevic and M. P¨
uschel. Algebraic signal processing theory: sampling for infinite and finite 1-D space. IEEE Trans. Signal Process.,
58(1):242–257, January 2010.
dokosi13
[2787] M. Kowalski, K. Siedenburg, and M. D¨orfler. Social Sparsity! Neighborhood Systems Enrich Structured Shrinkage Operators. IEEE
Trans. Signal Process., 61(10):2498 – 2511, 2013.
247
kopf05
[2788] W. Kozek and G. E. Pfander. Identification of operators with bandlimited symbols. SIAM journal on mathematical analysis, 37(3):867–888,
2005.
koni12
[2789] G. Kozma and S. Nitzan. Combining Riesz bases. arXiv, 2012.
kool13
[2790] G. Kozma and A. Olevskii. Perturbing PLA. J. Anal. Math., 121:279–
298, 2013.
kool13-1
[2791] G. Kozma and A. Olevskii. Singular distributions, dimension of support, and symmetry of Fourier transform. Ann. Inst. Fourier (Grenoble), 63(4):1205–1226, 2013.
koya94
[2792] H. Kozono and M. Yamazaki. Semilinear heat equations and the
Navier-Stokes equation with distributions in new function spaces as
initial data. Comm. Partial Differential Equations, 19(5-6):959–1014,
1994.
ko02-1
[2793] S. Kozyrev. Wavelet theory as p-adic spectral analysis. Izv. Math.,
66(2):367–376, 2002.
khko11
[2794] S. Kozyrev and A. Khrennikov. p-adic integral operators in wavelet
bases. Dokl. Math., 83(2):209–212, 2011.
fokokp09
[2795] B. A. Kpata, I. Fofana, and K. Koua. Necessary condition for
measures which are (lq , lp ) multipliers. Ann. Math. Blaise Pascal,
16(2):339–353, 2009.
kr72
[2796] I. Kra. Automorphic Forms and Kleinian Groups. Mathematics Lecture Note Series. Reading, Mass.: W. A. Benjamin, 1972.
krmera12
[2797] F. Krahmer, S. Mendelson, and H. Rauhut. Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math.,
to appear.
krpf14
[2798] F. Krahmer and G. E. Pfander. Local sampling and approximation of
operators with bandlimited Kohn-Nirenberg symbol. Constr. Approx.
krpfra09
[2799] F. Krahmer, G. E. Pfander, and P. Rashkov. Applications of the
uncertainty principle for finite abelian groups to communications engineering. Bulg. J. Phys., 36(1):54–59, 2009.
248
krra14
[2800] F. Krahmer and H. Rauhut. Structured random measurements in
signal processing. preprint, 2014.
krwa12
[2801] F. Krahmer and R. Ward. Beyond incoherence: stable and robust
sampling strategies for compressive imaging. preprint, 2012.
krwaXX
[2802] F. Krahmer and R. Ward. Stable and robust sampling strategies for
compressive imaging. IEEE Trans. Image Process., to appear.
krsc01
[2803] T. Krajewski and M. Schnabl. Exact solitons on non-commutative
tori. J. High Energy Phys., (8):Paper 2, 22, 2001.
krry90
[2804] A. Krajka and Z. Rychlik. On the rate of convergence in the random
central limit theorem in Hilbert space. Probab. Math. Stat., 11(1):97–
108, 1990.
krpa02
[2805] S. Krantz and H. Parks. The Implicit Function Theorem. History,
Theory, And Applications. Boston, MA: Birkh¨auser., 2002.
kr78-1
[2806] S. G. Krantz. Intrinsic Lipschitz classes on manifolds with applications
to complex function theory and estimates for the ∂¯ and ∂¯b equations.
Manuscripta Math., 24(4):351–378, 1978.
kr04
[2807] I. Krasikov. New bounds on the Hermite polynomials. East J. Approx.,
10(3):355–362, 2004.
kr06
[2808] I. Krasikov. Uniform bounds for Bessel functions. J. Appl. Anal.,
12(1):83–91, 2006.
kr08
[2809] I. Krasikov. On the Erdelyi-Magnus-Nevai conjecture for Jacobi polynomials. Constr. Approx., 28(2):113–125, 2008.
alkr03
[2810] A. Krasowska and S. Ali. Wigner functions for a class of semi-direct
product groups. J. Phys. A, Math. Gen., 36(11):2801–2820, 2003.
krni12
[2811] D. Kreit and S. Nicolay. Some characterizations of generalized H¨older
spaces. Math. Nachr., 285(17-18):2157–2172, 2012.
babakrriwa11
[2812] W. Kreuzer, H. Waubke, G. Rieckh, and P. Balazs. A 3D model
to simulate vibrations in a layered medium with stochastic material
parameters. J. Comput. Acoust., 19(2):139 – 154, 2011.
249
krmira09
[2813] A. Kriegl, P. Michor, and A. Rainer. The convenient setting for nonquasianalytic Denjoy-Carleman differentiable mappings. J. Funct.
Anal., 256(11):3510–3544, 2009.
kr12
[2814] C. Kriegler. Functional calculus and dilation for C0 -groups of polynomial growth. Semigroup Forum, 84(3):393–433, 2012.
kr14
[2815] C. Kriegler. H¨ormander type functional calculus and square function
estimates. J. Operator Theory, 71(1):223–257, 2014.
krwe14
[2816] C. Kriegler and L. Weis. Spectral multiplier theorems and Rboundedness. arXiv preprint arXiv:1407.0194, 2014.
kr11
[2817] I. Krishtal. Wiener’s lemma and memory localization. J. Fourier
Anal. Appl., 17(4):674–690, 2011.
kr11-1
[2818] I. Krishtal. Wiener’s lemma: pictures at an exhibition. Rev. Un. Mat.
Argentina, 52(2):61–79, 2011.
krsk11
[2819] A. Krivoshein and M. Skopina. Approximation by frame-like wavelet
systems. Appl. Comput. Harmon. Anal., 31(3):410–428, 2011.
kr09-2
[2820] J. Krommweh.
Bildapproximation mittels der TetroletTransformation. 19. Rhein-Ruhr-Workshop, page 33, 2009.
kr10
[2821] J. Krommweh. Gerichtete Haarwavelet-Systeme in der Bildverabeitung. PhD thesis, 2010.
kr10-1
[2822] J. Krommweh. Image approximation by adaptive tetrolet transform.
In Laurent Fesquet and Bruno Torr´esani, editors, SAMPTA’09 - 8th
international conference on Sampling Theory and Applications, volume published online, page 4, Marseille, France, 2010.
kr10-2
[2823] J. Krommweh. Tetrolet transform: A new adaptive Haar wavelet
algorithm for sparse image representation. Journal of Visual Communication and Image Representation, 21(4):364 – 374, 2010.
krma10
[2824] J. Krommweh and J. Ma. Tetrolet shrinkage with anisotropic total variation minimization for image approximation. Signal Process.,
90(8):2529–2539, 2010.
250
krmo08
[2825] B. Kr¨on and R. M¨oller. Analogues of Cayley graphs for topological
groups. Math. Z., 258(3):637–675, 2008.
krrisc11
[2826] K. Kroschel, G. Rigoll, and B. Schuller. Statistische Informationstechnik - Signal -und Mustererkennung, Parameter-und Signalsch¨atzung.
Springer Berlin Heidelberg, 5. Auflage edition, 2011.
krku05
[2827] N. Y. Kruglyak and E. Kuznetsov. Smooth and nonsmooth Calder’onZygmund type decompositions for Morrey spaces. J. Fourier Anal.
Appl., 11(6):697–714, 2005.
krma91
[2828] N. Y. Kruglyak and M. Mastylo. Correct interpolation functors of
orbits. J. Funct. Anal., 102(2):401–413, 1991.
kuta10
[2829] W. Kuang and L. Tao. Gabor representation for radar signals via
real-valued discrete Gabor transform. Computer Technology and Development, 10:–, 2010.
ku78
[2830] L. Kudrjavcev. On the density of compactly supported functions in
weighted spaces. Sov. Math., Dokl., 19:277–281, 1978.
grku14-1
[2831] R. Kueng and D. Gross. RIPless compressed sensing from anisotropic
measurements. Linear Algebra Appl., 441:110–123, 2014.
ku96-1
[2832] T. Kuhn. The structure of scientific revolutions. University of Chicago
press, 1996.
ku13
[2833] N. Kumar. Ideals with bounded approximate identities in the Fourier
algebras on homogeneous spaces. Indag. Math., New Ser., 24(1):1–14,
2013.
ku14
[2834] P. Kumar. Fourier restriction theorem and characterization of weak
eigenfunctions of the Laplace-Beltrami operator. J. Funct. Anal.,
266(9):5584 – 5597, 2014.
kusasi13
[2835] S. Kumar, K. Singh, and R. Saxena. Closed-form analytical expression of fractional order differentiation in fractional Fourier transform
domain. Circuits Systems Signal Process., 32(4):1875–1889, 2013.
kupo08
[2836] S. Kunis and D. Potts. Time and memory requirements of the nonequispaced FFT. Sampl. Theory Signal Image Process., 7(1):77–100,
2008.
251
kuwe04
[2837] P. Kunstmann and L. Weis. Maximal lp -regularity for parabolic equations, Fourier multiplier theorems and h∞ -functional calculus. In
Functional analytic methods for evolution equations, volume 1855 of
Lecture Notes in Math., pages 65–311. Springer, Berlin, 2004.
ku58
[2838] R. Kunze. Lp Fourier transforms on locally compact unimodular
groups. Trans. Amer. Math. Soc., 89(2):pp. 519–540, 1958.
ku59-1
[2839] R. Kunze. An operator theoretic approach to generalized Fourier
transforms. Ann. of Math. (2), 69:1–14, 1959.
ku59
[2840] R. Kunze. Recent Publications: An Introduction to Fourier Analysis
and Generalized Functions. Amer. Math. Monthly, 66(3):243, 1959.
kust60
[2841] R. A. Kunze and E. M. Stein. Uniformly bounded representations and
harmonic analysis of the 2x2 real unimodular group. Amer. J. Math.,
82(1):1–62, 1960.
dogrgrku02-1
[2842] C. Kuo, R. Graf, A. Dowling, and W. Graham. On the horn effect of
a tyre/road interface, Part ll: Asymptotic theories. Journal of Sound
and Vibration, 256(3):433 – 445, September 2002.
ku97-1
[2843] I. Kupka. G´eom´etrie sous-riemannienne. Ast´erisque, (241):Exp. No.
817, 5, 351–380, 1997.
boduku11
[2844] P. Kuppinger, G. Durisi, and H. B¨olcskei. Uncertainty relations and
sparse signal recovery for pairs of general signal sets. Preprint, 2011.
kuoszh09
[2845] H. Kurke, D. Osipov, and A. Zheglov. Formal punctured ribbons and
two-dimensional local fields. J. Reine Angew. Math., 629:133–170,
2009.
ku07-3
[2846] G. Kutyniok. Homogeneous Approximation Property. Affine Density
in Wavelet Analysis, pages 87–104, 2007.
kula12
[2847] G. Kutyniok and D. Labate. Shearlets Multiscale Analysis for Multivariate Data. Appl. Numer. Harmon. Anal. Boston, MA: Birkh¨auser,
2012.
kuli11
[2848] G. Kutyniok and W.-Q. Lim. Compactly supported shearlets are
optimally sparse. J. Approx. Theory, 163(11):1564–1589, 2011.
252
kusa09
[2849] G. Kutyniok and T. Sauer.
Adaptive directional subdivision
schemes and shearlet multiresolution analysis. SIAM J. Math. Anal.,
41(4):1436–1471, 2009.
ku08-1
[2850] Y. Kuznetsova. Invariant weighted algebras
√ (}).
Math. Notes,
√ (})
on an uncount-
84(3):529–537, 2008.
ku09-2
[2851] Y. Kuznetsova. Example of a weighted algebra
able discrete group. J. Math. Anal. Appl., 353(2):660–665, 2009.
ku01-4
[2852] Y. N. Kuznetsova. Multiplication on Frechet spaces. Mosc. Univ.
Math. Bull., 56(1):38–40, 2001.
ku06-2
[2853] Y. N. Kuznetsova. Weighted Lp -algebras on groups. Funct. Anal.
Appl., 40(3):234–236, 2006.
ku09-1
[2854] Y. N. Kuznetsova. Constructions of regular algebras
√ (}).
Sb. Math.,
200(2):229–241, 2009.
ku12
[2855] Y. N. Kuznetsova. On continuity of measurable group representations
and homomorphisms. Studia Math., 210(3):197–208, 2012.
kumo12
[2856] Y. N. Kuznetsova and C. Molitor Braun. Harmonic analysis of
weighted Lp -algebras. Exposition. Math., 30(2):124–153, 2012.
kwpe80
[2857] S. Kwapien and A. Pelczynski. Absolutely summing operators and
translation invariant spaces of functions on compact abelian groups.
Math. Nachr., 94:303–340, 1980.
chky00
[2858] A. Kyatkin and G. Chirikjian. Algorithms for fast convolutions on
motion groups. Appl. Comput. Harmon. Anal., 9(2):220–241, 2000.
kypexu08
[2859] G. Kyriazis, P. Petrushev, and Y. Xu. Jacobi decomposition
of weighted Triebel-Lizorkin and Besov spaces. Studia Math.,
186(2):161–202, 2008.
ceky14
[2860] A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding
methods. J. Math. Imaging Vis, 48:235–265, 2014.
lamane12
[2861] D. Labate, L. Mantovani, and P. Negi. Shearlet smoothness spaces,
2012.
253
lath97
[2862] M. Lacey and C. Thiele. Lp estimates on the bilinear Hilbert transform
for 2 < p < ∞. Ann. Math. (2), 146(3):693–724, 1997.
laonristto14
[2863] H. Lachambre, B. Ricaud, G. Stempfel, B. Torresani, C. Wiesmeyr,
and D. M. Onchis. Optimal window and lattice in Gabor transform.
Application to Audio Analysis. ArXiv e-prints, 2014.
la96-4
[2864] J. Lagarias. Meyer’s concept of quasicrystal and quasiregular sets.
Comm. Math. Phys., 179(2):365–376, 1996.
la99-4
[2865] J. Lagarias. Geometric models for quasicrystals I. Delone sets of finite
type. Discrete Comput. Geom., 21(2):161–191, 1999.
la99-3
[2866] J. Lagarias. Geometric models for quasicrystals. II. Local rules under
isometries. Discrete Comput. Geom., 21(3):345–372, 1999.
la00-2
[2867] J. Lagarias. Mathematical quasicrystals and the problem of diffraction. In Directions in mathematical quasicrystals, volume 13 of CRM
Monogr. Ser., pages 61–93. 2000.
lapl03
[2868] J. Lagarias and P. Pleasants. Repetitive Delone sets and quasicrystals.
Ergodic Theory Dynam. Systems, 23(3):831–867, 2003.
lash94
[2869] J. Lagarias and P. Shor. Cube-tilings of rn and nonlinear codes. Discrete Comput. Geom., 11(4):359–391, 1994.
lawa96-1
[2870] J. Lagarias and Y. Wang. Tiling the line with translates of one tile.
Invent. Math., 124(1-3):341–365, 1996.
lamamo95
[2871] P. Laguna, G. Moody, and R. Mark. Power spectral density of unevenly sampled heart rate data. In Engineering in Medicine and Biology Society, 1995., IEEE 17th Annual Conference, volume 1, pages
157–158, 1995.
cajalavi92
[2872] P. Laguna, D. Vigo, R. Jane, and P. Caminal. Automatic wave onset
and offset determination in ECG signals: Validation with the CSE
database. In Computers in Cardiology 1992, Proceedings of, pages
167–170, 1992.
lana11
[2873] E. Lagunas and M. Najar. Sparse Channel Estimation based on Compressed Sensing for Ultra WideBand Systems. pages 365–369, Sep.
2011.
254
la71-3
[2874] H.-C. Lai. On the multipliers of Ap (G)-algebras. Tohoku Math. J.,
23:641–662, 1971.
la72
[2875] H.-C. Lai. A characterization of the multipliers of Banach algebras.
Yokohama Math. J., 20:45–50, 1972.
la74-2
[2876] H.-C. Lai. Multipliers of a Banach algebra in the second conjugate
algebra as an idealizer. Tohoku Math. J., 26:431–452, 1974.
la85-3
[2877] H.-C. Lai. Multipliers for some spaces of Banach algebra valued functions. Rocky Mountain J. Math., 15:157–166, 1985.
la85-2
[2878] H.-C. Lai. Multipliers of Banach valued function spaces. J. Austral.
Math. Soc. Ser. A, 39:51–62, 1985.
la85-1
[2879] H.-C. Lai. Translation invariant operators and multipliers of vector
valued functions. Math. Res. Cent. Rep., Symp. Taipei/Taiwan 1985,
244-256 (1985), 1985.
chla88
[2880] H.-C. Lai and T.-K. Chang. Translation invariant operators and multipliers of Banach-valued function spaces. In Analysis, Proc. Conf.,
Singapore 1986, volume 150 of Math. Stud., pages 151–162. NorthHolland, 1988.
laye86
[2881] H.-C. Lai and Y. Yeh. On the multipliers of the p-class Banach algebras in an H ∗ -algebra. Tamkang J. Math., 17(2):71–85, 1986.
lary02
[2882] D. Lakew and J. Ryan. Complete function systems and decomposition
results arising in Clifford analysis. Comput. Methods Funct. Theory,
2(1):215–228, 2002.
lary03
[2883] D. Lakew and J. Ryan. Complete function systems and decomposition results arising in Clifford analysis. Computational Methods and
Function Theory, 2(1):215–228, 2003.
la86
[2884] W. Lamb. Fourier multipliers on spaces of distributions. Proc. Edinburgh Math. Soc. (2), 29:309–327, 1986.
lati85
[2885] P. Lancaster and M. Tismenetsky. The theory of matrices. 2nd ed.,
with applications. Computer Science and Applied Mathematics. Orlando etc.: Academic Press (Harcourt Brace Jovanovich, Publishers).
XV, 570 p. $ 59.00 (1985)., 1985.
255
la94-1
[2886] E. Lance. Unitary operators on Hilbert C*-modules. Bulletin of the
London Mathematical Society, 26(4):363–366, 1994.
la77-2
[2887] H. J. Landau. The notion of approximate eigenvalues applied to an
integral equation of laser theory. Q. Appl. Math., 35:165–172, 1977.
la98-4
[2888] H. J. Landau. Maximum entropy and maximum likelihood in spectral
estimation. IEEE Trans. Inform. Theory, 44(3):1332–1336, 1998.
la06-3
[2889] G. Landi. On harmonic maps in noncommutative geometry. In Noncommutative Geometry and Number Theory, pages 217–234. Springer,
2006.
la02-4
[2890] M. Landstad. Traces on noncommutative homogeneous spaces. J.
Funct. Anal., 191(2):211–223, 2002.
lara97
[2891] M. Landstad and I. Raeburn. Equivariant deformations of homogeneous spaces. J. Funct. Anal., 148(2):480–507, 1997.
la72-1
[2892] M. Lane. Kategorien. Begriffssprache und mathematische Theorie.
Hochschultexte. Berlin-Heidelberg-New York: Springer-Verlag., 1972.
la72-2
[2893] M. Lane. Kategorien. Begriffssprache und mathematische Theorie.
Hochschultexte. Berlin-Heidelberg-New York: Springer-Verlag., 1972.
laratawa08
[2894] J. Lang, R. Tao, Q. Ran, and Y. Wang. The multiple-parameter
fractional Fourier transform. Science in China Series F: Information
Sciences, 51(8):1010–1024, 2008.
latawa10
[2895] J. Lang, R. Tao, and Y. Wang. The discrete multiple-parameter fractional Fourier transform. SCIENCE CHINA Information Sciences,
53(11):2287–2299, 2010.
la09-3
[2896] D. Langemann. Total ponderomotive force on an extended test body.
Int. J. Math. Math. Sci., 2009.
lapr10
[2897] D. Langemann and J. Prestin. Multivariate periodic wavelet analysis.
Appl. Comput. Harmon. Anal., 28(1):46–66, 2010.
lata08
[2898] D. Langemann and M. Tasche. Phase reconstruction by a multilevel
iteratively regularized Gauss-Newton method. 2008.
256
lata09
[2899] D. Langemann and M. Tasche. Multilevel phase reconstruction for a
rapidly decreasing interpolating function. Result. Math., 53(3-4):333–
340, 2009.
la13
[2900] M. Langenbruch. Convolution operators on spaces of real analytic
functions. Mathematische Nachrichten, 286(8-9):908–920, 2013.
lalo04
[2901] G. Langwagen and A. Lopes. Sampled continuous time filter banks
and frame theory. In M. H. Rashid, editor, Proceedings of the Second
IASTED International Conference on Circuits, Signals, and Systems,
Clearwater Beach, FL, USA, November 28, 2004 - December 1, 2004,
pages 64–68. IASTED/ACTA Press, 2004.
calaro87-1
[2902] A. Lannes, M. Casanove, and S. Roques. Stabilized Reconstruction
in Signal and Image Processing: II. Iterative Reconstruction with and
Without Constraint–Interactive Implementation. Journal of Modern
Optics, 34(3):321–370, 1987.
lalelisost11
[2903] D. Lantzberg, R. Levie, F. Lieb, N. Sochen, and H.-G. Stark. Deliverable 2.1: Comprehensive Construction Schemes of Uncertainty
Minimizers. Technical report, 2011.
lamasc07
[2904] F. Lanzara, V. Maz’ya, and G. Schmidt. Approximate approximations
on nonuniform grids. Matematiche, 62(2):303–318, 2007.
lamasc07-1
[2905] F. Lanzara, V. G. Maz’ya, and G. Schmidt. Approximate approximations from scattered data. 145(2):141–170, April 2007.
lasc09-1
[2906] F. Lanzara and G. Schmidt. Cubature of integral operators by approximate quasi-interpolation. Cialdea, Alberto (ed.) et al., Analysis,
partial differential equations and applications. The Vladimir Maz’ya
anniversary volume. Selected papers of the international workshop,
Rome, Italy, June 30–July 3, 2008. Basel: Birkh¨auser. Operator Theory: Advanc, 2009.
la96-3
[2907] M. Lapidus. The Feynman integral and Feynman’s operational calculus: A heuristic and mathematical introduction. Ann. Math. Blaise
Pascal, 3(1):89–102, 1996.
la99-2
[2908] J. Lapsley Miller. The role of the bandwidth-duration product WT in
the detectability of diotic signals. PhD thesis, 1999.
257
lascspta06
[2909] D. Larson, E. Schulz, D. Speegle, and K. F. Taylor. Explicit crosssections of singly generated group actions. Heil, Christopher (ed.),
Harmonic analysis and applications. In Honor of John J. Benedetto.
Basel: Birkh¨auser. Applied and Numerical Harmonic Analysis, 2006.
edla91
[2910] R. Larson and B. Edwards. Elementary linear algebra. 2nd ed. Lexington, MA etc.: D.C. Heath and Company, 2nd ed. edition, 1991.
brlale04
[2911] B. Larsson, T. Levitina, and E. Br¨andas. Eigenfunctions of the 2D
finite Fourier transform. J. Comput. Methods Sci. Eng., 4(1-2):135–
148, 2004.
aahala08
[2912] E. Larsson, K. Aahlander, and A. Hall. Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform.
J. Comput. Appl. Math., 222(1):175–192, 2008.
bala12
[2913] J. N. Laska and R. G. Baraniuk. Regime change: Bit-depth versus
measurement-rate in compressive sensing. IEEE Transactions on Signal Processing, 60:3496–3505, 2012.
babodala11
[2914] J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. G. Baraniuk.
Democracy in action: Quantization, saturation, and compressive sensing. Appl. Comput. Harmon. Anal., 31(3):429–443, 2011.
la03
[2915] R. Lasuriya. Characterization of φ-strong summability points of the
Fourier-Laplace series for functions from class lp (sm ), p > 1. Ukrain.
Mat. Zh., 55(1):45–54, 2003.
la96-2
[2916] R. Latala. Tail and moment estimates for sums of independent
random vectors with logarithmically concave tails. Studia Math.,
118(3):301–304, 1996.
la12-1
[2917] F. Latremoliere. Quantum locally compact metric spaces. J. Funct.
Anal., (0):–, 2012.
lapa11
[2918] F. Latremoliere and J. Packer. Noncommutative solenoids. Submitted
on 28 Oct 2011, Not yet published (06/03/13):30, 2011.
la12
[2919] A. J. Laub. Computational matrix analysis. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2012.
258
lasi11
[2920] R. Laugesen and B. Siudeja. Sums of Laplace eigenvalues: rotations
and tight frames in higher dimensions. J. Math. Phys., 52(9):093703,
13, 2011.
la83-1
[2921] R. Laughlin. Anomalous quantum Hall effect: an incompressible
quantum fluid with fractionally charged excitations. Physical Review
Letters, 50(18):1395–1398, 1983.
la87
[2922] G. Laumon. Transformation de Fourier, constantes d’´equations fonctionnelles et conjecture de Weil. (Fourier transformation, constants
of the functional equations and Weil conjecture). Publ. Math., Inst.
Hautes tud. Sci., 65:131–210, 1987.
la00-1
[2923] D. Lawrence. A stability property of nonlinear sampled-data systems with slowly varying inputs. IEEE Trans. Automat. Control,
45(3):592–596, 2000.
la61
[2924] C. Lawson. Contributions to the Theory of Linear Least Maximum
Approximation. PhD thesis, 1961.
la11
[2925] W. Lawton. The Feichtinger conjecture for exponentials. J. Nonlinear
Anal. Optim., 2(1):131–140, 2011.
la02-3
[2926] P. Lax. Functional analysis. Wiley-Interscience Series in Pure and
Applied Mathematics. Chichester: Wiley. xx, 580 p., 2002.
lasito05
[2927] A. Lazar, E. Simonyi, and L. T´oth. Time encoding of bandlimited
signals, an overview. Technical report, Columbia University, New
York, 2005.
le09-4
[2928] T. Le. Finite-rank products of Toeplitz operators in several complex
variables. Integr. Equ. Oper. Theory, 63(4):547–555, 2009.
le10-3
[2929] T. Le. A refined Luecking’s theorem and finite-rank products of
Toeplitz operators. Complex Anal. Oper. Theory, 4(2):391–399, 2010.
leslwe10
[2930] Q. T. Le Gia, I. H. Sloan, and H. Wendland. Multiscale analysis in
Sobolev spaces on the sphere. SIAM J. Numer. Anal., 48(6):2065–
2090, 2010.
le11
[2931] V. Lebedev. Absolutely convergent Fourier series. An improvement
of the Beurling-Helson theorem. to be published, 2011.
259
lepr14
[2932] E. Lebedeva and J. Prestin. Periodic wavelet frames and timefrequency localization. Appl. Comput. Harmon. Anal., (0):–, 2014.
le05-2
[2933] H. Lebesgue. Recherches sur la convergence des s’eries de it Fourier.
Math. Ann., 61:251–280, 1905.
le91-1
[2934] J. Lechleider. A new interpolation theorem with application to pulse
transmission. Communications, IEEE Transactions on, 39(10):1438–
1444, 1991.
leme14
[2935] G. Lecu´e and S. Mendelson. Sparse recovery under weak moment
assumptions. ArXiv e-prints, jan 2014.
leva11
[2936] J. Lederer and S. van de Geer. The Bernstein-Orlicz norm and deviation inequalities. preprint, 2011.
le03-2
[2937] M. Ledoux. On improved Sobolev embedding theorems. Math. Res.
Lett., 10(5-6):659–669, 2003.
lemumusm00
[2938] J.-P. Leduc, F. Mujica, R. Murenzi, and M. Smith. Spatiotemporal
wavelets: a group-theoretic construction for motion estimation and
tracking. SIAM J. Appl. Math., 61(2):596–632 (electronic), 2000.
leresasrtr10
[2939] J. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and J. A. Tropp. Practical large-scale optimization for max-norm regularization. In Advances in Neural Information Processing Systems 23 (NIPS), pages
1297–1305, Vancouver, December 2010.
lesasu12
[2940] J. Lee, Y. Sun, and M. Saunders. Proximal Newton-type methods for
convex optimization. preprint, 2012.
leve07
[2941] J. Lee and M. Verleysen.
Springer, 2007.
Nonlinear Dimensionality Reduction.
le12
[2942] M.-Y. Lee. Boundedness of Riesz transforms on weighted Carleson
measure spaces. Studia Math., 209(2):169–187, 2012.
le89-1
[2943] P.-Y. Lee. Lanzhou Lectures on Henstock Integration. Series in Real
Analysis, 2. London etc.: World Scientific. viii, 1989.
260
lese12
[2944] S. Lee and A. Seeger. Lebesgue space estimates for a class of Fourier
integral operators associated with wave propagation. Mathematische
Nachrichten, pages n/a–n/a, 2012.
esle11
[2945] R. Legarda Saenz and A. Espinosa Romero. Wavefront reconstruction
using multiple directional derivatives and Fourier transform. Opt.
Eng., 50(4):040501(4), 2011.
lesh14
[2946] J. Lehrb¨ack and N. Shanmugalingam. Quasiadditivity of variational
capacity. Potential Analysis, 40(3):247–265, 2014.
aidukolesituzw08
[2947] J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F. X.
Sillion, and T. Aila. A meshless hierarchical representation for light
transport. ACM Trans. Graph., 27(3), August 2008.
chhule08
[2948] C. Lei, Y. Huang, and Z. Cheng. The characterization of compact
support of Fourier transform for scaling function and orthonormal
wavelets of l2 ( s ). Curr. Dev. Theory Appl. Wavelets, 2(3):253–276,
2008.
chlelixi11
[2949] N. Lei, J. Chai, P. Xia, and Y. Li. A fast algorithm for the multivariate
Birkhoff interpolation problem. J. Comput. Appl. Math., 236(6):1656
– 1666, 2011.
chleparota08
[2950] G. Leibon, D. Rockmore, W. Park, R. Taintor, and G. Chirikjian. A
fast Hermite transform. Theoret. Comput. Sci., 409(2):211–228, 2008.
le89-2
[2951] B. Lemaire. The proximal algorithm. In New methods in optimization
and their industrial uses (Pau/Paris, 1987), volume 87 of Internat.
Schriftenreihe Numer. Math., pages 73–87. Birkh¨auser, Basel, 1989.
le12-1
[2952] P. Lemari´e Rieusset. The role of Morrey spaces in the study of NavierStokes and Euler equations. Eurasian Math. J., 3(3):62–93, 2012.
le09-2
[2953] J. Lemvig. Constructing pairs of dual bandlimited framelets with
desired time localization. Adv. Comput. Math., 30(3):231–247, 2009.
hale11
[2954] J. Leng and D. Han. Optimal dual frames for erasures. II. Linear
Algebra Appl., 435(6):1464–1472, 2011.
261
hale12
[2955] J. Leng and D. Han. Orthogonal projection decomposition of matrices
and construction of fusion frames. Adv. Comput. Math., Online first:1–
13, 2012.
hahule11
[2956] J. Leng, D. Han, and T. Huang. Optimal dual frames for communication coding with probabilistic erasures. IEEE Trans. Signal Process.,
59(11):5380 –5389, nov. 2011.
lelelo82
[2957] A. Lenstra, H. Lenstra, and L. Lov´asz. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982.
le87
[2958] H. Lenstra. Factoring integers with elliptic curves. Ann. Math. (2),
126:649–673, 1987.
le90-1
[2959] S. Leon. Linear algebra with applications. 3rd ed. New York: Macmillan Publishing Company, 3rd ed. edition, 1990.
le06-3
[2960] S. Leon. Linear Algebra with Applications. 7th Edition. Pearson Education Inc., 2006.
fahele03
[2961] S. Leon, E. Herman, and R. Faulkenberry. ATLAST Computer Exercises for Linear Algebra. Pearson Education Inc., 2nd edition, 2003.
lesp11
[2962] G. Leoni and D. Spector. Characterization of Sobolev and BV spaces.
J. Funct. Anal., 261(10):2926 – 2958, 2011.
lesp14
[2963] G. Leoni and D. Spector. Corrigendum to “Characterization of
Sobolev and BV spaces”. J. Funct. Anal., 266(2):1106–1114, 2014.
lesk11
[2964] H.-G. Leopold and L. Skrzypczak. Entropy numbers of embeddings of
some 2-microlocal Besov spaces. J. Approx. Theory, 163(4):505–523,
2011.
le66
[2965] H. Leptin. Faltungen von Borelschen Maßen mit Lp -Funktionen auf
lokal kompakten Gruppen. Math. Ann., 163:111–117, 1966.
lepo79
[2966] H. Leptin and D. Poguntke. Symmetry and nonsymmetry for locally
compact groups. J. Funct. Anal., 33(2):119–134, 1979.
le04
[2967] A. Lerner. Weighted norm inequalities for the local sharp maximal
function. J. Fourier Anal. Appl., 10(5):465–474, 2004.
262
le05-1
[2968] A. Lerner. A new approach to rearrangements of maximal operators.
Bull. Lond. Math. Soc., 37(5):771–777, 2005.
le14
[2969] N. Lerner. A Course on Integration Theory. Including more than
150 Exercises with detailed answers (to appear). New York, NY:
Birkh¨auser/Springer, 2014.
le99
[2970] M. Lesch. On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols. Annals of global analysis
and geometry, 17(2):151–187, 1999.
le09-3
[2971] M. Lesch. Pseudodifferential operators and regularized traces. arXiv
preprint arXiv:0901.1689, 2009.
le10-1
[2972] M. Lesch. Pseudodifferential Operators and Regularized Traces. In
Motives, Quantum Field Theory, and Pseudodifferential Operators:
Conference on Motives, Quantum Field Theory, and Pseudodifferential Operators, June 2-13, 2008, Boston University, Boston, Massachusetts, volume 12, page 37, 2010.
jile10
[2973] M. Lesch and C. Jim’enez. Classification of traces and hypertraces
on spaces of classical pseudodifferential operators. arXiv preprint
arXiv:1011.3238, 2010.
leqi10
[2974] S. Leung and J. Qian. The backward phase flow and FBI-transformbased Eulerian Gaussian beams for the Schr¨odinger equation. J. Comput. Phys., 229(23):8888–8917, 2010.
le04-1
[2975] G. Leus. On the estimation of rapidly varying channels. volume 4,
pages 2227–2230, Sep. 2004.
leseus02
[2976] B. Lev, A. Semenov, and C. Usenko. Scalar charged particle in Weyl–
Wigner–Moyal phase space. Constant magnetic field. Journal of Russian Laser Research, 23(4):347–368, 2002.
le12-2
[2977] N. Lev. Riesz bases of exponentials on multiband spectra. Proc. Amer.
Math. Soc., 140(9):3127–3132, 2012.
leol08
[2978] N. Lev and A. Olevskii. No characterization of generators in p (1 <
p < 2) by zero set of Fourier transform. C. R., Math., Acad. Sci.
Paris, 346(11-12):645–648, 2008.
263
leol11
[2979] N. Lev and A. Olevskii. Wiener’s closure of translates problem
and Piatetski-Shapiro’s uniqueness phenomenon. Ann. of Math. (2),
174(1):519–541, 2011.
leol13
[2980] N. Lev and A. Olevskii. Measures with uniformly discrete support and
spectrum. C. R. Math. Acad. Sci. Paris, 351(15-16):599–603, 2013.
lese08
[2981] T. Levajkovic and D. Selesi. Chaos expansion of generalised random processes on fractional white noise space. Novi Sad J. Math.,
38(3):137–146, 2008.
lele09
[2982] R. Levanda and A. Leshem. Radio astronomical image formation
using sparse reconstruction techniques. In Electrical and Electronics
Engineers in Israel, 2008. IEEEI 2008. IEEE 25th Convention of,
pages 716–720, 2009.
le06-2
[2983] R. LeVeque. Wave propagation software, computational science, and
reproducible research. Sanz-Sol´e, Marta (ed.) et al., Proceedings of
the international congress of mathematicians (ICM), Madrid, Spain,
August 22–30, 2006. Volume III: Invited lectures. Z¨
urich: European
Mathematical Society (EMS). 1227-1253 (2006)., 2006.
leve12
[2984] E. Levina and R. Vershynin. Partial estimation of covariance matrices.
Probab. Theory Relat. Fields, 153:405–419, 2012.
brle03
[2985] T. Levitina and E. Br¨andas. Multitaper techniques and filter diagonalization methods - a comparison. Internat. J. Theoret. Phys.,
42(10):2531–2544, 2003.
brle03-1
[2986] T. Levitina and E. Br¨andas. Numerical quadrature performed on the
generalized prolate spheroidal functions. In Computational methods
in sciences and engineering 2003 (ICCMSE 2003). Proceedings of the
international conference, Kastoria, Greece, September 12-16, 2003,
pages 360–364. World Scientific, 2003.
brle06-2
[2987] T. Levitina and E. J. Br¨andas. Filter diagonalization with finite
Fourier transform eigenfunctions. J. Math. Chem., 40(1):43–47, 2006.
brle08
[2988] T. Levitina and E. J. Br¨andas. Sampling formula for convolution with
a prolate. Int. J. Comput. Math., 85(3-4):487–496, 2008.
264
le83
[2989] R. Lewitt. Reconstruction algorithms: transform methods. Proceedings of the IEEE, 71(3):390–408, 1983.
le00-1
[2990] R. Lewitt. Alternatives to voxels for image representation in iterative reconstruction algorithms. Physics in Medicine and Biology,
37(3):705, 2000.
boliya14
[2991] B. Li, M. Bownik, and D. Yang. Littlewood-Paley characterization
and duality of weighted anisotropic product Hardy spaces. J. Funct.
Anal., 266(5):2611 – 2661, 2014.
doliva10
[2992] B. Li, M. Dong, and M. Vai. Modelling cardiovascular physiological
signals using adaptive hermite and wavelet basis functions. Signal
Processing, IET, 4(5l):588 –597, oct. 2010.
litawaxu09
[2993] B.-Z. Li, R. Tao, T.-Z. Xu, and Y. Wang. The Poisson sum formulae associated with the fractional Fourier transform. Signal Process.,
89(5):851 – 856, 2009.
limcqi94
[2994] C. Li, A. McIntosh, and T. Qian. Clifford algebras, Fourier transforms
and singular convolution operators on Lipschitz surfaces. Rev. Mat.
Iberoam., 10(3):665–721, 1994.
li12-1
[2995] C.-Y. Li. Operator frames for Banach spaces. Complex Anal. Oper.
Theory, 6(1):1–21, 2012.
liwuzh11
[2996] D. Li, G. Wu, and X. Zhang. Two sufficient conditions in frequency
domain for Gabor frames. Appl. Math. Lett., 24(4):506–511, April
2011.
li06-1
[2997] H. Li. Order-unit quantum Gromov-Hausdorff distance. J. Funct.
Anal., 231(2):312–360, 2006.
li09-1
[2998] H. Li. Metric aspects of noncommutative homogeneous spaces. J.
Funct. Anal., 257(7):2325–2350, 2009.
lisuxu08
[2999] H. Li, J. Sun, and Y. Xu. Discrete Fourier analysis, cubature, and
interpolation on a hexagon and a triangle. SIAM J. Numer. Anal.,
46(4):1653–1681, 2008.
265
liya11
[3000] H. Li and C. Yang. Two-dimensional multiscale windowed Fourier
transform based on two-dimensional wavelet transform for fringe pattern demodulation. Optics & Laser Technology, 43(1):72 – 81, 2011.
liqi14
[3001] H.-Q. Li and B. Qian. Centered Hardy-Littlewood maximal functions
on Heisenberg type groups. Trans. Amer. Math. Soc., 366(3):1497–
1524, 2014.
lisu12
[3002] K. Li and W. Sun. Convergence of wavelet frame operators as the
sampling density tends to infinity. Appl. Comput. Harmon. Anal.,
33(1):140 – 147, 2012.
lilisu09
[3003] M. Li, H. Li, and J. Sun. Nonequispaced fast Fourier transform on
parallel hexagon. J. Numer. Methods Comput. Appl., 30(1):58–69,
2009.
leliqi11
[3004] P. Li, I. Leong, and T. Qian. A class of Fourier multipliers on starlike
Lipschitz surfaces. J. Funct. Anal., 261(6):1415 – 1445, 2011.
li96-2
[3005] S. Li. Scaled Gabor representation: a refined time-frequency decomposition. In Michael A. Unser, A. Aldroubi, and A. F. Laine, editors,
Proc. SPIE, Wavelet Applications in Signal and Image Processing IV:
Frames and Gabor, volume 2825, pages 140–151, Denver, CO — August 04, 1996, 1996.
lixi07-1
[3006] S. Li and J. Xian. Biorthogonal multiple wavelets generated by vector
refinement equation. Sci. China Ser. A, 50(7):1015–1025, 2007.
lizh12
[3007] S. Li and Z. Zhou. Theories on Morrey spaces and Campanato spaces
on metric measure spaces. J. Huazhong Norm. Univ., Nat. Sci.,
46(1):5–8, 2012.
li02-2
[3008] Y. Li. Simplified channel estimation for OFDM systems with multiple
transmit antennas. IEEE Trans. Wireless Comm., 1:67–75, Jan. 2002.
ciliso98
[3009] Y. Li, L. Cimini, and N. Sollenberger. Robust channel estimation for
OFDM systems with rapid dispersive fading channels. IEEE Trans.
Comm., 46:902–915, Jul. 1998.
calilixu03
[3010] Y. Li, Z. Li, Y. Cai, and Y. Xu. An improved channel estimation
scheme for OFDM systems by tracking the subspace. volume 2, pages
1109–1113, 2003.
266
lili11
[3011] Y. Li and Q. Lian. Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets. SCIENCE CHINA Mathematics,
54(5):987–1010, 2011.
arlise99
[3012] Y. Li, N. Seshadri, and S. Ariyavisitakul. Channel estimation for
OFDM systems with transmitter diversity in mobile wireless channels.
IEEE J. Sel. Areas Comm., 17:461–471, Mar. 1999.
lizh13
[3013] Y.-Z. Li and Y. Zhang. Discrete Subspace Multiwindow Gabor Frames
and Their Duals. Abstract and Applied Analysis, 2013, 2013.
lizh11
[3014] Y.-Z. Li and F.-Y. Zhou. GMRA-based construction of framelets in
reducing subspaces of L2(Rd). 9(2):237–268, 2011.
hali10-1
[3015] Z. Li and D. Han. Constructing super Gabor frames: the rational
time-frequency lattice case. Sci. China, Math., 53(12):3179–3186,
2010.
goliyo13
[3016] Q.-F. Lian, J. Gong, and M.-H. You. Time-domain characterization of
multiwindow Gabor systems on discrete periodic sets. Indian Journal
of Pure and Applied Mathematics, 44(1):47–76, 2013.
lipa96
[3017] J. Liang and T. Parks. A translation-invariant wavelet representation
algorithm with applications. IEEE Trans. Signal Process., 44(2):225–
232, 1996.
lisaulyayu12
[3018] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, and W. Yuan. A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces.
Preprint, pages 1–122, 2012.
lisaulyayu12-1
[3019] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, and W. Yuan. New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl., 18(5):1067–1111, 2012.
lisaulyayu13
[3020] Y. Liang, D. Yang, W. Yuan, Y. Sawano, and T. Ullrich. A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces.
Dissertationes Math. (Rozprawy Mat.), 489:114, 2013.
li12-2
[3021] P. Liardet. G’erard Rauzy (1938–2010). Uniform Distribution Theory,
7(1):1–9, 2012.
267
lios10
[3022] E. Lieb and Y. Ostrover. Localization of multidimensional Wigner
distributions. J. Math. Phys., 51(10):102101, 6, 2010.
liso91
[3023] E. Lieb and J. Solovej. Quantum coherent operators: a generalization
of coherent states. Lett. Math. Phys., 22(2):145–154, 1991.
liso14
[3024] E. Lieb and J. Solovej. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations. Acta Mathematica, 212(2):379–
398, 2014.
lith05
[3025] E. Lieb and W. Thirring. Inequalities for the moments of the eigenvalues of the Schr¨odinger Hamiltonian and their relation to Sobolev
inequalities. In The stability of matter: from atoms to stars. Selecta
of Elliott H. Lieb. Fourth edition, volume Part III, pages 205–239.
Springer, 2005.
lisa14
[3026] J. Lierl and L. Saloff Coste. The Dirichlet heat kernel in inner uniform
domains: Local results, compact domains and non-symmetric forms.
J. Funct. Anal., 266(7):4189 – 4235, 2014.
li96-1
[3027] E. Liflyand. Fourier transforms of radial functions. Integral Transforms Spec. Funct., 4(3):279–300, 1996.
li13
[3028] E. Liflyand. Fourier transforms on an amalgam type space. Monatsh.
Math., 172(3-4):345–355, 2013.
litr98
[3029] E. Liflyand and W. Trebels. On asymptotics for a class of radial
Fourier transforms. Z. Anal. Anwendungen, 17(1):103–114, 1998.
litr11
[3030] E. Liflyand and R. Trigub. Conditions for the absolute convergence
of Fourier integrals. J. Approx. Theory, 163(4):438–459, 2011.
li12
[3031] M. Lifshits. Lectures on Gaussian Processes. Springer Briefs in Mathematics. Springer, 2012.
li86-2
[3032] E. Ligocka. On the orthogonal projections onto spaces of pluriharmonic functions and duality. Studia Math., 84(3):279–295, 1986.
li86-4
[3033] E. Ligocka. The H¨older duality for harmonic functions. Studia Math.,
84(3):269–77, 1986.
268
li86-3
[3034] E. Ligocka. The Sobolev spaces of harmonic functions. Studia Math.,
84(1):79–87, 1986.
li87-1
[3035] E. Ligocka. Estimates in Sobolev norms |·|sp for harmonic and holomorphic functions and interpolation between Sobolev and H¨older spaces
of harmonic functions. Studia Math., 86(3):255–271, 1987.
li87
[3036] E. Ligocka. On the reproducing kernel for harmonic functions and
the space of Bloch harmonic functions on the unit ball in rn . Studia
Math., 87(1):23–32, 1987.
li92-2
[3037] E. Ligocka. Corrigendum to the paper: [li87] : On the reproducing
kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in rn [Studia Math. 87 (1987), no. 1, 23-32;
MR0924758 (89f:46054a)]. Studia Math., 101(3):319, 1992.
li80
[3038] J. Lim. Image restoration by short space spectral subtraction. Acoustics, Speech and Signal Processing, IEEE Transactions on, 28(2):191–
197, 1980.
li98-1
[3039] J. Lim. Neumann series expansion of the inverse of a frame operator.
Commun. Korean Math. Soc., 13(4):791–800, 1998.
liwa11
[3040] C.-C. Lin and K. Wang. Equivalency between the generalized Carleson measure spaces and Triebel-Lizorkin-type spaces. Taiwanese J.
Math., 15(2):919–926, 2011.
liro93
[3041] P. Lin and R. Rochberg. The essential norm of Hankel operator on
the Bergman space. Integr. Equ. Oper. Theory, 17(3):361–372, 1993.
liro95
[3042] P. Lin and R. Rochberg. Hankel operators on the weighted Bergman
spaces with exponential type weights. Integr. Equ. Oper. Theory,
21(4):460–483, 1995.
liro96
[3043] P. Lin and R. Rochberg. Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type
weights. Pacific J. Math., 173(1):127–146, 1996.
li07
[3044] Y. Lin. Strongly singular Calderon–Zygmund operator and commutator on Morrey type spaces. Acta Mathematica Sinica, English Series,
23(11):2097–2110, 2007.
269
li14
[3045] M. Lind. On functions of bounded lambda-variation and integral
smoothness. 2014.
li74
[3046] G. Lindblad. Expectations and entropy inequalities for finite quantum
systems. Comm. Math. Phys., 39:111–119, 1974.
li59
[3047] D. Linden. A discussion of sampling theorems. Proceedings of the
IRE, 47(7):1219–1226, 1959.
li00
[3048] N. Lindholm. Sampling and Fourier-Laplace transforms in several
complex variables. PhD thesis, G¨oteborg: G¨oteborg Univ., Chalmers
Univ. of Technology, vi, 15 p., 2000.
li01-1
[3049] N. Lindholm. Sampling in weighted Lp spaces of entire functions in C n
and estimates of the Bergman kernel. J. Funct. Anal., 182(2):390–426,
2001.
li02-3
[3050] N. Lindholm. A Paley-Wiener theorem for convex sets in Cn . Bull.
Sci. Math., 126(4):289–314, 2002.
li91-1
[3051] P. Linnell. Zero divisors and group von Neumann algebras. Pacific J.
Math., 149(2):349–363, 1991.
li92-1
[3052] P. Linnell. Zero divisors and L2 (G + y). C. R. Acad. Sci. Paris S´er.
I Math., 315(1):49–53, 1992.
li63
[3053] J. Lions. Theoremes de trace et d’interpolation. IV. Math. Ann.,
151:42–56, 1963.
li58
[3054] J.-L. Lions. Espaces intermediaires entre espaces hilbertiens et applications. Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2
(50):419–432, 1958.
li61
[3055] J.-L. Lions. Equations differentielles operationnelles et problemes aux
limites. Die Grundlehren der mathematischen Wissenschaften, Bd.
111. Springer-Verlag, Berlin, 1961.
lima68
[3056] J.-L. Lions and E. Magenes. Problemes aux limites non homogenes et
applications. Vol. 1. Travaux et Recherches Mathematiques, No. 17.
Dunod, 1968.
270
lima72-1
[3057] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York-Heidelberg,
1972.
lima72
[3058] J.-L. Lions and E. Magenes. Non-homogeneous Boundary Value
Problems and Applications. Vol. II. Springer-Verlag, New YorkHeidelberg, 1972.
lima73
[3059] J.-L. Lions and E. Magenes. Non-homogeneous boundary value
problems and applications. Vol. III. Springer-Verlag, New YorkHeidelberg, 1973.
li85-3
[3060] P. Lions. Remarques sur les ’equations lin’eaires elliptiques du second
ordre sous forme divergence dans les domaines non born’es. (Remarks
on linear second order elliptic equations in divergence form on unbounded domains). Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl.
Sci. Fis. Mat. Nat., 79:178–183, 1985.
li85-2
[3061] P.-L. Lions. The concentration-compactness principle in the calculus
of variations. The limit case. I. Rev. Mat. Iberoam., 1(1):145–201,
1985.
li85-1
[3062] P.-L. Lions. The concentration-compactness principle in the calculus
of variations. The limit case. II. Rev. Mat. Iberoam., 1(2):45–121,
1985.
lime79
[3063] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two
nonlinear operators. SIAM J. Numer. Anal., 16:964–979, 1979.
dali11
[3064] Y. Lipman and I. Daubechies. Conformal Wasserstein distances: comparing surfaces in polynomial time. Adv. Math., 227(3):1047–1077,
2011.
lima10
[3065] S. Lisini and A. Marigonda. On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals. Manuscripta Math., 133(1-2):197–224, 2010.
li85
[3066] R. G. Littlejohn. Symplectically invariant WKB wave functions. Phys.
Rev. Lett., 54(16):1742–1745, 1985.
271
li86-1
[3067] R. G. Littlejohn. Wave-packet evolution and quantization. Phys. Rev.
Lett., 56(19):2000–2003, 1986.
li65
[3068] W. Littman. Multipliers in lp and interpolation. Bull. Amer. Math.
Soc., 71:764–766, 1965.
galizh10
[3069] C. Liu, W. Gaetz, and H. Zhu. The Stockwell transform in studying
the dynamics of brain functions, 2010.
liwayozh11
[3070] G. Liu, S. Yousefi, Z. Zhi, and R. Wang. Automatic estimation of
point-spread-function for deconvoluting out-of-focus optical coherence
tomographic images using information entropy-based approach. Optics express, 19(19):18135–18148, 2011.
ellisa05
[3071] K. Liu, G. El, and A. Sayeed. On optimal parametric field estimation
in sensor networks. In Statistical Signal Processing, 2005 IEEE/SP
13th Workshop on,, pages 1170 –1175, Bordeaux, july 2005.
lizh10
[3072] R. Liu and B. Zheng. A characterization of Schauder frames which
are near-Schauder bases. J. Fourier Anal. Appl., 16(5):791–803, 2010.
lishxizhzh14
[3073] X. Liu, J. Shi, W. Xiang, Q. Zhang, and N. Zhang. Sampling expansion for irregularly sampled signals in fractional Fourier transform
domain. Digit. Signal Process., 34:74–81, 2014.
li01-2
[3074] Y. Liu. A characterization for windowed Fourier orthonormal basis
with compact support. Acta Math. Sin. (Engl. Ser.), 17(3):501–506,
2001.
li11
[3075] Y. Liu. Universal low-rank matrix recovery from Pauli measurements.
preprint, 2011.
limo09
[3076] Y. Liu and A. Mohammed. Lp (R) boundedness and compactness of
localization operators associated with the Stockwell transform. Rend.
Semin. Mat. Univ. Politec. Torino, 67(2):203–214, 2009.
lisuto09
[3077] Y. Liu, D. Sun, and K. Toh. An implementable proximal point algorithmic framework for nuclear norm minimization. preprint, 2009.
hokoli10
[3078] Y.-L. Liu, K.-I. Kou, and I.-T. Ho. New sampling formulae for nonbandlimited signals associated with linear canonical transform and
nonlinear Fourier atoms. Signal Process., 90(3):933–945, 2010.
272
baliro11
[3079] M. Liuni, P. Balazs, and A. R¨obel. Sound Analysis and Synthesis
Adaptive in Time and Two Frequency Bands. In Proc. of the 14th
Int. Conference on Digital Audio Effects (DAFx-11), Paris, France,
September 19-23, volume accepted, September 2011.
limaro13
[3080] M. Liuni, A. R¨obel, and E. Matusiak. Automatic adaptation of the
time-frequency resolution for sound analysis and re-synthesis. IEEE
Trans. Audio Speech Lang. Process., 21(5):959–970, May 2013.
limarororo13
[3081] M. Liuni, A. Robel, E. Matusiak, M. Romito, and X. Rodet. Automatic Adaptation of the Time-Frequency Resolution for Sound Analysis and Re-Synthesis. Audio, Speech, and Language Processing, IEEE
Transactions on, 21(5):959–970, 2013.
lirororo11
[3082] M. Liuni, A. R¨obel, M. Romito, and X. Rodet. R´enyi information
measures for spectral change detection. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pages 3824 – 3827, May 2011.
li63-1
[3083] P. Lizorkin. Generalized Liouville differentiation and the functional
spaces lp r (en ). Imbedding theorems. (Russian). Mat. Sb. (N.S.),
60(102):325–353, 1963.
li79-1
[3084] P. Lizorkin. Interpolation of lp -spaces with a weight. Translation from
Tr. Mat. Inst. Steklov 140, 201-211 (1976). Proc. Steklov Inst. Math.,
140:221–232, 1979.
lili99
[3085] P. Lizorkin and X. Liu. The generalized Moore-Penrose inverse of a
morphism. Qufu Shifan Daxue Xuebao Ziran Kexue Ban, 25(2):31–32,
1999.
lini89
[3086] P. Lizorkin and S. Nikol’skii. Functional spaces of mixed smoothness from decompositional point of view. Trudy Matematicheskogo
Instituta im. VA Steklova, 187:143–161, 1989.
li72
[3087] P. I. Lizorkin. Operators connected with fractional differentiation,
and classes of differentiable functions (Russian). Trudy Mat. Inst.
Steklov., 117:212–243, 1972.
273
grllmova10
[3088] A. Llagostera Casanovas, G. Monaci, P. Vandergheynst, and R. Gribonval. Blind audiovisual source separation based on sparse redundant representations. IEEE Trans. Multimed., 12(5):358–371, August
2010.
ll59
[3089] S. Lloyd. A sampling theorem for stationary (wide sense) stochastic
processes. Trans. Amer. Math. Soc, 92:1–12, 1959.
felo00
[3090] K. W. Lo and B. G. Ferguson. Broadband passive acoustic technique
for target motion parameter estimation. Aerospace and Electronic
Systems, IEEE Transactions on, 36(1):163 –175, jan 2000.
lo57
[3091] S. Lojasiewicz. Sur la valeur et la limite d’une distribution en un
point. Studia Math., 16:1–36, 1957.
biloluzh10
[3092] M. Long, L. Biao, W. Lu ping, and S. Zhen kang. Optical flow field
estimation in noise environment. In Computer Application and System
Modeling (ICCASM), 2010 International Conference on, volume 10,
pages V10–274 –V10–277, oct. 2010.
lolu10
[3093] M. Long and W. Lu ping. Optical flow field estimation of nature scene
images. In Advanced Computer Theory and Engineering (ICACTE),
2010 3rd International Conference on, volume 3, pages V3–294 –V3–
297, aug. 2010.
lourXX
[3094] I. LOPEZ and W. URBINA. ON SOME FUNCTIONS OF THE
LITTLEWOOD PALEY THEORY FOR gammad AND A CHARACTERIZATION OF GAUSSIAN SOBOLEV SPACES OF INTEGER ORDER. Rev. Un. Mat. Argentina, 45:2.
lo09
[3095] J. Lopez. Optimal dual frames for erasures and discrete Gabor frames.
PhD thesis, 2009.
lalo11
[3096] A.-J. L´opez Moreno and J.-M. Latorre Palacios. Localization results
for generalized Baskakov/Mastroianni and composite operators,. J.
Math. Anal. Appl., 380,(2,):425 – 439,, 2011,.
hulomope04
[3097] R. Lopez Valcarce, D. Hurtado, C. Mosquera, and F. Perez Gonzalez.
Bias analysis and removal of a microphone array based road traffic
speed estimator. In Proc.EUSIPCO, XII. European Signal Processing
274
Conference , September 6-10, 2004, Vienna, Austria, pages 609–612,
2004.
lomope04
[3098] R. Lopez Valcarce, C. Mosquera, and F. Perez Gonzalez. Estimation of road vehicle speed using two omnidirectional microphones: A
maximum likelihood approach. EURASIP J. Appl. Signal Process.,
2004(8):1059–1077, 2004.
lora11
[3099] A. Lorbert and P. Ramadge. The Rotational Lasso. In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on, pages 3896 –3899, may 2011.
loreva12
[3100] S. Lord, A. Rennie, and J. Varilly. Riemannian manifolds in noncommutative geometry. J. Geom. Phys., 62(7):1611–1638, 2012.
lo86
[3101] G. Lorentz. Approximation of Functions. Chelsea Publishing Co.,
New York, Second edition, 1986.
lopfti11
[3102] D. Lorenz, M. Pfetsch, and A. Tillmann. Solving Basis Pursuit:
Heuristic optimality check and solver comparison. preprint, 2011.
lo08-1
[3103] I. Loris. L1Packv2: a Mathematica package in minimizing an 1 penalized functional. Comput. Phys. Comm., 179(12):895–902, 2008.
lomu13
[3104] V. Los and A. Murach. Parabolic problems and interpolation with a
function parameter. Methods Funct. Anal. Topology, 19(2):146–160,
2013.
lo98
[3105] P. Loughlin. Do bounded signals have bounded amplitudes? Multidimensional Syst. Signal Process., 9(4):419–424, 1998.
lo12
[3106] P. Loughlin. Denoising and time-frequency analysis of signals. In Classical, semi-classical and quantum noise. Papers based on the presentations at the “Middleton meeting”, Princeton, NJ, USA, November
2–3, 2007., pages 119–129. New York, NY: Springer, 2012.
colo08
[3107] P. Loughlin and L. Cohen. Approximate wave function from approximate non-representable Wigner distributions. J. Modern Opt., 55(1920):3379–3387, 2008.
275
atlopi93
[3108] P. Loughlin, J. Pitton, and L. Atlas. Bilinear time-frequency representations: New insights and properties. IEEE Trans. Signal Process.,
41(2):750–767, 1993.
lota97
[3109] P. Loughlin and B. Tacer. Instantaneous frequency and the conditional mean frequency of a signal. Signal Process., 60(2):153–162,
1997.
lo55
[3110] P.-O. L¨owdin. Quantum theory of many-particle systems. I. Physical
interpretations by means of density matrices, natural spin-orbitals,
and convergence problems in the method of configurational interaction. Physical Review, 97(6):1474, 1955.
lo70
[3111] P.-O. L¨owdin. On the nonorthogonality problem. Adv. in Quantum
Chemistry, 5:185–199, 1970.
lo04
[3112] P.-O. L¨owdin. On the non-orthogonality problem connected with the
use of atomic wave functions in the theory of molecules and crystals.
The Journal of Chemical Physics, 18(3):365–375, 2004.
ll70
[3113] P.-O. L¨owdin and P.-O. L¨owdin. on the nonorthogonality problem.
Adv. in Quantum Chemistry, 5:185–199, 1970.
loze03
[3114] G. Loy and A. Zelinsky. Fast radial symmetry for detecting points of
interest. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(8):959 – 973, aug. 2003.
ablosw09
[3115] A. Lozano, G. Swirszcz, and N. Abe. Group orthogonal matching
pursuit for variable selection and prediction. Dec. 2009.
lilu11
[3116] D. Lu and D. Li. A characterization of orthonormal wavelet families
in Sobolev spaces. Acta Math. Sci. Ser. B Engl. Ed., 31(4):1475–1488,
2011.
luts07
[3117] L.-T. Lu and K.-J. Tsai.
Channel estimation in a proposed
IEEE802.11n OFDM MIMO WLAN system. pages 1–5, Princeton,
USA, 2007.
lupeta10
[3118] S. Lu, S. Pereverzev, and U. Tautenhahn. Regularized total least
squares: computational aspects and error bounds. SIAM J. Matrix
Anal. Appl., 31(3):918–941, 2010.
276
luva10-1
[3119] W. Lu and N. Vaswani. Modified basis pursuit denoising (modifiedBPDN) for noisy compressive sensing with partially known support.
pages 3926–3929, Dallas, TX, Mar. 2010.
lu02
[3120] Y. Lu. Commuting of Toeplitz operators on the Bergman spaces of
the bidisc. Bull. Austral. Math. Soc., 66(2):345–351, 2002.
luyayu14
[3121] Y. Lu, D. Yang, and W. Yuan. Interpolation of Morrey spaces on
metric measure spaces. Canad. Math. Bull., 57(3):598–608, 2014.
lu99-1
[3122] D. Lubinsky. On converse Marcinkiewicz-Zygmund inequalities in L
p ,p¿1. Constr. Approx., 15(4):577–610, 1999.
lu99-2
[3123] D. Luecking. The dual of Bergman metric VMO. Rocky Mountain J.
Math., 29(4):1413–1428, 1999.
lu00-2
[3124] D. Luecking. Bounded composition operators with closed range on
the Dirichlet space. Proc. Amer. Math. Soc., 128(4):1109–1116, 2000.
lu11-1
[3125] F. Luef. A property of symplectic lattices and applications to Gabor
analysis and noncommutative tori. preprint, 2011.
lu11-3
[3126] F. Luef. Rieffel projections in rotation algebras and the Walnut representation. preprint, 2011.
lu11-2
[3127] F. Luef. The Theorem of Stone-von Neumann, revisited. preprint,
2011.
lu82
[3128] J. Luetzen. The Prehistory of the Theory of Distributions. Studies in
the History of Mathematics and Physical Sciences, Vol. 7. New York
- Heidelberg - Berlin: Springer-Verlag. VIII, 1982.
blluunvo10
[3129] F. Luisier, C. Vonesch, T. Blu, and M. Unser. Fast interscale wavelet
denoising of Poisson-corrupted images. Signal Process., 90(2):415–
427, February 2010.
lu03-2
[3130] S. Lukomskii. Convergence of Fourier series in Lorentz spaces. East
J. Approx., 9(2):229–238, 2003.
lu07
[3131] S. Lukomskii. Convergence of Walsh–Fourier series in Orlicz spaces
L(ϕ) ⊂ L(ex ). J. Math. Anal. Appl., 330(1):322–333, 2007.
277
lu10
[3132] S. Lukomskii. Multiresolution analysis on zero-dimensional abelian
groups and wavelets bases. Sb. Math., 201(5):669–691, 2010.
lu12-1
[3133] S. Lukomskii. Multiresolution analysis on product of zero-dimensional
Abelian groups. J. Math. Anal. Appl., 385(2):1162–1178, 2012.
lu72
[3134] G. Lumer. Normes invariantes et caract´erisations des transform´ees de
Fourier des mesures. (Invariant norms and characterizations of Fourier
transforms of measures). 1972.
lu11-4
[3135] A. Lunardi. Compactness and asymptotic behavior in nonautonomous
linear parabolic equations with unbounded coefficients in d . In
Parabolic problems, volume 80 of Progr. Nonlinear Differential Equations Appl., pages 447–461. Birkh¨auser/Springer Basel AG, Basel,
2011.
luso13
[3136] D. Lundholm and J. Solovej. Hardy and Lieb-Thirring inequalities for
anyons. Comm. Math. Phys., 322(3):883–908, 2013.
luqi11
[3137] N.-L. Luo and X.-F. Qiang. Invariance of shift-invariant spaces in
L2 (Rd ). Far East J. Math. Sci. (FJMS), 49(2):209–222, 2011.
lu00-1
[3138] S. Luo. Deforming Gabor frames by quadratic Hamiltonians. Integral
Transforms Spec. Funct., 9(1):69–74, 2000.
galilusw06
[3139] Z. Luo, M. Gaspar, J. Liu, and A. Swarni. Distributed signal processing in sensor networks. IEEE Sign. Process. Mag., 23(4):14–15, Jun.
2006.
luta10
[3140] W. Lusky and J. Taskinen. On weighted spaces of holomorphic functions of several variables. Isr. J. Math., 176:381–399, 2010.
dolupa07
[3141] M. Lustig, D. Donoho, and J. Pauly. Sparse MRI: The application
of compressed sensing for rapid MR imaging. Magn. Reson. Med.,
58(6):1182–1195, 2007.
lusa98
[3142] J. Luukkainen and E. Saksman. Every complete doubling metric space
carries a doubling measure. Proc. Amer. Math. Soc., 126(2):531–534,
1998.
lupa10
[3143] K. Lux and H. Pahlings. Representations of Groups - A Computational Approach. Cambridge Univ. Press, 2010.
278
luza71-1
[3144] W. Luxemburg and A. Zaanen. Riesz Spaces Vol I. North-Holland
Mathematical Library. Amsterdam-London: North-Holland Publishing Company. XI, 514 p. Hfl. 100.00 and ca. 31.25, 1971.
falv10
[3145] C.-H. Lv and H.-Y. Fan. Adaption of optical Fresnel transform to
optical Wigner transform. Phys. Scr., 82(2):5, 2010.
ly12
[3146] M. Lyon. Sobolev smoothing of SVD-based Fourier continuations.
Applied Mathematics Letters, 25(12):2227 – 2231, December 2012.
lyma08
[3147] Y. Lyubarskii and W. Madych. Irregular Poisson type summation.
Sampl. Theory Signal Image Process., 7(2):173, 2008.
lyma12
[3148] Y. Lyubarskii and E. Malinnikova. Radial oscillation of harmonic
functions in the Korenblum class. Bull. Lond. Math. Soc., 44(1):68–
84, 2012.
lyne11
[3149] Y. Lyubarskii and P. Nes. Gabor frames with rational density. Arxiv
preprint arXiv:1108.2684, 2011.
lyor14
[3150] Y. Lyubarskii and J. Ortega Cerd`a. Bandlimited Lipschitz functions.
Appl. Comput. Harmon. Anal., (0):–, 2014.
lyse97-1
[3151] Y. Lyubarskii and K. Seip. Complete interpolating sequences for
Paley-Wiener spaces and Muckenhoupt’s (ap ) condition. Rev. Mat.
Iberoam., 13(2):361–376, 1997.
lyse99
[3152] Y. Lyubarskii and K. Seip. Convergence and summability of Gabor
expansions at the Nyquist density. J. Fourier Anal. Appl., 5(2-3):127–
157, 1999.
lyse02
[3153] Y. Lyubarskii and K. Seip. Weighted Paley-Wiener spaces. J. Amer.
Math. Soc., 15(4):979–1006, 2002.
wo14
[3154] W. M. Partial differential equations. Topics in Fourier analysis. Boca
Raton, FL: CRC Press, 2014.
masuyazh07
[3155] J. Ma, Y. Zhang, X. Su, and Y. Yao. Maximal Ratio Combining
in Cellular MIMO-CDMA Downlink Systems. pages 4243–4248, Jun.
2007.
279
mawu09
[3156] L. Ma and Z. Wu. Kernel based approximation in Sobolev spaces with
radial basis functions. Appl. Math. Comput., 215(6):2229–2237, 2009.
cachmawazh07
[3157] S. Ma, X. Zhu, G. Chen, J. Wang, and J. Cao. Parametric adaptive
time-frequency representation based on time-sheared Gabor atoms. J.
Syst. Eng. Electron., 18(1):1–7, 2007.
matr12
[3158] R. Maalaoui and K. Trim‘eche. A family of generalized windowed
transforms associated with the Dunkl operators on Rd . Integral Transforms Spec. Funct., 23(3):191–206, 2012.
matr12-1
[3159] R. Maalaoui and K. Trimeche. Generalized windowed transforms
on Chebli-Trimeche hypergroups. Mediterr. J. Math., 9(2):305–326,
2012.
codima11
[3160] E. Maalouf, B. Colicchio, and A. Dieterlen. Fluorescence microscopy
three-dimensional depth variant point spread function interpolation
using Zernike moments. JOSA A, 28:1864–1870, 2011.
mapuwe09
[3161] H. Maas, T. Putze, and P. Westfeld. Recent developments in 3D-PTV
and Tomo-PIV. Imaging Measurement Methods for Flow Analysis,
pages 53–62, 2009.
komath11
[3162] P. Maass, J. Kobarg, and H. Thiele. Deliverable 7.1: A phase space
concept for MALDI data. Technical report, 2011.
ma10-5
[3163] A. Macdonald. Linear and Geometric Algebra. Alan Macdonald, 2010.
maseto92
[3164] R. Macias, C. Segovia, and J.-L. Torrea. Singular integral operators
with non-necessarily bounded kernels on spaces of homogeneous type.
Adv. Math., 93(1):25–60, 1992.
maXX-1
[3165] G. Mackey. Unitary Group Representatitions In Physics, Probability,
And Number Theory. Mathematics Lecture Note Series.
ma65-1
[3166] G. Mackey. Some remarks on symplectic automorphisms. Proc. Amer.
Math. Soc., 16:393–397, 1965.
chfajomatr12
[3167] L. Mackey, M. Jordan, R. Chen, B. Farrell, and J. A. Tropp. Matrix concentration inequalities via the method of exchangeable pairs.
preprint, 2012.
280
mape98
[3168] P. MacManus and C. P´erez. Generalized Poincar´e inequalities: sharp
self-improving properties. Internat. Math. Res. Notices, (2):101–116,
1998.
mapatu02
[3169] Y. Maday, A. Patera, and G. Turinici. A priori convergence theory
for reduced-basis approximations of single-parameter elliptic partial
differential equations. In Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), volume 17, pages 437–446, 2002.
ma99-5
[3170] J. Madore. An introduction to noncommutative differential geometry
and its physical applications. London Mathematical Society lecture
note series. Cambridge University Press, 1999.
mase10
[3171] N. Madras and D. Sezer. Quantitative bounds for Markov chain
convergence: Wasserstein and total variation distances. Bernoulli,
16(3):882–908, 2010.
mamh08
[3172] M. Maggioni and H. Mhaskar. Diffusion polynomial frames on metric
measure spaces. Appl. Comput. Harmon. Anal., 24(3):329–353, 2008.
mamena11
[3173] S. Maghsoudi, M. Mehdipour, and R. Nasr Isfahani. Compact right
multipliers on a Banach algebra related to locally compact semigroups.
Semigroup Forum, 83(2):205–213, 2011.
mana11
[3174] S. Maghsoudi and R. Nasr Isfahani. Strict topology as a mixed topology on Lebesgue spaces. Bull. Austral. Math. Soc., 84(3):504–515,
2011.
mana11-1
[3175] S. Maghsoudi and R. Nasr Isfahani. The strict topology on the discrete
Lebesgue spaces. Bull. Austral. Math. Soc., 83(2):241–255, 2011.
mana12
[3176] S. Maghsoudi and R. Nasr Isfahani. On the maximal and minimal left
ideals of certain Banach algebras on locally compact groups. Result.
Math., 62(1-2):157–165, 2012.
ma94
[3177] V. Mahajan. Zernike circle polynomials and optical aberrations of
systems with circular pupils. Applied optics, 33(34):8121–8124, 1994.
MaVi94
[3178] V. Mahajan. Zernike Circle Polynomials and Optical Aberrations
of Systems with Circular Pupils. Applied Optics., 33(34):8121–8124,
1994.
281
ma03-4
[3179] V. Mahajan. Zernike polynomials and aberration balancing. In V. N.
Mahajan, P. Z. Mouroulis, W. J. Smith, and R. B. Johnson, editors,
Proc. SPIE, Current Developments in Lens Design and Optical Engineering IV; Optical Design, volume 5173, pages 1–17, San Diego, CA,
USA, August 2003. SPIE.
ma86-3
[3180] J. Maillard. On the twisted convolution product and the Weyl
transformation of tempered distributions. Journal of Geometry and
Physics, 3(2):231–261, 1986.
badokrma11
[3181] P. Majdak, P. Balazs, W. Kreuzer, and M. D¨orfler. Increasing
the Signal-to-Noise Ratio in system Identification with Exponential
Sweeps by Thresholding in the Time-Frequency Domain. In ICASSP
2011, Prag, 2011.
mari97
[3182] V. Majernik and L. Richterek. Entropic uncertainty relations. European Journal of Physics, 18:79, 1997.
mapo05
[3183] N. Makarov and A. Poltoratski. Meromorphic inner functions,
Toeplitz kernels and the uncertainty principle. Benedicks, Michael
(ed.) et al., Perspectives in analysis. Essays in honor of Lennart Carleson’s 75th birthday. Proceedings of the conference, Stockholm, Sweden, May 26–28, 2003. Berlin: Springer. Math. Phys. Stud. 27, 185-252
(2005)., 2005.
mapo10-1
[3184] N. Makarov and A. Poltoratski. Beurling-Malliavin theory for Toeplitz
kernels. Invent. Math., 180(3):443–480, 2010.
ma09-9
[3185] A. Maleki. Convergence analysis of iterative thresholding algorithms.
In Proc. of Allerton Conference on Communication, Control, and
Computing, 2009.
ma02-4
[3186] F. Malgouyres. A framework for image deblurring using wavelet
packet bases. Appl. Comput. Harmon. Anal., 12:309–331, 2002.
drma95
[3187] N. Malik and T. Dracos. Interpolation schemes for three-dimensional
velocity fields from scattered data using Taylor expansions. Journal
of Computational Physics, 119(2):231–243, 1995.
ma10-7
[3188] R. Malikiosis. An optimization problem related to Minkowski’s successive minima. Discrete Comput. Geom., 43(4):784–797, 2010.
282
ma12-3
[3189] R.-D. Malikiosis. A discrete analogue for Minkowski’s second theorem
on successive minima. Adv. Geom., 12(2):365–380, 2012.
ma13
[3190] R.-D. Malikiosis. A note on Gabor frames in finite dimensions. arXiv
preprint arXiv:1304.7709, 2013.
ma10-6
[3191] E. Malinnikova. Orthonormal sequences in L2 (Rd ) and time frequency
localization. J. Fourier Anal. Appl., 16(6):983–1006, 2010.
ma08-3
[3192] S. Mallat. A Wavelet Tour of Signal Processing - The Sparse Way.
Third Edition. 2008.
ma12-1
[3193] S. Mallat. Group invariant scattering. Comm. Pure Appl. Math.,
65(10):1331–1398, 2012.
bomamaof06
[3194] J. Mallett, V. Bove, G. Officer, and J. Mallett. The Role of Groups
in Smart Camera Networks. Technical report, 2006.
ma10-1
[3195] M. Malloy. Back-projection using sub-sampled Fourier matrices for
spectrum sensing. preprint, 2010.
ma99-6
[3196] H. S. Malvar. A modulated complex lapped transform and its applications to audio processing. In Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, page 14211424, Phoenix, AZ , USA,
15-19 Mar 1999, March 1999.
flma03
[3197] H. S. Malvar and D. A. F. Florencio. Improved spread spectrum:
a new modulation technique for robust watermarking. IEEE Trans.
Signal Process., 51(4):898–905, 2003.
mast89
[3198] H. S. Malvar and D. Staelin. The LOT: Transform coding without blocking effects. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 37(4):553–559, 1989.
mapi02
[3199] J. Maly and L. Pick. An elementary proof of sharp Sobolev embeddings. Proc. Amer. Math. Soc., 130(2):555–563, 2002.
agma50
[3200] S. Mandelbrojt and S. Agmon. Une generalisation du theoreme tauberien de Wiener. Acta Sci. Math. Szeged, (Leopoldo Fejer et Frederico
Riesz LXX annos natis dedic):167–176, 1950.
283
ma89-2
[3201] Y. Manin. Reflections on arithmetical physics. In Conformal invariance and string theory (Poiana Brasov, 1987), Perspect. Phys., pages
293–303. Academic Press, Boston, MA, 1989.
ma99-7
[3202] Y. Manin. Frobenius Manifolds, quantum Cohomology, and Moduli
spaces. Colloquium Publications. American Mathematical Society
(AMS). 47. Providence, RI: American Mathematical Society (AMS).
xiii, 1999.
ma10-2
[3203] M. Mantoiu. Modulation and Hilbert space representations for Rieffel’s pseudodifferential calculus. Arxiv preprint arXiv:1010.0411,
2010.
ma12
[3204] M. Mantoiu. Quantization Rules, Hilbert algebras and coorbit spaces
for families of bounded operators I. The abstract theory. Arxiv
preprint arXiv:1203.6347, 2012.
mapa14
[3205] M. Mantoiu and D. Parra. Compactness criteria in Banach spaces in
the setting of continuous frames. Banach J. Math. Anal., 8(2):30–48,
2014.
mapu11
[3206] M. Mantoiu and R. Purice. Abstract composition laws and their modulation spaces. Arxiv preprint arXiv:1107.3344, 2011.
mapu14
[3207] M. Mantoiu and R. Purice. On Frechet-Hilbert Algebras. arXiv
preprint arXiv:1406.7208, 2014.
mama07
[3208] A. Manzano and M. Mastylo. Duality for coorbit interpolation functors generated by operator ideals. In Interpolation theory and applications. A conference in honor of Michael Cwikel on the occasion of
his 59th birthday, March 29–31, 2006 and AMS special session on interpolation theory and applications, AMS sectional meeting, Miami,
FL, USA, April 1–2, 20, pages 225–235. 2007.
mazh05
[3209] H. Mao and D. Zhao. The kurtosis parametric characterization of
the passage of a standard Hermite-Gaussian beam and an elegant
Hermite-Gaussian beam through a fractional Fourier transformation
system with a spherically aberrated lens. J. Modern Opt., 52(1):147–
161, 2005.
284
ma39
[3210] J. Marcinkiewicz. Sur la sommabilit´e forte de s´eries de Fourier. J.
London Math. Soc., 14:162–168, 1939.
ma39-1
[3211] J. Marcinkiewicz. Sur les multiplicateurs des s´eries de Fourier. Studia
Math., 8:78–91, 1939.
ma39-2
[3212] J. Marcinkiewicz. Sur une m´ethode remarquable de sommation des
s´eries doubles de Fourier. Ann. Sc. Norm. Super. Pisa, II. Ser., 8:149–
160, 1939.
ma40
[3213] J. Marcinkiewicz. Sur la convergence absolue des s´eries de Fourier.
Mathematica, Cluj, 16:66–73, 1940.
mazy39
[3214] J. Marcinkiewicz and A. Zygmund. On the summability of double
Fourier series. Fundam. Math., 32:122–132, 1939.
mamaor03
[3215] N. Marco, X. Massaneda, and J. Ortega Cerda. Interpolating and sampling sequences for entire functions. Geom. Funct. Anal., 13(4):862–
914, 2003.
mamape12
[3216] A. Marcoci, L. Marcoci, and L. Persson. Besov-Schatten spaces. J.
Funct. Spaces Appl., pages Art. ID 693251, 13, 2012.
maspsr13
[3217] A. Marcus, D. Spielman, and N. Srivastava. Interlacing families I:
Bipartite Ramanujan graphs of all degrees. Submitted on 15 Apr
2013, preprint:16, 2013.
maspsr15
[3218] A. Marcus, D. Spielman, and N. Srivastava. Interlacing families II:
Mixed characteristic polynomials and the Kadison-Singer problem.
Ann. of Math., 2015.
mash72
[3219] M. Marcus and L. Shepp. Sample behavior of Gaussian processes. In
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971),
Vol. II: Probability theory, pages 423–441, Berkeley, Calif., 1972. Univ.
California Press.
dogigrhelama03
[3220] G. F. Margrave, L. Dong, P. Gibson, J. Grossman, D. Henley, and
M. Lamoureux. Gabor deconvolution: extending Wieners method to
nonstationarity. Recorder, 28:5–12, 2003.
285
lama02
[3221] G. F. Margrave and M. Lamoureux. Gabor deconvolution. In 2002
CSEG annual meeting, expanded abstracts, 2002.
grillamaot02
[3222] G. F. Margrave, M. Lamoureux, J. Grossman, V. Iliescu, and o. others. Gabor deconvolution of seismic data for source waveform and
Q correction. In 72nd Annual International Meeting, SEG Expanded
Abstracts, pages 2190–2193, 2002.
maru03
[3223] M. Marias and E. Russ. H 1 -boundedness of Riesz transforms and
imaginary powers of the Laplacian on Riemannian manifolds. Arkiv
f¨or Matematik, 41(1):115–132, 2003.
mape11
[3224] D. Marinucci and G. Peccati. Random fields on the sphere. Representation, limit theorems and cosmological applications, volume 389
of London mathematical society. Lecture Note Series 389. Cambridge
University Press, Cambridge, 2011.
bacakemanapipivi08
[3225] D. Marinucci, D. Pietrobon, A. Balbi, P. Baldi, P. Cabella, G. Kerkyacharian, P. Natoli, D. Picard, and N. Vittorio. Spherical needlets for
cosmic microwave background data analysis. Monthly Notices of the
Royal Astronomical Society, 383(2):539–545, 2008.
ma70
[3226] B. Martinet. R´egularisation d’in´equations variationnelles par approximations successives.
Rev. Fran¸caise Informat. Recherche
Op´erationnelle, 4(Ser. R-3):154–158, 1970.
mato11
[3227] P. Martinetti and L. Tomassini. Noncommutative geometry of the
Moyal plane: translation isometries and spectral distance between
coherent states. Arxiv preprint arXiv:1110.6164, 2011.
mato12
[3228] P. Martinetti and L. Tomassini. Length and distance on a quantum
space. Arxiv preprint arXiv:1205.2908, 2012.
manaso02
[3229] A. Martinez, S. Nakamura, and V. Sordoni. Phase space tunneling in
multistate scattering. J. Funct. Anal., 191(2):297–317, 2002.
manaso09
[3230] A. Martinez, S. Nakamura, and V. Sordoni. Analytic wave front set
for solutions to Schr¨odinger equations. Adv. Math., 222(4):1277–1307,
2009.
286
matr02
[3231] D. Martinez and J. Trout. Asymptotic spectral measures, quantum
mechanics, and E-theory. Communications in mathematical physics,
226(1):41–60, 2002.
chma90
[3232] F. Marvasti and L. Chuande. Parseval relationship of nonuniform
samples of one-and two-dimensional signals. Acoustics, Speech and
Signal Processing, IEEE Transactions on, 38(6):1061–1063, 1990.
maXX-2
[3233] D. Mary. cosamp.m.
ma07-8
[3234] J. Marzo. Marcinkiewicz-Zygmund inequalities and interpolation by
spherical harmonics. J. Funct. Anal., 250(2):559–587, 2007.
mase11
[3235] J. Marzo and K. Seip. l∞ to lp constants for Riesz projections. Bull.
Sci. Math., 135(3):324–331, 2011.
mani89
[3236] P. Masani and H. Niemi. The integration theory of Banach space
valued measures and the Tonelli- Fubini theorems. I: Scalar-valued
measures on δ-rings. Adv. Math., 73(2):204–241, 1989.
mani89-1
[3237] P. Masani and H. Niemi. The integration theory of Banach space valued measures and the Tonelli- Fubini theorems. II: Pettis integration.
Adv. Math., 75(2):121–167, 1989.
mani92
[3238] P. Masani and H. Niemi. The integration of Banach space valued
measures and the Tonelli-Fubini theorems. III: Vectorial extensions
of product measures and the slicing, Fubini and Tonelli theorems.
Ric. Mat., 41(2):195–282, 1992.
frma13
[3239] J. Mashreghi and E. Fricain. Blaschke Products and Their Applications. Springer, 2013.
hamana06
[3240] J. Mashreghi, F. Nazarov, and V. P. Havin. Beurling-Malliavin multiplier theorem: the seventh proof. St. Petersburg Math. J., 17(5):699–
744, 2006.
hama03
[3241] J. Mason and D. Handscomb. Chebyshev polynomials. Chapman &
Hall/CRC, Boca Raton, 2003.
ma07-7
[3242] P. Massart. Concentration Inequalities and Model Selection, volume
1896 of Lecture Notes in Mathematics. Springer, Berlin, 2007.
287
masc66
[3243] J. Massera and J. Sch¨affer. Linear Differential Equations and Function Spaces. Pure and Applied Mathematics, 21. Academic Press Inc.,
1966.
maru08
[3244] P. Massey and M. Ruiz. Tight frame completions with prescribed
norms. Sampl. Theory Signal Image Process., 7(1):1–13, 2008.
maru10
[3245] P. Massey and M. Ruiz. Minimization of convex functionals over frame
operators. Adv. Comput. Math., 32(2):131–153, 2010.
marust09
[3246] P. Massey, M. Ruiz, and D. Stojanoff. The structure of minimizers of
the frame potential on fusion frames. J. Fourier Anal. Appl., pages
1–30, 2009.
marust10
[3247] P. Massey, M. Ruiz, and D. Stojanoff. The structure of minimizers of the frame potential on fusion frames. J. Fourier Anal. Appl.,
16(4):514–543, 2010.
marust12
[3248] P. Massey, M. Ruiz, and D. Stojanoff. Duality in reconstruction systems. Linear Algebra Appl., 436(3):447–464, 2012.
marust13
[3249] P. Massey, M. Ruiz, and D. Stojanoff. Optimal dual frames and
frame completions for majorization. Appl. Comput. Harmon. Anal.,
34(2):201–223, 2013.
ma12-4
[3250] M. Mastylo. Lattice structures on some Banach spaces. Proc. Amer.
Math. Soc., 140(4):1413–1422, 2012.
maml09
[3251] M. Mastylo and P. Mleczko. Absolutely summing multipliers on abstract Hardy spaces. Acta Math. Sin. (Engl. Ser.), 25(6):883–902,
2009.
mame08
[3252] B. Matei and Y. Meyer. Quasicrystals are sets of stable sampling. C.
R. Math. Acad. Sci. Paris, 346(23-24):1235–1238, 2008.
mame10
[3253] B. Matei and Y. Meyer. Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ., 55(8-10):947–964, 2010.
ma99-4
[3254] C. Math. Interpolation of bilinear operators between Banach function
spaces. Collect. Math, 50(3):311–321, 1999.
288
mari07
[3255] M. Mathieu and W. Ricker. The Weyl calculus: finite dimensional
aspects. Math. Proc. R. Ir. Acad., 107(2):171–181 (electronic), 2007.
ma10-4
[3256] J. Matousek. Thirty-three Miniatures Mathematical and Algorithmic
Applications of Linear Algebra. Student Mathematical Library 53.
Providence, RI: American Mathematical Society (AMS). x, 2010.
ma13-1
[3257] J. Mattas. Segal algebras, approximate identities and norm irregularity in C0 (X, A). Studia Math., 215(2):99–112, 2013.
mariru03
[3258] R. Matthes, O. Richter, and G. Rudolph. Spectral triples and differential calculi related to the Kronecker foliation. J. Geom. Phys.,
46(1):48–73, 2003.
elma12
[3259] E. Matusiak and Y. Eldar. Sub-Nyquist sampling of short pulses.
IEEE Trans. Signal Process., 60(3):1134–1148, March 2012.
bohlma13
[3260] G. Matz, H. B¨olcskei, and F. Hlawatsch. Time-frequency foundations
of communications. IEEE Signal Processing Magazine, 30(6):87–96,
nov 2013.
hlma06
[3261] G. Matz and F. Hlawatsch. Time-varying communication channels: Fundamentals, recent developments, and open problems. Proc.
EUSIPCO-06, Florence, Italy, September 2006.
mameva09
[3262] G. Mauceri, S. Meda, and M. Vallarino. Estimates for functions of
the Laplacian on manifolds with bounded geometry. Math. Res. Lett.,
16(5-6):861–879, 2009.
mameva11
[3263] G. Mauceri, S. Meda, and M. Vallarino. Hardy-type spaces on certain
noncompact manifolds and applications. J. Lond. Math. Soc. (2),
84(1):243–268, 2011.
ma95-3
[3264] K. Maurin. Mathematik als Leben von Ideen. Rep. Math. Phys.,
35(2-3):145–172, 1995.
ma08-2
[3265] A. Mayeli. Shannon multiresolution analysis on the Heisenberg group.
J. Math. Anal. Appl., 348(2):671–684, 2008.
ma11
[3266] A. Mayeli. Paley-Wiener description of K-spherical Besov spaces on
the Heisenberg group. :1111.4573, 2011.
289
maou14
[3267] A. Mayeli and V. Oussa. Regular representations of time-frequency
groups. Math. Nachr., 2014.
mapeXX
[3268] A. Mayeli and I. Pesenson. Space-frequency localized wavelets for
spherical Besov spaces on the Heisenberg group. Submitted.
maro10
[3269] V. Maz’ya and J. Rossmann. Elliptic Equations in Polyhedral Domains, volume 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
mash09
[3270] V. Maz‘ya and T. Shaposhnikova. Theory of Sobolev Multipliers.
Springer Berlin / Heidelberg, 2009.
mash79
[3271] V. G. Mazya and T. O. Shaposhnikova. On multipliers in function
spaces with fractional derivatives. Sov. Math. Dokl., 20:160–165, 1979.
ma02-3
[3272] A. L. Mazzucato. Besov-Morrey spaces: function space theory and
applications to non-linear PDE. Transactions of the American Mathematical Society, 355(4):1297–1364, 2002.
ma05-4
[3273] V. Mazya. Conductor and capacitary inequalities for functions on
topological spaces and their applications to Sobolev-type imbeddings.
J. Funct. Anal., 224(2):408–430, 2005.
mc78-1
[3274] P. McCarthy. Lifting of projective representations of the BondiMetzner-Sachs group. Proc. Roy. Soc. London Ser. A, 358(1693):141–
171, 1978.
mcpa72
[3275] J. McClellan and T. Parks. Eigenvalues and eigenvectors of the discrete Fourier transformation. IEEE Trans. Audio and Electroacoustics, 20(1), 1972.
mcoxsi09
[3276] J. McDermott, A. Oxenham, and E. Simoncelli. Sound texture synthesis via filter statistics. In Applications of Signal Processing to Audio
and Acoustics, 2009. WASPAA’09. IEEE Workshop on, pages 297–
300, 2009.
mc98
[3277] C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics, volume 16 of Algorithms Combin., pages
195–248. Springer, Berlin, 1998.
290
mcputhvavawi13
[3278] J. McEwen, G. Puy, J.-P. Thiran, P. Vandergheynst, D. Van, and
Y. Wiaux. Sparse image reconstruction on the sphere: implications
of a new sampling theorem. IEEE Trans. Image Process., 22(6):2275–
2285, 2013.
mc79
[3279] O. McGehee. Lipschitz classes and restrictions of Fourier transforms.
Math. Ann., 239:223–227, 1979.
mcprri88
[3280] A. McIntosh, A. Pryde, and W. Ricker. Systems of operator equations and perturbation of spectral subspaces of commuting operators.
Michigan Math. J., 35(1):43–65, 1988.
mc05-1
[3281] S. McKillup. Statistics Explained An Introductory Guide for Life Scientists. Cambridge Univ Press, 2005.
mc10
[3282] P. McNamara. Whittaker functions on metaplectic groups. 2010.
mc11
[3283] P. McNamara. Metaplectic Whittaker functions and crystal bases.
Duke Math. J., 156(1):1–31, 2011.
mc12
[3284] P. McNamara. Principal series representations of metaplectic groups
over local fields. In Multiple Dirichlet series, L-functions and
automorphic forms, volume 300 of Progr. Math., pages 299–327.
Birkh¨auser/Springer, New York, 2012.
mcst97
[3285] J. McNeal and E. M. Stein. The Szeg¨o projection on convex domains.
Math. Z., 224(4):519–553, 1997.
humc94
[3286] S. McNown and B. Hunt. Approximate shift-invariance by warping
shift-variant systems. In SPIE’s 1994 International Symposium on
Optics, Imaging, and Instrumentation, pages 156–167, 1994.
mesjva08
[3287] S. Meda, P. Sj¨ogren, and M. Vallarino. On the h1 − l1 boundedness
of operators. Proc. Amer. Math. Soc., 136(8):2921–2931, 2008.
mesjva09
[3288] S. Meda, P. Sj¨ogren, and M. Vallarino. Atomic decompositions and
operators on Hardy spaces. Rev. Uni´on Mat. Argent., 50(2):15–22,
2009.
meva10
[3289] S. Meda and M. Vallarino. Weak type estimates for spherical multipliers on noncompact symmetric spaces. Trans. Amer. Math. Soc.,
362(6):2993–3026, 2010.
291
mepo12
[3290] A. Medghalchi and H. Pourmahmood Aghababa.
FigaTalamancaHerz algebras for restricted inverse semigroups and
Clifford semigroups. J. Math. Anal. Appl., 395(2):473 – 485, 2012.
jomesh06
[3291] B. Mehri, D. Shadman, and S. Jokar. Least Square Approximation
by Linear Combination of Exponential Functions. Journal of Mathematics and Statistics, 2(2):391–394, 2006.
menara92
[3292] R. Mehrotra, K. Namuduri, and N. Ranganathan. Gabor filter-based
edge detection. Pattern Recognition, 25(12):1479 – 1494, 1992.
mevizu99
[3293] E. Meijering, K. Zuiderveld, and M. Viergever. Image reconstruction by convolution with symmetrical piecewise nth-order polynomial
kernels. IEEE Trans. Image Process., 8(2):192–201, 1999.
me00
[3294] E. H. W. Meijering. Spline interpolation in medical imaging: comparison with other convolution-based approaches. IV:1989–1996, 2000.
mesc54
[3295] J. Meixner and F. Sch¨afke.
Mathieusche Funktionen und
Sph¨aroidfunktionen mit Anwendungen auf physikalische und technische Probleme. Die Grundlehren der mathematischen Wissenschaften
in Einzeldarstellungen mit besonderer Ber¨
ucksichtigung der Anwendungsgebiete, Band LXXI. Springer-Verlag, Berlin, 1954.
memescsc54
[3296] J. Meixner, F. Sch¨afke, J. Meixner, and F. Sch¨afke. Mathieusche Funktionen und Sph¨aroidfunktionen mit Anwendungen auf physikalische
und technische Probleme. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber¨
ucksichtigung
der Anwendungsgebiete, Band LXXI. Springer-Verlag, Berlin, 1954.
mesr08
[3297] H. Mejjaoli and N. Sraieb. Uncertainty principles for the continuous
Dunkl Gabor transform and the Dunkl continuous wavelet transform.
Mediterranean Journal of Mathematics, 5(4):443–466, 2008.
bame96
[3298] J. Melenk and I. Babuska. The partition of unity finite element
method: Basic theory and applications. Comput. Methods Appl. Mech.
Engrg., 139(1-4):289–314, 1996.
bame97
[3299] J. Melenk and I. Babuska. Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comput.
Assist. Mech. Eng. Sci., 4(3-4):607–632, 1997.
292
memo75
[3300] P. Mello and M. Moshinsky. Nonlinear canonical transformations and
their representations in quantum mechanics. J. Math. Phys.(NY), v.
16, no. 10, pp. 2017-2028, 16(10), 1975.
me04-4
[3301] C. Melot. Oscillating singularities in Besov spaces. J. Math. Pures
Appl., IX. S´er., 83(3):367–416, 2004.
me74
[3302] O. Melsheimer. Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory. Journal
of Mathematical Physics, 15:902, 1974.
me07-1
[3303] F. Memoli. Symposium on Point Based Graphics. pages 81–90, 2007.
me09
[3304] F. Memoli. Spectral Gromov-Wasserstein distances for shape matching. In Workshop on Non-Rigid Shape Analysis and Deformable Image
Alignment (ICCV workshop, NORDIA’09), ¨october 2009.
me11
[3305] F. M´emoli. A spectral notion of Gromov-Wasserstein distance and
related methods. Appl. Comput. Harmon. Anal., 30(3):363 – 401,
2011.
me11-1
[3306] F. Memoli. GromovWasserstein distances and the metric approach
to object matching. Foundations of Computational Mathematics, In
Press:1–71, April 2011.
me14
[3307] F. Memoli. The Gromov–Wasserstein Distance: A Brief Overview.
Axioms, 3(3):335–341, 2014.
me10-1
[3308] S. Mendelson. Empirical processes with bounded ψ1 diameter. Geom.
Funct. Anal., 20(4):988–1027, 2010.
me12-1
[3309] S. Mendelson.
preprint, 2012.
me14-1
[3310] S. Mendelson. Learning without Concentration. ArXiv e-prints, jan
2014.
mepato07
[3311] S. Mendelson, A. Pajor, and N. Tomczak Jaegermann. Reconstruction
and subgaussian operators in asymptotic geometric analysis. Geom.
Funct. Anal., 17(4):1248–1282, 2007.
Oracle inequalities and the isomorphic method.
293
me08
[3312] M. Mendicute. Effects of channel estimation and implementation on
the performance of MIMO wireless systems. PhD thesis, 2008.
meol12
[3313] V. Menegatto and C. Oliveira. Eigenvalue and singular value estimates for integral operators: a unifying approach. Mathematische
Nachrichten, to appear:–, 2012.
femeol09
[3314] V. Menegatto, C. Oliveira, and J. Ferreira. On the nuclearity of
integral operators. Positivity, 13(3):519–541, 2009.
halimengyi12
[3315] J. Meng, W. Yin, Y. Li, N. T. Nguyen, and Z. Han. Compressive
sensing based high-resolution channel estimation for OFDM system.
IEEE J. Sel. Topics Sign. Process., 6(1):15–25, February 2012.
meov05
[3316] E. Mengi and M. Overton. Algorithm for the computation of the
pseudospectral radius and the numerical radius of a matrix. IMA J.
Numer. Anal., 25(4):648–669, 2005.
meul72
[3317] D. Men’shov and P. Ul’yanov. The problem of representing functions
by series. Mosc. Univ. Math. Bull., 25(1-2):61–68, 1972.
me99-2
[3318] C. Merdy. Finite rank approximation and semidiscreteness for linear
operators. Ann. Inst. Fourier (Grenoble), 49(6):1869–1901, 1999.
me84-1
[3319] C. Merucci. Applications of interpolation with a function parameter
to Lorentz, Sobolev and Besov spaces. 1984.
andimeoh11
[3320] A. Meyer, J. Diepenbrock, F. Ohl, and J. Annem¨
uller. Evaluation
and comparison of different machine learning approaches to auditory spectro-temporal receptive field estimation. BMC Neuroscience,
12(Suppl 1):P4, 2011.
me72-1
[3321] Y. Meyer. Algebraic numbers and harmonic analysis. North-Holland
Mathematical Library. Vol. 2. Amsterdam-London: North- Holland
Publishing Co mpany. X, 274 p. Hfl. 52.50; $ 16.50 (1972)., 1972.
me85-2
[3322] Y. Meyer.
Les nouveaux op´erateurs de Calder´on-Zygmund.
Ast’erisque, (131):237–254, 1985.
me92-1
[3323] Y. Meyer. Wavelets and operators, volume 2. Cambridge Univ Press,
1992.
294
me95-2
[3324] Y. Meyer. Quasicrystals, Diophantine approximation and algebraic
numbers. In Beyond quasicrystals (Les Houches, 1994), pages 3–16.
Springer, Berlin, 1995.
me12
[3325] Y. Meyer. Quasicrystals, almost periodic patterns, mean-periodic
functions and irregular sampling. Afr. Diaspora J. Math., 13(1):1–
45, 2012.
come97-2
[3326] Y. Meyer and R. Coifman. Wavelets: Calder’on-Zygmund and multilinear operators. 48, 1997.
meve12
[3327] M. Meyries and M. Veraar. Traces and embeddings of anisotropic
function spaces. Math. Ann., pages 1–36, 2012.
mhti12
[3328] H. Mhaskar and S. Tikhonov. Wiener type theorems for Jacobi series
with nonnegative coefficients. Proc. Amer. Math. Soc., 140(3):977–
986, 2012.
mi96
[3329] T. Miao. Compactness of a locally compact group G and geometric
properties of Ap (G). Canad. J. Math., 48(6):1273–1285, 1996.
mipi77
[3330] C. Micchelli and A. Pinkus. On n-widths in L∞ . Trans. Amer. Math.
Soc., 234(1):139–174, 1977.
mipi78
[3331] C. Micchelli and A. Pinkus. Some problems in the approximation
of functions of two variables and n-widths of integral operators. J.
Approx. Theory, 24(1):51–77, 1978.
mirust12
[3332] N. Michalowski, D. Rule, and W. Staubach. Weighted Lp boundedness
of pseudodifferential operators and applications. Canad. Math. Bull.,
55(3):555–570, 2012.
mi13
[3333] V. Michel. Lectures on Constructive Approximation. Fourier, Spline,
and Wavelet Methods on the Real Line, the Sphere, and the Ball.
Birkh¨auser, 2013.
mi87-1
[3334] D. Middleton. Channel Modeling and Threshold Signal Processing
in Underwater Acoustics: An Analytical Overview. IEEE J. Oceanic
Eng., 12(1):4–28, 1987.
295
mirast11
[3335] M. Mihailescu, V. Radulescu, and D. Stancu Dumitru.
A
CaffarelliKohnNirenberg-type inequality with variable exponent and
applications to PDEs. Complex Variables and Elliptic Equations,
56(7-9):659–669, 2011.
bemi96-1
[3336] W. Mikhael and A. Berg. Image representation using nonorthogonal
basis images with adaptive weight optimization. Signal Processing
Letters, IEEE, 3(6):165 –167, jun 1996.
misp88
[3337] W. Mikhael and A. Spanias. A fast frequency-domain adaptive algorithm. Proceedings of the IEEE, 76(1):80 –82, jan 1988.
misp89
[3338] W. Mikhael and A. Spanias. Accurate representation of time-varying
signals using mixed transforms with applications to speech. Circuits
and Systems, IEEE Transactions on, 36(2):329 –331, feb 1989.
misp89-1
[3339] W. Mikhael and A. Spanias. Efficient modeling of dominant transform
components representing time-varying signals. IEEE Trans. Circuits
and Systems, 36(2):331–334, 1989.
mi10
[3340] P. Milanfar. Super-resolution Imaging, volume 1. CRC Press, 2010.
pe10
[3341] P. Milanfar. Super-Resolution Imaging, volume 1. CRC Press, 2011.
miro95
[3342] d. Milheiro and M. Roubaud. Discrete-time piecewise linear filtering with small observation noise. IEEE Trans. Automat. Control,
40(12):2149–2152, 1995.
fogogomisu10
[3343] B. Miller, J. Goodman, K. Forsythe, J. Sun, and V. K. Goyal. A
multi-sensor compressed sensing receiver: Performance bounds and
simulated results. In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on, pages 1571–
1575, 2010.
mi78-3
[3344] M. Milman. Embeddings of Lorentz-Marcinkiewicz spaces with mixed
norms. Anal. Math., 4:215–223, 1978.
mi81-1
[3345] M. Milman. On interpolation of 2n Banach spaces and Lorentz spaces
with mixed norms. J. Funct. Anal., 41:1–7, 1981.
miyu02
[3346] I. Mineyev and G. Yu. The Baum-Connes conjecture for hyperbolic
groups. Invent. Math., 149(1):97–122, 2002.
296
almi06
[3347] H. Minn and N. Al Dhahir. Optimal training signals for MIMO OFDM
channel estimation. IEEE Trans. Wireless Comm., 5:1158 – 1168, May
2006.
mipoot12
[3348] D. Miraut, J. Portilla, and o. others. Efficient shift-variant image
restoration using deformable filtering (Part I). EURASIP J. Adv.
Sig. Proc., 2012:100, 2012.
elmi09-2
[3349] M. Mishali and Y. Eldar. Blind multi-band signal reconstruction:
Compressed sensing for analog signals. IEEE Trans. Signal Process.,
57:993–1009, Mar. 2009.
mi12
[3350] A. Missbauer. Gabor Frames and the Fractional Fourier Transform.
Master’s thesis, University of Vienna, 2012.
hami76
[3351] J. Mitchell and K. Hahn. Representation of linear functionals in H p
spaces over bounded symmetric domains in C N . J. Math. Anal. Appl.,
56(2):379–396, 1976.
mi10-1
[3352] M. Mitkovski. Spaces of Analytic Functions and Their Applications.
ProQuest LLC, Ann Arbor, 2010.
mi11
[3353] M. Mitkovski. On a connection between Naimark’s dilation theorem,
spectral representations, and characteristic functions. Indiana Univ.
Math. J., 60(2):507–515, 2011.
mipo10
[3354] M. Mitkovski and A. Poltoratski. Polya sequences, Toeplitz kernels
and gap theorems. Adv. Math., 224(3):1057–1070, 2010.
misuwi13
[3355] M. Mitkovski, D. Su´arez, and B. Wick. The essential norm of operators on A pα (Bn ). Integr. Equ. Oper. Theory, 75(2):197–233, 2013.
miwi14
[3356] M. Mitkovski and B. Wick. A reproducing kernel thesis for operators
on Bergman-type function spaces. J. Funct. Anal., 267(7):2028–2055,
2014.
mimimimo13
[3357] D. Mitrea, I. Mitrea, M. Mitrea, and S. Monniaux. Groupoid Metrization Theory With applications to Analysis on Quasi-metric Spaces
and Functional Analysis. Applied and Numerical Harmonic Analysis.
Basel: Birkh¨auser. xii, 479 p., 2013.
297
mimi13
[3358] I. Mitrea and M. Mitrea. Multi-layer Potentials and Boundary Problems for Higher-order Elliptic Systems in Lipschitz Domains. Lecture
Notes in Mathematics 2063. Berlin: Springer. x, 424 p., 2013.
mi84-1
[3359] B. Mityagin. An interpolation theorem for modular spaces. In Interpolation spaces and allied topics in analysis (Lund, 1983), volume
1070 of Lecture Notes in Math., pages 10–23. Springer, 1984.
mish64
[3360] B. Mityagin and A. Shvarts. Functors in categories of Banach spaces.
Russian Math. Surveys, 19(2):65–127, 1964.
miniritato09
[3361] A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco, and N. Tomita. Estimates for unimodular Fourier multipliers on modulation spaces. Proc.
Amer. Math. Soc., 137(11):3869–3883, 2009.
mi91-1
[3362] Y. Miyazaki. Application of interpolation spaces with a function parameter to the eigenvalue distribution of compact operators. J. Fac.
Sci. Univ. Tokyo Sect. IA Math., 38(2):319–338, 1991.
mi91-2
[3363] T. Mizuhara. Boundedness of some classical operators on generalized
Morrey spaces. In ICM-90 Satellite Conference Proceedings, pages
183–189, 1991.
mi13-1
[3364] Y. Mizuta. Morrey capacity and vanishing integrability for Riesz potentials in Morrey spaces. In Topics in finite or infinite dimensional
complex analysis. Proceedings of the 19th international conference on
finite or infinite dimensional complex analysis and applications (ICFIDCAA), Hiroshima, Japan, December 11–15, 2011, pages 187–195.
Sendai: Tohoku University Press, 2013.
minaohsh08
[3365] Y. Mizuta, E. Nakai, T. Ohno, and T. Shimomura. An elementary
proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces L1,ν,β (G). Hiroshima Math. J., 38(3):425–436, 2008.
minaohsh11
[3366] Y. Mizuta, E. Nakai, T. Ohno, and T. Shimomura. Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents.
Complex Variables and Elliptic Equations, 56(7-9):671–695, 2011.
limo11
[3367] Q. Mo and S. Li. New bounds on the restricted isometry constant δ2k .
Appl. Comput. Harmon. Anal., in press, 2011.
298
mo96
[3368] G. Mockenhaupt. Bounds in Lebesgue spaces of oscillatory integral
operators. PhD thesis, Siegen: Univ.-GHS Siegen, Fachbereich Mathematik (Habil.), 52 p., 1996.
mookri10
[3369] G. Mockenhaupt, S. Okada, and W. Ricker. Optimal extension of
Fourier multiplier operators in Lp (G). Integr. Equ. Oper. Theory,
68(4):573–599, 2010.
mosh14
[3370] P. Mohanty and S. Shrivastava. Fourier multipliers and LittlewoodPaley for modulation spaces. Math. Nachr., 287(2-3):324–338, 2014.
mopf13
[3371] S. Molahajloo and G. E. Pfander. Boundedness of Pseudo-Differential
Operators on Lp, Sobolev and Modulation Spaces. Mathematical Modelling of Natural Phenomena, 8:18, 0 2013.
mowo09
[3372] S. Molahajloo and M. Wong. Square-integrable group representations
and localization operators for modified Stockwell transforms. Rend.
Semin. Mat. Univ. Politec. Torino, 67(2):215–227, 2009.
mowo11
[3373] S. Molahajloo and M. Wong. Diagonalization of Weyl transforms and
heat equations for time-dependent Hermite operators. Complex Anal.
Oper. Theory, 5(1):283–298, 2011.
mowo13
[3374] S. Molahajloo and M. Wong. The heat kernel and Green function
of a sub-Laplacian on the hierarchical Heisenberg group. In Pseudodifferential operators, generalized functions and asymptotics, volume
231 of Oper. Theory Adv. Appl., pages 85–102. Birkh¨auser/Springer
Basel AG, Basel, 2013.
chmonapaso98
[3375] V. Molebny, I. Chyzh, V. Sokurenko, I. Pallikaris, and L. Naoumidis.
Eye aberration analysis with Zernike polynomials. In V. V. Molebny,
I. H. Chyzh, V. M. Sokurenko, I. G. Pallikaris, L. P. Naoumidis, P. O.
Rol, K. M. Joos, and F. Manns, editors, Proc. SPIE, Ophthalmic Technologies VIII, volume 3246 of Eye Modeling, pages 228–237. SPIE,
1998.
mo01
[3376] A. F. Molisch, editor. Wideband Wireless Digital Communications.
Prentice Hall, Englewood Cliffs (NJ), 2001.
mo10-1
[3377] A. F. Molisch, editor. Wireless Communications. John Wiley and
Sons, Ltd., 2nd edition, 2010.
299
mamoot05
[3378] C. Monta na, G. F. Margrave, and o. others. Phase correction in
Gabor deconvolution. In 75th Annual International Meeting, SEG,
Expanded Abstracts, pages 2173–2176, 2005.
axmemo04
[3379] A. Montillo, D. Metaxas, and L. Axel. Extracting tissue deformation
using Gabor filter banks. In Proc. SPIE: Physiology, Function, and
Structure from Medical Images, volume 5369 of Cardiac Imaging, page
9 pages, San Diego, CA, USA, 2004.
momo03
[3380] B. Moore. An introduction to the psychology of hearing, volume 4.
Academic press San Diego, 2003.
glmo83
[3381] B. Moore and B. R. Glasberg. Suggested formulae for calculating
auditory-filter bandwidths and excitation patterns. J. Acoust. Soc.
Amer., 74(3):750–753, September 1983.
memo11
[3382] C. Moore and S. Mertens. The Nature of Computation. Oxford:
Oxford University Press. xvii, 985 p., 2011.
camo04
[3383] I. Moore and M. Cada. Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Appl. Comput.
Harmon. Anal., 16(3):208–230, 2004.
avmo00
[3384] B. Moran and S. Avdonin. Sampling of multi-band signals. In ICIAM
99. Proceedings of the 4th international congress on industrial & applied mathematics, Edinburgh, GB, July 5–9, 1999, pages 163–174.
2000.
memo01
[3385] M. Morelli and U. Mengali. A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Trans. Signal Process.,
49(12):3065–3073, December 2001.
ardimo10
[3386] S. Moreno Picot, M. Arevalillo Herraez, and W. Diaz Villanueva. A
linear cost algorithm to compute the discrete gabor transform. IEEE
Trans. Signal Process., 58(5):2667–2674, May 2010.
mo69
[3387] C. Morette. L’int’egrale fonctionnelle de Feynman. Une introduction.
In Annales de l’institut Henri Poincar’e (A) Physique th’eorique, volume 11, pages 153–206, 1969.
300
dulimoristya12
[3388] V. Morgenshtern, E. Riegler, W. Yang, G. Durisi, S. Lin, B. Sturmfels,
and H. B¨olcskei. Capacity Pre-Log of Noncoherent SIMO Channels
via Hironaka’s Theorem. Arxiv preprint arXiv:1204.2775, 2012.
mo01-1
[3389] S. Morita. Geometry of differential forms. Translations of mathematical monographs. American Mathematical Society, 2001.
moniso06
[3390] S. Moritoh, M. Niwa, and T. Sobukawa. Interpolation theorem on
Lorentz spaces over weighted measure spaces. Proc. Amer. Math.
Soc., 134(8):2329–2334, 2006.
arfogimo82
[3391] J. Morlet, G. Arens, E. Fourgeau, and D. Giard. Wave propagation
and sampling theory-Part I: Complex signal and scattering in multilayered media. Geophys. J. Internat., 47(2-SEISMIC):203–221, 1982.
arfogimo82-1
[3392] J. Morlet, G. Arens, E. Fourgeau, and D. Giard. Wave propagation
and sampling theory-Part II: Sampling theory and complex waves.
Geophys. J. Internat., 47(2-SEISMIC):222–236, 1982.
moxi94
[3393] J. M. Morris and H. Xie. Fast algorithms for generalized discrete
Gabor expansions. Signal Process., 39(3):317–331, 1994.
mo62
[3394] J. Morrison. On the commutation of finite integral operators, with
difference kernels and linear self-adjoint differential operators. Notices
Amer. Math. Soc, (9,), 1962.
mo94
[3395] N. Morrison. Introduction To Fourier Analysis. John Wiley and Sons,
Ltd., 1994.
femo53
[3396] P. Morse and H. Feshbach. Methods of theoretical physics. 2 volumes.
McGraw-Hill Book Co., Inc., New York, 1953.
camo80
[3397] M. Moshinsky and G. Carcia Calderon. Wigner distribution functions
and the representation of canonical transformations in quantum mechanics. Journal of Physics A: Mathematical and General, 13:L185,
1980.
moqu71
[3398] M. Moshinsky and C. Quesne. Linear canonical transformations
and their unitary representations. Journal of Mathematical Physics,
12:1772, 1971.
301
mose78
[3399] M. Moshinsky and T. Seligman. Canonical transformations to action
and angle variables and their representations in quantum mechanics.
Annals of Physics, 114(1-2):243–272, September 1978.
mose79-1
[3400] M. Moshinsky and T. Seligman. Canonical transformations to action
and angle variables and their representation in quantum mechanics. II.
The Coulomb problem. Ann. Physics, 120(2):402–422, August 1979.
mose79
[3401] M. Moshinsky and T. Seligman. Canonical transformations to action
and angle variables and their representations. Journal of Physics A:
Mathematical and General, 12(6):L135–L139, 1979.
mosewo72
[3402] M. Moshinsky, T. Seligman, and K. Wolf. Canonical transformations
and the radial oscillator and Coulomb problems. J. Math. Phys.,
13(6):901–907, 1972.
mosh00
[3403] M. Moshinsky and A. Sharma. Canonical transformations for time
evolution and their representation in Wigner distribution phase space.
Annals of Physics, 282(1):138–153, 2000.
moza14
[3404] T. Moumni and A. Zayed. A generalization of the prolate spheroidal
wave functions with applications to sampling. Integral Transforms
Spec. Funct., 25(6):433–447, 2014.
mo07
[3405] S. Moura. On some characterizations of Besov spaces of generalized
smoothness. Math. Nachr., 280(9-10):1190–1199, 2007.
motr98
[3406] M. Mourou and K. Trim`eche. Inversion of the Weyl integral transform
and the Radon transform on Rn using generalized wavelets. Monatsh.
Math., 126(1):73–83, 1998.
hamo04-1
[3407] N. Movshovitz Hadar and O. Hazzan. How to present it? On the
rhetoric of an outstanding lecturer. International Journal of Mathematical Education in Science and Technology, 35(6):813–827, 2004.
mrro13
[3408] Y. Mroueh and L. Rosasco. q-ary Compressive Sensing. ArXiv eprints, 2013.
must65
[3409] B. Muckenhoupt and E. M. Stein. Classical expansions and their
relation to conjugate harmonic functions. Trans. Amer. Math. Soc.,
118:17–92, 1965.
302
chmamusiza05
[3410] N. Mukunda, G. Marmo, A. Zampini, S. Chaturvedi, and R. Simon.
Wigner–Weyl isomorphism for quantum mechanics on Lie groups.
Journal of Mathematical Physics, 46:012106, 2005.
mu98-1
[3411] C. M¨
uller. Analysis of Spherical Symmetries in Euclidean Spaces.
Applied Mathematical Sciences. 129. New York, NY: Springer., 1998.
muva10
[3412] D. M¨
uller and M. Vallarino. Wave equation and multiplier estimates
on Damek-Ricci spaces. J. Fourier Anal. Appl., 16(2):204–232, 2010.
muya09
[3413] D. M¨
uller and D. Yang. A difference characterization of Besov and
Triebel-Lizorkin spaces on RD-spaces. Forum Math., 21(2):259–298,
2009.
msc09
[3414] S. M¨
uller and R. Schaback. A Newton basis for kernel spaces. J.
Approx. Theory, 161(2):645–655, 2009.
mu94
[3415] D. Mumford. Pattern theory: A unifying perspective. Joseph, A.
(ed.) et al., First European Congress of Mathematics (ECM), Paris,
France, July 6-10, 1992. Volume I: Invited lectures (Part 1). Basel:
Birkh¨auser. Prog. Math. 119, 187-224 (1994)., 1994.
gimu01
[3416] D. Mumford and B. Gidas. Stochastic models for generic images.
Quarterly of applied mathematics, 59:85–112, 2001.
mu12
[3417] I. Munive. Boundary behavior of non-negative solutions of the heat
equation in sub-Riemannian spaces. Potential Anal., 37(4):333–352,
2012.
ermuun02
[3418] A. Munoz, R. Ertl´e, and M. Unser. Continuous wavelet transform with
arbitrary scales and O(N ) complexity. Signal Process., 82(5):749–757,
May 2002.
mu06-2
[3419] H. Munthe Kaas. On group Fourier analysis and symmetry preserving
discretizations of PDEs. J. Phys. A, Math. Gen., 39(19):5563–5584,
2006.
mude99
[3420] B. Muquet and C. de. Blind and Semi-Blind Channel Identification
Methods using Second Order Statistics for OFDM Systems. volume 5,
page 27452748, Mar. 1999.
303
dumude02
[3421] B. Muquet, C. de, and P. Duhamel. Subspace-based blind and semiblind channel estimation for OFDM systems. IEEE Trans. Signal
Process., 50(7):1699–1712, July 2002.
muna07
[3422] G. Muraz and M. Navarro. Existence of invariant subspace for certain
commutative Banach algebras of operators. Taiwanese Journal of
Mathematics, 11(1):pp–135, 2007.
muoz12
[3423] G. Muraz and S. Oztop. Presque p´eriodicit´e avec poids. Bull. Math.
Soc. Sci. Math. Roum., Nouv. S´er., 55(3):295–310, 2012.
aldekelumuva12
[3424] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, and
M. Lustig. Fast ell1 -SPIRiT Compressed Sensing Parallel Imaging
MRI: Scalable Parallel Implementation and Clinically Feasible Runtime. IEEE Trans. Image Process., 31(6):1250 –1262, 2012.
aldekelumuvaXX
[3425] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, and
M. Lustig. Fast 1 -SPIRiT compressed sensing parallel imaging MRI:
Scalable parallel implementation and clinically feasible runtime. IEEE
Trans. Med. Imaging, to appear.
mu01
[3426] M. Murty. Quadratic reciprocity via linear algebra. Bona Math.,
12(4):75–80, 2001.
musc13
[3427] C. Muscalu and W. Schlag. Classical and Multilinear Harmonic Analysis Volume I. Cambridge Studies in Advanced Mathematics 137.
Cambridge: Cambridge University Press. 387 p., 2013.
musc13-1
[3428] C. Muscalu and W. Schlag. Classical and Multilinear Harmonic Analysis Volume II. Cambridge Studies in Advanced Mathematics 133.
Cambridge: Cambridge University Press. 339 p., 2013.
mutath02-1
[3429] C. Muscalu, T. Tao, and C. Thiele. Uniform estimates on multi-linear
operators with modulation symmetry. J. Anal. Math., 88:255–309,
2002.
mu14
[3430] J. Muscat. Functional analysis. An introduction to metric spaces,
Hilbert spaces, and Banach algebras. Springer, 2014.
mu79
[3431] K. Musial. The weak Radon-Nikod´
ym property in Banach spaces.
Studia Math., 64(2):151–173, 1979.
304
mu12-1
[3432] R. Mustafayev. On boundedness of sublinear operators in weighted
Morrey spaces. Azerb. J. Math., 2(1):66–79, 2012.
mu06-3
[3433] D. Muzzulini. Genealogie der Klangfarbe, volume 5. Peter Lang Publishing, 2006.
grrapfXX
[3434] G. N., G. E. Pfander, and R. P. A density criterion for operator
identification.
na99
[3435] R. Nabben. Decay rates of the inverse of nonsymmetric tridiagonal
and band matrices. SIAM J. Matrix Anal. Appl., 20(3):820–837, 1999.
naol98-4
[3436] J. Nagy and D. O’Leary. Fast iterative image restoration with a
spatially-varying psf. 1998.
naol98
[3437] J. Nagy and D. O’Leary. Restoring images degraded by spatially
variant blur. SIAM J. Sci. Comput., 19(4):1063–1082, 1998.
naol97
[3438] J. Nagy and D. P. O’Leary. Fast iterative image restoration with a
spatially varying PSF. In Optical Science, Engineering and Instrumentation’97, pages 388–399, 1997.
napape04
[3439] J. Nagy, K. Palmer, and L. Perrone. Iterative methods for image
deblurring: a Matlab object-oriented approach. Numer. Algorithms,
36(1):73–93, 2004.
na11
[3440] A. Naidu. Centrality of L¨owdin orthogonalizations. Arxiv preprint
arXiv:1105.3571, pages 1–6, 2011.
na51
[3441] M. Naimark. On a problem of the theory of rings with involution.
Uspehi Matem. Nauk (N.S.), 6(6(46)):160–164, 1951.
na08-2
[3442] E. Nakai. Calder´on-Zygmund operators on Orlicz-Morrey spaces and
modular inequalities. In Banach and function spaces II, pages 393–
410. 2008.
na08-3
[3443] E. Nakai. Orlicz-Morrey spaces and the Hardy-Littlewood maximal
function. Studia Math., 188(3):193–221, 2008.
nasa14
[3444] E. Nakai and G. Sadasue. Pointwise multipliers on martingale Campanato spaces. Studia Math., 220(1):87–100, 2014.
305
na11-1
[3445] M. Nakai. An application of capacitary functions to an inverse inclusion problem. Hiroshima Math. J., 41(2):223–233, 2011.
na13
[3446] S. Nam. An Uncertainty Principle for Discrete Signals. ArXiv e-prints,
jul 2013.
daelgrna11
[3447] S. Nam, M. Davies, M. Elad, and R. Gribonval. The cosparse analysis
model and algorithms. Appl. Comput. Harmon. Anal., 34(1):30–56,
2013.
na78
[3448] N. Namboodiri. Survey sampling and measurement. Papers presented
at the 2nd symposium on survey sampling held at the Chapel Hill campus of the University of North Carolina, April 14-17, 1977. Quantitative Studies in Social Relations. New York etc.: Academic Press.
XXI, 364 p., 1978.
napa12
[3449] T. Nambudiri and K. Parthasarathy. Generalised Weyl-Heisenberg
frame operators. Bull. Sci. Math., 136(1):44–53, 2012.
nasc13
[3450] K. Namngam and E. Schulz. Equivalence of the metaplectic representation with sums of wavelet representations for a class of subgroups
of the symplectic group. J. Fourier Anal. Appl., pages 1–38, 2013.
menara94
[3451] K. Namuduri, R. Mehrotra, and N. Ranganathan. Efficient computation of Gabor filter based multiresolution responses. Pattern Recognition, 27(7):925 – 938, 1994.
napr03
[3452] V. Narayanan and K. Prabhu. The fractional Fourier transform:
theory, implementation and error analysis. Microprocessors and Microsystems, 27(10):511 – 521, 2003.
na12
[3453] G. Narimani. Smooth pointwise multipliers of modulation spaces. An.
Stiint. Univ. Ovidius Constanta, 20(1):317–328, 2012.
nasu10
[3454] M. Nashed and Q. Sun. Sampling and reconstruction of signals in a
reproducing kernel subspace of Lp (Rd ). J. Funct. Anal., 258(7):2422–
2452, 2010.
nasu13
[3455] M. Nashed and Q. Sun. Function spaces for sampling expansions. In
A. I. Z. Xiaoping Shen, editor, Multiscale signal analysis and modeling,
volume Part I: Sampling- Chapter 4, pages 81–104. Springer, 2013.
306
nawa75
[3456] M. Nashed and G. Wahba. Generalized inverses in reproducing kernel
spaces: An approach to regularization of linear operator equations.
SIAM J. Math. Anal., pages 974–987, 1975.
nawa95
[3457] M. Nashed and G. G. Walter. Reproducing kernel Hilbert spaces
from sampling expansions. Ismail, Mourad E. H. (ed.) et al., Mathematical analysis, wavelets, and signal processing. An international
conference on mathematical analysis and signal processing, Cairo University, Cairo, Egypt, January 3-9, 1994. Providence, RI: American
Mathematical, 1995.
naobth10
[3458] F. Nazarov, R. Oberlin, and C. Thiele. A Calderon-Zygmund decomposition for multiple frequencies and an application to an extension
of a lemma of Bourgain. Math. Res. Lett., 17(3):529–545, 2010.
narevo11
[3459] F. Nazarov, A. Reznikov, and A. Volberg. The proof of a2 conjecture
in a geometrically doubling metric space. Submitted on 7 Jun 2011,
to be published, 2011.
natrvo98
[3460] F. Nazarov, S. Treil, and A. Volberg. Weak type estimates and Cotlar inequalities for Calder´on-Zygmund operators on nonhomogeneous
spaces. Internat. Math. Res. Notices, 1998(9):463–487, 1998.
nata10
[3461] S. Nazarov and J. Taskinen. On essential and continuous spectra of
the linearized water-wave problem in a finite pond. Math. Scand.,
106(1):141–160, 2010.
bahoneso13
[3462] T. Necciari, P. Balazs, N. Holighaus, and P. Sondergaard. The ERBlet
transform: An auditory-based time-frequency representation with
perfect reconstruction. In Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013),
pages 498–502, 2013.
nest04
[3463] M. Necker and G. Stuber. Totally blind channel estimation for OFDM
on fast varying mobile radio channels. IEEE Trans. Wireless Comm.,
3:1512–1525, Sep. 2004.
neve08
[3464] D. Needell and R. Vershynin. Greedy signal recovery and uncertainty
principles. In Proc. SPIE, volume 6814, February 2008.
307
newa12
[3465] D. Needell and R. Ward. Stable image reconstruction using total
variation minimization. SIAM J. Imag. Sci., 6(2):1035–1058, 2013.
nevewe07
[3466] J. Neerven, M. Veraar, and L. Weis. Conditions for stochastic integrability in UMD Banach spaces. In Banach spaces and their applications
in analysis, pages 125–146. Walter de Gruyter, Berlin, 2007.
cine98
[3467] R. Negi and J. Cioffi. Pilot tone selection for channel estimation
in a mobile OFDM system. IEEE Trans. Consumer Electronics,
44(3):1122–1128, August 1998.
ne02-3
[3468] A. Nekvinda. Equivalence of pn norms and shift operators. Math.
Inequal. Appl., 5(4):711–723, 2002.
ne10
[3469] A. Nekvinda. A note on one-sided maximal operator in Lp(.) (R). Math.
Inequal. Appl., 13(4):887–897, 2010.
nepi10
[3470] A. Nekvinda and L. Pick. Optimal estimates for the Hardy averaging
operator. Math. Nachr., 283(2):262–271, 2010.
ne74
[3471] E. Nelson. Notes on non-commutative integration. J. Funct. Anal.,
15:103–116, 1974.
neyu79
[3472] A. Nemirovskii and D. Yudin. Complexity of Problems and Efficiency
of Optimization Methods, 1979.
neyu83
[3473] A. Nemirovsky and D. Yudin. Problem complexity and method efficiency in optimization. A Wiley-Interscience Publication. John Wiley
& Sons Inc., New York, 1983.
ne11
[3474] Y. Neretin. Lectures on Gaussian Integral operators and Classical
Groups. EMS Series of Lectures in Mathematics. Z¨
urich: European
Mathematical Society (EMS). xii, 559 p. EUR 58.00, 2011.
ne07
[3475] Y. A. Neretin. On adelic model of boson Fock space. In Moscow
Seminar on Mathematical Physics. II, volume 221 of Amer. Math.
Soc. Transl. Ser. 2, pages 193–202. Amer. Math. Soc., Providence,
RI, 2007.
ne11-1
[3476] P. Nes. Gabor analysis for non-rectangular lattices and the fractional
Fourier-transform. Sampl. Theory Signal Image Process., 10(3):285–
300, 2011.
308
nest06
[3477] S. Neshveyev and E. Stormer. Dynamical entropy in operator algebras.
Number Bd. 50 in Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer, 2006.
ne83-1
[3478] Y. Nesterov. A method for solving the convex programming problem
with convergence rate O(1/k 2 ). Dokl. Akad. Nauk SSSR, 269(3):543–
547, 1983.
ne05-2
[3479] Y. Nesterov. Smooth minimization of non-smooth functions. Math.
Program., 103(1, Ser. A):127–152, 2005.
nene94
[3480] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms in Convex Programming. SIAM Studies Appl. Math., Philadelphia, PA, 1994.
nescst11
[3481] V. Nestoridis, S. Schmutzhard, and V. Stefanopoulos. Universal series
induced by approximate identities and some relevant applications. J.
Approx. Theory, 163(12), 2011.
ne12
[3482] A. Neubauer. On the Shack-Hartmann based wavefront reconstruction: stability and convergence rates of finite-dimensional approximations. J. Inverse Ill-Posed Probl., 20(4):591–614, 2012.
ne02-4
[3483] J. Neves. Lorentz–Karamata spaces, Bessel and Riesz potentials and
embeddings. Diss. Math., 405:46, 2002.
bahene10
[3484] G. Newstadt, E. Bashan, and A. Hero. Adaptive search for sparse
targets with informative priors. In IEEE International Conference on
Acoustics Speech and Signal Processing (ICASSP), pages 3542–3545,
Dallas, TX, March 2010.
ngweyu10
[3485] M. Ng, P. Weiss, and X. Yuan. Solving constrained total-variation image restoration and reconstruction problems via alternating direction
methods. SIAM J. Sci. Comput., 32(5):2710–2736, 2010.
ng11
[3486] H. Nguyen. Inverse Littlewood-Offord problems and the singularity
of random symmetric matrices. preprint, 2011.
ming00
[3487] N. Nguyen and P. Milanfar. A wavelet-based interpolation-restoration
method for superresolution (wavelet superresolution). Circuits, Systems and Signal Processing, 19(4):321–338, 2000.
309
ni08
[3488] B. Nica. Relatively spectral morphisms and applications to K-theory.
J. Funct. Anal., 255(12):3303–3328, 2008.
ni10-2
[3489] B. Nica. On the degree of rapid decay. Amer. Math. Soc., 138(7):2341–
2347, 2010.
ni11
[3490] B. Nica. Homotopical stable ranks for Banach algebras. J. Funct.
Anal., 2011.
nipo07
[3491] R. Nickl and B. P¨otscher. Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov-and Sobolevtype. Journal of Theoretical Probability, 20(2):177–199, 2007.
ni14-2
[3492] F. Niederst¨atter. Non-Orthogonal Option Pricing. 2014.
ni14-1
[3493] L. Nielsen. A distributional approach to Feynman’s operational calculus. New York J. Math., 20:377–398, 2014.
ni10-1
[3494] M. Nielsen. Trigonometric bases for matrix weighted lp -spaces. J.
Math. Anal. Appl., 371:784–792, 2010.
ni13
[3495] M. Nielsen. On traces of general decomposition spaces. Monatsh.
Math., 171(3-4):443–457, 2013.
ni14
[3496] M. Nielsen. Frames for decomposition spaces generated by a single
function. Collect. Math., 65(2):183–201, 2014.
nira12
[3497] M. Nielsen and K. Rasmussen. Compactly supported frames for decomposition spaces. J. Fourier Anal. Appl., 18(1):87–117, 2012.
ni91
[3498] T. Nielsen. Bose algebras: the complex and real wave representations.
Lecture Notes in Mathematics 1472. Springer-Verlag, 1991.
ni75-2
[3499] S. Nikolskii. Approximation of functions of several variables and
imbedding theorems. Die Grundlehren der Mathematischen Wissenschaften. Band 205. Springer, 1975.
ni89
[3500] R. Niland. Optimum oversampling. J. Acoust. Soc. Amer., 86:1805,
1989.
ni82-2
[3501] P. Nilsson. Reiteration theorems for real interpolation and approximation spaces. Ann. Mat. Pura Appl. (4), 132(1):291–330, 1982.
310
ni83
[3502] P. Nilsson. Interpolation of Calderon and Ovchinnikov pairs. Ann.
Mat. Pura Appl. (4), 134(1):201–232, 1983.
nisuya09
[3503] M. Nishio, N. Suzuki, and M. Yamada. Weighted Berezin transformations with application to Toeplitz operators of Schatten class on
parabolic Bergman spaces. Kodai Math. J., 32(3):501–520, 2009.
nisuya12
[3504] M. Nishio, N. Suzuki, and M. Yamada. Schatten class Toeplitz operators on the parabolic Bergman space II. Kodai Mathematical Journal,
35(1):52–77, 2012.
ni78
[3505] P. Nitsche. Klangfarbe und Schwingungsform, volume 13. Katzbichler,
1978.
niol12
[3506] S. Nitzan and A. Olevskii. Revisiting Landau’s density theorems for
Paley-Wiener spaces. C. R., Math., Acad. Sci. Paris, 350(9-10):509–
512, 2012.
niol11
[3507] S. Nitzan and J.-F. Olsen. From exact systems to Riesz bases in the
Balian-Low theorem. J. Fourier Anal. Appl., 17(4):567–603, 2011.
niol12-1
[3508] S. Nitzan and J.-F. Olsen. A quantitative Balian-Low theorem.
preprint, submitted on 1 May 2012:11, 2012.
niol13
[3509] S. Nitzan and J.-F. Olsen. A quantitative Balian-Low theorem. J.
Fourier Anal. Appl., 19(5):1078–1092, 2013.
nowr06
[3510] J. Nocedal and S. Wright. Numerical optimization. Springer Series in
Operations Research and Financial Engineering. Springer, New York,
Second edition, 2006.
no12
[3511] T. Noi. Duality of variable exponent Triebel-Lizorkin and Besov
spaces. 2012.
nosa12
[3512] T. Noi and Y. Sawano. Complex interpolation of Besov spaces and
Triebel-Lizorkin spaces with variable exponents. J. Math. Anal. Appl.,
387(2):676–690, 2012.
No67
[3513] R. J. Noll. Zernike polynomials and atmospheric turbulence. JOSA,
66(3):207–211, 1967.
311
no76-1
[3514] R. J. Noll. Zernike polynomials and atmospheric turbulence. JOsA,
66(3):207–211, 1976.
nosjzw11
[3515] S. Nonnenmacher, J. Sj¨ostrand, and M. Zworski. From open quantum
systems to open quantum maps. Comm. Math. Phys., 304(1):1–48,
2011.
nozw09
[3516] S. Nonnenmacher and M. Zworski. Quantum decay rates in chaotic
scattering. Acta Math., 203(2):149–233, 2009.
chnovi08
[3517] A. Nordio, C.-F. Chiasserini, and E. Viterbo. Reconstruction of Multidimensional Signals from Irregular Noisy Samples. IEEE Transactions
on Signal Processing, 56:4274–4285, 2008.
dono09
[3518] C. Nothegger and P. Dorninger. 3D filtering of high-resolution terrestrial laser scanner point clouds for cultural heritage documentation.
PFG Photogrammetrie, Fernerkundung, Geoinformation, 2009(1):53–
63, March 2009.
no97
[3519] S. Novikov. Singularities of embedding operators between symmetric
function spaces on [0, 1]. Mathematical Notes, 62(4):457–468, 1997.
nory09
[3520] S. Novikov and I. Ryabtsov. Optimization of frame representations
for compressed sensing and Mercedes-Benz frame. Proc. Steklov Inst.
Math., 265:199–207, 2009.
heno12
[3521] L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge
university press, 2012.
nost13
[3522] A. Nowak and K. Stempak. Sharp estimates of the potential kernel for
the harmonic oscillator with applications. Nagoya Math. J., 212:1–17,
2013.
nosz12
[3523] A. Nowak and T. Szarek. Calderon-Zygmund operators related to
Laguerre function expansions of convolution type. J. Math. Anal.
Appl., 388(2):801–816, 2012.
mano02
[3524] K. Nowak and F. DeMari. Canonical subgroups of 1 sl(2, ). Boll.
Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8), 5(2):405–430, 2002.
nosa12-1
[3525] H. Nozaki and M. Sawa. Note on cubature formulae and designs
obtained from group orbits. Canad. J. Math., 64(6):1359–1377, 2012.
312
aunu13
[3526] E. Nursultanov and T. Aubakirov. Interpolation methods for stochastic processes spaces. Abstr. Appl. Anal., 2013:12, 2013.
nutl14
[3527] E. Nursultanov and N. Tleukhanova. On reconstruction of multiplicative transformations of functions in anisotropic spaces. Siberian Math.
J., 55(3):482–497, 2014.
nu81-1
[3528] A. Nuttall. Some windows with very good sidelobe behavior. Acoustics, Speech and Signal Processing, IEEE Transactions on, 29(1):84–
91, 1981.
ny28
[3529] H. Nyquist. Certain Topics in Telegraph Transmission Theory. Trans.
Am. Inst. El. Eng. (AIEE), 47:617–644, April 1928.
od98
[3530] A. Odzijewicz. Quantum algebras and q-special functions related to
coherent states maps of the disc. Comm. Math. Phys., 192(1):183–215,
1998.
oe00
[3531] S. Oeztop. Multipliers of Banach valued weighted function spaces.
Int. J. Math. Math. Sci., 24(8):511–517, 2000.
oe00-1
[3532] S. Oeztop. Multipliers on some weighted Lp -spaces. Int. J. Math.
Math. Sci., 23(9):651–656, 2000.
oe03
[3533] S. Oeztop. A note on multipliers of Lp (G, A). J. Aust. Math. Soc.,
74(1):25–34, 2003.
oh09
[3534] T. Ohta. Hilbertian matrix cross normed spaces arising from normed
ideals. Illinois Journal of Mathematics, 53(1):1–24, 2009.
ohpe04
[3535] M. Ohya and D. Petz. Quantum entropy and its use. Texts and
monographs in physics. Springer, 2004.
ohvo11
[3536] M. Ohya and I. Volovich. Mathematical Foundations of Quantum Information and Computation and its Applications to Nano- and Biosystems. Theoretical and Mathematical Physics. New York, NY:
Springer. xix, 2011.
okrisa08
[3537] S. Okada, W. Ricker, and P. S´anchez. Optimal Domain and Integral Extension of Operators: Acting in Function Spaces, volume 180
of Operator Theory: Advances and Applications. Birkh¨auser Verlag,
Basel, 2008.
313
ok06
[3538] R. Okayasu. Gromov hyperbolic groups and the Macaev norm. Pacific
J. Math., 223(1):141–157, 2006.
ok81-1
[3539] G. Okikiolu. Multiple and function space parameter interpolation
theorems for positive and maximal operators. I. Bull. Math., (4):1–
16, 1981/82.
ok81
[3540] G. Okikiolu. Multiple and function space parameter interpolation
theorems for positive and maximal operators. II. Bull. Math., (4):17–
39, 1981/82.
ok66
[3541] E. Oklander. Lpq interpolators and the theorem of Marcinkiewicz.
Bull. Amer. Math. Soc., 72:49–53, 1966.
ngokra09
[3542] U. Okonkwo, R. Ngah, and T. Rahman. Affine group linear operatorbased channel characterization for mobile radio systems. WSEAS
TRANSACTIONS on SYSTEMS, 8(2):288–301, 2009.
okpfzhXX
[3543] O. Oktay, G. E. Pfander, and P. Zheltov. Scattering Function Estimation for Overspread Radar Targets.
okpfzh11
[3544] O. Oktay, G. E. Pfander, and P. Zheltov. Reconstruction and estimation of scattering functions of overspread radar targets. ArXiv
e-prints, jun 2011.
okoz09
[3545] F. Oktem and H. Ozaktas. Exact relation between continuous and
discrete linear canonical transforms. IEEE Signal Processing Letters,
16(8):727–730, August 2009.
okoz10
[3546] F. S. Oktem and H. M. Ozaktas. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width
product: a generalization of the space–bandwidth product. JOSA A,
27(8):1885–1895, 2010.
ol11
[3547] G. Olafsson. The Segal-Bargmann transform on Euclidean space and
generalizations. An introduction to harmonic analysis and Hilbert
spaces of holomorphic functions (to appear). Hackensack, NJ: World
Scientific. 300 p., 2011.
leolsc83
[3548] D. Oldenburg, T. Scheuer, and S. Levy. Recovery of the acoustic impedance from reflection seismograms. Geophys. J. Internat.,
48:1318–1337, Oct. 1983.
314
leol14
[3549] A. Olevskii and N. Lev. Quasicrystals and Poisson’s summation formula. Invent. Math., 2014.
olul10
[3550] A. Olevskii and A. Ulanovskii. On Ingham-type interpolation in Rn .
C. R. Math. Acad. Sci. Paris, 348(13-14):807–810, 2010.
olul11
[3551] A. Olevskii and A. Ulanovskii. Uniqueness sets for unbounded spectra.
C. R. Math. Acad. Sci. Paris, 349(11-12):679–681, 2011.
olul12
[3552] A. Olevskii and A. Ulanovskii. On multi-dimensional sampling and
interpolation. Anal. Math. Phys., 2(2):149–170, 2012.
ol09
[3553] R. Oliveira. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. preprint, 2009.
ol10
[3554] R. Oliveira. Sums of random Hermitian matrices and an inequality
by Rudelson. preprint, 2010.
ol05
[3555] A. Olofsson. Wandering subspace theorems. Integr. Equ. Oper. Theory, 51(3):395–409, 2005.
olwi13
[3556] A. Olofsson and J. Wittsten. Poisson integrals for standard weighted
Laplacians in the unit disc. Journal of the Mathematical Society of
Japan, 65(2):447–486, 2013.
ol10-1
[3557] J.-F. Olsen. Modified zeta functions as kernels of integral operators.
J. Funct. Anal., 259(2):359–383, 2010.
ol11-1
[3558] J.-F. Olsen. Local properties of Hilbert spaces of Dirichlet series. J.
Funct. Anal., 261(9):2669–2696, 2011.
olre13
[3559] J.-F. Olsen and M. Reguera. On a sharp estimate for Hankel operators
and Putnam’s inequality. arxiv, 2013.
olse08
[3560] J.-F. Olsen and K. Seip. Local interpolation in Hilbert spaces of
Dirichlet series. Proc. Amer. Math. Soc., 136(1):203–212, 2008.
ol95
[3561] P. Olsen. Fractional integration, Morrey spaces and a Schr¨odinger
equation. Comm. Partial Differential Equations, 20(11-12):2005–
2055, 1995.
315
ol96
[3562] P. Olsen. Negative eigenvalues of the Schroedinger equation: An approach through fractional integration and Morrey spaces. PhD thesis,
1996.
olsh05
[3563] P. Olver and C. Shakiban. Applied Linear Algebra: Student Solutions
Manual. Pearson Education Inc., 2005.
olsh06
[3564] P. Olver and C. Shakiban. Applied Linear Algebra. Pearson Education
Inc., 2006.
on09
[3565] D. Onchis. Note about the dual atoms in spline-type spaces. 2009.
on14
[3566] D. M. Onchis. Increasing the image resolution using multi-windows
spline-type spaces. Signal Process., 103:195–200, 2014.
milekaonsa08
[3567] N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka, and S. Sagayama.
Separation of a monaural audio signal into harmonic/percussive components by complementary diffusion on spectrogram. In 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne,
Switzerland, August 25-29, 2008.
on75
[3568] E. Onofri. A note on coherent state representations of Lie groups. J.
Math. Phys., 16:1087–1089, 1975.
on80
[3569] E. Onofri. Path integrals over coherent states. Functional integration,
Theory Appl., Proc. Colloq., Louvain-la- Neuve/Belgium 1979, 121124 (1980)., 1980.
oo00
[3570] P. Oonincx. Mathematical Signal Analysis: Wavelets, Wigner Distribution and a Seismic Application. PhD thesis, Universiteit van
Amsterdam, 2000.
op95
[3571] E. Opdam. Harmonic analysis for certain representations of graded
Hecke algebras. Acta Math., 175(1):75–121, 1995.
op06-1
[3572] E. Opdam. Hecke algebras and harmonic analysis. In Proceedings of
the international congress of mathematicians (ICM), Madrid, Spain,
August 22–30, 2006. Volume II: Invited lectures, pages 1227–1259.
2006.
316
op12
[3573] B. Opic. Continuous and compact embeddings of Bessel-potentialtype spaces. In Spectral theory, function spaces and inequalities.
New techniques and recent trends. Dedicated to David Edmund and
Des Evans to their 80th and 70th birthdays, pages 157–196. Berlin:
Springer, 2012.
orpe02
[3574] J. Orobitg and C. P´erez. ap weights for nondoubling measures in n
and applications. Trans. Amer. Math. Soc., 354(5):2013–2033, 2002.
orzh94
[3575] B. Orsted and G. Zhang. Weyl quantization and tensor products of
Fock and Bergman spaces. Indiana Univ. Math. J., 43(2):551–583,
1994.
faor94
[3576] J. Ortega and J. Fabrega. Mixed-norm spaces and interpolation. Studia Math., 109(3):233–254, 1994.
orra10
[3577] S. Ortega and T. Ramirez. Hardy operators on weighted amalgams.
Proc. Roy. Soc. Edinburgh Sect. A, 140(1):175–188, 2010.
or98
[3578] J. Ortega Cerda. Sampling measures. Publ. Mat., Barc., 42(2):559–
566, 1998.
or08
[3579] J. Ortega Cerda. Interpolating and sampling sequences in finite Riemann surfaces. Bull. Lond. Math. Soc., 40(5):876–886, 2008.
orpr12
[3580] J. Ortega Cerda and B. Pridhnani. Beurling-Landau’s density on
compact manifolds. J. Funct. Anal., 263(7):2102–2140, 2012.
orpr13
[3581] J. Ortega Cerda and B. Pridhnani.
Carleson measures and
Logvinenko-Sereda sets on compact manifolds.
Forum Math.,
25(1):151–172, 2013.
orsa07
[3582] J. Ortega Cerd`a and J. Saludes. Marcinkiewicz-Zygmund inequalities.
J. Approx. Theory, 145(2):237 – 252, April 2007.
orscva06
[3583] J. Ortega Cerda, A. Schuster, and D. Varolin. Interpolation and
sampling hypersurfaces for the Bargmann-Fock space in higher dimensions. Math. Ann., 335(1):79–107, 2006.
orse04
[3584] J. Ortega Cerda and K. Seip. Harmonic measure and uniform densities. Indiana Univ. Math. J., 53(3):905–923, 2004.
317
or10
[3585] N. Ortner. On convolvability conditions for distributions. Monatsh.
Math., 160(3):313–335, 2010.
orwa14
[3586] N. Ortner and P. Wagner. On the spaces of John Horv´ath. J. Math.
Anal. Appl., (0):–, 2014.
or73
[3587] M. Orton. Hilbert transforms, Plemelj relations, and Fourier transforms of distributions. SIAM J. Math. Anal., 4:656–670, 1973.
or75
[3588] M. Orton. Harmonic representations of distributions. J. Differ. Equations, 18:235–243, 1975.
os85
[3589] M. Osborne. Finite Algorithms in Optimization and Data Analysis.
John Wiley & Sons., 1985.
os14
[3590] M. Osborne. Locally Convex Spaces. Springer, 2014.
civa08
[3591] Oscar Ciaurri and Juan Luis Varona. Dunkl transformations and
sampling theorems. Bol. Soc. Esp. Mat. Apl., 2008.
osro14
[3592] A. Osipov and V. Rokhlin. On the evaluation of prolate spheroidal
wave functions and associated quadrature rules. Appl. Comput. Harmon. Anal., 36(1):108–142, 2014.
osroxi13
[3593] A. Osipov, V. Rokhlin, and H. Xiao. Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximation.
Berlin: Springer, 2013.
os83
[3594] P. Oswald. On Besov-Hardy-Sobolev spaces of analytic functions in
the unit disc. 1983.
bomeot10
[3595] J. O’Toole, M. Mesbah, and B. Boashash. Improved discrete definition of quadratic time-frequency distributions. IEEE Trans. Signal
Process., 58(2):906–911, 2010.
otva14
[3596] A. Ottazzi and M. Vallarino. Spectral multipliers for Laplacians with
drift on DamekRicci spaces. Math. Nachr., 287(16):1837–1847, 2014.
ot95
[3597] J. Ottesen. Projective representations of the loop group and the
boson-fermion correspondence. Rep. Math. Phys., 35(1):39–61, 1995.
318
ouso11
[3598] S. Ouaro and S. Soma. Weak and entropy solutions to nonlinear
Neumann boundary-value problems with variable exponents. Complex
Variables and Elliptic Equations, 56(7-9):829–851, 2011.
ou05
[3599] E. Ouhabaz. Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31. Princeton, NJ: Princeton University Press. xi, 2005.
ov76
[3600] V. I. Ovchinnikov. Interpolation theorems resulting from an inequality
of Grothendieck. Funct. Anal. Appl., 10(4):287–294, 1976.
ow06
[3601] B. Owen. Detectability of periodic gravitational waves by initial interferometers. 2006.
oy10
[3602] O. Oyerinde. Channel Estimation for SISO and MIMO OFDM Communication Systems. PhD thesis, 2010.
elfajaoy12
[3603] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi. Simultaneously structured models with application to sparse and low-rank
matrices. ArXiv e-prints, dec 2012.
fahamooy11
[3604] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi. A simplified approach
to recovery conditions for low-rank matrices. In Proc. IEEE Int. Symp.
Inform. Theory (ISIT) 2011, 2011.
oyyu09
[3605] H. Oyono Oyono and G. Yu. K-theory for the maximal Roe algebra
of certain expanders. J. Funct. Anal., 257(10):3239–3292, 2009.
oz96
[3606] H. Ozaktas. Repeated fractional Fourier domain filtering is equivalent
to repeated time and frequency domain filtering. Signal Process.,
54(1):81–84, 1996.
arbokuoz96
[3607] H. Ozaktas, O. Arikan, M. Kutay, and G. Bozdagt. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process.,
44(9):2141–2150, 1996.
ayoz95
[3608] H. Ozaktas and O. Ayt¨
ur. Fractional Fourier domains. Signal Process., 46(1):119–124, 1995.
ozsu06
[3609] H. Ozatkas and U. Sumbul. Interpolating between periodicity and
discreteness through the fractional Fourier transform. IEEE Trans.
Signal Process., 54(11):4233 –4243, nov. 2006.
319
oz06
[3610] N. Ozawa. Boundary amenability of relatively hyperbolic groups.
Topology Appl., 153(14):2624–2630, 2006.
ozri05
[3611] N. Ozawa and M. A. Rieffel. Hyperbolic group C ∗ -algebras and freeproduct C ∗ -algebras as compact quantum metric spaces. Canad. J.
Math., 57(5):1056–1079, 2005.
ruspoz12
¨
[3612] S. Oztop,
V. Runde, and N. Spronk. Beurling-Figa-Talamanca-Herz
algebras. Studia Math., 210(2):117–135, 2012.
oupa99
[3613] J. Packer and M. Ouyang. The form of the Moore-Penrose inverse of a
morphism. J. Central China Normal Univ. Natur. Sci., 33(2):165–167,
1999.
kilepa98
[3614] H. Paek, R.-C. Kim, and S.-U. Lee. On the POCS-based postprocessing technique to reduce the blocking artifacts in transform coded
images. Circuits and Systems for Video Technology, IEEE Transactions on, 8(3):358–367, 1998.
pa86-1
[3615] A. Paeth. A fast algorithm for general raster rotation. In Graphics
Interface, volume 86, pages 77–81, 1986.
cofopasa05
[3616] J. Pages, J. Salvi, C. Collewet, and J. Forest. Optimised De Bruijn
patterns for one-shot shape acquisition. Image and Vision Computing,
23(8):707 – 720, 2005.
pa09-8
[3617] V. Palamodov. Quantum shape of compact domains in phase plane.
Aytuna, Aydin (ed.) et al., Functional analysis and complex analysis.
International conference, Istanbul, Turkey, September 17–21, 2007.
Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 481, 117-136 (2009)., 2009.
cilapa03
[3618] D. Palomar, J. Cioffi, and M. Lagunas. Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex
optimization. IEEE Trans. Signal Process., 51:2381–2401, Sep. 2003.
pasiwexi01
[3619] M. Paluszynski, H. Sikic, G. Weiss, and S. Xiao. Generalized low
pass filters and MRA frame wavelets. J. Geom. Anal., 11(2):311–342,
2001.
320
pasiwexi03
[3620] M. Paluszynski, H. Sikic, G. Weiss, and S. Xiao. Tight frame wavelets,
their dimension functions, MRA tight frame wavelets and connectivity
properties. Adv. Comput. Math., 18(2-4):297–327, 2003.
pa91-1
[3621] Y. Pan. Uniform estimates for oscillatory integral operators. J. Funct.
Anal., 100(1):207–220, 1991.
pa96-3
[3622] I. Paolo. Singular values and eigenvalues of non-hermitian block
Toeplitz matrices. Calcolo, 33(1-2):59–69, 1996.
pa97-4
[3623] M. Pap. Properties of certain integral operators.
39(62)(1):83–94, 1997.
pa97-5
[3624] M. Pap. Some criteria for starlikeness and convexity of a given order.
39(2):299–303, 1997.
pa98-1
[3625] M. Pap. Integral operators which preserve the subordination. Math.
Pannon., 9(2):235–242, 1998.
pa98
[3626] M. Pap. On certain subclasses of meromorphic m-valent close-toconvex functions. PU.M.A., Pure Math. Appl., 9(1-2):155–163, 1998.
pa99-2
[3627] M. Pap. Starlikeness properties of meromorphic m-valent functions.
Publ. Math., 54(3-4):281–294, 1999.
pa03-3
[3628] M. Pap. Properties of discrete rational orthonormal systems. pages
374–379, 2003.
pa03-4
[3629] M. Pap. Some simple conditions of strongly-starlikeness and spirallikeness of a given order. Mathematica, 45(68)(2):161–166, 2003.
pa04-8
[3630] M. Pap. Discrete approximation of the solution of the Dirichlet problem by discrete means. Acta Mathematica Academiae Paedagogicae
Nyiregyhaziensis.New Series, 20(2), 2004.
pa11-1
[3631] M. Pap. Frame and wavelet system on the sphere. Int. J. Appl. Math.
Anal. Appl., 1(1):26, January 2011.
pa11-4
[3632] M. Pap. Frame and wavelet systems on the sphere. Int. J. of Mathematical Sciences and Applications, 1(1), 2011.
321
Mathematica,
pa11-2
[3633] M. Pap. Hyperbolic wavelets and multiresolution in H 2 (T ). J. Fourier
Anal. Appl., 17(5):755–776, 2011.
pa11
[3634] M. Pap. Multiresolution in the Bergman space, 2011.
pa12
[3635] M. Pap. Properties of the voice transform of the Blaschke group
and connections with atomic decomposition results in the weighted
Bergman spaces. J. Math. Anal. Appl., 389(1):340–350, 2012.
pasc01
[3636] M. Pap and F. Schipp. Malmquist-Takenaka systems and equilibrium
conditions. Math. Pannon., 12(2):185–194, 2001.
pasc03
[3637] M. Pap and F. Schipp. Discrete approximation on the sphere. Ann.
Univ. Sci. Budapest. Sect. Comput., 22:299–315, 2003.
pasc04-1
[3638] M. Pap and F. Schipp. Interpolation by rational functions. Ann.
Univ. Sci. Budapest. Sect. Comput., 24:223–237, 2004.
pasiwe99
[3639] M. Papadakis, H. Sikic, and G. Weiss. The characterization of low
pass filters and some basic properties of wavelets, scaling functions
and related concepts. J. Fourier Anal. Appl., 5(5):495–521, 1999.
capape07
[3640] G. Papari, N. Petkov, and P. Campisi. Artistic edge and corner enhancing smoothing. IEEE Trans. Image Process., 16(10):2449–2462,
2007.
chpa79
[3641] A. Papoulis and C. Chamzas. Improvement of range resolution by
spectral extrapolation. Ultrasonic Images, 1:121–135, Feb. 1979.
path13
[3642] A. Paprotny and M. Thess. Realtime Data Mining. Self-learning Techniques for Recommendation Engines. Cham: Birkh¨auser/Springer,
2013.
arpawa07
[3643] J. Paredes, G. Arce, and Z. Wang. Ultra-Wideband Compressed
Sensing: Channel Estimation. IEEE J. Sel. Topics Sign. Process.,
1(3):383–395, Oct. 2007.
pa88-4
[3644] O. G. Parfenov. Estimates of the singular numbers of the Carleson
imbedding operator. Math. USSR-Sb., 59(2):497–514, 1988.
pask00
[3645] C. Park and D. Skoug. Fourier-Feynman transforms and a Feynman
integral equation. Panam. Math. J., 10(3):71–81, 2000.
322
pask01
[3646] C. Park and D. Skoug. Conditional Fourier-Feynman transforms and
conditional convolution products. J. Korean Math. Soc., 38(1):61–76,
2001.
chleparo09
[3647] W. Park, G. Leibon, D. N. Rockmore, and G. Chirikjian. Accurate
image rotation using Hermite expansions. IEEE Trans. Image Process., 18(9):1988–2003, 2009.
pa98-2
[3648] B. Parlett. The symmetric eigenvalue problem. Classics in Applied
Mathematics. SIAM, 1998.
pa10-2
[3649] A. Parmeggiani. Spectral theory of non-commutative harmonic oscillators: an introduction. Lecture notes in mathematics. Springer,
2010.
pawa02
[3650] A. Parmeggiani and M. Wakayama. A remark on systems of differential equations associated with representations of germsl2 (bbbr) and
their perturbations. Kodai Math. J., 25(3):254–277, 2002.
pawa02-1
[3651] A. Parmeggiani and M. Wakayama. Non-commutative harmonic oscillators. I. Forum Math., 14(4):539–604, 2002.
pawa03
[3652] A. Parmeggiani and M. Wakayama. Corrigenda and remarks to “Noncommutative harmonic oscillators. I. . Forum Math., 15(6):955–963,
2003.
papr07-1
[3653] K. Parthasarathy and R. Prakash. Spectral subspaces for the Fourier
algebra. Colloq. Math., 108(2):179–182, 2007.
pa97-3
[3654] J. R. Partington. Interpolation, Identification, and Sampling. London
Mathematical Society Monographs. New Series. 17. Oxford: Clarendon Press. xii, 1997.
hamipavi08
[3655] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi. Recovering sparse
signals using sparse measurement matrices in compressed DNA microarrays. IEEE J. Sel. Topics Sign. Process., 2:275–285, Jun. 2008.
pa00-1
[3656] A. Pasquale. A Paley-Wiener theorem for the inverse spherical transform. Pacific J. Math., 193(1):143–176, 2000.
323
pa11-6
[3657] S. Pastukhova. Zhikov’s hydromechanical lemma on compensated
compactness: its extension and application to generalized stationary
NavierStokes equations. Complex Variables and Elliptic Equations,
56(7-9):697–714, 2011.
pa99-3
[3658] A. L. Paterson. Groupoids, inverse semigroups, and their operator
algebras. Progress in mathematics. Birkh¨auser, 1999.
kupapr11
[3659] R. Pathak, A. Prasad, and M. Kumar. n-dimensional Sobolev
type spaces involving Hankel transformation. Appl. Math. Comput.,
218(3):899–905, 2011.
pa06
[3660] Y. Pati. Frames Generated By subspace Addition. Technical report,
2006.
mcpa78
[3661] R. Patterson and J. McClellan. Fixed-point error analysis of Winograd
Fourier transform algorithms. IEEE Trans. Acoustics, Speech and
Signal Processing, 26:447–455, 1978.
pa08-1
[3662] J. Pau. Bounded M¨obius invariant QK spaces. J. Math. Anal. Appl.,
338(2):1029–1042, 2008.
pa09-7
[3663] J. Pau. Composition operators between Bloch-type spaces and M¨obius
invariant Qk spaces. Rocky Mountain J. Math., 39(6):2051–2065, 2009.
pape09
[3664] J. Pau and J. A. Pelaez. Multipliers of M¨obius invariant Qs spaces.
Math. Z., 261(3):545–555, 2009.
pa07-2
[3665] T. Paul. Discrete-continuous and classical-quantum. Math. Structures
Comput. Sci., 17(2):177–183, 2007.
pase92
[3666] T. Paul and K. Seip. Wavelets and quantum mechanics. Ruskai, Mary
Beth (ed.) et al., Wavelets and their applications. Boston, MA etc.:
Jones and Bartlett Publishers. 303-321 (1992)., 1992.
kapa93
[3667] A. Paulraj and T. Kailath. Increasing capacity in wireless broadcast Systems using distributed transmission/directional reception
(DTDR), Feb. 1993.
gonapa03
[3668] A. Paulraj, R. Nabar, and D. Gore. Introduction to Space-Time Wireless Communications. Cambridge Univ. Press, Cambridge (UK), 2003.
324
pa08-2
[3669] V. Paulsen. A dynamical systems approach to the Kadison–Singer
problem. J. Funct. Anal., 255(1):120–132, 2008.
pa11-3
[3670] V. I. Paulsen. Syndetic sets, paving and the Feichtinger conjecture.
Proc. Amer. Math. Soc., 139(3):1115–1120, 2011.
pa11-5
[3671] E. Pauwels. Pseudodifferential Operators, Wireless Communications
and Sampling Theorems. PhD thesis, December 2011.
pa08-3
[3672] M. Pavlovic. On the Holland-Walsh characterization of Bloch functions. Proc. Edinburgh Math. Soc. (2), 51(2):439–441, 2008.
pa14
[3673] M. Pavlovic. Function Classes on the Unit Disc. An Introduction. De
Gruyter, 2014.
pasc11
[3674] M. Pazouki and R. Schaback. Bases for kernel-based spaces. J. Comput. Appl. Math., 236(4):575 – 588, 2011.
pe05-1
[3675] R. Pearson. Mining imperfect data: Dealing with contamination and
incomplete records. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2005.
pe89-1
[3676] N. Pedersen. Geometric quantization and the universal enveloping
algebra of a nilpotent Lie group. Trans. Amer. Math. Soc., 315(2):511–
563, 1989.
pe94-1
[3677] N. Pedersen. Matrix coefficients and a Weyl correspondence for nilpotent Lie groups. Invent. Math., 118(1):1–36, 1994.
pe67-1
[3678] J. Peetre. On interpolation of lp spaces with weight functions. Acta
Math. Sci., 28:61–69, 1967.
pe68-1
[3679] J. Peetre. -entropie, -capacite et espaces d’interpolation. Ric. Mat.,
17:216–220, 1968.
pe68
[3680] J. Peetre. On the value of a distribution at a point. Port. Math.,
27:149–159, 1968.
pe71-3
[3681] J. Peetre. Interpolation functors and Banach couples. Actes Congr.
internat. Math. 1970, 2, 373-378 (1971)., 1971.
325
pe72-1
[3682] J. Peetre. The Weyl transform and Laguerre polynomials. Matematiche (Catania), 27:301–323 (1973), 1972.
pe73-1
[3683] J. Peetre. The Weyl transform and Laguerre polynomials. pages
301–323, 1973.
pe83-1
[3684] J. Peetre. Recent progress in real interpolation spaces. In Methods of
functional analysis and theory of elliptic equations, Proc. Int. Meet.
dedic. mem. C. Miranda, Naples/Italy 1982, pages 231–263, 1983.
pe84-3
[3685] J. Peetre. The theory of interpolation spaces -its origin, prospects for
the future. In Interpolation spaces and allied topics in analysis (Lund,
1983), volume 1070 of Lecture Notes in Math., pages 1–9. Springer,
1984.
pe90
[3686] J. Peetre. Fourier analysis of a space of Hilbert-Schmidt operators —
new Ha-plitz type operators. Publ. Mat., Barc., 34(1):181–197, 1990.
pe92
[3687] J. Peetre. Moebius invariant function spaces: the case of hyperbolic
space. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, pages 243–265, 1992.
pe02-2
[3688] J. Peetre. On Fourier’s discovery of Fourier series and Fourier integrals. Normat, 50(1):1–11, 2002.
peqi94
[3689] J. Peetre and T. Qian. M¨obius covariance of iterated Dirac operators.
J. Austral. Math. Soc. Ser. A, 56(3):403–414, 1994.
pethwa96
[3690] J. Peetre, S. Thangavelu, and N.-O. Wallin. Generalized Fock
spaces, interpolation, multipliers, circle geometry. Rev. Mat. Iberoam.,
12(1):63–110, 1996.
dipe02
[3691] S. Pei and J. Ding. Eigenfunctions of linear canonical transform. IEEE
Trans. Signal Process., 50(1):11–26, 2002.
dipe02-1
[3692] S. Pei and J. Ding. Relations between fractional operations and timefrequency distributions, and their applications. IEEE Trans. Signal
Process., 49(8):1638–1655, 2002.
dipewawe10
[3693] S.-C. Pei, P.-W. Wang, J.-J. Ding, and C.-C. Wen. Elimination of
the discretization side-effect in the S transform using folded windows.
Signal Process., In Press, Corrected Proof:–, 2010.
326
peye98
[3694] S.-C. Pei and M.-H. Yeh. Two dimensional discrete fractional Fourier
transform. Signal Process., 67(1):99 – 108, May 1998.
peru80
[3695] A. Peled and A. Ruiz. Frequency domain data transmission using
reduced computational complexity algorithms. volume 5, pages 964–
967, Denver, CO, April 1980.
perowu92
[3696] L. Peng, R. Rochberg, and Z. Wu. Orthogonal polynomials and middle Hankel operators on Bergman spaces. Studia Math., 102(1):57–75,
1992.
pe02-3
[3697] R. Penner. On Hilbert, Fourier, and wavelet transforms. Commun.
Pure Appl. Anal., 55(6):772–814, 2002,.
pe91-1
[3698] A. Pentland. Spatial and temporal surface interpolation using wavelet
bases. In Baba C. Vemuri, editor, Proc. SPIE, Geometric Methods
in Computer Vision: Energy-based methods for shape estimation I,
volume 1570, pages 43–62, San Diego, CA — July 21, 1991, September
1991. SPIE.
petavi11
[3699] A. Per¨al¨a, J. Taskinen, and J. Virtanen. New results and open problems on Toeplitz operators in Bergman spaces. New York J. Math.,
17a:147–164, 2011.
petavi11-1
[3700] A. Per¨al¨a, J. Taskinen, and J. Virtanen. Toeplitz operators with
distributional symbols on Bergman spaces. Proc. Edinburgh Math.
Soc. (2), 54(2):505–514, 2011.
pe08-3
[3701] D. Percival. Analysis of geophysical time series using discrete wavelet
transforms: an overview, 2008.
pe95-2
[3702] A. Perelomov. On the completeness of some subsystems of q-deformed
coherent states. Helv. Phys. Acta, 68(6):554–576, 1995.
pe08-4
[3703] L. Perez. Embeddings for anisotropic Besov spaces. Acta Math. Hungar., 119(1-2):25–40, 2008.
bapeph95
[3704] V. Perrier, T. Philipovitch, and C. Basdevant. Wavelet spectra compared to Fourier spectra. J. Math. Physics, 36(3):1506–1519, 1995.
pe79-2
[3705] I. Pesenson. Interpolation spaces on Lie groups. Dokl. Akad. Nauk
SSSR, 246(6):1298–1303, 1979.
327
pe83-2
[3706] I. Pesenson. Nikolskii-Besov spaces connected with representations of
Lie groups. Soviet Math. Dokl., 28:577–581, 1983.
pe91
[3707] I. Pesenson. The Bernstein inequality in representations of Lie groups.
Sov. Math., Dokl., 42(1):87–90, 1991.
pe98-3
[3708] I. Pesenson. Sampling of Paley-Wiener functions on stratified groups.
J. Fourier Anal. Appl., 4(3):271–281, 1998.
pe00
[3709] I. Pesenson. A sampling theorem on homogeneous manifolds. Trans.
Amer. Math. Soc., 352(9):4257–4269, 2000.
pe04-1
[3710] I. Pesenson. An approach to spectral problems on Riemannian manifolds. Pacific J. Math., 215(1):183–199, 2004.
pe04-2
[3711] I. Pesenson. Poincare-type inequalities and reconstruction of PaleyWiener functions on manifolds. J. Geom. Anal., 14(1):101–121, 2004.
pe06-2
[3712] I. Pesenson. Frames for spaces of Paley-Wiener functions on Riemannian manifolds. In Integral geometry and tomography, AMS Special Session Tomography and Integral Geometry, Rider University,
Lawrenceville, New Jersey, April 17-18, 2004, volume 405 of Contemp. Math., pages 135–148. AMS, Providence, RI, 2006.
pe08-6
[3713] I. Pesenson. A discrete Helgason-Fourier transform for Sobolev and
Besov functions on noncompact symmetric spaces. In Radon transforms, geometry, and wavelets: Ams Special Session January 7-8,
2007, New Orleans, Louisiana Workshop January 4-5, 2007 Baton
Rouge, Louisiana, volume 464 of Contemp. Math., pages 231–247.
AMS, Providence, RI, 2008.
pe12
[3714] I. Pesenson. Localized bandlimited nearly tight frames and Besov
spaces on domains. preprint, submitted: latest version 25 Dec 2012
(v3):16, 2012.
pe13
[3715] I. Pesenson. Paley-Wiener-Schwartz nearly Parseval frames and Besov
spaces on noncompact symmetric spaces. Submitted on 8 Aug 2013
(v1), last revised 31 Aug 2013 (v3), 2013.
328
gepe13
[3716] I. Pesenson and D. Geller. Cubature formulas and discrete Fourier
transform on compact manifolds. In From Fourier analysis and number theory to radon transforms and geometry, volume 28 of Dev. Math.,
pages 431–453. Springer, New York, 2013.
pepe12
[3717] I. Pesenson and M. Z. Pesenson. Approximation of Besov vectors
by Paley-Wiener vectors in Hilbert spaces. In Marian Neamtu and
Larry Schumaker, editors, Approximation theory XIII: San Antonio
2010. Selected papers based on the presentations at the conference,
San Antonio, TX, USA, March 7-10, 2010, volume 13 of Springer
Proceedings in Mathematics, pages 249–262. Springer, 2012.
pe13-4
[3718] I. Z. Pesenson. Shannon Sampling and Parseval Frames on Compact
Manifolds. ArXiv e-prints, dec 2013.
mcpero08
[3719] M. Pesenson, W. Roby, and B. McCollum. Multiscale astronomical
image processing based on nonlinear partial differential equations. The
Astrophysical Journal, 683(1):566–576, 2008.
pe13-2
[3720] L. Pessoa. Dzhuraev’s formulas and poly-Bergman kernels on domains
M¨obius equivalent to a disk. Complex Anal. Oper. Theory, 7(1):193–
220, 2013.
pe13-3
[3721] L. Pessoa. Toeplitz operators and the essential boundary on polyanalytic functions. Int. J. Math., 24(6):23, 2013.
pe13-1
[3722] L. Pessoa. True poly-Bergman and poly-Bergman kernels for the
complement of a closed disk. Complex Anal. Oper. Theory, 7(5):1569–
1581, 2013.
pe14-1
[3723] L. Pessoa. Planar Beurling transform and Bergman type spaces. Complex Anal. Oper. Theory, 8(2):359–381, 2014.
pe11
[3724] S. Peszat. L´evy-Ornstein-Uhlenbeck transition semigroup as second
quantized operator. J. Funct. Anal., 260(12):3457 – 3473, 2011.
pe14
[3725] K. Peter. The Radon Transform and Medical Imaging. SIAM-Society
for Industrial and Applied Mathematics (January 1, 2014), 2014.
bokapevo01
[3726] T. Petermann, S. Vogeler, K.-D. Kammeyer, and D. Boss. Blind
Turbo Channel Estimation in OFDM Receivers. volume 2, pages
1489–1493, Nov. 2001.
329
pe13-5
[3727] J. Peterson. Fusion frame constructions and frame partitions. PhD
thesis, University of Missouri–Columbia, 2013.
krlope93
[3728] N. Petkov, T. Lourens, and P. Kruzinga. Lateral inhibition in cortical
filters. In C. Pattichis, A. Constantinides, V. Cappellini, and C. N.
Schizas, editors, Proc. of Int. Conf. on Digital Signal Processing and
Int. Conf. on Computer Applications to Engineering Systems, page 9,
Nicosia, Cyprus, July 14-16.
pe11-1
[3729] J. Petrillo. Counting Subgroups in a Direct Product of Finite Cyclic
Groups. The College Mathematics Journal, 42(3):215–222, 2011.
pe75
[3730] V. Petrov. Sums of independent random variables. Translated from
the Russian by A. A. Brown. Berlin: Akademie-Verlag. X, 348 S. M
92.00 (1975)., 1975.
pepo11
[3731] P. Petrushev and V. Popov. Rational approximation of real functions.
Reprint of the 1987 hardback edition. Encyclopedia of Mathematics
and its Applications 28. Cambridge: Cambridge University Press. xi,
371 p., 2011.
pexu05
[3732] P. Petrushev and Y. Xu. Localized polynomial frames on the interval
with Jacobi weights. J. Fourier Anal. Appl., 11(5):557–575, 2005.
pexu08
[3733] P. Petrushev and Y. Xu. Decomposition of spaces of distributions
induced by Hermite expansions. J. Fourier Anal. Appl., 14(3):372–
414, 2008.
pe94
[3734] D. Petz. A survey of certain trace inequalities. In Functional analysis
and operator theory (Warsaw, 1992), volume 30 of Banach Center
Publ., pages 287–298. Polish Acad. Sci., Warsaw, 1994.
pe08-5
[3735] D. Petz. Quantum information theory and quantum statistics. Theoretical and mathematical physics. Springer, 2008.
pezh02
[3736] A. Pevnyi and V. Zheludev. Construction of wavelet analysis in the
space of discrete splines using Zak transform. J. Fourier Anal. Appl.,
8(1):59–83, 2002.
pesa10
[3737] N. Peyerimhoff and E. Samiou. Spherical spectral synthesis and tworadius theorems on Damek-Ricci spaces. Ark. Mat., 48(1):131–147,
2010.
330
fapest10
[3738] G. Peyre, J. Fadili, and J.-L. Starck. Learning the morphological
diversity. SIAM J. Imaging Sci., 3(3):646–669, 2010.
pfXX
[3739] G. E. Pfander. Sampling of Operators.
pf13
[3740] G. E. Pfander. Gabor Frames in Finite Dimensions. In G. E. Pfander,
P. G. Casazza, and G. Kutyniok, editors, Finite Frames. Theory and
Applications., Applied and Numerical Harmonic Analysis, pages 193–
239. Boston, MA: Birkh¨auser, 2013.
pf13-1
[3741] G. E. Pfander. Sampling of operators.
19(3):612–650, 2013.
J. Fourier Anal. Appl.,
pf13-2
[3742] G. E. Pfander. Sampling of operators.
19(3):612–650, 2013.
J. Fourier Anal. Appl.,
p.pfXX
[3743] G. E. Pfander and R. P. Remarks on multivariate Gaussian Gabor
frames.
pfra13
[3744] G. E. Pfander and P. Rashkov. Remarks on multivariate Gaussian
Gabor frames. Monatsh. Math., 172(2):179–187, 2013.
pfrawa12
[3745] G. E. Pfander, P. Rashkov, and Y. Wang. A geometric construction
of tight multivariate Gabor frames with compactly supported smooth
windows. J. Fourier Anal. Appl., 18(2):223–239, 2012.
pfratrXX
[3746] G. E. Pfander, H. Rauhut, and J. Tropp. The restricted isometry
property for time-frequency structured random matrices.
pfratr11
[3747] G. E. Pfander, H. Rauhut, and J. A. Tropp. The restricted isometry property for time-frequency structured random matrices. Probab.
Theory Relat. Fields, (156):707–737, 2013.
pfwaXX
[3748] G. E. Pfander and D. Walnut. Sampling and reconstruction of operators.
pfzhXX-1
[3749] G. E. Pfander and P. Zheltov. Identification of stochastic operators.
pfzhXX
[3750] G. E. Pfander and P. Zheltov. Sampling of stochastic operators.
pfzh14
[3751] G. E. Pfander and P. Zheltov. Identification of stochastic operators.
Appl. Comput. Harmon. Anal., 36(2):256 – 279, 2014.
331
pfti12
[3752] M. Pfetsch and A. Tillmann. The computational complexity of the
restricted isometry property, the nullspace property, and related concepts in Compressed Sensing. preprint, 2012.
pi01
´
[3753] E. Picard. L’œuvre scientifique de Charles Hermite. Ann. Sci. Ec.
Norm. Sup´er, III. S´er, 18:9–34, 1901.
pi91
[3754] R. Picard. Hilbert spaces of tempered distributions, Hermite expansions and sequence spaces. Proc. Edinburgh Math. Soc. (2),
34(2):271–293, 1991.
pi10-3
[3755] R. Picard. An elementary Hilbert space approach to evolutionary partial differential equations. Rend. Ist. Mat. Univ. Trieste, 42:185–204,
2010.
mcpi11
[3756] R. Picard and D. McGhee. Partial Differential Equations. A Unified
Hilbert Space Approach. Berlin: de Gruyter, 2011.
pi69
[3757] L. Piccinini. Inclusioni tra spazi di Morrey. Boll. Un. Mat. Ital.,
2:95–99, 1969.
piro14
[3758] B. Piccoli and F. Rossi. Generalized Wasserstein distance and its
application to transport equations with source. Arch. Ration. Mech.
Anal., 211(1):335–358, 2014.
piru01
[3759] L. Pick and M. Ruzicka. An example of a space of lp(x) on which
the Hardy-Littlewood maximal operator is not bounded. Exposition.
Math., 19(4):369–371, 2001.
pi08
[3760] V. Pierfelice. Weighted Strichartz estimates for the Schr¨odinger and
wave equations on Damek-Ricci spaces. Math. Z., 260(2):377–392,
2008.
pi06
[3761] W. Pietruszka. MATLAB und Simulink in der Ingenieurpraxis: Modellbildung, Berechnung und Simulation, 2. Auflage. B. G. Teubner
Verlag, 2006.
pi88
[3762] S. Pilipovic. Tempered ultradistributions. Boll. Unione Mat. Ital.,
VII. Ser., B, 2(2):235–251, 1988.
332
pi93
[3763] S. Pilipovic. Multipliers, convolutors and hypoelliptic convolutors for
tempered ultradistributions. In Generalized functions and their applications. Proceedings of the international symposium, held December
23-26, 1991 in Varanasi, India, pages 183–195. 1993.
pi10-1
[3764] S. Pilipovic. Contributions to local and microlocal analysis, an
overview. Bull., Cl. Sci. Math. Nat., Sci. Math., 141(35):79–95, 2010.
piravi11
[3765] S. Pilipovic, D. Rakic, and J. Vindas. Tauberian theorems for the
wavelet transform. J. Fourier Anal. Appl., 17(1):65–95, 2011.
piravi12
[3766] S. Pilipovic, D. Rakic, and J. Vindas. New classes of weighted H¨olderZygmund spaces and the wavelet transform. J. Funct. Spaces Appl.,
2012(Article ID 815475):18, 2012.
pise07
[3767] S. Pilipovic and D. Selesi. Expansion theorems for generalized random processes, Wick products and applications to stochastic differential equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top.,
10(1):79–110, 2007.
pise07-1
[3768] S. Pilipovic and D. Selesi. Structure theorems for generalized random
processes. Acta Math. Hungar., 117(3):251–274, 2007.
si10
[3769] S. Pilipovic and S. Simic. Fr´echet frames for shift invariant weighted
spaces. Mediterr. J. Math., 40(1):19–28, 2010.
pisi10
[3770] S. Pilipovic and S. Simic. Frechet frames for shift invariant weighted
spaces. Mediterr. J. Math., 40(1):19–28, 2010.
pisi12
[3771] S. Pilipovic and S. Simic. Frames for weighted shift-invariant spaces.
Mediterr. J. Math., 9(4):897–912, 2012.
pisi13
[3772] S. Pilipovic and S. Simic. Construction of frames for shift-invariant
spaces. J. Funct. Spaces Appl., 2013:7, 2013.
pisi13-1
[3773] S. Pilipovic and S. Simic. Erratum to “Frames for weighted shiftinvariant spaces”. Mediterr. J. Math., 10(1):609–610, 2013.
pist93
[3774] S. Pilipovic and B. Stankovic. Wiener Tauberian theorems for distributions. J. Lond. Math. Soc. (2), 47(3):507–515, 1993.
333
pistvi11
[3775] S. Pilipovic, B. Stankovic, and J. Vindas. Asymtotic Behavior of
Generalized Functions. Series on Analysis, Applications and Computation 5. Hackensack, 2011.
pist11
[3776] S. Pilipovic and D. T. Stoeva. Series expansions in Frechet spaces
and their duals, construction of Frechet frames. J. Approx. Theory,
163(11):1729–1747, 2011.
pist14
[3777] S. Pilipovic and D. T. Stoeva. Fr’echet frames, general definition and
expansions. Analysis and Applications, 12(2), March 2014.
piteto10
[3778] S. Pilipovic, N. Teofanov, and J. Toft. Micro-local analysis in Fourier
Lebesgue and modulation spaces. II. J. Pseudo-Differ. Oper. Appl.,
1(3):341–376, 2010.
piteto11
[3779] S. Pilipovic, N. Teofanov, and J. Toft. Micro-local analysis with
Fourier Lebesgue spaces. I. J. Fourier Anal. Appl., 17(3):374–407,
2011.
piur09
[3780] E. Pineda and W. Urbina. Some results on Gaussian Besov-Lipschitz
spaces and Gaussian Triebel-Lizorkin spaces. J. Approx. Theory,
161(2):529–564, 2009.
fipiprsc09
[3781] M. Pinheiro, P. Prats, R. Scheiber, and J. Fischer. Multi-path correction model for multi-channel airborne SAR. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009,
volume 3, pages III–729, 2009.
pi81-2
[3782] A. Pinkus. Best approximations by smooth functions. J. Approx.
Theory, 33:147–178, 1981.
pi12
[3783] A. Pinkus. On best rank n matrix approximations. Linear Algebra
and its Applications, 437(9):2179 – 2199, 2012.
mapi04
[3784] C. Pinnegar and L. Mansinha. Time-frequency localization with the
Hartley S-transform. Signal Process., 84(12):2437 – 2442, 2004.
pi14
[3785] J.-C. Pinoli. Mathematical Foundations of Image Processing and
Analysis, volume 2. John Wiley & Sons, 2014.
334
pi83-2
[3786] G. Pisier. Some applications of the metric entropy condition to harmonic analysis. In Banach spaces, harmonic analysis, and probability
theory (Storrs, Conn., 1980/1981), volume 995 of Lecture Notes in
Math., pages 123–154. Springer, Berlin, 1983.
pi96
[3787] G. Pisier. The operator Hilbert space OH, complex interpolation and
tensor norms. Mem. Amer. Math. Soc., 585:103, 1996.
pi10-2
[3788] G. Pisier. Complex interpolation between Hilbert, Banach and operator spaces. Mem. Amer. Math. Soc., 978:i–v + 78, 2010.
pi11
[3789] G. Pisier. Real interpolation between row and column spaces. Bull.
Pol. Acad. Sci., Math., 59(3):237–259, 2011.
pi12-1
[3790] G. Pisier. Completely co-bounded Schur multipliers. Oper. Matrices,
6(2):263–270, 2012.
plve12
[3791] Y. Plan and R. Vershynin. Robust 1-bit compressed sensing and
sparse logistic regression: a convex programming approach. preprint,
2012.
plve14
[3792] Y. Plan and R. Vershynin. Dimension reduction by random hyperplane tessellations. Discrete Comput. Geom., 51:438–461, 2014.
plve11
[3793] Y. Plan and R. Vershynin. One-bit compressed sensing by linear
programming. Comm. Pure Appl. Math., to appear.
klpl07
[3794] J. Plasberg and W. Kleijn. The sensitivity matrix: Using advanced
auditory models in speech and audio processing. Audio, Speech, and
Language Processing, IEEE Transactions on, 15(1):310–319, 2007.
gepl09
[3795] R. Platte and A. Gelb. A hybrid Fourier-Chebyshev method for partial
differential equations. J. Sci. Comput., 39(2):244–264, 2009.
plscta08
[3796] G. Plonka, H. Schumacher, and M. Tasche. Numerical stability of
biorthogonal wavelet transforms. Adv. Comput. Math., 29(1):1–25,
2008.
plta92
[3797] G. Plonka and M. Tasche. Efficient algorithms for periodic Hermite
spline interpolation. Math. Commun., 58(198):693–703, 1992.
335
plta94
[3798] G. Plonka and M. Tasche. A unified approach to periodic wavelets.
pages 137–151, 1994.
plta94-1
[3799] G. Plonka and M. Tasche. Cardinal Hermite spline interpolation with
shifted nodes. Math. Commun., 63(208):645–659, 1994.
plta95
[3800] G. Plonka and M. Tasche. On the computation of periodic spline
wavelets. Appl. Comput. Harmon. Anal., 2(1):1–14, 1995.
plta05
[3801] G. Plonka and M. Tasche. Fast and numerically stable algorithms for
discrete cosine transforms. Linear Algebra Appl., 394:309–345, 2005.
isplrote10
[3802] G. Plonka, S. Tenorth, A. Iske, and D. Rosca. Adaptive methods for
the effcient approximation of images. page 20, 2010.
plrote09
[3803] G. Plonka, S. Tenorth, and D. Rosca. Image approximation by a
hybrid method based on the Easy Path Wavelet Transform. In Signals,
Systems and Computers, 2009 Conference Record of the Forty-Third
Asilomar Conference on, pages 442 –446, nov. 2009.
pl07
[3804] P. Pluch. Quantum mechanics: Bell and quantum entropy for the
classroom. Submitted on 10 Jan 2007, page 10, 2007.
abbldapl06
[3805] M. D. Plumbley, S. A. Abdallah, T. Blumensath, and M. Davies.
Sparse representations of polyphonic music.
Signal Process.,
86(3):417–431, 2006.
chpo11-1
[3806] T. Pock and A. Chambolle. Diagonal preconditioning for first order
primal-dual algorithms in convex optimization. In IEEE International
Conference Computer Vision (ICCV) 2011, pages 1762 –1769, nov.,
2011.
bichcrpo09
[3807] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm
for minimizing the Mumford-Shah functional. In ICCV Proceedings.
Springer, 2009.
po92-1
[3808] D. Poguntke. Rigidly symmetric L1 -group algebras. Sem. Sophus Lie,
2(2):189–197, 1992.
po94-3
[3809] D. Poguntke. Unitary representations of Lie groups and operators of
finite rank. Ann. of Math. (2), 140(3):503–556, 1994.
336
mapo10
[3810] K.-K. Poh and P. Marzillano. Compressive sampling of EEG signals
with finite rate of innovation. EURASIP J. Adv. Signal Process.,
2010:1–12, 2010.
bopo09
[3811] V. Pohl and H. Boche. Advanced Topics in System and Signal Theory
a Mathematical Approach. Berlin: Springer, 2009.
faizmcpo14
[3812] J. Polans, R. McNabb, J. Izatt, and S. Farsiu. Compressed wavefront
sensing. Optics letters, 39(5):1189–1192, 2014.
brdahujapo09
[3813] G. Polatkan, S. Jafarpour, A. Brasoveanu, S. Hughes, and
I. Daubechies. Detection of forgery in paintings using supervised learning. In Image Processing (ICIP), 2009 16th IEEE International Conference on, pages 2921 –2924, Cairo, 7-10 Nov. 2009, nov. 2009.
po99
[3814] R. Polikar. The story of wavelets. Physics and modern topics in
mechanical and electrical engineering, pages 192–197, 1999.
po04-3
[3815] A. Polishchuk. Analogues of the exponential map associated with
complex structures on noncommutative two-tori. arXiv preprint
math/0404056, 2004.
po04-2
[3816] A. Polishchuk. Classification of holomorphic vector bundles on noncommutative two-tori. Doc. Math, 9:163–181, 2004.
posc03
[3817] A. Polishchuk and A. Schwarz. Categories of holomorphic vector bundles on noncommutative two-tori. Communications in mathematical
physics, 236(1):135–159, 2003.
po53-1
[3818] H. Pollard. The harmonic analysis of bounded functions. Duke Math.
J., 20:499–512, 1953.
po27
[3819] S. Pollard. On the approximation of an arbitrary bounded function.
Journal L. M. S., 2:222–227, 1927.
po01-2
[3820] L. Polterovich. The Geometry of the Group of Symplectic Diffeomorphism. Lectures in Mathematics, ETH Z¨
urich. Basel: Birkh¨auser. xii,
2001.
po12
[3821] A. Poltoratski. Spectral gaps for sets and measures. Acta Math.,
208(1):151–209, 2012.
337
po46
[3822] L. Pontrjagin. Topological Groups.
Princeton, N.J., 1946.
Princeton University Press,
po83-1
[3823] S. Poornima. An embedding theorem for the Sobolev space w(1,1) . Bull.
Sci. Math. (2), 107:253–259, 1983.
porasi98
[3824] Z. Pop Stojanovic, M. Rao, and H. Sikic. Brownian potentials and
Besov spaces. J. Math. Soc. Japan, 50(2):331–337, 1998.
po03-3
[3825] D. Popov. Gazeau-Klauder quasi-coherent states for the Morse oscillator. Phys. Lett. A, 316(6):369–381, 2003.
posuto15
[3826] D. Potapov, F. Sukochev, and A. Tomskova. On the Arazy conjecture concerning Schur multipliers on Schatten ideals. Advances in
Mathematics, 268(0):404 – 422, 2015.
ceerpapo10
[3827] L. Potter, E. Ertin, J. Parker, and M. Cetin. Sparsity and compressed
sensing in radar imaging,. Proc. IEEE, 98(6):1006 –1020, 2010.
po98-2
[3828] D. Potts. Schnelle Polynomtransformationen und Vorkonditionierer
f¨
ur Toeplitz Matrizen. PhD thesis, 1998.
po98-3
[3829] D. Potts. Schnelle Polynomtransformationen und Vorkonditionierer
f¨
ur Toeplitz Matrizen. PhD thesis, 1998.
pota10
[3830] D. Potts and M. Tasche. Parameter estimation for exponential sums
by approximate prony method. Signal Process., 90(5):1631–1642,
2010.
po03-5
[3831] A. M. Powell. The Uncertainty Principle in Harmonic Analysis and
Bourgain’s Theorem. PhD thesis, UMD College Park, 2003.
kupr10
[3832] A. Prasad and M. Kumar. Continuity of pseudo-differential operator hµ,a involving Hankel translation and Hankel convolution on some
Gevrey spaces. Integral Transforms Spec. Funct., 21(5-6):465–477,
2010.
kupr11
[3833] A. Prasad and M. Kumar. Product of two generalized pseudodifferential operators involving fractional Fourier transform. J.
Pseudo-Differ. Oper. Appl., 2(3):355–365, 2011.
338
dimapr11
[3834] A. Prasad, A. Mahato, and M. Dixit. The Bessel wavelet transform.
Int. J. Math. Anal., Ruse, 5(1-4):87–97, 2011.
prru89
[3835] A. Prata and W. Rusch. Algorithm for computation of Zernike polynomials expansion coefficients. Applied Optics, 28(4):749–754, 1989.
bebocaprza12
[3836] M. Prato, R. Cavicchioli, L. Zanni, P. Boccacci, and M. Bertero.
Efficient deconvolution methods for astronomical imaging: algorithms
and IDL-GPU codes. Astronomy & Astrophysics/Astronomie et Astrophysique, 539, 2012.
bolapr14
[3837] M. Prato, C. La, and S. Bonettini. An alternating minimization
method for blind deconvolution from Poisson data. In Journal of
Physics: Conference Series, volume 542, pages 12006–12011, 2014.
prrasp12
[3838] D. Pravica, N. Randriampiry, and M. Spurr. Reproducing kernel
bounds for an advanced wavelet frame via the theta function. Appl.
Comput. Harmon. Anal., 33(1):79 – 108, 2012.
prsascto10
[3839] S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak. Software
for bead-based registration of selective plane illumination microscopy
data. Nature methods, 7:418–419, 2010.
copr04
[3840] C. Preza and J.-A. Conchello. Depth-variant maximum-likelihood
restoration for three-dimensional fluorescence microscopy. JOSA A,
21:1593–1601, 2004.
pr85-1
[3841] J. Price. Uncertainty principles and interference patterns. In Miniconference on linear analysis and function spaces (Canberra, 1984),
volume 9 of Proc. Centre Math. Anal. Austral. Nat. Univ., pages 241–
258, Canberra, October 18-20, 1984, 1985. Austral. Nat. Univ.
pr87
[3842] J. Price. Sharp local uncertainty inequalities. Studia Math., 85(1):37–
45, 1987.
prra85
[3843] J. Price and P. Racki. Local uncertainty inequalities for Fourier
series. Proc. Amer. Math. Soc., 93(2):245–251, 1985.
prro90
[3844] J. Primot, G. G. Rousset, and J. Fontanella. Deconvolution from
wave-front sensing: a new technique for compensating turbulencedegraded images. JOSA A, 7(9):1598–1608, 1990.
339
gumipr12
[3845] I. Protopopov, D. Gutman, and A. Mirlin. Luttinger liquids with
multiple Fermi edges: Generalized Fisher-Hartwig conjecture and numerical analysis of Toeplitz determinants. 2012.
pt74
[3846] V. Ptak. A theorem of the closed graph type. Manuscripta Math.,
13(2):109–130, 1974.
puro07
[3847] M. P¨
uschel and M. R¨otteler. Algebraic signal processing theory: 2-D
spatial hexagonal lattice. IEEE Trans. Image Process., 16(6):1506–
1521, 2007.
puro11
[3848] A. Pushnitski and G. Rozenblum. On the spectrum of BargmannToeplitz operators with symbols of a variable sign. J. Anal. Math.,
114:317–340, 2011.
puwo77
[3849] W. Pusz and S. Woronowicz. Form convex functions and the WYDL
and other inequalities. Lett. Math. Phys., 2(6):505–512, 1977/78.
grmaputhvavawi12
[3850] G. Puy, J. Marques, R. Gruetter, J. Thiran, D. Van, P. Vandergheynst, and Y. Wiaux. Spread spectrum magnetic resonance imaging. Medical Imaging, IEEE Transactions on, 31(3):586–598, 2012.
puvawi11
[3851] G. Puy, P. Vandergheynst, and Y. Wiaux. On variable density compressive sampling. Signal Processing Letters, IEEE, 18(10):595–598,
2011.
puro84
[3852] R. Puystjens and D. Robinson. The Moore-Penrose inverse of a morphism in an additive category. Comm. Algebra, 12(3-4):287–299,
1984.
py74
[3853] T. Pytlik. Nuclear spaces on a locally compact group. Studia Math.,
50:225–243, 1974.
py82
[3854] T. Pytlik. Symbolic calculus on weighted group algebras. Studia Math.,
73(2):169–176, 1982.
py84
[3855] T. Pytlik. A construction of convolution operators on free groups.
Studia Math., 79(1):73–76, 1984.
chdoqi02
[3856] B. Qi, H. Chen, and N. Dong. Wavefront fitting of interferograms
with Zernike polynomials. Opt. Eng., 41(7):1565–1569, 2002.
340
chdomaqi04
[3857] B. Qi, H. Chen, J. Ma, and N. Dong. Regression analysis for wavefront fitting with Zernike polynomials. In B. Qi, H. Chen, J. Ma, and
H. P. Stahl, editors, Proc. SPIE, Optical Manufacturing and Testing
V, volume 5180 of Optical Testing VII: Algorithms and Interferometers, pages 429–436, San Diego, CA, USA, 2004. SPIE.
qiyi10-1
[3858] J. Qian and L. Ying. Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation. Multiscale Model. Simul., 8(5):1803–1837, 2010.
qi07-2
[3859] K. Qian. Two-dimensional windowed Fourier transform for fringe
pattern analysis: Principles, applications and implementations. Optics and Lasers in Engineering, 45(2):304 – 317, 2007.
qi05
[3860] T. Qian. Characterization of boundary values of functions in Hardy
spaces with applications in signal analysis. J. Integral Equations
Appl., 17(2):159–198, 2005.
qi06
[3861] T. Qian. Analytic signals and harmonic measures. J. Math. Anal.
Appl., 314(2):526–536, 2006.
liqist13
[3862] T. Qian, H. Li, and M. Stessin. Comparison of adaptive monocomponent decompositions. Nonlinear Anal. Real World Appl.,
14(2):1055–1074, 2013.
qispwa12
[3863] T. Qian, W. Spr¨ossig, and J. Wang. Adaptive Fourier decomposition
of functions in quaternionic Hardy spaces. Mathematical Methods in
the Applied Sciences, 35(1):43–64, 2012.
qixuyayayu09
[3864] T. Qian, Y. Xu, D. Yan, L. Yan, and B. Yu. Fourier spectrum
characterization of Hardy spaces and applications. Proc. Amer. Math.
Soc., 137(3):971–980, 2009.
qi05-1
[3865] X. Qiang. Reconstruction of bandlimited signal from its non-uniform
integral samples. Appl. Anal., 84(10):1041–1050, 2005.
qi06-1
[3866] X. Qiang. Localized frames in shift-invariant spaces. Acta Sci. Nat.
Univ. Sunyatseni, 45(1):5–8, 2006.
doliqiwu14
[3867] T. Qiao, B. Wu, W. Li, and A. Dong. A new reweighted l1 minimization algorithm for image deblurring. J. Inequal. Appl., pages
2014:238, 11, 2014.
341
qisu07-1
[3868] X. Qin and Y. Su. Approximation of a zero point of accretive operator
in Banach spaces. J. Math. Anal. Appl., 329(1):415–424, 2007.
niquta10
[3869] C. Quan, H. Niu, and C. Tay. An improved windowed Fourier transform for fringe demodulation. Optics & Laser Technology, 42(1):126
– 131, 2010.
qu93
[3870] X. Quan. Cyclic vectors for Hilbert algebras. Acta Appl. Math.,
32(1):89–98, 1993.
qu02
[3871] C. Quesne. New q-deformed coherent states with an explicitly known
resolution of unity. J. Phys. A, Math. Gen., 35(43):9213–9226, 2002.
moqu71-1
[3872] C. Quesne and M. Moshinsky. Canonical transformations and matrix
elements. Journal of Mathematical Physics, 12:1780, 1971.
qu83
[3873] B. Qui. On Besov, Hardy and Triebel spaces for 0 < p ≤ 1. Ark.
Mat., 21:169–184, 1983.
qu95
[3874] B. Quinn. Doppler speed and range estimation using frequency and
amplitude estimates. J. Acoust. Soc. Amer., 98(5):2560–2566, 1995.
quXX
[3875] F. Quinn. Contributions to a science of contemporary mathematics.
preprint.
qura05
[3876] J. Quinonero Candela and C. Rasmussen. A Unifying View of Sparse
Approximate Gaussian Process Regression. J. Machine Learn. Res.,
6:1939–1959, Dec. 2005.
ratr03
[3877] L. Rachdi and K. Trim`eche. Weyl transforms associated with the
spherical mean operator. Anal. Appl. (Singap.), 1(2):141–164, 2003.
ra07-5
[3878] G. Racher. Some remarks on a paper by Liu and van Rooij. Indag.
Math., New Ser., 18(4):601–609, 2007.
rasc46
[3879] H. Rademacher and I. Schoenberg. An iteration method for calculation
with Laurent series. Q. Appl. Math., 4:142–159, 1946.
ra95-3
[3880] R. Radha. Multipliers for the pair (L1 (G, A), Lp (G, A)). Acta Sci.
Math. (Szeged), 61(1-4):357–365, 1995.
342
nara10
[3881] R. Radha and D. Naidu. Frames in generalized Fock spaces. J. Math.
Anal. Appl., In Press, Corrected Proof:–, 2010.
nara11
[3882] R. Radha and D. Naidu. Frames in generalized Fock spaces. J. Math.
Anal. Appl., 378(1):140–150, 2011.
nara11-1
[3883] R. Radha and D. Naidu. Generalized Bargmann transform and a
group representation. Bull. Sci. Math., 135(2):206–214, 2011.
rath98-2
[3884] R. Radha and S. Thangavelu. Weyl multipliers for invariant Sobolev
spaces. Proc. Indian Acad. Sci. Math. Sci., 108(1):31–40, 1998.
raun91
[3885] R. Radha and K. Unni. The class of multipliers M (S(G), Lp (G)).
Vikram Math. J., 11:1–6, 1991.
ra94-1
[3886] C. Radin. The pinwheel tilings of the plane. Ann. of Math. (2),
139(3):661–702, 1994.
rasi07-1
[3887] Y. Radyno and A. Sidorik. Characterization of Hilbert spaces using
the Fourier transform on the field of p-adic numbers. Dokl. Nats.
Akad. Nauk Belarusi, 51(5):17–22, 2007.
ra77
[3888] I. Raeburn. The relationship between a commutative Banach algebra
and its maximal ideal space. J. Funct. Anal., 25(4):366–390, 1977.
rasasa13
[3889] H. Rafeiro, N. Samko, and S. Samko. Morrey-Campanato spaces:
an overview. In Operator theory, pseudo-differential equations, and
mathematical physics, volume 228 of Oper. Theory Adv. Appl., pages
293–323. 2013.
harasa07
[3890] V. Raghavan, G. Hariharan, and A. Sayeed. Capacity of sparse multipath channels in the ultra-wideband regime. IEEE J. Sel. Areas
Comm., 1:357–371, Oct. 2007.
ra72
[3891] D. Ragozin. Central measures on compact simple Lie groups. J. Funct.
Anal., 10:212–229, 1972.
fapera11
[3892] H. Raguet, J. Fadili, and G. Peyre. A generalized forward-backward
splitting. preprint, 2011.
ra12
[3893] M. Ragusa. Operators in Morrey type spaces and applications.
Eurasian Math. J., 3(3):94–109, 2012.
343
fera13
[3894] A. Rahimi and A. Fereydooni. Controlled G-Frames and their GMultipliers in Hilbert spaces. Analele Universitatii Ovidius ConstantaSeria Matematica, 21(2):223–236, 2013.
denara06
[3895] A. Rahimi, A. Najati, and Y. Dehghan. Continuous frames in Hilbert
spaces. Methods Funct. Anal. Topology, 12(2):170–182, 2006.
ra00
[3896] R. Raimondo. Toeplitz operators on the Bergman space of the unit
ball. Bull. Austral. Math. Soc., 62(2):273–285, 2000.
chra95
[3897] A. Rajagopalan and S. Chaudhuri. A block shift-variant blur model for
recovering depth from defocused images. In Image Processing, 1995.
Proc. Int. Conf., volume 3, pages 636–639, 1995.
rate12
[3898] D. Rakic and N. Teofanov.
Progressive Gelfand-Shilov spaces
and wavelet transforms. J. Funct. Spaces Appl., 2012(Article ID
951819):19, 2012.
cira98
[3899] G. Raleigh and J. Cioffi. Spatio-temporal coding for wireless communication. IEEE Trans. Comm., 46:357–366, Mar. 1998.
ra13
[3900] P. Rambour. Maximal eigenvalue and norm of a product of Toeplitz
matrices. Study of a particular case. Bull. Sci. Math., 137(8):1072–
1086, 2013.
rari05
[3901] P. Rambour and J.-M. Rinkel. Application of the exact inverse of
the Toeplitz matrix with singular rational symbol to random walks.
Probab. Math. Statist., 25(1, Acta Univ. Wratislav. No. 2784):183–
195, 2005.
heorraxi97
[3902] K. Ramchandran, Z. Xiong, C. Herley, and M. Orchard. Flexible
Tree-structured Signal Expansions Using Time-varying Wavelet Packets. IEEE Trans. Signal Process., 45:233–245, 1997.
rava96
[3903] E. Ramirez de Arellano and N. Vasilevski. Toeplitz operators on
the Fock space with presymbols discontinuous on a thick set. Math.
Nachr., 180(1):299–315, 1996.
ra10-1
[3904] R. Ramlau. An SVD based wavefront reconstruction for adaptive optics. In T. E. Simos, G. Psihoyios, and C. Tsitouras, editors, AIP
Conference Proceedings, ICNAAM 2010: International Conference of
344
Numerical Analysis and Applied Mathematics 2010, 1925 September
2010, Rhodes (Greece), volume 1281, pages 1982–1982. AIP, 2010.
raro12
[3905] R. Ramlau and M. Rosensteiner. An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration.
Inverse Problems, 28(9), 2012.
rate10
[3906] R. Ramlau and G. Teschke. Sparse recovery in inverse problems. In
Theoretical foundations and numerical methods for sparse recovery,
volume 9 of Radon Ser. Comput. Appl. Math., pages 201–262. Walter
de Gruyter, Berlin, 2010.
anravi11
[3907] E. P. R. G. Ramos, R. Vio, and P. Andreani. Detection of new
point sources in WMAP cosmic microwave background maps at high
Galactic latitude. A new technique to extract point sources from CMB
maps. aap, 528:A75, apr 2011.
rashzhzh09
[3908] Q. Ran, H. Zhang, Z. Zhang, and X. Sha. The analysis of the discrete
fractional Fourier transform algorithms. In Electrical and Computer
Engineering, 2009. CCECE’09. Canadian Conference on, pages 979–
982, 2009.
ra92-1
[3909] R. Ranga. The Maslov index on the simply connected covering group
and the metaplectic representation. J. Funct. Anal., 107(1):211–233,
1992.
ra81-2
[3910] B. Rao. A non-uniform estimate of the rate of convergence in the
central limit theorem for m-dependent random fields. Z. Wahrscheinlichkeitstheor. Verw. Geb., 58:247–256, 1981.
bera93-2
[3911] K. Rao and J. Ben Arie. Lattice architectures for multiple-scale Gaussian convolution, image processing, sinusoid-based transforms and
Gabor filtering. Analog Integrated Circuits and Signal Processing,
4(2):141–160, 1993.
rasi06
[3912] M. Rao and H. Sikic. Potential-theoretic nature of Hardy’s inequality
for Dirichlet forms. J. Math. Anal. Appl., 318(2):781–786, 2006.
rasosi94
ˇ
[3913] M. Rao, H. Sikic,
and R. Song. Application of Carleson’s theorem to
wavelet inversion. Control Cybern., 23(4):761–771, 1994.
345
rasiso94
[3914] M. Rao, H. Sikic, and R. Song. Application of Carleson’s theorem to
wavelet inversion. Control Cybern., 23(4):761–771, 1994.
ra61
[3915] R. Rao. On the central limit theorem in rk . Bull. Amer. Math. Soc.,
67:359–361, 1961.
ra01
[3916] C. Raphael. Automated rhythm transcription. In Proceedings of the
International Symposium on Music Information Retrieval, pages 99–
107, 2001.
nara14
[3917] M. Rashidi and A. Nazari. Extension of shift-invariant frames for
locally compact abelian groups. Journal of Mathematical Extension,
8:41–48, 2014.
ra11
[3918] K. N. Rasmussen. Orthonormal bases for anisotropic α-modulation
spaces. page 15, 2011.
nira10-1
[3919] K. N. Rasmussen and M. Nielsen. Compactly supported curvelet type
systems. page 18, 2010.
nira11
[3920] K. N. Rasmussen and M. Nielsen. Compactly supported frames for
decomposition spaces. page 32, 2011.
rasc14
[3921] H. Rauhut and C. Schwab. Compressive sensing Petrov-Galerkin
approximation of high-dimensional parametric operator equations.
ArXiv e-prints, oct 2014.
rawa11
[3922] H. Rauhut and R. Ward. Sparse recovery for spherical harmonic
expansions. In Proc. SampTA 2011, Singapore, 2011.
rawa13
[3923] H. Rauhut and R. Ward. Interpolation via weighted l1 minimization.
ArXiv e-prints, aug 2013.
rasa10
[3924] S. K. Ray and R. P. Sarkar. A theorem of Beurling and H¨ormander
on Damek-Ricci spaces. Adv. Pure Appl. Math., 1(1):65–79, 2010.
dura06
[3925] V. Raykar and R. Duraiswami. Fast optimal bandwidth selection for
kernel density estimation. In Proceedings of the Sixth SIAM International Conference on Data Mining, pages 524–528, Philadelphia, PA,
2006. SIAM.
346
ra92-2
[3926] Y. Raynaud. On Lorentz-Sharpley spaces. In Interpolation spaces
and related topics. Proceedings of a workshop held at the Technion in
Haifa, Israel, June 27-July 3, 1990, pages 207–228. Bar-Ilan: Bar-Ilan
University, 1992.
re85-1
[3927] J. Reade. On the sharpness of Weyl’s estimate for eigenvalues of
smooth kernels. SIAM J. Math. Anal., 16(3):548–550, May 1985.
re09-1
[3928] L. Rebollo Neira. Measurements design and phenomena discrimination. Journal of Physics A: Mathematical and Theoretical, 42:165210,
2009.
care98
[3929] D. Redfern and C. Campbell. The Matlab 5 handbook. Springer,
1998.
reshtrtuyiyu90
[3930] I. Reed, D. Tufts, X. Yu, T. Truong, M. Shih, and X. Yin. Fourier
analysis and signal processing by use of the M¨obius inversion formula.
IEEE Trans. Acoust. Speech Signal Process., 38(3):458–470, 1990.
resi72
[3931] M. Reed and B. Simon. Methods of modern mathematical physics. I.
Functional analysis. Academic Press, New York, 1972.
biboreti06
[3932] F. Reichenbach, A. Born, D. Timmermann, and R. Bill. A distributed
linear least squares method for precise localization with low complexity
in wireless sensor networks. In F. Reichenbach, A. Born, D. Timmermann, R. Bill, P. Gibbons, T. Abdelzaher, J. Aspnes, and R. Rao,
editors, Distributed Computing in Sensor Systems, volume 4026 of
Lecture Notes in Computer Science, pages 514–528. Springer Berlin
/ Heidelberg, 2006.
re70
re96-1
[3933] C. Reid. Hilbert. Springer, 1970.
[3934] C. Reid. Hilbert. 2nd ed. New York, NY: Copernicus, 1996.
re95
[3935] R. Reid. A class of Riesz-Fischer sequences. Proc. Amer. Math. Soc.,
123(3):827–829, 1995.
re09
[3936] H. Reimann. Uncertainty principles for the affine group. Funct.
Approx. Comment. Math., 40(part 1):45–67, 2009.
347
mare09-1
[3937] G. Reise and G. Matz. Distributed sampling and reconstruction of
non-bandlimited fields in sensor networks based on shift-invariant
spaces. In IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2061–2064, Taipei, Taiwan, April 2009.
mare10
[3938] G. Reise and G. Matz. Reconstruction of time-varying fields in wireless sensor networks using shift-invariant spaces: Iterative algorithms
and impact of sensor localization errors. In IEEE Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), Marrakech, Morocco, June 2010.
grmare12
[3939] G. Reise, G. Matz, and K. Gr¨ochenig. Distributed field reconstruction in wireless sensor networks based on hybrid shift-invariant spaces.
IEEE Trans. Signal Process., 60(10):5426–5439, 2012.
re82
[3940] S. Reisner. On the duals of Lorentz function and sequence spaces.
Indiana Univ. Math. J., 31:65–72, 1982.
re87
[3941] H. Reiter. Sur le groupe metaplectique et l’algebre de Segal associee.
(On the metaplectic group and the associated Segal algebra). C. R.
Acad. Sci., Paris, S´er. I, 305:241–243, 1987.
rero11
[3942] H. Remling and M. R¨osler. The heat semigroup in the compact
Heckman-Opdam setting and the Segal-Bargmann transform. Int.
Math. Res. Not. IMRN, (18):4200–4225, 2011.
cechkare11
[3943] G. Ren, Q. Chen, P. Cerejeiras, and U. K¨ahler. Chirp transforms
and chirp series. J. Math. Anal. Appl., 373(2):356–369, 2011.
kare02
[3944] G. Ren and U. K¨ahler. Weighted H¨older continuity of hyperbolic
harmonic Bloch functions. Z. Anal. Anwend., 21(3):599–610, 2002.
kare05
[3945] G. Ren and U. K¨ahler. Weighted Lipschitz continuity and harmonic
Bloch and Besov spaces in the real unit ball. Proc. Edinburgh Math.
Soc. (2), 48(3):743–755, 2005.
rewe83
[3946] H. L. Resnikoff and R. O. J. Wells. Mathematik im Wandel der
Kulturen. Friedr. Vieweg and Sohn, Braunschweig, 1983.
348
digimorete03
[3947] S. Restaino, S. Teare, M. DiVittorio, G. Gilbreath, and
D. Mozurkewich. Analysis of the Naval Observatory Flagstaff Station 1-m telescope using annular Zernike polynomials. Opt. Eng.,
42(9):2491–2495, 2003.
re75
[3948] J. Retherford. Applications of Banach ideals of operators. Bull. Amer.
Math. Soc., 81:978–1012, 1975.
resa08
[3949] S. G. R´ev´esz and A. San Antolin. Equivalence of A-approximate
continuity for self-adjoint expansive linear maps. Linear Algebra and
Appl., 429(7):1504–1521, October 2008.
repafi11
[3950] M. Revrabek, P. Pata, and K. Fiegel. Enhancement of the accuracy
of the astronomical measurements carried on the wide-field astronomical image data. In SPIE Optical Engineering+ Applications, pages
81351M–81351M, 2011.
re85-2
[3951] M. Rezola. A theorem of density for translation invariant subspaces
of Lp (G). Boll. Un. Mat. Ital. A (6), 4:43–47, 1985.
rh11
[3952] J. Rhee. Gibbs phenomenon and certain nonharmonic Fourier series.
Commun. Korean Math. Soc., 26(1):89–98, 2011.
bagogrrerhtyvo02
[3953] T. Rhoadarmer, J. Barchers, J. Gonglewski, M. Vorontsov,
M. Gruneisen, S. Restaino, and R. Tyson. Noise analysis for complex
field estimation using a self-referencing interferometer wave front sensor. In T. A. Rhoadarmer, J. D. Barchers, M. A. Vorontsov, M. T.
Gruneisen, S. R. Restaino, and R. K. Tyson, editors, Proc. SPIE,
High-Resolution Wavefront Control: Methods, Devices, and Applications IV; Wavefront Sensing, volume 4825, pages 215–227, Seattle,
WA, USA, July 2002. SPIE.
herhsh09
[3954] W. T. Rhodes, J. J. Healy, and J. Sheridan. Wigner cross-terms
in sampled and other periodic signals. In Frontiers in Optics, page
FWW1, 2009.
herhsh10
[3955] W. T. Rhodes, J. J. Healy, and J. Sheridan. Cross terms of the
Wigner distribution function and aliasing in numerical simulations of
paraxial optical systems. Opt. Lett., 35(8):1142–1144, 2010.
349
riwo13
[3956] L. Riba and M. Wong. Continuous inversion formulas for multidimensional Stockwell transforms. Math. Model. Nat. Phenom.,
8(1):215–229, 2013.
laonristtowi14
[3957] B. Ricaud, G. Stempfel, B. Torr´esani, C. Wiesmeyr, H. Lachambre,
and D. Onchis. An optimally concentrated Gabor transform for localized time-frequency components. Adv. Comput. Math., 40(3):683–
702, 2014.
rito12
[3958] B. Ricaud and B. Torr´esani. A survey of uncertainty principles and
some signal processing applications. arXiv preprint, arXiv:1211.5914,
2012.
rito13
[3959] B. Ricaud and B. Torr´esani. A survey of uncertainty principles and
some signal processing applications. Adv. Comput. Math., pages 1–22,
2013.
ri09-1
[3960] F. Ricci. Schwartz functions on the Heisenberg group, spectral multipliers and Gelfand pairs. Rev. Uni´on Mat. Argent., 50(2):175–186,
2009.
ri90-2
[3961] M. Richards. A functional minimization interpretation of fast iterative reconstruction algorithms. In Proc. of the ICASSP-90 - 1990
International Conference on Acoustics, Speech, and Signal Processing, volume 3, pages 1543 –1546. IEEE, apr 1990.
parish98
[3962] M. Richman, T. Parks, and R. Shenoy. Discrete-time, discretefrequency, time-frequency analysis. IEEE Trans. Signal Process.,
46(6):1517–1527, 1998.
ri98
[3963] M. Richter. Use of box splines in computer tomography. Computing,
61(2):133–150, 1998.
ri50
[3964] C. Rickart. The uniqueness of norm problem in Banach algebras.
Ann. Math. (2), 51:615–628, 1950.
ri97-1
[3965] W. Ricker. The Weyl functional calculus and two-by-two selfadjoint
matrices. Bull. Austral. Math. Soc., 55(2):321–325, 1997.
ri67-1
[3966] N. Rickert. Convolution of Lp functions. Proc. Amer. Math. Soc.,
18:762–763, 1967.
350
ri68-1
[3967] N. Rickert. Convolution of L2 -functions. Colloq. Math., 19:301–303,
1968.
bakrriwa11
[3968] G. Rieckh, W. Kreuzer, H. Waubke, and P. Balazs. A 2.5DFourier-BEM-model for vibrations in a tunnel running through layered anisotropic soi. Engineering Analysis with Boundary Elements,
36:960–968, 2012.
pori11
[3969] E. Rieffel and W. Polak. Quantum Computing: A Gentle Introduction. MIT Press, 2011.
ri76-1
[3970] M. A. Rieffel. Commutation theorems and generalized commutation
relations. Bull. Soc. Math. France, 104(2):205–224, 1976.
ri99
[3971] M. A. Rieffel. Metrics on state spaces. Doc. Math., 4:559–600 (electronic), 1999.
ri01-1
[3972] M. A. Rieffel. Matrix algebras converge to the sphere for quantum
Gromov–Hausdorff distance. Arxiv preprint math/0108005, 2001.
ri10-1
[3973] M. A. Rieffel. Distances between matrix algebras that converge
to coadjoint orbits. In Superstrings, geometry, topology, and C ∗ algebras, volume 81 of Proc. Sympos. Pure Math., pages 173–180.
Amer. Math. Soc., Providence, RI, 2010.
ri10-2
[3974] M. A. Rieffel. Vector bundles and Gromov Hausdorff distance. J.
K-Theory, 5(1):39–103, 2010.
ri03
[3975] P. Riera. Computation of the circle polynomials of Zernike. In P. R.
Riera, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen,
editors, Proc. SPIE, Advanced Wavefront Control: Methods, Devices,
and Applications, volume 5162 of Wavefront Sensing and Analysis II,
pages 120–128, San Diego, CA, USA, 2003. SPIE.
parito02
[3976] P. Riera, G. Pankretz, and D. M. Topa. Efficient computation with
special functions like the circle polynomials of Zernike. In P. R. Riera,
G. S. Pankretz, D. M. Topa, and R. C. Juergens, editors, Proc. SPIE,
Optical Design and Analysis Software II, volume 4769, pages 130–144,
Seattle, WA, USA, 2002. SPIE.
351
ri13
[3977] L. Rifford. Ricci curvatures in Carnot groups. Math. Control Relat.
Fields, 3(4):467–487, 2013.
rishsu12
[3978] K. Rim, C. Shin, and Q. Sun. Stability of localized integral operators
on weighted Lp spaces. Numer. Funct. Anal. Optim., 33(7-9):1166–
1193, 2012.
ri14
[3979] F. Rindler. A local proof for the characterization of Young measures
generated by sequences in BV. J. Funct. Anal., 266(11):6335–6371,
2014.
rish13
[3980] F. Rindler and G. Shaw. Strictly continuous extensions of functionals
with linear growth to the space BV. arXiv, 2013.
ri95
[3981] E. Rio. A maximal inequality and dependent Marcinkiewicz-Zygmund
strong laws. The Annals of Probability, 23(2):918–937, 1995.
ri76-2
[3982] B. Ripley. The second-order analysis of stationary point processes.
Journal of applied probability, pages 255–266, 1976.
ri49
[3983] J. Riss. Transformation de Fourier des distributions. C. R. Acad.
Sci., Paris, 229:12–14, 1949.
brri03
[3984] C. Rivero Moreno and S. Bres. Conditions of similarity between Hermite and Gabor filters as models of the human visual system. In
Nicolai Petkov and Michel A. Westenberg, editors, CAIP 2003, Proc.
Computer analysis of images and patterns, 10th International Conference, volume 2756 of Lecture Notes in Comput. Sci., pages 762–769,
Groningen, The Netherlands, August 25-27, 2003. Springer.
brri04
[3985] C. Rivero Moreno and S. Bres. Texture feature extraction and indexing by Hermite filters. In Pattern Recognition, 2004. ICPR 2004.
Proceedings of the 17th International Conference on,, volume 1, pages
684 – 687, aug. 2004.
rosa96
[3986] J. Robbin and D. Salamon. Feynman path integrals on phase space
and the metaplectic representation. Math. Z., 221(2):307–335, 1996.
famiro09
[3987] D. Robinson, S. Farsiu, and P. Milanfar. Optimal registration of
aliased images using variable projection with applications to superresolution. The Computer Journal, 52(1):31–42, 2009.
352
rosasi11
[3988] S. Roch, P. Santos, and B. Silbermann. Non-commutative Gelfand
Theories. A Tool-kit for Operator Theorists and Numerical Analysts.
Springer, 2011.
ro84
[3989] R. Rochberg. Function theoretic results for complex interpolation families of Banach spaces. Trans. Amer. Math. Soc., 284(2):745–758,
1984.
ro88-1
[3990] R. Rochberg. The work of Coifman and Semmes on complex interpolation, several complex variables, and PDEs. In Function spaces and
applications (Lund, 1986), volume 1302 of Lecture Notes in Math.,
pages 74–90. Springer, Berlin, 1988.
ro76-5
[3991] R. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM J. Control Optimization, 14(5):877–898, 1976.
rosiwawawe11
[3992] L. Rockstroh, S. Wahl, Z. Wang, P. Werner, and S. Simon. AN
IMAGE FILTER TECHNIQUE TO RELAX PARTICLE IMAGE
VELOCIMETRY. 2011.
ro90-1
[3993] N. Roddier. Atmospheric wavefront simulation using Zernike polynomials. Opt. Eng., 29(10):1174–1180, Oct, 1990.
ro92-2
[3994] V. Rodin. Rectangular oscillation of a sequence of partial sums of multiple Fourier series and absence of the BMO property. Math. Notes,
52(2):863–865, 1992.
rowa14
[3995] L. Rodino and P. Wahlberg. The Gabor wave front set. Monatsh.
Math., 173(4):625–655, 2014.
alcaro09
[3996] J. Rodrigo, T. Alieva, and M. Calvo. Programmable two-dimensional
optical fractional Fourier processor. Opt. Express, 17(7):4976–4983,
Mar 2009.
rote11
[3997] J. Rodrigues and R. Teymurazyan. On the two obstacles problem in
OrliczSobolev spaces and applications. Complex Variables and Elliptic
Equations, 56(7-9):769–787, 2011.
rozu08
[3998] J. J. Rodriguez Vega and W. A. Zuniga Galindo. Taibleson operators,
p-adic parabolic equations and ultrametric diffusion. Pacific J. Math.,
237(2):327–347, 2008.
353
ro07-1
[3999] F. Rodriguez Villegas. Experimental number theory. Oxford University Press, 2007.
ro89-2
[4000] J. Roe. Partitioning non-compact manifolds and the dual Toeplitz
problem. Operator algebras and applications, 1:187–228, 1989.
rosc96
[4001] J. Roe. Index theory, coarse geometry, and topology of manifolds.
Number 90. Amer Mathematical Society, 1996.
ro05-2
[4002] J. Roe. Band-dominated Fredholm operators on discrete groups. Integr. Equ. Oper. Theory, 51(3):411–416, 2005.
bebrdiro10
[4003] Y. Rogovchenko, L. Berezansky, E. Braverman, and J. Diblik. Recent
advances in oscillation theory. 2010:634238(3), 2010.
ro00-1
[4004] J. Rohn. Computing the norm A ∞,1 is NP-hard. Linear and Multilinear Algebra, 47(3):195–204, 2000.
haro06
[4005] P. Rojo and J. Harrington. A method to remove fringes from images
using wavelets. The Astrophysical Journal, 649(1):553, 2006.
rosusz08
[4006] A. Rokob, A. Szabados, and P. Surjan. A Note on the Symmetry Properties of L¨owdin’s Orthogonalization Schemes. Collection of
Czechoslovak Chemical Communications, 73(6-7):937–944, 2008.
duroth10
[4007] J. Rolland, C. Dunn, and K. Thompson. An analytic expression for
the field dependence of FRINGE Zernike polynomial coefficients in
rotationally symmetric optical systems. In J. P. Rolland, C. Dunn,
K. P. Thompson, C. E. Towers, J. Schmit, and K. Creath, editors,
Proc. SPIE, Interferometry XV: Techniques and Analysis, volume
7790 of Optical Surface Testing, page 77900M(11), San Diego, California, USA, 2010. SPIE.
jalememuparoth08
[4008] J. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. Thompson,
and K.-S. Lee. Gabor domain optical coherence microscopy. In Proc.
SPIE, 1st Canterbury Workshop on Optical Coherence Tomography
and Adaptive Optics, volume 7139 of OCT Microscopy, page 9, 2008.
kalememuparoth09
[4009] J. Rolland, P. Meemon, S. Murali, I. Kaya, N. Papp, K. Thompson,
and K.-S. Lee. Gabor domain optical coherence microscopy. In Optical Coherence Tomography and Coherence Techniques IV, volume
7372 of Novel OCT Technology, page 7, Munich, Germany, 2009.
354
ro08-2
[4010] S. Roman. Advanced Linear Algebra 3rd ed. Graduate Texts in
Mathematics 135. New York, NY: Springer. xviii, 2008.
ro03-2
[4011] G. Rombouts. Adaptive filtering algorithms for acoustic echo and
noise cancellation. PhD thesis, 2003.
ro12
[4012] J. L. Romero. Characterization of coorbit spaces with phase-space
covers. J. Funct. Anal., 262(1):59–93, 2012.
rosc96-1
[4013] J. Ronghui and L. Schweitzer.
Spectral invariance of smooth
crossed products, and rapid decay locally compact groups. K-theory,
10(3):283–305, 1996.
ro10-1
[4014] D. Rosca. New uniform grids on the sphere. Astronomy & Astrophysics, 520:A63, 2010.
ro06-3
[4015] J. Rosenberg. Non-commutative harmonic analysis. In A panorama
of Hungarian mathematics in the twentieth century. I, volume 14 of
Bolyai Soc. Math. Stud., pages 193–209. 2006.
ro08-3
[4016] J. Rosenberg. Noncommutative variations on Laplace’s equation.
Anal. PDE, 1(1):95–114, 2008.
ro13
[4017] J. Rosenberg. Levi-Civita’s Theorem for Noncommutative Tori. arXiv
preprint arXiv:1307.3775, 2013.
ro97-2
[4018] S. Rosenberg. The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds. London Mathematical Society student
texts. Cambridge University Press, 1997.
bero98-1
[4019] J. Rosenblatt and S. Bell. Mathematical Analysis for Modeling. CRC
Mathematical Modeling Series. Boca Raton, FL: CRC Press. 860 p.,
1998.
ro94
[4020] M. Rosenblum. Generalized Hermite polynomials and Bose-like oscillator calculus. Feintuch, A. (ed.) et al., Nonselfadjoint operators
and related topics. Workshop on Operator theory and its applications,
Beersheva, Israel, February 24-28, 1992. Basel: Birkh¨auser Verlag.
Oper. Theory, Adv. Appl. 73, 369-396 (1994)., 1994.
355
raro13
[4021] M. Rosensteiner and R. Ramlau. Kaczmarz algorithm for multiconjugated adaptive optics with laser guide stars. JOSA A, 30(8):1680–
1686, 2013.
ro13-1
[4022] M. Rosenthal. Local means, wavelet bases and wavelet isomorphisms
in Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Math. Nachr.,
286(1):59–87, 2013.
rotr14
[4023] M. Rosenthal and H. Triebel. Calderon-Zygmund operators in Morrey
spaces. Rev. Mat. Complut., 27(1):1–11, 2014.
khro11
[4024] E. E. Rosinger, A. Khrennikov, G. Jaeger, A. Khrennikov,
M. Schlosshauer, and G. Weihs, editors. Beyond archimedean spacetime structure, volume 1327. AIP, 2011.
ro10
[4025] M. R¨osler. Positive convolution structure for a class of HeckmanOpdam hypergeometric functions of type BC. J. Funct. Anal.,
258(8):2779–2800, 2010.
ro14
[4026] K. Ross. A Trip from Classical to Abstract Fourier Analysis. Notices
Amer. Math. Soc., 61(9):1032–1039, 2014.
ro98-1
[4027] M. Rossini. 2D-discontinuity detection from scattered data. Computing, 61(3):215–234, 1998.
ro97-3
[4028] G. Rota. Ten lessons I wish I had been taught. Notices of the AMS,
44(1):22–25, 1997.
firo08
[4029] V. Roth and B. Fischer. The group-lasso for generalized linear models:
uniqueness of solutions and efficient algorithms. In Proceedings of the
25th international conference on Machine learning, pages 848–855,
2008.
chnyro02
[4030] E. Rothwell, K. Chen, and D. Nyquist. An adaptive-window-width
short-time Fourier transform for visualization of radar target substructure resonances. Antennas and Propagation, IEEE Transactions
on, 46(9):1393–1395, 2002.
ro03-3
[4031] F. Rouviere. Damek-Ricci spaces: Geometry and analysis (Espaces
de Damek-Ricci, geometrie et analyse). In Analysis on Lie groups
and representation theory. Proceedings of the summer school. Kenitra,
356
France, 1999, volume 7, pages 45–100. Paris: Soci´et´e Math´ematique
de France, 2003.
rosa00
[4032] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500):2323, 2000.
ro11-1
[4033] K. Roysland. Frames generated by actions of countable discrete
groups. Trans. Amer. Math. Soc, 363:95–108, 2011.
ro11-2
[4034] G. Rozenblum. On lower eigenvalue bounds for Toeplitz operators with
radial symbols in Bergman spaces. J. Spectr. Theory, 1(3):299–325,
2011.
ro12-1
[4035] G. Rozenblum. Finite rank Bargmann-Toeplitz operators with noncompactly supported symbols. Bull. Math. Sci., 2(2):331–341, 2012.
rusi83
[4036] L. A. Rubel and A. Siskakis. A net of exponentials converging to a
nonmeasurable function. Amer. Math. Monthly, 90:394–396, 1983.
ruti79
[4037] L. A. Rubel and R. M. Timoney. An extremal property of the Bloch
space. Proc. Amer. Math. Soc., 75(1):45–49, 1979.
klru95
[4038] A. Rubin and J. R. Klauder. The comparative roles of connected
and disconnected trajectories in the evaluation of the semiclassical
coherent-state propagator. Annals of Physics, 241(1):212–234, 1995.
elruzi10
[4039] R. Rubinstein, M. Zibulevsky, and M. Elad. Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans.
Signal Process., 58(3, part 2):1553–1564, 2010.
ru89
[4040] J. L. Rubio de Francia. Transference principles for radial multipliers.
Duke Math. J., 58(1):1–19, 1989.
guruto00
[4041] Y. Rubner, C. Tomasi, and L. Guibas. The Earth mover’s distance
as a metric for image retrieval. Int. J. Comput. Vis., 40(2):99–121,
2000.
ru67
[4042] W. Ruckle. Symmetric coordinate spaces and symmetric bases.
Canad. J. Math., 19:828–838, 1967.
ru81-1
[4043] W. Ruckle. Sequence Spaces. Research Notes in Mathematics 49.
Pitman, 1981.
357
ru91-1
[4044] W. Ruckle. Modern analysis. Measure Theory and Functional Analysis with Applications. Boston, MA: PWS-Kent Publishing Company,
1991.
ruve06
[4045] M. Rudelson and R. Vershynin. Analysis of orthogonal matching pursuit using the restricted isometry property. pages 207–212, Princeton,
NJ, Mar. 2006.
ruve10-1
[4046] M. Rudelson and R. Vershynin. Non-asymptotic theory of random
matrices: extreme singular values. In Proceedings of the International
Congress of Mathematicians, volume III, pages 1576–1602. Hindustan
Book Agency, 2010.
ru59
[4047] W. Rudin. Measure algebras on abelian groups. Bull. Amer. Math.
Soc, 65:227–247, 1959.
ru88
[4048] K. Rudol. Atomic-type decompositions in the Segal-Bargmann space.
Proc. Roy. Irish Acad. Sect. A, 88:85–90, 1988.
ru11
[4049] K. Rudol. Matrices related to some Fock space operators. Opuscula
Math., 31(2):289–296, 2011.
rusc13
[4050] G. Rudolph and M. Schmidt. Differential Geometry and Mathematical Physics Part I. Theoretical and Mathematical Physics. Springer,
Dordrecht, 2013.
ru10
[4051] M. Rumin. Spectral density and Sobolev inequalities for pure and
mixed states. Geom. Funct. Anal., 20(3):817–844, 2010.
ru11-1
[4052] M. Rumin. An entropic uncertainty principle for positive operator
valued measures. Letters in Mathematical Physics, pages 1–18, 2011.
ru07-1
[4053] V. Runde. Cohen-Host type idempotent theorems for representations
on Banach spaces and applications to Fig`a-Talamanca-Herz algebras.
J. Math. Anal. Appl., 329(1):736–751, 2007.
ruto10
[4054] J. Ruoff and M. Totzeck. Using orientation Zernike polynomials to
predict the imaging performance of optical systems with birefringent
and partly polarizing components. In J. Ruoff, M. Totzeck, J. Bentley,
A. Gupta, and R. N. Youngworth, editors, Proc. SPIE, International
Optical Design Conference 2010, volume 7652 of Polarization in Optical Design, page 76521T(14), Jackson Hole, WY, USA, 2010. SPIE.
358
rusm10
[4055] M. Ruzhansky and J. Smith. Dispersive and Strichartz Estimates
for Hyperbolic Equations with Constant Coefficients. Mathematical
Society of Japan, Volume 22 edition, 2010.
rusu06-2
[4056] M. Ruzhansky and M. Sugimoto. Global boundedness theorems for
Fourier integral operators associated with canonical transformations.
Miyachi, Akihiko (ed.) et al., Harmonic analysis and its applications.
Proceedings of the international conference on harmonic analysis and
its applications, Osaka, Japan, November 15–17, 2004. Yokohama:
Yokohama Publishers. 65-75 (2006)., 2006.
rusu12
[4057] M. Ruzhansky and M. Sugimoto. Smoothing properties of evolution
equations via canonical transforms and comparison principle. 2012.
rusutoto11
[4058] M. Ruzhansky, M. Sugimoto, J. Toft, and N. Tomita. Changes of
variables in modulation and Wiener amalgam spaces. Math. Nachr.,
284(16):2078–2092, 2011.
rusuwa12
[4059] M. Ruzhansky, M. Sugimoto, and B. Wang. Modulation spaces and
nonlinear evolution equations. Evolution Equations of Hyperbolic and
Schr¨odinger Type, pages 267–283, 2012.
rutu10
[4060] M. Ruzhansky and V. Turunen. Quantization of pseudo-differential
operators on the torus. J. Fourier Anal. Appl., 16(6):943–982, 2010.
14
[4061] M. Ruzhansky and V. Turunen, editors. Fourier analysis Pseudodifferential Operators, Time-frequency analysis and partial Differential equations (to appear). New York, NY: Birkh¨auser/Springer,
2014.
ruwi11
[4062] M. Ruzhansky and J. Wirth. Modern Aspects of The Theory of Partial
Differential Equations (to Appear). Operator Theory: Advances and
Applications 216. Basel: Birkh¨auser. 400 p., 2011.
ry80
[4063] C. Ryavec. The Poisson summation formula. Aequationes Math.,
21:246–250, 1980.
ry84
[4064] Z. Rychlik. Non-uniform central limit bounds with applications to
probabilities of deviations. Theory Probab. Appl., 28:681–687, 1984.
359
ry85
[4065] Z. Rychlik. A remainder term estimate in a random-sum central limit
theorem. Bull. Pol. Acad. Sci., Math., 33:57–63, 1985.
rysz03
[4066] Z. Rychlik and K. S. Szuster. On strong versions of the central limit
theorem. Stat. Probab. Lett., 61(4):347–357, 2003.
kilelery13
[4067] S.-J. Ryu, M. Kirchner, M.-J. Lee, and H.-K. Lee. Rotation invariant localization of duplicated image regions based on zernike moments.
Information Forensics and Security, IEEE Transactions on, 8(8):1355–
1370, 2013.
klparyvi08
[4068] M. Ryynanen, T. Virtanen, J. Paulus, and A. Klapuri. Accompaniment separation and karaoke application based on automatic melody
transcription. In Proc. Multimedia and Expo, 2008 IEEE International Conference on, pages 1417 –1420, Hannover, 23 2008-april 26
2008.
abdeelhasa08
[4069] E. Saad, M. Hadhoud, M. Dessouky, M. Elhalawany, and A. Abbas.
Fusion of Zernike moments and Fourier-Mellin transform for invariant image resolution. Opt. Eng., 47(1):017002 (12 pages), January
2008.
sa92
[4070] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, 1992.
sa11-2
[4071] Y. Saad. Numerical Methods for Large Eigenvalue Problems, Revised
Edition. SIAM, 2011.
sava00
[4072] Y. Saad and d. van. Iterative solution of linear systems in the 20th
century. J. Comput. Appl. Math., 123(1-2):1–33, 2000.
sa02-4
[4073] F. Sady. Projective limit of a sequence of Banach function algebras as
a Fr´echet function algebra. Bull. Korean Math. Soc., 39(2):259–267,
2002.
sa90
[4074] S. Saeki. The Lp -conjecture and Young’s inequality. Ill. J. Math.,
34(3):614–627, 1990.
kasa04-1
[4075] A. Safapur and R. Kamyabi Gol. A necessary condition for WeylHeisenberg frames. Bull. Iranian Math. Soc., 30(2):13, 2004.
360
sa03-3
[4076] B. Sagir. Multipliers and tensor products of vector valued Lp (G, A)
spaces. Taiwanese J. Math., 7(3):493–501, 2003.
sasowo88
[4077] P. Sahoo, S. Soltani, and A. Wong. A survey of thresholding
techniques* 1. Computer vision, graphics, and image processing,
41(2):233–260, 1988.
sa83
[4078] S. Saitoh. Hilbert spaces induced by Hilbert space valued functions.
Proc. Amer. Math. Soc., 89:74–78, 1983.
asmasa03
[4079] S. Saitoh, T. Matsuura, and M. Asaduzzaman. Operator equations
and best approximation problems in reproducing kernel Hilbert spaces.
J. Anal. Appl., 1(3):131–142, 2003.
sa88
[4080] K. Saka. Besov spaces on Riemannian manifolds and its application
to lp −lq estimates for wave equations. Mem. Coll. Educ., Akita Univ.,
Nat. Sci., 39:81–86, 1988.
sa95
[4081] K. Saka. The trace theorem for Triebel-Lizorkin spaces and Besov
spaces on certain fractal sets. I: The restriction theorem. Mem. Coll.
Educ., Akita Univ., Nat. Sci., 48:1–17, 1995.
sa96-1
[4082] K. Saka. The trace theorem for Triebel-Lizorkin spaces and Besov
spaces on certain fractal sets. II: The extension theorem. Mem. Coll.
Educ., Akita Univ., Nat. Sci., 49:1–27, 1996.
sa11
[4083] K. Saka. A new generalization of Besov-type and Triebel-Lizorkintype spaces and wavelets. Hokkaido Math. J., 40(1):111–147, 2011.
sa94-1
[4084] H. Sakai. Recursive least-squares algorithms of modified GramSchmidt type for parallel weight extraction. IEEE Trans. Signal Process., 42(2):429–433, 1994.
sase09
[4085] E. Saksman and K. Seip. Integral means and boundary limits of
Dirichlet series. Bull. Lond. Math. Soc., 41(3):411–422, 2009.
armisa09
[4086] R. Sakuma, T. Miyake, and F. Aryasetiawan. Effective quasiparticle
Hamiltonian based on L¨owdins orthogonalization. Physical Review B,
80(23):235128, 2009.
sa63
[4087] R. Salem. Algebraic Numbers and Fourier Analysis. Boston: D. C.
Heath and Company. 66 p., 1963.
361
sazy46
[4088] R. Salem and A. Zygmund. Capacity of sets and Fourier series.
Trans. Amer. Math. Soc., 59:23–41, 1946.
sa13
[4089] P. Sally. Fundamentals of mathematical Analysis. Pure and Applied
Undergraduate Texts 20. Providence, RI: American Mathematical Society (AMS). xiii, 2013.
saoz14
¨
[4090] S. Saltan and Y. Ozel.
Maximal ideal space of some Banach algebras
and related problems. Banach J. Math. Anal., 8(2):16–29, 2014.
sa02-3
[4091] S. Samko. Hypersingular integrals and their applications, volume 5 of
Analytical methods and special functions. Taylor & Francis, London,
2002.
sa11-1
[4092] S. Samko. Weighted estimates of truncated potential kernels in the
variable exponent setting. Complex Variables and Elliptic Equations,
56(7-9):813–828, 2011.
kimasa87
[4093] S. Samko, A. A. Kilbas, and O. I. Marichev. Integrals and derivatives
of fractional order and some of their applications. (Russian). Minsk:
Nauka i Tekhnika, 1987.
sa93
[4094] C. Samuel. Bounded approximate identities in the agebra of compact
operators on a Banach space. Proceedings of the American Mathematical Society, 117(4):1093–1096, 1993.
sa09-2
[4095] A. San Antolin. Characterization of low pass filters in a multiresolution analysis. 190(2):99–116, 2009.
sasa05
[4096] C. Sanchez Avila and R. Sanchez Reillo. Two different approaches
for iris recognition using Gabor filters and multiscale zero-crossing
representation. Pattern Recognition, 38(2):231 – 240, 2005.
sa99-1
[4097] I. Sandberg. Comments on Representation theorems for semilocal and
bounded linear shift-invariant operators on sequences. Signal Process.,
74(3):323 – 325, 1999.
sa01-3
[4098] I. Sandberg. A note on the convolution scandal. Signal Processing
Letters, IEEE, 8(7):210–211, 2001.
362
hasa10
[4099] J. Sandberg and M. Hansson Sandsten. Optimal stochastic discrete
time–frequency analysis in the ambiguity and time-lag domain. Signal
Process., 90(7):2203–2211, 2010.
sa65
[4100] B. Sanders. On the existence of (Schauder) decompositions in Banach
spaces. Proc. Amer. Math. Soc., 16:987–990, 1965.
gusa11
[4101] A. Sandikci and A. Gurkanli.
m(p, q, w)( d ) and s(p, q, r, w, ω)(
Ed., 31(1):141–158, 2011.
d
Gabor analysis of the spaces
). Acta Math. Sci. Ser. B Engl.
gusa13
[4102] A. Sandikci and A. G¨
urkanli. Generalized Sobolev-Shubin spaces,
boundedness and Schatten class properties of Toeplitz operators. Turk.
J. Math., 37(4):676–692, 2013.
sa12
[4103] A. Sandiki. On Lorentz mixed normed modulation spaces. J. PseudoDiffer. Oper. Appl., 3(3):263–281, 2012.
kopusa12
[4104] A. Sandryhaila, J. Kovacevic, and M. P¨
uschel. Algebraic signal processing theory: 1-D nearest neighbor models. IEEE Trans. Signal Process., 60(5):2247 –2259, may 2012.
kopusasa12
[4105] A. Sandryhaila, S. Saba, M. P¨
uschel, and J. Kovacevic. Efficient
compression of QRS complexes using Hermite expansion. IEEE Trans.
Signal Process., 60(2):947–955, 2012.
deghsa04
[4106] S. Sanyal, A. Ghosh, and K. Dey. Fractional Fourier transform in
optics - a new perspective. Optik - International Journal for Light and
Electron Optics, 115(2):77 – 85, 2004.
arbesa10
[4107] G. Saracco, A. Arneodo, and G. Beylkin. Special Issue on Continuous
Wavelet Transform in Memory of Jean Morlet, Part I. Appl. Comput.
Harmon. Anal., 28(2):129–130, 2010.
arbesa10-2
[4108] G. Saracco, A. Arneodo, and G. Beylkin. Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part II. Appl.
Comput. Harmon. Anal., 28(3):249–250, 2010.
sa75-1
[4109] D. Sarason. Functions of vanishing mean oscillation. Trans. Amer.
Math. Soc., 207:391–405, 1975.
363
duecsasaye07
[4110] Z. Sara, S. Yerdelen, A. Dursun, H. Sara, and F. N. Ecevit. Processing of thermal lens fringes by S-transform. Optics Communications,
271(2):349 – 352, 2007.
depusa06
[4111] C. Sastry, A. Pujari, and B. Deekshatulu. A Fourier-radial descriptor
algorithm for invariant feature extraction. Int. J. Wavelets Multiresolut. Inf. Process., 4(1):197–212, 2006.
alsa87
[4112] K. Sauer and J. P. Allebach. Iterative reconstruction of bandlimited images from nonuniformly spaced samples. Circuits and Systems,
IEEE Transactions on, 34(12):1497–1506, 1987.
sa12-1
[4113] T. Sauer. Shearlet multiresolution and multiple refinement. In Shearlets. Multiscale analysis for multivariate data., pages 199–237. 2012.
rosa04
[4114] L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res., 4(2):119–155,
2004.
kuokpasa95
[4115] V. Savchenko, A. Pasko, O. Okunev, and T. Kunii. Function representation of solids reconstructed from scattered surface points and
contours. In Computer Graphics Forum, volume 14, pages 181–188,
1995.
sast10
[4116] A. Savin and B. Sternin. Noncommutative elliptic theory. Examples.
Proceedings of the Steklov Institute of Mathematics, 271(1):193–211,
2010.
sa10-1
[4117] Y. Sawano. Maximal operator for pseudodifferential operators with
homogeneous symbols. Michigan Math. J., 59(1):119–142, 2010.
sata07
[4118] Y. Sawano and H. Tanaka. Decompositions of Besov-Morrey spaces
and Triebel-Lizorkin-Morrey spaces. Math. Z., 257(4):871–905, 2007.
sata09
[4119] Y. Sawano and H. Tanaka. Besov-Morrey spaces and TriebelLizorkin-Morrey spaces for nondoubling measures. Math. Nachr.,
282(12):1788–1810, 2009.
sata09-1
[4120] Y. Sawano and H. Tanaka. Predual spaces of Morrey spaces with
non-doubling measures. Tokyo J. Math., 32(2):471–486, 2009.
364
sata14
[4121] Y. Sawano and H. Tanaka. FATOU PROPERTY OF PREDUAL
MORREY SPACES WITH NON-DOUBLING MEASURES. International Journal of Applied Mathematics, 27(3):283–296, 2014.
sayo08
[4122] Y. Sawano and T. Yoneda. Quarkonial decomposition suitable
for functional-differential equations of delay type. Math. Nachr.,
281(12):1810–1822, 2008.
sa72
[4123] A. Sawchuk. Space-variant image motion degradation and restoration.
Proceedings of the IEEE, 60(7):854–861, 1972.
sa74
[4124] A. Sawchuk. Space-variant image restoration by coordinate transformations. JOSA, 64(2):138–144, 1974.
sasi05
[4125] R. Saxena and A. K. Singh. Fractional Fourier transform: A novel
tool for signal processing. J. Indian Inst. Sci, 85:11–26, 2005.
saul90
[4126] V. Sazonov and V. Ulyanov. Speed of convergence in the central limit
theorem in Hilbert space under weakened moment conditions. Probability theory and mathematical statistics, Proc. 5th Vilnius Conf.,
Vilnius/Lith. 1989, Vol. II, 394-410 (1990)., 1990.
bagisc99
[4127] A. Scaglione, G. Giannakis, and S. Barbarossa. Redundant filterbank
precoders and equalizers, Parts I and II. IEEE Trans. Signal Process.,
pages 19882006, and 20072022, Jul. 1999.
sc70-2
[4128] J. Sch¨affer. Norms and determinants of linear mappings. Math. Z.,
118:331–339, 1970.
hlmasc03
[4129] D. Schafhuber, G. Matz, and F. Hlawatsch. Kalman tracking of timevarying channels in wireless MIMO-OFDM systems. volume 2, pages
1261–1265, Pacific Grove, CA, Nov. 2003.
sc08-6
[4130] B. Schapira. Contributions to the hypergeometric function theory of
Heckman and Opdam: Sharp estimates, Schwartz space, heat kernel.
Geom. Funct. Anal., 18(1):222–250, 2008.
sc13-2
[4131] B. Scharf. Atomic representations in function spaces and applications
to pointwise multipliers and diffeomorphisms, a new approach. Math.
Nachr., 286(2-3):283–305, 2013.
365
sc98-2
[4132] W. Schempp. Wavelet modelling of high resolution radar imaging and
clinical magnetic resonance tomography. Proceedings of the 3rd international conference on functional analysis and approximation theory, Acquafredda di Maratea (Potenza), Italy, September 23–28, 1996.
Vols. I and II. Palermo: Circolo Matem`atico di Palermo. Suppl. Rend.
Circ. Mat. Palermo, II, 1998.
sc10-2
[4133] A. Schep. Products and factors of Banach function spaces. Positivity,
14(2):301–319, 2010.
sc11-3
[4134] O. Scherzer. Image Restoration and Analysis. Springer, 2011.
sc00-5
[4135] O. Schiffmann. The Hall algebra of a cyclic quiver and canonical
bases of Fock spaces. International Mathematics Research Notices,
2000(8):413–440, 2000.
scsovo10
[4136] R. Schilling, R. Song, and Z. Vondracek. Bernstein Functions. Theory and Applications. de Gruyter Studies in Mathematics 37. Berlin:
Walter de Gruyter. xii, 313 p., 2010.
scwe09
[4137] F. Schipp and F. Weisz. Multi-dimensional discrete summability.
Acta Math. Sci., 75(1-2):219–231, 2009.
sc09-6
[4138] J. Schira. Statistische Methoden der VWL und BWL.
Deutschland GmbH, 2009.
sc11-1
[4139] L. Schlaffer. PISA-Studie versus Realit¨at Schule. Master’s thesis,
University of Vienna, 2011.
sc13
[4140] M. Schlichenmaier. Berezin’s coherent states, symbols and transform
for compact K¨ahler manifolds. In Geometric methods in physics. XXX
workshop, Bialowieza, Poland, June 26 – July 2, 2011. Selected papers
based on the presentations at the workshop, pages 101–116. Basel:
Birkh¨auser, 2013.
bascsi11
[4141] T. Schlumprecht, N. Sivakumar, and B. A. Bailey. Nonuniform sampling and recovery of multidimensional bandlimited functions by Gaussian radial-basis functions. J. Fourier Anal. Appl., 17(3):519–533,
2011.
366
Pearson
sc90-2
[4142] J. Schmeelk. A guided tour of new tempered distributions. Foundations of Physics Letters, 3(5):403–423, 1990.
sc65
[4143] L. Schmetterer. Some theorems on the Fourier analysis of positive
definite functions. Proc. Amer. Math. Soc., 16:1141–1146, 1965.
sc10-4
[4144] J. Schmidt. Numerical Simulation of Optical Wave Propagation with
Examples in MATLAB. SPIE, 2010.
sc09-5
[4145] K. Schmidt. Maß und Wahrscheinlichkeit. Springer Berlin, 2009.
sc94
[4146] R. Schmidt. Subgroup lattices of groups, volume 14. Walter de
Gruyter, 1994.
sc93-1
[4147] C. Schmoeger. Relatively regular operators and a spectral mapping
theorem. J. Math. Anal. Appl., 175(1):315–320, 1993.
sc08-5
[4148] C. Schmoeger. Characterizations of some classes of relatively regular
operators. Linear Algebra Appl., 429(1):302–310, 2008.
sc08-4
[4149] C. Schmoeger. On pseudo-inverses of Fredholm operators. Turk. J.
Math., 32(4):467–474, 2008.
sc12-1
[4150] S. Schmutzhard. Galerkin methods for the numerical evaluation of the
prolate spheroidal wave functions. PhD thesis, University of Vienna,
2012.
hljusc12
[4151] S. Schmutzhard and F. Hlawatsch. The RKHS Approach to Minimum
Variance Estimation Revisited: Variance Bounds, Sufficient Statistics, and Exponential Families. IEEE Trans. Information Theory,
60(7):4050 – 4065, Oct. 2014.
fehrsc13
[4152] S. Schmutzhard, T. Hrycak, and H. G. Feichtinger. A numerical
study of the Legendre-Galerkin method for the evaluation of the prolate
spheroidal wave functions. submitted, 2013.
fehrsc14
[4153] S. Schmutzhard, T. Hrycak, and H. G. Feichtinger. A numerical
study of the Legendre-Galerkin method for the evaluation of the prolate
spheroidal wave functions. Numerical Algorithms, pages 1–20, 2014.
367
hljusc11
[4154] S. Schmutzhard, A. Jung, and F. Hlawatsch. Minimum Variance
Estimation for the Sparse Signal in Noise Model. Proc. ISIT 2011,
2011.
grsc10
[4155] K. Schnass and R. Gribonval. Dictionary identification - sparse
matrix-factorisation via l1 -minimisation. IEEE Trans. Inform. Theory, 56(7):3523–3539, 2010.
sc09-4
[4156] C. Schneider. On dilation operators in Besov spaces. Rev. Mat.
Complut., 22(1):111–128, 2009.
sc10-3
[4157] C. Schneider. Trace operators in Besov and Triebel-Lizorkin spaces.
Z. Anal. Anwend., 29(3):275–302, 2010.
scvy12
[4158] C. Schneider and J. Vybiral. Homogeneity property of Besov and
Triebel-Lizorkin spaces. 2012.
scsc09
[4159] G. Schneider and K. Schneider. Generalized Hankel operators on the
Fock space. Math. Nachr., 282(12):1811–1826, 2009.
scsm98
[4160] B. Schoelkopf and A. Smola. From regularization operators to support
vector kernels. In Advances in Neural information processing systems,
10:343–349, 1998.
scwh53
[4161] I. Schoenberg and A. Whitney. On Polya frequence functions. III. The
positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Amer. Math. Soc., 74:246–
259, 1953.
scst71
[4162] A. Schoenhage and V. Strassen. Schnelle Multiplikation grosser
Zahlen. Computing, 7:281–292, 1971.
besc87
[4163] B. Schomburg and G. Berendt. On the convergence of the BackusGilbert algorithm. Inverse Problems, 3:341–346, 1987.
sc96-2
[4164] F. Schroeck. Quantum mechanics on phase space. Dordrecht: Kluwer
Academic Publishers, 1996.
mosc03
[4165] D. Schuch and M. Moshinsky. Coherent states and dissipation for the
motion of a charged particle in a constant magnetic field. J. Phys. A,
Math. Gen., 36(23):6571–6585, 2003.
368
mosc08-1
[4166] D. Schuch and M. Moshinsky. Wigner distribution functions and the
representation of canonical transformations in time-dependent quantum mechanics. 4(Paper 54 (electronic only)):12, 2008.
scst96
[4167] R. Schultz and R. Stevenson. Extraction of high-resolution frames
from video sequences. IEEE Trans. Image Process., 5(6):996 –1011,
jun 1996.
scta99
[4168] E. Schulz and K. F. Taylor. Extensions of the Heisenberg group and
wavelet analysis in the plane. Dubuc, Serge (ed.) et al., Spline functions and the theory of wavelets. Providence, RI: AMS, American
Mathematical Society. CRM Proc. Lect. Notes 18, 217-225 (1999).,
1999.
scta04
[4169] E. Schulz and K. F. Taylor. Projections in L1 -algebras and tight
frames. Lau, Anthony To-Ming (ed.) et al., Banach algebras and
their applications. Proceedings of the 16th international conference,
University of Alberta, Edmonton, Canada, July 27–August 9, 2003.
Providence, RI: American Mathematical Society (AMS). Contemporar, 2004.
scva12
[4170] A. Schuster and D. Varolin. Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces. Integr. Equ. Oper. Theory, 72(3):363–392, 2012.
scto03
[4171] C. Schwab and R. Todor. Sparse finite elements for stochastic elliptic
problems—higher order moments. Computing, 71(1):43–63, 2003.
clkasc00
[4172] M. Schwab, N. Karrenbach, and J. Claerbout. Making scientific computations reproducible. Computing in Science & Engineering, 2(6):61–
67, 2000.
sc69
[4173] A. Schwartz. An inversion theorem for Hankel transforms. Proc.
Amer. Math. Soc., pages 713–717, 1969.
sc98-3
[4174] A. Schwarz. Morita equivalence and duality. Nuclear Physics B,
534(3):720–738, 1998.
sc10-1
[4175] S. Scott. Traces and determinants of pseudodifferential operators.
Oxford University Press, USA, 2010.
369
se05-1
[4176] S. Searle. Efficient matched processing for localisation of a moving
acoustic source. Signal Process., 85(9):1787–1804, September 2005.
se84
[4177] A. Sedletskii. Approximation by shifts and completeness of weighted
systems of exponentials in l2 (r) (English translation: Math. USSR-Sb.
51 (1985), no. 1, 92107). Mat. Sb. (N.S.), 123(165)(1):92–107, 1984.
se65
[4178] G. Seever. A peculiar Banach function space. Proc. Amer. Math.
Soc., 16:662–664, 1965.
iwse12
[4179] I. Segal and M. Iwen. Improved sparse Fourier approximation results:
Faster implementations and stronger guarantees. preprint, 2012.
sewi99
[4180] N. Seiberg and E. Witten. String theory and noncommutative geometry. Journal of High Energy Physics, 1999(9):93, September 1999.
dolasestta06
[4181] B. Seifert, H. Stolz, M. Donatelli, D. Langemann, and M. Tasche.
Multilevel Gauss-Newton methods for phase retrieval problems. J.
Phys. A, Math. Gen., 39(16):4191–4206, 2006.
se91
[4182] K. Seip. Reproducing formulas and double orthogonality in Bargmann
and Bergman spaces. SIAM J. Math. Anal., 22(3):856–876, 1991.
se95
[4183] K. Seip. On Korenblum’s density condition for the zero sequences of
Aα . J. Anal. Math., 67:307–322, 1995.
se11
[4184] K. Seip. Interpolation and sampling in small Bergman spaces, 2011.
se13
[4185] K. Seip. Interpolation and sampling in small Bergman spaces. Collect.
Math., 64(1):61–72, 2013.
seyo13
[4186] K. Seip and E. Youssfi. Hankel operators on Fock spaces and related
Bergman kernel estimates. Journal of Geometric Analysis, 23(1):170–
201, 2013.
djjise09
[4187] E. Sejdic, I. Djurovic, and J. Jiang. Time-frequency feature representation using energy concentration: An overview of recent advances.
Digital Signal Processing, 19(1):153–183, 2009.
djsest11
[4188] E. Sejdic, I. Djurovic, and L. Stankovic. Fractional Fourier transform
as a signal processing tool: An overview of recent developments. Signal
Process., 6(91):1351–1369, 2011.
370
se07-2
[4189] D. Selesi. Hilbert space valued generalized random processes. I. Novi
Sad J. Math., 37(1):129–154, 2007.
se07-3
[4190] D. Selesi. Hilbert space valued generalized random processes. II. Novi
Sad J. Math., 37(2):93–108, 2007.
base09
[4191] I. W. Selesnick and I. Bayram. Frequency-domain design of overcomplete rational-dilation wavelet transforms. IEEE Trans. Signal
Process., 57(8):2957–2972, 2009.
seXX-1
[4192] A. Semyon. A characterization of the Fourier transform and related
topics.
chduse09
[4193] S. Senay, L. Chaparro, and L. Durak. Reconstruction of nonuniformly
sampled time-limited signals using prolate spheroidal wave functions.
Signal Process., 89(12):2585–2595, 2009.
seso11-1
[4194] M. Sepp¨al¨a and T. Sorvali. Geometry of Riemann Surfaces and Teichm¨
uller spaces. Elsevier, 2011.
seso11
[4195] A. Serdyuk and I. Sokolenko. Asymptotic behavior of best approximations of classes of Poisson integrals of functions from hω . J. Approx.
Theory, 163(11):1692–1706, 2011.
bocajajomasevi10
[4196] D. Serre, E. Villeneuve, H. Carfantan, L. Jolissaint, V. Mazet,
S. Bourguignon, and A. Jarno. Modeling the spatial PSF at the VLT
focal plane for MUSE WFM data analysis purpose. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of
Astronomy for the New Decade, pages 773649–773649, 2010.
se09-1
[4197] S. Setzer. Split Bregman Algorithm, Douglas-Rachford splitting and
frame shrinkage. In X.-C. Tai and Morken, editors, Scale space and
variational methods in computer vision, volume 5567 of Lecture notes
in computer science, pages 464–476. Springer Berlin Heidelberg, 2009.
se09-2
[4198] S. Setzer. Splitting methods in image processing. PhD thesis, 2009.
se11-1
[4199] S. Setzer. Operator splittings, Bregman methods and frame shrinkage
in image processing. Int. J. Comput. Vis., 92(3):265–280, 2011.
371
sest09
[4200] S. Setzer and G. Steidl. Combined l2 data and gradient fitting in conjunction with l1 regularization. In Approximation theory XII: Proceedings of the 12th international conference, San Antonio, TX, USA,
March 4-8, 2007, volume 30 of Mod. Methods Math., pages 79–99.
Springer, 2009.
sh87
[4201] V. Shakhmurov. Theorems on the embedding of abstract function
spaces and their applications. Mat. Sb. (N.S.), 134(176)(2):260–273,
288, 1987.
shza03
[4202] V. Shakhmurov and A. Zayed. Fractional Wigner distribution and
ambiguity functions. Fract. Calc. Appl. Anal., 6(4):473–490, 2003.
shsh61
[4203] H. S. Shapiro and A. Shields. On some interpolation problems for
analytic functions. Amer. J. Math., 83:513–532, 1961.
sh85-1
[4204] T. Shaposhnikova Olegovna. On the spectrum of multipliers in Bessel
potential spaces. Chas. pro pestovany matematiky, 110, 1985.
agchsh08
[4205] A. Sharma, D. Chhachhia, and A. Aggarwal. Moire pattern encoded
extended fractional Fourier transform security hologram. J. Modern
Opt., 55(3):351–359, 2008.
sh10
[4206] K. Sharma. New inequalities for signal spreads in linear canonical
transform domains. Signal Process., 90(3):880–884, 2010.
josh08
[4207] K. Sharma and S. Joshi. Uncertainty principle for real signals in
the linear canonical transform domains. IEEE Trans. Signal Process.,
56(7):2677–2683, 2008.
rashzhXX
[4208] I. Shatokhina, M. Zhariy, and R. Ramlau. Wavefront reconstruction
for XAO.
beelsh14
[4209] Y. Shechtman, A. Beck, and Y. Eldar. GESPAR: Efficient Phase
Retrieval of Sparse Signals. IEEE Trans. Signal Process., 62(4):928–
938, Feb 2014.
elseshsz11
[4210] Y. Shechtman, Y. Eldar, A. Szameit, and M. Segev. Sparsity based
sub-wavelength imaging with partially incoherent light via quadratic
compressed sensing. Optics Express, 19(16):14807–14822, 2011.
372
chcoelsesh14
[4211] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao,
and M. Segev. Phase Retrieval with Application to Optical Imaging.
preprint, feb 2014.
bash08
[4212] L. Shen and L. Bai. 3D Gabor wavelets for evaluating SPM normalization algorithm. Medical Image Analysis, 12(3):375 – 383, 2008.
chshwa94
[4213] W. Shen, M.-W. Chang, and D.-S. Wan. Wavefront estimate from
wavefront slope measurement by comparing their Zernike polynomials
fitting coefficients. In W. Shen, M.-W. Chang, D.-S. Wan, R. E.
Fischer, and W. J. Smith, editors, Proc. SPIE, Current Developments
in Optical Design and Optical Engineering IV, volume 2263 of Optical
System Fabrication and Testing I, pages 186–197, San Diego, CA,
USA, 1994. SPIE.
digrmeposh08
[4214] X. Shen, C. Dietlein, E. Grossman, Z. Popovic, and F. Meyer. Detection and segmentation of concealed objects in terahertz images. IEEE
trans. on IP, 17:12, 2008.
mash06
[4215] Y. Shen and E. Martinez. Channel estimation in OFDM systems,
Feb. 2006.
shtoyu11
[4216] Z. Shen, K.-C. Toh, and S. Yun. An accelerated proximal gradient
algorithm for frame-based image restoration via the balanced approach.
SIAM J. Imaging Sci., 4(2):573–596, 2011.
sh12
[4217] B. Sheng. Blind timing synchronization in OFDM systems by exploiting cyclic structure. Trans. Emerging Tel. Tech, August 2012.
luroshsz93
[4218] Y. Sheng, H. Szu, T. Lu, and D. Roberge. Optical wavelet matched filters for shift-invariant pattern recognition. Optics letters, 18(4):299–
301, 1993.
sh04
[4219] C. Sheppard. Three topics in Zernike polynomials. In C. Sheppard
and F. Wyrowski, editors, Proc. SPIE, Photon Management, volume
5456 of Modeling II, pages 68–74. SPIE, 2004.
sh99
[4220] B. E. Shi. Real-time Gabor-type filtering using analog focal plane
image processors. In Computer Vision and Pattern Recognition, 1999.
IEEE Computer Society Conference on.,, volume 1, pages 507–513,
Fort Collins, CO , USA, 1999.
373
lishzh12
[4221] J. Shi, X. Liu, and N. Zhang. On uncertainty principle for signal
concentrations with fractional Fourier transform. Signal Process.,
92(12):2830 – 2836, 2012.
mash05-4
[4222] X. Shi and R. Manduchi. On Rotational Invariance for Texture Recognition. In Proceedings of the IEEE International Workshop on Texture Analysis and Synthesis, Bejing, China, 2005.
shzh01
[4223] Y. Shi and X. Zhang. A Gabor atom network for signal classification
with application in radar target recognition. IEEE Transactions on
Signal Processing, 49(12):2994–3004, 2001.
shwi71
[4224] A. Shields and D. Williams. Bonded projections, duality, and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc.,
162:287–302, 1971.
sh10-1
[4225] F. Shih. Image Processing and Pattern Recognition: Fundamentals
and Techniques. Wiley-IEEE Press, 2010.
anposh07
[4226] C. Shin, J. Andrews, and E. Powers. An efficient design of doubly selective channel estimation for OFDM systems. IEEE Trans. Wireless
Comm., 6:3790–3802, Oct. 2007.
sh59
[4227] R. Shiraishi. On the definition of convolutions for distributions. J.
Sci. Hiroshima Univ., Ser. A, 23:19–32, 1959.
jush03
[4228] B. Shizgal and J.-H. Jung. Towards the resolution of the Gibbs phenomena. J. Comput. Appl. Math., 161(1):41–65, 2003.
kush05
[4229] S. Shkarin and Y. N. Kuznetsova. Multiplicative spectra of Banach
spaces. J. Math. Sci., New York, 131(6):6112–6119, 2005.
sh13
[4230] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations, volume 49. American Mathematical Soc.,
2013.
sh10-2
[4231] I. Shparlinski. Open problems on exponential and character sums.
Aoki, Takashi (ed.) et al., Number theory. Dreaming in dreams. Proceedings of the 5th China-Japan seminar, Higashi-Osaka, Japan, August 27–31, 2008. Hackensack, NJ: World Scientific. Series on Number Theory and Its Applications 6, 222-242 (2010)., 2010.
374
frsh11
[4232] Y. Shrot and L. Frydman. Compressed sensing and the reconstruction
of ultrafast 2D NMR data: Principles and biomolecular applications.
J. Magn. Reson., 209(2):352–358, 2011.
sh92
[4233] M. Shubin. Spectral theory of elliptic operators on noncompact manifolds. Ast´erisque, (207):5, 35–108, 1992.
frnaorshva13
[4234] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular
domains. Signal Processing Magazine, IEEE, 30(3):83–98, 2013.
hoshvawi13
[4235] D. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst.
Spectrum-adapted tight graph wavelet and vertex-frequency frames.
ArXiv e-prints, 2013.
sh94-3
[4236] A. Shustorovich. A subspace projection approach to feature extraction:
The two-dimensional Gabor transform for character recognition. Neural Networks, 7(8):1295 – 1301, 1994.
asbrbumopish11
[4237] A. M. Shuvavev, G. V. Astakhov, A. Pimenov, C. Br¨
une, H. Buhmann, and L. W. Molenkamp. Giant magneto-optical Faraday effect
in HgTe thin films in the terahertz spectral range. Phys. Rev. Lett.,
106-107404(10):4, 2011.
si11-2
[4238] W. Sickel. Radial subspaces of Besov-Lizorkin-Triebel spaces. 9:169–
215, 2011.
si12-2
[4239] W. Sickel. Smoothness spaces related to Morrey spaces: a survey. I.
Eurasian Math. J., 3(3):110–149, 2012.
si13
[4240] W. Sickel. Smoothness spaces related to Morrey spaces—a survey. II.
Eurasian Math. J., 4(1):82–124, 2013.
siskvy12
[4241] W. Sickel, L. Skrzypczak, and J. Vybiral. On the interplay of regularity and decay in case of radial functions I: Inhomogeneous spaces.
Commun. Contemp. Math., 14(1):1250005, 60 p., 2012.
siskvy14
[4242] W. Sickel, L. Skrzypczak, and J. Vybiral. Complex interpolation of
weighted Besov and Lizorkin-Triebel spaces. Acta Math. Sin. (Engl.
Ser.), 30(8):1297–1323, 2014.
375
si11-1
[4243] A. Sidi. Asymptotic expansions of Legendre series coefficients for
functions with interior and endpoint singularities. Math. Commun.,
80(275):1663–1684, 2011.
si81-1
[4244] E. Siebert. Fourier analysis and limit theorems for convolution semigroups on a locally compact group. Adv. in Math., 39(2):111–154,
1981.
si11-3
[4245] K. Siedenburg. Structured Sparsity in Time-Frequency Analysis. Master’s thesis, Humboldt University Berlin, 2011.
dokosi13-1
[4246] K. Siedenburg, M. Doerfler, and M. Kowalski. Audio Inpainting with
Social Sparsity. Proceedings of Spars2013, Lausanne, Switzerland,
July 2013.
dosi11
[4247] K. Siedenburg and M. D¨orfler. Structured sparsity for audio signals.
Proceedings of DAFX11, 2011.
dosi12
[4248] K. Siedenburg and M. D¨orfler. Audio denoising by generalized timefrequency thresholding. Proceedings of the AES 45th Conference on
Applications of Time-Frequency Processing, Helsinki, Finland, 2012.
dosi13
[4249] K. Siedenburg and M. D¨orfler. Persistent Time-Frequency Shrinkage
for Audio Denoising. J. Audio Eng. Soc., 61(1/2), 2013.
dokosi14
[4250] K. Siedenburg, M. Kowalski, and M. D¨orfler. Audio Declipping with
Social Sparsity. In Proc. ICASSP14, volume accepted, 2014.
si35
¨
[4251] C. Siegel. Uber
die analytische Theorie der quadratischen Formen.
Ann. Math. (2), 36:527–606, 1935.
si67
¨
[4252] C. Siegel. Transzendente Zahlen. Ubersetzung
aus dem Englischen
von B. Fuchssteiner und D. Laugwitz. B. I. Hochschultaschenb¨
ucher,
Band 137*. Bibliographisches Institut, Mannheim, 1967.
si52-1
[4253] W. Sierpinski. General Topology. Mathematical Expositions, No. 7.
University of Toronto Press, Toronto, 1952.
sito11
[4254] M. Signahl and J. Toft. Remarks on mapping properties for the
Bargmann transform on modulation spaces. Integral Transforms Spec.
Funct., 22(4-5):359–366, 2011.
376
si96-2
ˇ
[4255] H. Sikic.
Wavelets: convergence almost everywhere. Math. Commun.,
1(2):143–145, 1996.
si00
[4256] H. Sikic. Zero-one law for some Brownian functionals. J. Theor.
Probab., 13(2):571–574, 2000.
sisi01
[4257] H. Sikic and T. Sikic. A note on Ostrowski’s inequality. Math. Inequal. Appl., 4(2):297–299, 2001.
sisovo06
[4258] H. Sikic, R. Song, and Z. Vondracek. Potential theory of geometric
stable processes. Probab. Theory Relat. Fields, 135(4):547–575, 2006.
sisp07
[4259] H. Sikic and D. Speegle. Dyadic PFW’s and wo -bases. In J. H.-J.
G. Muic, editor, Functional analysis IX (Proceedings of the postgraduate school and conference, Dubrovnik, Croatia, June 15-23, 2005),
volume 48 of Various Publications Series, pages 85–90. University of
Aarhus, Department of Mathematical Sciences, 2007.
sispwe08
[4260] H. Sikic, D. Speegle, and G. Weiss. Structure of the set of dyadic
PFW’s. In David Royal Larson, editor, Frames and operator theory in analysis and signal processing (AMS-SIAM special session, San
Antonio, TX, USA, January 12-15, 2006), volume 451 of Contemporary Mathematics, pages 263–291. American Mathematical Society
(AMS), 2008.
sita02
[4261] H. Sikic and M. H. Taibleson. Elementary proof of the non-tangential
characterization of Lipschitz spaces. In D. Bakic, editor, Functional
analysis VII (Proceedings of the postgraduate school and conference,
Dubrovnik, Croatia, September 17-26, 2001), volume 46 of Various
Publications Series, pages 181–186. University of Aarhus, Department
of Mathematical Sciences, 2002.
sita05
[4262] H. Sikic and M. H. Taibleson. Brownian motion characterization of
some Besov-Lipschitz spaces on domains. J. Geom. Anal., 15(1):137–
180, 2005.
siwi01
[4263] H. Sikic and M. V. Wickerhauser. Information cost functions. Appl.
Comput. Harmon. Anal., 11(2):147–166, 2001.
siwi11
[4264] H. Sikic and E. Wilson. Lattice invariant subspaces and sampling.
Appl. Comput. Harmon. Anal., 31(1):26 – 43, 2011.
377
siza06
[4265] B. Silbermann and O. Zabroda. Asymptotic behavior of generalized
convolutions: an algebraic approach. J. Integral Equations Appl,
18(2):169–196, 2006.
si86
[4266] B. Silverman. Density estimation for statistics and data analysis.
Monographs on Statistics and Applied Probability. Chapman & Hall,
London, 1986.
basisp04
[4267] O. Simeone, Y. Bar Ness, and U. Spagnolini. Pilot-based channel
estimation for OFDM systems by tracking the delay-subspace. IEEE
Trans. Wireless Comm., 3:315–325, Jan. 2004.
merusize11
[4268] M. Simko, C. Mehlf¨
uhrer, T. Zemen, and M. Rupp. Inter-Carrier Interference Estimation in MIMO OFDM Systems with Arbitrary Pilot
Structure. Budapest, Hungary, May 2011.
si05
[4269] B. Simon. Functional Integration and Quantum Physics 2nd ed. Providence, RI: AMS Chelsea Publishing. xiv, 2005.
si11
[4270] B. Simon. Convexity: An Analytic Viewpoint, volume 187. Cambridge Univ Pr, 2011.
siwo00
[4271] R. Simon and K. Wolf. Fractional Fourier transforms in two dimensions. JOSA A, 17(12):2368–2381, 2000.
si12-1
[4272] D. Simovici. Linear algebra tools for data mining. Hackensack, NJ:
World Scientific, 2012.
si94
[4273] C. C. Sims. Computation with finitely presented groups, volume 48
of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1994.
cosi08
[4274] A. Singer and R. R. Coifman. Non-linear independent component analysis with diffusion maps. Appl. Comput. Harmon. Anal.,
25(2):226–239, 2008.
hashsizh11
[4275] A. Singer, Z. Zhao, Y. Shkolnisky, and R. A. Haddad. Viewing angle
classification of cryo-electron microscopy images using eigenvectors.
SIAM J. Imaging Sci., 4(2):723–759, 2011.
378
si12
[4276] A. Singh. TIME ENCODED COMPRESSION AND CLASSIFICATION USING THE INTEGRATE AND FIRE SAMPLER. PhD thesis, University of Florida, 2012.
sasi10
[4277] A. Singh and R. Saxena. Development of convolution theorem in
FRFT domain. In Signal processing and communications (SPCOM),
2010 International conference on, pages 1–3, Bangalore, 2010.
sasi12
[4278] A. Singh and R. Saxena. On convolution and product theorems for
FRFT. Wireless Personal Communications, 65(1):189–201, 2012.
siup12
[4279] C. Singh and R. Upneja. Fast and accurate method for high order
Zernike moments computation. Appl. Math. Comput., 218(15):7759–
7773, 2012.
siwa10
[4280] C. Singh and E. Walia. Fast and numerically stable methods for the
computation of Zernike moments. Pattern Recognition, 43(7):2497–
2506, 2010.
siupwa13
[4281] C. Singh, E. Walia, and R. Upneja. Accurate calculation of Zernike
moments. Inf. Sci., 233:255–275, 2013.
kukusi11
[4282] G. Singh, R. Kumar, and U. Kumar. On shrinking retro Banach
frames. Int. J. Pure Appl. Math., 70(4):425–432, 2011.
kusivi10
[4283] G. Singh, Virender, and U. Kumar. On atomic decompositions in
Banach spaces. Int. J. Math. Anal., Ruse, 4(9-12):481–488, 2010.
siXX
[4284] R. Singh. Invertible Composition Operators on l2 (λ). Proc. Amer.
Math. Soc.
sj97-1
[4285] P. Sj¨ogren. Operators associated with the Hermite semigroup - a survey. 1997.
sjva08
[4286] P. Sj¨ogren and M. Vallarino. Boundedness from h1 to l1 of Riesz
transforms on a Lie group of exponential growth. Ann. Inst. Fourier
(Grenoble), 58(4):1117–1151, 2008.
sjva11
[4287] P. Sj¨ogren and M. Vallarino. Heat maximal function on a Lie group
of exponential growth. to be published, 2011.
379
sk85
[4288] B.-S. Skagerstam. Quasi-coherent states for unitary groups. J. Phys.
A, 18(1):1–13, 1985.
sk83
[4289] B. Sklar. A structured overview of digital communications-A tutorial
review-part I. Communications Magazine, IEEE, 21(5):4–17, 1983.
sk01-1
[4290] B. Sklar. Digital Communications: Fundamentals and Applications.
Prentice Hall PTR, 2 edition, 2001.
sk14
[4291] M. Skopina. Band-limited scaling and wavelet expansions. Appl. Comput. Harmon. Anal., 36(1):143 – 157, 2014.
sk93
[4292] L. Skrzypczak. Besov spaces and function series on Lie groups. Commentat. Math. Univ. Carol., 34(1):139–147, 1993.
sk93-1
[4293] L. Skrzypczak. Besov spaces and function series on Lie groups II.
Collect. Math., 44(1-3):269–277, 1993.
sk97
[4294] L. Skrzypczak. Besov spaces on symmetric manifolds – the atomic
decomposition. Studia Math., 124(3):215–238, 1997.
sk98
[4295] L. Skrzypczak. Atomic decompositions on manifolds with bounded
geometry. Forum Math., 10(1):19–38, 1998.
sk98-1
[4296] L. Skrzypczak. Spherical transform and Besov spaces on semisimple
Lie groups. Funct. Approx. Comment. Math., 26:181–187, 1998.
sk99
[4297] L. Skrzypczak. Heat and harmonic extensions for function spaces of
Hardy-Sobolev-Besov type on symmetric spaces and Lie groups. J.
Approx. Theory, 96(1):149–170, 1999.
sk03
[4298] L. Skrzypczak. Heat extensions, optimal atomic decompositions and
Sobolev embeddings in presence of symmetries on manifolds. Math.
Z., 243(4):745–773, 2003.
kosl54
[4299] J. Slater and G. Koster. Simplified LCAO method for the periodic
potential problem. Physical Review, 94(6):1498, 1954.
sl62
[4300] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell
System Tech. J., 41:463–501, 1962.
380
sl64
[4301] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and
uncertainity. IV. Extensions to many dimensions; generalized prolate
spheroidal functions. Bell System Tech. J., 43:3009–3057, 1964.
sl65
[4302] D. Slepian. Some asymptotic expansions for prolate spheroidal wave
functions. J. Math. and Phys., 44:99–140, 1965.
sl38
[4303] E. Slutsky. Sur les fonctions al´eatoires presque p´eriodiques et
sur la d´ecomposition des fonctions al´eatoires stationnaires en composantes. Actual. sci. industr. 738, 33-55. (Conf´er. internat. Sci.
math. Univ. Gen`eve. Th´eorie des probabilit´es. V: Les fonctions
al´eatoires.) (1938)., 1938.
sm97-1
[4304] D. Smalley. Spectromorphology: explaining sound-shapes. Organised
Sound, 2(2), August 1997.
sm98-1
[4305] H. F. Smith. A parametrix construction for wave equations with C 1,1
coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998.
sm08
[4306] J. Smith. Mathematics of the Discrete Fourier Transform (DFT) with
Audio Applications. W3K, 2008.
sm04
[4307] M. Smith. The reproducing kernel thesis for Toeplitz operators on
the Paley-Wiener space. Integr. Equ. Oper. Theory, 49(1):111–122,
2004.
sm05
[4308] M. Smith. The spectral theory of Toeplitz operators applied to approximation problems in Hilbert spaces. Constr. Approx., 22(1):47–65,
2005.
sm06
[4309] M. Smith. From the DFT to wavelet transforms. In Proc. SPIE 6247,
Wavelet pioneer award; Independent component analyses, wavelets,
unsupervised smart sensors, and neural networks IV, volume 6247,
pages 624702–1624702–8, Orlando (Kissimmee), FL — April 17,
2006, 2006. SPIE.
sm91
[4310] R. Smith. Toeplitz operators and algebras of bounded analytic functions on the disk. Glasgow Math. J., 33(2):181–185, 1991.
sm85
[4311] W. Smith. BM O(ρ) and Carleson measures. Trans. Amer. Math.
Soc., 287(1):107–126, 1985.
381
muscsm98
[4312] A. Smola, B. Sch¨olkopf, and K.-R. M¨
uller. The connection between
regularization operators and support vector kernels. Neural networks,
11(4):637–649, 1998.
smtotr02
[4313] O. Smolyanov, A. Tokarev, and A. Truman. Hamiltonian Feynman
path integrals via the Chernoff formula. J. Math. Phys., 43(10):5161–
5171, 2002.
sn08
[4314] J. Sniatycki. Geometric quantization, reduction and decomposition of
group representations. J. Fixed Point Theory Appl., 3(2):307–315,
2008.
so97
[4315] P. Soardi. Wavelet bases in rearrangement invariant function spaces.
Proc. Amer. Math. Soc., 125(12):3669–3673, 1997.
sowe98
[4316] P. Soardi and D. Weiland. Single wavelets in n-dimensions. J. Fourier
Anal. Appl., 4(3):299–315, 1998.
so64
[4317] S. Sobolev. Partial Differential Equations of Mathematical Physics.
Oxford-London-New York-Paris-Frankfurt: Pergamon Press. X, 430
p., 1964.
so13
[4318] F. Soltani. Heisenberg-Pauli-Weyl uncertainty inequality for the
Dunkl transform on Rd . Bull. Austral. Math. Soc., 87(2):316–325,
2013.
caelso14
[4319] M. Soltanolkotabi, E. Elhamifar, and E. Cand`es. Robust subspace
clustering. Ann. Statist., 42(2):669–699, 2014.
so12-1
[4320] M. Soltys. An introduction to the analysis of algorithms. (to appear
in june 2012). 2nd ed. World Scientific, Hackensack, NJ, 2012.
so12
[4321] P. Sondergaard. Efficient algorithms for the discrete Gabor transform
with a long FIR window. J. Fourier Anal. Appl., 18(3):456–470, 2012.
basoto12
[4322] P. Sondergaard, B. Torr´esani, and P. Balazs. The Linear Time Frequency Analysis Toolbox. International Journal of Wavelets, Multiresolution and Information Processing, 10(4):1250032, 2012.
geso13
[4323] G. Song and A. Gelb. Approximating the inverse frame operator from
localized frames. Appl. Comput. Harmon. Anal., 35(1):94 – 110, 2013.
382
sozh02
[4324] T.-Q. Song and Y.-J. Zhu. n-particle entangled states in the n-mode
Fock space. Mod. Phys. Lett. B, 16(17):631–636, 2002.
so13-1
[4325] S. Sontz. Paragrassmann Algebras as Quantum Spaces Part I: Reproducing Kernels. In Geometric Methods in Physics, pages 47–63.
Springer, 2013.
elkaso01
[4326] B. Soon, P. Eloe, and D. Kammler. The fast Fourier transform
method and ill-conditioned matrices. Appl. Math. Comput., 117(23):117–129, 2001.
so92-2
[4327] D. C. Sorensen. Implicit application of polynomial filters in a k-step
Arnoldi method. SIAM J. Matrix Anal. Appl, 13(1):357–385, 1992.
chso89
[4328] M. Soumekh and J.-H. Choi. Reconstruction in diffraction imaging.
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions
on, 36(1):93 –100, jan. 1989.
fapascso10
[4329] A. Soumelidis, Z. Fazekas, F. Schipp, and M. Pap. Discrete orthogonality of Zernike functions and its application to corneal measurements. In A. Soumelidis, Z. Fazekas, M. Pap, F. Schipp, S.-I. Ao,
and L. Gelman, editors, Electronic Engineering and Computing Technology, volume 60 of Lecture Notes in Electrical Engineering, pages
455–469. Springer Netherlands, 2010.
bopascso02
[4330] A. Soumelidis, M. Pap, F. Schipp, and J. Bokor. Frequency domain identification of partial fraction models. In 15th Triennial
World Congress of the International Federation of Automatic Control, page 6, Barcelona, Spain, July 2002.
so46
[4331] R. Southwell. Relaxation methods in Theoretical physics. Oxford: At
the Clarendon Press. VII, 248 p., 1946.
sp62
[4332] H. Spang. A review of minimization techniques for nonlinear functions. SIAM Rev., 4(4):343–365, 1962.
sp78-1
[4333] G. Sparr. Interpolation of weighted Lp -spaces. Studia Math., 62:229–
271, 1978.
sp72
[4334] E. Spence. m-symplectic matrices. Trans. Amer. Math. Soc., 170:447–
457, 1972.
383
kusp77
[4335] V. Spevakov and A. Kudrjavcev. Absolute summability of orthogonal
series by Euler’s method. Math. Notes, 21:29–32, 1977.
spsrXX
[4336] D. Spielman and N. Srivastava. An elementary proof of the restricted
invertibility theorem. Israel J. Math., to appear.
sp86
[4337] M. Spivak. The joy of TeX. A gourmet guide to typesetting with the
AMS-TeX macro package. Providence, RI: American Mathematical
Society (AMS), 1986.
sq78
[4338] W. Squire. Numerical Fourier transformation: singularity expansions
and product integration. Int. J. Numer. Methods Eng., 12:1473–1477,
1978.
jaklnisr10
[4339] S. Srinivasan, K. Janse, M. Nilsson, and W. Kleijn. Two-channel
speech denoising through minimum tracking. Electronics letters,
46(2):177–179, 2010.
bhonsr93
[4340] V. Srinivasan, P. Bhatia, and S. Ong. A fast implementation of the
discrete 2-D Gabor transform. Signal Process., 31(2):229 – 233, 1993.
ahsr12
[4341] A. Srivastava and M. Ahmad. Integral transforms and Fourier series. New Delhi: Narosa Publishing House and Oxford: Alpha Science
International. 176 p., 2012.
srve13
[4342] N. Srivastava and R. Vershynin. Covariance estimation for distributions with 2+epsilon moments. Ann. Probab., 41, 2013.
rasr06
[4343] V. Srivastava and N. Ramesh. New classes of orthogonal polynomials.
International journal of quantum chemistry, 106(5):1258–1266, 2006.
crflsr07
[4344] F. Sroubek, G. Cristobal, and J. Flusser. A unified approach to superresolution and multichannel blind deconvolution. IEEE Trans. Image
Process., 16(9):2322–2332, 2007.
flsr03
[4345] F. Sroubek and J. Flusser. Multichannel blind iterative image restoration. IEEE Trans. Image Process., 12(9):1094–1106, 2003.
flsr05
[4346] F. Sroubek and J. Flusser. Multichannel blind deconvolution of spatially misaligned images. IEEE Trans. Image Process., 14(7):874–883,
2005.
384
misr12
[4347] F. Sroubek and P. Milanfar. Robust multichannel blind deconvolution via fast alternating minimization. IEEE Trans. Image Process.,
21(4):1687–1700, 2012.
st70-2
[4348] J. Stafney. Analytic interpolation of certain multiplier spaces. Pacific
J. Math., 32:241–248, 1970.
st88
[4349] I. Stan. Interpolation of 2n Banach spaces with a function parameter.
In Proceedings of the Seminar on Mathematics and Physics (Romanian) (Timi¸soara, 1988), pages 31–36. Inst. Politehnic “Traian Vuia”,
Timi¸soara, 1988.
st95-3
[4350] L. Stankovic. A method for improved distribution concentration in the
time-frequency analysis of multicomponent signals using the L-Wigner
distribution. IEEE Trans. Signal Process., 43(5):1262–1268, 1995.
st97
[4351] R. Stanley. Enumerative Combinatorics, Volume I. Cambridge University Press, 1997.
sost11
[4352] H.-G. Stark and N. Sochen. Square Integrable Group Representations andtheUncertainty Principle. J. Fourier Anal. Appl., 17:916–
931, 2011.
hast10
[4353] W.-H. Steeb and Y. Hardy. Quantum Mechanics Using Computer algebra Includes Sample Programs In t C++, Symbolic C++, Maxima,
Maple, and Mathematica 2nd Ed. Hackensack, NJ: World Scientific.
x, 2010.
hast11
[4354] W.-H. Steeb and Y. Hardy. Matrix Calculus And Kronecker Product
A Practical Approach To Linear And Multilinear algebra (to Appear)
2nd Ed. Hackensack, NJ: World Scientific. 320 p., 2011.
gerest10
[4355] W. Stefan, R. Renaut, and A. Gelb. Improved total variation-type
regularization using higher order edge detectors. SIAM J. Imaging
Sci., 3(2):232–251, 2010.
shst11
[4356] E. M. Stein and R. Shakarchi. Functional Analysis: Introduction to
further Topics in Analysis. 2011.
stza14
[4357] H. Steinacker and J. Zahn. An extended standard model and its Higgs
geometry from the matrix model. Progress of Theoretical and Experimental Physics, 2014,(8,), 2014.
385
st13
[4358] S. Steinberger. A Geometric Uncertainty Principle with an Application to Pleijel’s Estimate. Ann. Henri Poincar´e, December 2013.
st80-4
[4359] A. Steiner. Plancherel’s theorem and the Shannon series derived simultaneously. Amer. Math. Monthly, 87:193–197, 1980.
stta14
[4360] K. Stempak and X. Tao. Local Morrey and Campanato spaces on
quasimetric measure spaces. J. Funct. Spaces, pages Art. ID 172486,
15, 2014.
st93-3
[4361] F. Stenger. Numerical methods based on Sinc and analytic functions.
Springer New York, 1993.
st25
[4362] W. Stepanoff. Uber einige Verallgemeinerungen der fast periodischen
Funktionen. Mathematische Annalen, 95:473–498,, 1925.
st81
[4363] V. D. Stepanov. On multipliers of Fourier integrals. Sov. Math.,
Dokl., 23:645–647, 1981.
st82-2
[4364] V. D. Stepanov. On a criterion of approximation of the identitiy
in Lp (En ) by convolution transforms of dilation type. Anal. Math.,
8:233–238, 1982.
st82-1
[4365] V. D. Stepanov. On periodic multipliers of Fourier integrals. Mat.
Zametki, 32:141–150, 1982.
st92-3
[4366] V. D. Stepanov. Weighted inequalities for a class of Volterra convolution operators. J. London Math. Soc. (2), 45(2):232–242, 1992.
st07-3
[4367] A. Stern. Sampling of compact signals in offset linear canonical transform domains. Signal, Image and Video Processing, 1(4):359–367,
2007.
st08-1
[4368] A. Stern. Uncertainty principles in linear canonical transform domains and some of their implications in optics. JOSA A, 25(3):647–
652, 2008.
st78-3
[4369] S. Sternberg. Some recent results on the metaplectic representation.
In Group theoretical methods in physics (Sixth Internat. Colloq.,
T¨
ubingen, 1977), volume 79 of Lecture Notes in Phys., pages 117–
143. Springer, Berlin-New York, 1978.
386
st04-4
[4370] R. Stevenson. On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal., 35(5):1110–1132, 2004.
st10-4
[4371] S. Stevic. On operator from the logarithmic Bloch-type space to
the mixed-norm space on the unit ball. Appl. Math. Comput.,
215(12):4248–4255, 2010.
st12-1
[4372] E. G. Steward. Fourier Optics: An Introduction. Dover Publications,
2012.
st93-4
[4373] G. Stewart. On the early history of the singular value decomposition.
SIAM Rev., 35(4):551–566, 1993.
st96-2
[4374] G. Stewart. Afternotes on numerical analysis A series of Lectures on
Elementary numerical analysis Presented At the University of Maryland At College Park and Recorded After the Fact. Philadelphia, PA:
SIAM, 1996.
st98-2
[4375] G. Stewart. Afternotes goes to Graduate School Lectures on Advanced Numerical Analysis. Philadelphia, PA: SIAM, 1998.
st55
[4376] W. Stinespring. Positive functions on C ∗ -algebras. Proc. Amer. Math.
Soc., 6:211–216, 1955.
stto10
[4377] P. Stinga and J.-L. Torrea. Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential
Equations, 35(10-12):2092–2122, 2010.
stto11
[4378] P. R. Stinga and J.-L. Torrea. Regularity theory for the fractional
harmonic oscillator. J. Funct. Anal., 260(10):3097 – 3131, 2011.
st07-4
[4379] R. G. Stockwell. A basis for efficient representation of the Stransform. Digital Signal Processing, 17(1):371 – 393, 2007.
bast12
[4380] D. T. Stoeva and P. Balazs. Invertibility of multipliers. Appl. Comput. Harmon. Anal., 33(2):292–299, 2012.
bast13
[4381] D. T. Stoeva and P. Balazs. Canonical forms of unconditionally convergent multipliers. J. Math. Anal. Appl., 399:252–259, 2013.
387
st99-6
[4382] M. Stojanovic. Underwater Acoustic Communications. In M. Stojanovic and J. G. Webster, editors, Encyclopedia of Electrical and
Electronics Engineering, volume 22, pages 688–698. John Wiley &
Sons, 1999.
st09-6
[4383] M. Stojnic. Various thresholds for ell 1-optimization in compressed
sensing. ArXiv e-prints, jul 2009.
hapast09
[4384] M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of
block-sparse signals with an optimal number of measurements. IEEE
Trans. Signal Process., 57:3075–3085, Aug. 2009.
st11
[4385] R. Stokke. Homomorphisms of convolution algebras. J. Funct. Anal.,
261(12):3665 – 3695, 2011.
st14
[4386] M. Stoll. Littlewood-Paley theory for subharmonic functions on the
unit ball in RN . J. Math. Anal. Appl., (0):–, 2014.
st10
[4387] P. Stollmann. A dual characterization of length spaces with application to Dirichlet metric spaces. Studia Math., 198(3):221–233, 2010.
st93-2
[4388] G. Strang. The fundamental theorem of linear algebra. Amer. Math.
Monthly, 100(9):848–855, 1993.
st10-3
[4389] G. Strang. Banded matrices with banded inverses and A= LPU. In
Proceedings of ICCM2010 (International Congress of Chinese Mathematicians, Beijing, 2010.
st10-2
[4390] G. Strang. Fast transforms: Banded matrices with banded inverses.
Proceedings of the National Academy of Sciences, 107(28):12413,
2010.
st11-1
[4391] G. Strang. Groups of banded matrices with banded inverses. 139:4255–
4264, 2011.
st01-3
[4392] G. Strecker. 10 Rules for Surviving as a Mathematician and Teacher.
Categorical Perspectives, page 91, 2001.
st83-3
[4393] R. S. Strichartz. Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal., 52(1):48–79, 1983.
388
st89-2
[4394] R. S. Strichartz. Harmonic analysis as spectral theory of Laplacians.
J. Funct. Anal., 87(1):51–148, 1989.
st89-1
[4395] R. S. Strichartz. Uncertainty principles in harmonic analysis. J.
Funct. Anal., 84(1):97–114, 1989.
st00-7
[4396] R. S. Strichartz. Mock Fourier series and transforms associated with
certain Cantor measures. J. Anal. Math., 81:209–238, 2000.
st06-5
[4397] R. S. Strichartz. Convergence of mock Fourier series. J. Anal. Math.,
99:333–353, 2006.
st00-6
[4398] T. Strohmer. OFDM, Laurent operators, and time-frequency localization. In Proc. SPIE 4119, 48, 2000.
arst10
[4399] T. Strohmer and P. Arogyaswami. Method for pulse shape design for
OFDM. feb 2010.
frst12
[4400] T. Strohmer and B. Friedlander. Analysis of sparse MIMO radar.
Appl. Comput. Harmon. Anal., to appear.
stwa13
[4401] T. Strohmer and H. Wang. Accurate detection of moving targets via
random sensor arrays and Kerdock codes. preprint, 2013.
st11-2
[4402] J. Strom. Modern classical homotopy theory. Graduate Studies in
Mathematics 127. Providence, RI: American Mathematical Society
(AMS). xxi, 2011.
st12
[4403] M. Stroppel. Kernels of linear representations of Lie groups, locally
compact groups, and pro-Lie groups. J. Group Theory, 15(3):407–437,
2012.
st74
[4404] R. Struble. Representations of Fourier transforms for distributions.
Bull. Inst. Math. Acad. Sinica, 2:191–206, 1974.
st08-2
[4405] M. Struwe. Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys
in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,
Berlin, Fourth edition, 2008.
389
bainlimcprst04
[4406] G. Stuber, J. Barry, S. McLaughlin, Y. Li, M. Ingram, and T. Pratt.
Broadband mimo-ofdm wireless communications. Proc. IEEE, 92:271–
294, Feb. 2004.
blst00
[4407] H. St¨
uer and S. Blaser. Interpolation of scattered 3D PTV data to a
regular grid. Flow, turbulence and combustion, 64(3):215–232, 2000.
st95-4
[4408] K.-T. Sturm. Analysis on local Dirichlet spaces. II. Upper Gaussian
estimates for the fundamental solutions of parabolic equations. Osaka
J. Math., 32(2):275–312, 1995.
st14-1
[4409] K.-T. Sturm. A monotone approximation to the Wasserstein diffusion. In Singular phenomena and scaling in mathematical models,
pages 25–48. 2014.
chsu01
[4410] X. Su and W. Chen. Fourier transform profilometry: a review. Optics
and Lasers in Engineering, 35(5):263 – 284, 2001.
su04
[4411] D. Su´arez. Approximation and symbolic calculus for Toeplitz algebras
on the Bergman space. Rev. Mat. Iberoam., 20(2):563–610, 2004.
su04-1
[4412] D. Su´arez. The Toeplitz algebra on the Bergman space coincides with
its commutator ideal. J. Operator Theory, 51(1):105–114, 2004.
su05-2
[4413] D. Su´arez. Approximation and the n-Berezin transform of operators
on the Bergman space. J. Reine Angew. Math., 581:175–192, 2005.
su07-1
[4414] D. Su´arez. The essential norm of operators in the Toeplitz algebra on
Ap (Bn ). Indiana Univ. Math. J., 56(5):2185–2232, 2007.
su08-2
[4415] D. Su´arez. The eigenvalues of limits of radial Toeplitz operators. Bull.
Lond. Math. Soc., 40(4):631–641, 2008.
su08-1
[4416] K. Subramanian. Higher-order Gabor spectra a mathematical model
for signal processing, 2008.
bhchsu95
[4417] E. Sudarshan, C. Chiu, and G. Bhamathi. Generalized uncertainty
relations and characteristic invariants for the multimode states. Phys.
Rev. A (3), 52(1):43–54, 1995.
390
sutowa11
[4418] M. Sugimoto, N. Tomita, and B. Wang. Remarks on nonlinear operations on modulation spaces. Integral Transforms Spec. Funct., 22(45):351–358, 2011.
su90
[4419] M. Sugiura. Unitary Representations and Harmonic Analysis, volume 44 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam and Kodansha, Ltd., Second edition, 1990.
suto12
[4420] F. Sukochev and A. Tomskova. Schur multipliers associated with symmetric sequence spaces. Math. Notes, 92(6):830–833, 2012.
su13-2
[4421] C. S¨
umeyye. Polynomials and Fast Fourier Transform. Master’s
thesis, University of Vienna, 2013.
gosu09
[4422] J. Sun and V. K. Goyal. Optimal quantization of random measurements in compressed sensing. In Information Theory, 2009. ISIT 2009.
IEEE International Symposium on, pages 6–10, 2009.
su11
[4423] Q. Sun. Localized nonlinear functional equations and two sampling
problems in signal processing. preprint, 2011.
su11-1
[4424] Q. Sun. Wieners lemma for infinite matrices II. Constr. Approx.,
34(2):209–235, 2011.
su13
[4425] Q. Sun. Localized nonlinear functional equations and two sampling
problems in signal processing. Adv. Comput. Math., Revised proof:1–
44, 2013.
suzh96
[4426] S. Sun and D. Zheng. Toeplitz operators on the polydisk. Proceedings
of the American Mathematical Society, pages 3351–3356, 1996.
suzh09-1
[4427] S. Sun and D. Zheng. Beurling type theorem on the Bergman space via
the Hardy space of the bidisk. Sci. China Ser. A, 52(11):2517–2529,
2009.
lisuwaxiyo14
[4428] T. Sun, F. Xing, Z. You, X. Wang, and B. Li. Smearing model and
restoration of star image under conditions of variable angular velocity
and long exposure time. Optics express, 22(5):6009–6024, 2014.
su10-3
[4429] W. Sun. Homogeneous approximation property for wavelet frames
with matrix dilations. Math. Nachr., 283(10):1488–1505, 2010.
391
su12
[4430] W. Sun. Inversion formula for the windowed Fourier transform.
Math. Nachr., 285(7):914–921, 2012.
suya11
[4431] W. Sun and X. Yang. Nonrigid image registration based on control
point matching and shifting. Opt. Eng., 50(2, Article 027006):10,
February 2011.
suza11
[4432] W. Sun and L. Zang. Invertible sequences of bounded linear operators.
Acta Mathematica Scientia, 31(5):1939 – 1944, 2011.
susu10
[4433] X. Sun and W. Sun. Inversion formula for the windowed Fourier
transform, II. Adv. Comput. Math., pages 1–14, 2010.
lisuwezh06
[4434] Y. Sun, Y. Zhou, S.-G. Li, and G. Wei. A windowed Fourier pseudospectral method for hyperbolic conservation laws. J. Comput. Phys.,
214(2):466–490, 2006.
suzh10
[4435] C. Sundberg and D. Zheng. The spectrum and essential spectrum of
Toeplitz operators with harmonic symbols. Indiana Univ. Math. J.,
59(1):385–394, 2010.
su51
[4436] M. Suzuki. On the lattice of subgroups of finite groups. Transactions
of the American Mathematical Society, 70(2):345–371, 1951.
sv78
[4437] A. Sveshnikov. Problems in probability theory, mathematical statistics and theory of random functions. Dover Publications Inc., New
York, 1978.
sw62
[4438] R. Swan. Vector bundles and projective modules. Transactions of the
American Mathematical Society, 105(2):264–277, 1962.
sw77
[4439] R. Swan. Topological examples of projective modules. Trans. Amer.
Math. Soc., 230, 1977.
mysw71
[4440] C. Swartz and D. Myers. Random functionals on K{Mp } spaces.
Studia Math., 39:233–240, 1971.
mysw72
[4441] C. Swartz and D. Myers. Correction to the paper ”Random functionals on K{Mp } spaces”. Studia Math., 43:273, 1972.
392
sw77-1
sw04
[4442] P. Swarztrauber. The methods of cyclic reduction, Fourier analysis
and the FACR algorithm for the discrete solution of Poisson’s equation
on a rectangle. SIAM Rev., 19(3):490–501, 1977.
[4443] C. Sweezy.
Subspaces of L1 (Rd ).
132(12):3599–3606, 2004.
Proc. Amer. Math. Soc.,
pisw09
[4444] E. Swiercz and A. Pieniezny. Detection-recognition algorithm based
on the Gabor transform for unknown signals embedded in unknown
noise. Math. Comput. Simul., 80(2):270–293, 2009.
hasy08
[4445] K. Sydsaeter and P. Hammond. Mathematik f¨
ur Wirtschaftswissenschaftler. Pearson Deutschland GmbH, 2008.
sy71
[4446] J. Synge. Geometrical approach to the Heisenberg uncertainty relation
and its generalization. Proc. Roy. Soc. London Ser. A, 325:151–156,
1971.
bofesz99
[4447] Z. Szabo, J. Bokor, and F. Schipp. Identification of rational approximate models in h∞ using generalized orthonormal basis. IEEE Trans.
Automat. Control, 44(1):153–158, 1999.
sz79
[4448] A. Szaz. Discrete Fourier analysis for quotient multipliers. Math.
Nachr., 93:233–238, 1979.
mrsz12
[4449] D. Szczepanik and J. Mrozek. Electron population analysis using a
reference minimal set of atomic orbitals. Computational and Theoretical Chemistry, 996(0):103 – 109, 2012.
mrsz13
[4450] D. Szczepanik and J. Mrozek. On several alternatives for L¨owdin
orthogonalization.
Computational and Theoretical Chemistry,
1008(0):15 – 19, 2013.
sz06
[4451] R. Szeliski. Image alignment and stitching: a tutorial. Found. Trends
Comput. Graph. Vis., 2(1):109 p., 2006.
casz84
[4452] H. Szu and H. Caulfield. The mutual time-frequency content of two
signals. Proceedings of the IEEE, 72(7):902 – 908, july 1984.
hehejeta11
[4453] C. Taal, R. Hendriks, R. Heusdens, and J. Jensen. An Evaluation
of Objective Measures for Intelligibility Prediction of Time-Frequency
393
Weighted Noisy Speech (In Press). Journal of the Acoustical Society
of America, 2011.
napota99
[4454] A. Tabernero, J. Portilla, and R. Navarro. Duality of log-polar image representations in the space and spatial-frequency domains. IEEE
Trans. Signal Process., 47:2469–2479, 1999.
hoosta07
[4455] X.-C. Tai, S. Osher, and R. Holm. Image inpainting using a TVStokes equation. In K.-A. L. Xue-Cheng Tai, editor, Image processing
based on partial differential equations. Part I: Digital image inpainting, image dejittering, and optical flow estimation, Mathematics and
Visualization, pages 3–22, CMA, Oslo, 2007. Springer.
ta68-1
[4456] M. H. Taibleson. Harmonic analysis on n-dimensional vector spaces
over local fields. I. Basic results on fractional integration. Math. Ann.,
176:191–207, 1968.
mita10
[4457] H. Takeda and P. Milanfar. Locally adaptive kernel regression for
space-time super-resolution. Super-Resolution Imaging, 1:63, 2010.
mita11
[4458] H. Takeda and P. Milanfar. Locally adaptive Kernel regression for
space-time super-resolution. from the book: Super-Resolution Imaging
(edited by Peyman Milanfar). CRC Press (Taylor &amp and amp and
Francis Group), 2011.
ta69-1
[4459] M. Takesaki. A characterization of group algebras as a converse
of Tannaka-Stinespring-Tatsuuma duality theorem. Amer. J. Math.,
91:529–564, 1969.
ta84-1
[4460] M. Talagrand. Pettis integral and measure theory. Mem. Amer. Math.
Soc., 51(307):ix+224, 1984.
ta85
[4461] M. Talagrand. Classes de Donsker et ensembles pulv´eris´es (Donsker
classes and shattered sets). C. R. Acad. Sci., Paris, S´er. I, 300:161–
163, 1985.
ta87
[4462] M. Talagrand. Regularity of Gaussian processes. Acta Math., 159(12):99–149, 1987.
ta96-4
[4463] M. Talagrand. A new look at independence. Ann. Probab., 24(1):1–
34, 1996.
394
ta96-3
[4464] M. Talagrand. Majorizing measures: the generic chaining. Ann.
Probab., 24(3):1049–1103, 1996.
ta01-2
[4465] M. Talagrand. Majorizing measures without measures. Ann. Probab.,
29(1):411–417, 2001.
ta10
[4466] M. Talagrand. Mean Field Models for Spin Glasses. Volume I: Basic
Examples. Springer, 2010.
cata98
[4467] A. Talukder and D. Casasent. Multiscale Gabor wavelet fusion for
edge detection in microscopy images. In Proc. SPIE: Wavelet Applications V, volume 3391 of Pattern Recognition, page 12, Orlando,
FL, USA, 1998.
ta32
[4468] J. Tamarkin. On the compactness of the space Lp . Bull. Amer. Math.
Soc., 38:79–84, 1932.
ta09-1
[4469] E. Tam´asi. Eigenvalue distribution of semi-elliptic operators in
anisotropic Sobolev spaces. Z. Anal. Anwend., 28(2):233–248, 2009.
tazh14
[4470] C. Tan and X. Zhuang. The common Hardy space and BMO space for
singular integral operators associated with isotropic and anisotropic
homogeneity. J. Math. Anal. Appl., 414(1):480–487, 2014.
hutaya09
[4471] L. Tan, L. Yang, and D. Huang. Necessary and sufficient conditions
for the Bedrosian identity. J. Integral Equations Appl., 21(1):77–94,
2009.
hutaya10
[4472] L. Tan, L. Yang, and D. Huang. Construction of periodic analytic
signals satisfying the circular Bedrosian identity. IMA J. Appl. Math.,
75(2):246–256, 2010.
ta12-2
[4473] K. Tanaka. Atomic decomposition of harmonic Bergman functions.
Hiroshima Mathematical Journal, 42(2):143–160, 2012.
ta12-3
[4474] L. Tang. Weighted local Hardy spaces and their applications. Illinois
J. Math., 56(2):453–495, 2012.
noreta12
[4475] Z. Tang, R. Remis, and M. Nordenvaad. On preconditioned conjugate
gradient method for time-varying OFDM channel equalization. pages
3197 – 3200, March 2012.
395
tawe13
[4476] J. Tanner and K. Wei. Normalized iterative hard thresholding for
matrix completion. SIAM J. Sci. Comput., 59(11):7491–7508, 2013.
kwta01
[4477] L. Tao and H. K. Kwan. Real-valued discrete Gabor transform for
image representation. In Circuits and Systems, 2001. ISCAS 2001.
The 2001 IEEE International Symposium on, volume 2, pages 589–
592, 2001.
kwta08-1
[4478] L. Tao and H. K. Kwan. Novel DCT-based real-valued discrete Gabor transform. In Circuits and Systems, 2008. ISCAS 2008. IEEE
International Symposium on, pages 1164 –1167, Seattle, WA, may
2008.
kwta09
[4479] L. Tao and H. K. Kwan. Fast parallel approach for 2-D DHT-based
real-valued discrete Gabor transform. IEEE Trans. Image Process.,
18(12):2790–2796, 2009.
kwta09-1
[4480] L. Tao and H. K. Kwan. Novel DCT-based real-valued discrete Gabor transform and its fast algorithms. IEEE Trans. Signal Process.,
57(6):2151–2164, 2009.
gukwta10
[4481] L. Tao, H. K. Kwan, and J.-J. Gu. Filterbank-based fast parallel algorithms for real-valued discrete Gabor expansion and transform. In
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 2674 –2677, 30 2010-june 2 2010.
detawa06-1
[4482] R. Tao, B. Deng, and Y. Wang. Research progress of the fractional
Fourier transform in signal processing. Science in China Series F:
Information Sciences, 49(1):1–25, 2006.
aglitawa08
[4483] R. Tao, B. Li, Y. Wang, and G. Aggrey. On sampling of band-limited
signals associated with the linear canonical transform. IEEE Trans.
Signal Process., 56(11):5454–5464, 2008.
lilitawa09
[4484] R. Tao, X.-M. Li, Y.-L. Li, and Y. Wang. Time-delay estimation of
chirp signals in the fractional Fourier domain. IEEE Trans. Signal
Process., 57(7):2852–2855, 2009.
ta10-1
[4485] T. Tao. An Epsilon of Room, I: Real analysis Pages from Year Three
of a mathematical Blog. Graduate Studies in Mathematics 117. Providence, RI: American Mathematical Society (AMS). xi, 2010.
396
ta11-3
[4486] T. Tao. An Introduction to Measure Theory, volume 126. AMS,
2011.
ta12-1
[4487] T. Tao. Higher Order Fourier Analysis. Providence, RI: American
Mathematical Society (AMS), 2012.
tavu12
[4488] T. Tao and V. Vu. The Littlewood-Offord problem in high dimensions
and a conjecture of Frankl and F¨
uredi. Combinatorica, 32(3):363–372,
2012.
ta13-1
[4489] T. V. Tararykova. Comments on definitions of general local and global
Morrey-type spaces. Eurasian Math. J., 4(1):125–134, 2013.
ta10-3
[4490] M. Tarnauceanu. An arithmetic method of counting the subgroups of
a finite abelian group. Bull. Math. Soc. Sci. Math. Roumanie (NS),
53(101):373–386, 2010.
caseta98
[4491] V. Tarokh, N. Seshadri, and R. Calderbank. Space-time Codes for
High Data Rate Wireless Communications: Performance Criterion
and Code Construction. IEEE Trans. Inform. Theory, 44:744–765,
Mar. 1998.
ta11-4
[4492] A. R. Tarrida.
Springer, 2011.
Affine Maps, Euclidean Motions and Quadrics.
ta07-1
[4493] L. Tartar. An Introduction to Sobolev Spaces and Interpolation
Spaces. Lecture Notes of the Unione Matematica Italiana 3. Berlin:
Springer. xxvi, 218 p., 2007.
ta09-2
[4494] H. Tasaki. Convergence rates of approximate sums of Riemann integrals. J. Approx. Theory, 161(2):477–490, 2009.
tavi08
[4495] J. Taskinen and J. Virtanen. Spectral theory of Toeplitz and Hankel
operators on the Bergman space a1 . New York J. Math., 14:305–323,
2008.
tavi10
[4496] J. Taskinen and J. Virtanen. Toeplitz operators on Bergman spaces
with locally integrable symbols. Rev. Mat. Iberoam., 26(2):693–706,
2010.
397
ta13
[4497] E. Tatulli. Transformation of Zernike coefficients: a Fourier-based
method for scaled, translated, and rotated wavefront apertures. JOSA
A, 30(4):726–732, 2013.
ta11-5
[4498] C. Taubes. Differential Geometry: Bundles, Connections, Metrics
and Curvature, volume 23. Oxford University Press, USA, 2011.
grhahlmasvta11
[4499] G. Taub¨ock, M. Hampejs, P. Svac, G. Matz, F. Hlawatsch, and
K. Gr¨ochenig. Signal Processing, IEEE Transactions on, title=LowComplexity ICI/ISI Equalization in Doubly Dispersive Multicarrier
Systems Using a Decision-Feedback LSQR Algorithm, 59(5):2432 –
2436, may 2011.
ta10-2
[4500] D. Tausk. A locally compact non divisible abelian group whose character group is torsion free and divisible. Arxiv preprint arXiv:1002.4164,
2010.
ta99-2
[4501] U. Tautenhahn. On a general regularization scheme for nonlinear
ill-posed problems. Inverse Problems, 13(5):1427, 1999.
ta12
[4502] J. Taylor. Foundations of Analysis. Pure and Applied Undergraduate
Texts 18. Providence, RI: American Mathematical Society (AMS). x,
2012.
gotawo07
[4503] J. Taylor, K. Worsley, and F. Gosselin. Maxima of discretely sampled
random fields, with an application to ‘bubbles’. Biometrika, 94(1):1–
18, 2007.
ta08-1
[4504] K. F. Taylor. Groups with atomic regular representation. Jorgensen, Palle E.T. (ed.) et al., Representations, wavelets, and frames.
A celebration of the mathematical work of Lawrence W. Baggett.
Basel: Birkh¨auser. Applied and Numerical Harmonic Analysis, 3345 (2008)., 2008.
ta11
[4505] M. Taylor. Partial differential equations. I: Basic theory. 2nd ed. Applied Mathematical Sciences. Volume 115. New York, NY: Springer,
2011.
ta11-1
[4506] M. Taylor. Partial differential equations. II: Qualitative studies of
linear equations. 2nd ed. Applied Mathematical Sciences. Volume 116.
New York, NY: Springer, 2011.
398
ta11-2
[4507] M. Taylor. Partial Differential Equations. III: Nonlinear Equations.
2nd ed. Applied Mathematical Sciences. Volume 117. New York, NY:
Springer, 2011.
ozsete92
[4508] A. Tekalp, M. Ozkan, and M. Sezan. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration. In Acoustics, Speech, and Signal Processing, 1992.
ICASSP-92., 1992 IEEE International Conference on, volume 3, pages
169 –172, mar 1992.
te61
[4509] S. Teleman. Sur les ensembles compacts de fonctions sommables.
1961.
te88-1
[4510] S. Telyakovskii. Work on the theory of approximation of functions
carried out at the V. A Steklov Institute of Mathematics. Trudy Mat.
Inst. Steklov., 182:128–79, 1988.
brbudrocrote11
[4511] M. Temerinac Ott, O. Ronneberger, P. Ochs, W. Driever, T. Brox,
and H. Burkhardt. Multiview deblurring for 3-d images from light sheet
based fluorescence microscopy. IEEE Trans. Image Process., 2011.
te93-1
[4512] V. Temlyakov. On approximate recovery of functions with bounded
mixed derivative. J. Complexity, 9(1):41–59, 1993.
te08-2
[4513] V. Temlyakov. Greedy approximation. Acta Numerica, 17:235–409,
2008.
te11
[4514] V. Temlyakov. Greedy approximation. Cambridge Monographs on
Applied and Computational Mathematics (No. 20). Cambridge University Press, 2011.
te03-2
[4515] V. N. Temlyakov. Nonlinear methods of approximation. Found. Comput. Math., 3(1):33–107, 2003.
andemate11
[4516] L. Tenorio, F. Andersson, H. De, and P. Ma. Data analysis tools
for uncertainty quantification of inverse problems. Inverse Problems,
27(4):22, 2011.
oote02
[4517] M. ter and P. Oonincx. On the integral representations for metaplectic
operators. J. Fourier Anal. Appl., 8(3):245–258, 2002.
399
te02
[4518] P. Terekhin. Riesz bases generated by contractions and translations
of a function on an interval. Math. Notes, 72(4):505–518, 2002.
te04-1
[4519] P. Terekhin. Representation systems and projections of bases. Math.
Notes, 75(6):881–884, 2004.
te10-1
[4520] P. Terekhin. Frames in Banach spaces.
44(3):199–208, 2010.
Funct. Anal. Appl.,
te13
[4521] P. Terekhin. Affine Quantum Frames and Their Spectrum. Izvestiya
Saratovskogo Universiteta. New series. Series Mathematics. Mechanics. Informatics, 13(1):32–36, 2013.
te90
[4522] J. Tervo. On realizations related to Weyl operators. Aequationes
Math., 40(2-3):201–234, 1990.
te09-1
[4523] D. Terzopoulos. Regularization of inverse visual problems involving
discontinuities. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (4):413–424, 2009.
lete10
[4524] G. Teschke and V. Lehmann. Statistical significance of Gabor frames
expansions: simple filtering principles for radar wind profiler data. In
J. N. Alistair D. Fitt, editor, Progress in industrial mathematics at
ECMI 2008. Proceedings of the 15th European conference on mathematics for industry, volume 15 of Mathematics in Industry, pages
311–316. Berlin: Springer, London, UK, June 30 - July 4, 2008,
2010.
tete06
[4525] G. Teschl and S. Teschl. Mathematik f¨
ur Informatiker Band 1
Diskrete Mathematik und Lineare Algebra. Springer Berlin Heidelberg, 2 edition, 2006.
tete07
[4526] G. Teschl and S. Teschl. Mathematik f¨
ur Informatiker Band 2 Analysis und Statistik. Springer, 2. Auflage edition, 2007.
te10
[4527] R. Tessera. Left inverses of matrices with polynomial decay. J. Funct.
Anal., 259(11):2793–2813, 2010.
te11-1
[4528] R. Tessera. The inclusion of the Schur algebra in B( 2 ) is not inverseclosed. Monatsh. Math., 164(1):115–118, 2011.
400
chte05
[4529] U. Tewari and P. Chaurasia. Isometric multipliers of Lp (G, X). Proc.
Indian Acad. Sci., Math. Sci., 115(1):103–109, 2005.
te04
[4530] U. B. Tewari. Vector-valued multipliers. J. Anal., 12:99–105, 2004.
duteva81
[4531] U. B. Tewari, M. Dutta, and D. Vaidya. Multipliers of group algebras
of vector-valued functions. Proc. Amer. Math. Soc., 81:223–229, 1981.
pate83
[4532] U. B. Tewari and K. Parthasarathy. Compact multipliers of Segal
algebras. Indian J. Pure Appl. Math., 14(2):194–201, 1983.
thwu10
[4533] G. Thakur and H. Wu. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. Arxiv preprint
arXiv:1006.2533, 2010.
th09
[4534] S. Thangavelu. Hermite-Sobolev spaces and the Feichtinger’s algebra.
J. Anal., 17:101–106, 2009.
th99
[4535] D. Theret. A Lagrangian camel. Comment. Math. Helv., 74(4):591–
614, 1999.
riscth10
[4536] R. Theunissen, F. Scarano, and M. Riethmuller. Spatially adaptive
PIV interrogation based on data ensemble. Experiments in fluids,
48(5):875–887, 2010.
blthun00
[4537] P. Th´evenaz, T. Blu, and M. Unser. Image interpolation and resampling, pages 393–420. Academic Press, 2000.
furoth10
[4538] K. Thompson, K. Fuerschbach, and J. Rolland. An analytic expression for the field dependence of FRINGE Zernike polynomial coefficients in optical systems that are rotationally nonsymmetric. In K. P.
Thompson, K. Fuerschbach, J. P. Rolland, Y. Wang, J. Bentley,
C. Du, K. Tatsuno, and H. P. Urbach, editors, Proc. SPIE, Optical Design and Testing IV, volume 7849 of Fabrication and Testing,
page 784906(11), Beijing, China, 2010. SPIE.
th76
[4539] R. Thompson. The behavior of eigenvalues and singular values under perturbations of restricted rank. Linear Algebra Appl., 13:69–78,
1976.
mati11
[4540] J. Tian and K. Ma. A survey on super-resolution imaging. Signal,
Image and Video Processing, pages 1–14, 2011.
401
tiwo09
[4541] J. Tie and M. Wong. The heat kernel and Green functions of subLaplacians on the quaternion Heisenberg group. J. Geom. Anal.,
19(1):191–210, 2009.
heti12
[4542] R. Tinaztepe and C. Heil. Modulation spaces, BMO, and the Balian–
Low theorem. Sampling Theory in Signal &amp Image Processing,
11(1), 2012.
scto07
[4543] R. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J.
Numer. Anal., 27(2):232–261, 2007.
to06-6
[4544] J. Toft. Positivity in twisted convolution algebra and Fourier modulation spaces. Bull., Cl. Sci. Math. Nat., Sci. Math., 133(31):75–86,
2006.
to10
[4545] J. Toft. Pseudo-differential operators with symbols in modulation
spaces, 2010.
to12
[4546] J. Toft. The Bargmann transform on modulation and Gelfand-Shilov
spaces, with applications to Toeplitz and pseudo-differential operators.
J. Pseudo-Differ. Oper. Appl., 3(2):145–227, 2012.
cogato10
[4547] J. Toft, F. Concetti, and G. Garello. Schatten-von Neumann properties for Fourier integral operators with non-smooth symbols. II. Osaka
J. Math., 47(3):739–786, 2010.
towa12
[4548] J. Toft and P. Wahlberg. Embeddings of α-modulation spaces. Pliska
Stud. Math. Bulgar., 21:25–46, 2012.
toyu10
[4549] K. Toh and S. Yun. An accelerated proximal gradient algorithm
for nuclear norm regularized least squares problems. Pac. J. Optim.,
6:615–640, 2010.
kato00
[4550] T. Tolonen and M. Karjalainen. A computationally efficient multipitch analysis model. Speech and Audio Processing, IEEE Transactions
on, 8(6):708–716, 2000.
torosm10
[4551] V. Tomas, J. Rosenthal, and R. Smarandache. Decoding of convolutional codes over the erasure channel. Information Theory-Submitted
on 16 Jun 2010, page 27, 2010.
402
to11
[4552] J.-C. Tomasi. Haar measure and continuous representations of locally
compact Abelian groups. Studia Math., 206(1):25–35, 2011.
to96-1
[4553] N. Tomczak Jaegermann. A solution of the homogeneous Banach
space problem. In Canadian Mathematical Society 1945–1995. Vol.
3: Invited papers, pages 267–286. Ottawa: Canadian Mathematical
Society, 1996.
to10-1
[4554] N. Tomita. A H¨ormander type multiplier theorem for multilinear
operators. J. Funct. Anal., 259(8):2028–2044, 2010.
tozu12
[4555] S. Torba and W. Zuniga Galindo. Parabolic type equations and
Markov stochastic processes on adeles. Submitted on 22 Jun 2012,
2012.
coto98
[4556] C. Torrence and G. Compo. A practical guide to wavelet analysis.
Bulletin of the American Meteorological society, 79(1):61–78, 1998.
to96
[4557] d. Torres. E-complementary Spaces and Fourier Multipliers for Spaces
in Standard Situation. page 9, 1996.
motozu98
[4558] G. Torres Vega, J. Morales Guzman, and A. Zuniga Segundo. Special
functions in phase space: Mathieu functions. J. Phys. A, 31(31):6725–
6739, 1998.
motoz96
[4559] G. Torres Vega, A. Zuniga Segundo, and J. Morales Guzman. Special
functions and quantum mechanics in phase space: Airy functions.
Phys. Rev. A (3), 53(6):3792–3797, 1996.
to93-2
[4560] B. Torresani. Phase space decompositions: Local Fourier analysis on
spheres. preprint CPT-93, page 2878, 1993.
to95
[4561] B. Torresani. Position-frequency analysis for signals defined on
spheres. Signal Process., 43(3):341–346, 1995.
boto96
[4562] A. Toukmaji and J. Board. Ewald summation techniques in perspective: A survey. Comput. Phys. Commun., 95(2-3):73–92, 1996.
tr08-8
[4563] L. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis?
SIAM Rev., 50(1):67–87, 2008.
403
tr13-3
[4564] L. Trefethen. Approximation Theory and Approximation Practice.
SIAM, 2013.
tr03-1
[4565] W. Trench. Introduction to Real Analysis. Upper Saddle River, NJ:
Prentice Hall/Pearson Education and San Antonio, TX: Selbstverlag
(free online-version 2010). xi, 2003.
tr76-1
[4566] H. Triebel. Spaces of Kudrjavcev type. I: Interpolation, embedding,
and structure. J. Math. Anal. Appl., 56:253–277, 1976.
tr76
[4567] H. Triebel. Spaces of Kudrjavcev type. II: Spaces of distributions:
duality, interpolation. J. Math. Anal. Appl., 56:278–287, 1976.
tr12
[4568] H. Triebel. Faber Systems and their Use in Sampling, Discrepancy, Numerical Integration. EMS Series of Lectures in Mathematics. Z¨
urich: European Mathematical Society (EMS). viii, 107 p.
EUR 28.00, 2012.
tr93-1
[4569] D. Trifonov. Completeness and geometry of Schr¨odinger minimum
uncertainty states. J. Math. Phys., 34(1):100–110, 1993.
tr94-2
[4570] D. Trifonov. Generalized intelligent states and squeezing. J. Math.
Phys., 35(5):2297–2308, 1994.
tr97-3
[4571] D. Trifonov. Robertson intelligent states. J. Phys. A, 30(17):5941–
5957, 1997.
tr01-2
[4572] D. Trifonov. Remarks on the extended characteristic uncertainty relations. J. Phys. A, 34(9):L75–L78, 2001.
tr03-2
[4573] D. Trifonov. On the position uncertainty measure on the circle. J.
Phys. A, 36(47):11873–11879, 2003.
tr04-3
[4574] D. Trifonov. Position uncertainty measures on the sphere. In Geometry, integrability and quantization, pages 211–224. Softex, Sofia,
2004.
tr00-2
[4575] D. A. Trifonov. Generalized uncertainty relations and coherent and
squeezed states. J. Opt. Soc. Amer. A, 17(12):2486–2495, 2000.
404
tr09-3
[4576] R. Trigub. Fourier multipliers and comparison of linear operators. In
Modern analysis and applications. The Mark Krein centenary conference. Volume 2: Differential operators and mechanics. Papers based
on invited talks at the international conference on modern analysis
and applications, Odessa, Ukraine, April 9–14, 2007, pages 499–513.
2009.
tr96
[4577] F. Trigui. Ondelettes et operateurs de Calderon-Zygmund. PhD
thesis, 1996.
tr81-5
[4578] K. Trim`eche. Transformation integrale de Weyl et theoreme de PaleyWiener associes a un operateur differentiel singulier sur (0, ∞). J.
Math. Pures Appl. (9), 60(1):51–98, 1981.
tr11
[4579] K. Trimeche. Harmonic analysis associated with the Cherednik operators and the Heckman-Opdam theory. Adv. Pure Appl. Math.,
2(1):23–46, 2011.
tr08-5
[4580] J. A. Tropp. Norms of random submatrices and sparse approximation.
C. R., Math., Acad. Sci. Paris, 346(23-24):1271–1274, 2008.
tr08-7
[4581] J. A. Tropp. On the linear independence of spikes and sines. J.
Fourier Anal. Appl., 14(5-6):838–858, 2008.
tr08-6
[4582] J. A. Tropp. The random paving property for uniformly bounded matrices. Studia Math., 185(1):67–82, 2008.
tr09-1
[4583] J. A. Tropp. Column subset selection, matrix factorization, and
eigenvalue optimization. In ACM-SIAM Symp. Discrete Algorithms
(SODA), pages 978–986, 2009.
tr12-3
[4584] J. A. Tropp. From the joint convexity of quantum relative entropy to
a concavity theorem of Lieb. Proc. Amer. Math. Soc., 140(5):1757–
1760, 2012.
tr14
[4585] J. A. Tropp. Convex recovery of a structured signal from independent
random linear measurements. ArXiv e-prints, may 2014.
tr99-3
[4586] J. Trout. Asymptotic Morphisms and Elliptic Operators over C*Algebras. K-theory, 18(3):277–314, 1999.
405
tr09-2
[4587] A. Trynin. A generalization of the Whittaker-Kotel’nikov-Shannon
sampling theorem for continuous functions on a closed interval. Sb.
Math., 200(11):1633–1679, 2009.
chtswu01
[4588] D.-M. Tsai, S.-K. Wu, and M.-C. Chen. Optimal Gabor filter design
for texture segmentation using stochastic optimization. Image and
Vision Computing, 19(5):299 – 316, 2001.
chts04
[4589] P.-Y. Tsai and T.-D. Chiueh. Frequency-domain interpolation-based
channel estimation in pilot-aided OFDM systems. volume 1, pages
420–424, May 2004.
ts59
[4590] M. Tsuji. Potential theory in modern function theory. Maruzen,
1959.
ts09
[4591] A. Tsybakov. Introduction to nonparametric estimation. Springer
Series in Statistics. Springer, New York, 2009.
tu04
[4592] L. Tu. A partial order on partitions and the generalized Vandermonde
determinant. Journal of Algebra, 278(1):127–133, 2004.
hutu11
[4593] N. Tuan and N. Huyen. The application of generalized convolutions
associated with Fourier and Hartley transforms. to appear in J. Integral Equations Appl., 2011.
tu33
[4594] A. Tulajkov. Zur Kompaktheit im Raum Lp f¨
ur p = 1. 1933.
actu04
[4595] N. Tuneski and R. Aceska. On the linear combination of the representations of starlikeness and convexity. Glasnik Mat. Ser. III, 39(59):265
272, 2004.
tu00
[4596] V. Turunen. Commutator characterization of periodic pseudodifferential operators. Z. Anal. Anwend., 19(1):95–108, 2000.
ty85
[4597] J. Tysk. Comparison of two methods of multiplying distributions.
Proc. Amer. Math. Soc., 93:35–39, 1985.
ty10
[4598] R. Tyson. Principles of Adaptive Optics. CRC Press, 2010.
ditz97
[4599] C. Tzanakis and A. Dimakis. On the uniqueness of the Moyal structure of phase-space functions. J. Phys. A, 30(13):4857–4866, 1997.
406
hutz09
[4600] R. Tzschoppe and J. Huber. Causal discrete-time system approximation of non-bandlimited continuous-time systems by means of discrete
prolate spheroidal wave functions. Transactions on Emerging Telecommunications Technologies, 20(6):604–616, 2009.
uh77
[4601] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb
concavity in an interpolation theory. Comm. Math. Phys., 54(1):21–
32, 1977.
ul11
¨
[4602] B. Ulgen.
The ubiquitous role of Linear Algebra within Applied Mathematics. Master’s thesis, 2011.
ul03
¨
[4603] A. Ulger.
A characterization of the closed unital ideals of the FourierStieltjes algebra b(g) of a locally compact amenable group g. J. Funct.
Anal., 205(1):90–106, 2003.
ul60
[4604] M. Ullrich. Representation theorem for random Schwartz distributions. Trans. 2nd Prague Conf. Information Theory, Stat. Decision
Functions, Random Processes, Liblice 1959, 661-666 (1960)., 1960.
ul12
[4605] T. Ullrich. Continuous characterizations of Besov-Lizorkin-Triebel
spaces and new interpretations as coorbits. J. Funct. Spaces Appl.,
2012(Article ID 163213):47, 2012.
blun00
[4606] M. Unser and T. Blu. Fractional splines and wavelets. SIAM Rev.,
42(1):43–67 (electronic), 2000.
thunya95
[4607] M. Unser, P. Thevenaz, and L. Yaroslavsky. Convolution-based interpolation for fast, high-quality rotation of images. IEEE Trans. Image
Process., 4(10):1371–1381, 1995.
unun03
[4608] A. Unterberger. Automorphic Pseudodifferential Analysis and Higher
Level Weyl Calculi. Progress in Mathematics (Boston, Mass.). 209.
Basel: Birkh¨auser. vii, 2003.
un08-1
[4609] A. Unterberger. Alternative Pseudodifferential Analysis With An Application to Modular Forms. Lecture Notes in Mathematics 1935.
Berlin: Springer. ix, 118 p., 2008.
un11
[4610] A. Unterberger. Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms. Pseudo-Differential Operators.
Theory and Applications 8. Basel: Birkh¨auser. viii, 300 p., 2011.
407
boun65
[4611] A. Unterberger and J. Bokobza. Les op´erateurs pseudo-diff´erentiels
d’ordre variable. C. R. Acad. Sci., Paris, 261:2271–2273, 1965.
unup94
[4612] A. Unterberger and H. Upmeier. The Berezin transform and invariant
differential operators. Comm. Math. Phys., 164(3):563–597, 1994.
rourwi04
[4613] E. Urbach, J. Roerdink, and M. Wilkinson. Connected rotationinvariant size-shape granulometries. In Pattern Recognition, 2004.
ICPR 2004. Proceedings of the 17th International Conference on,,
volume 1, pages 688 – 691, aug. 2004.
us26
[4614] J. Uspensky. On the development of arbitrary functions in series
of Hermite’s and Laguerre’s polynomials. Ann. of Math. (2), 28(14):593–619, 1926.
edskuy01
[4615] M. Uyttendaele, A. Eden, and R. Skeliski. Eliminating ghosting and
exposure artifacts in image mosaics. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 2, pages II–509, 2001.
va93
[4616] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice
- Hall, 1993.
va06-1
[4617] M. Vallarino. A maximal function on harmonic extensions of h-type
groups. Ann. Math. Blaise Pascal, 13(1):87–101, 2006.
va07-3
[4618] M. Vallarino. Spectral multipliers on Damek-Ricci spaces. J. Lie
Theory, 17(1):163–189, 2007.
va09-1
[4619] M. Vallarino. Spaces h1 and BMO on ax + b-groups. Collect. Math.,
60(3):277–295, 2009.
va03-1
[4620] F. Vallentin. SPHERE COVERINGS, LATTICES, AND TILINGS
(in Low Dimensions). PhD thesis, 2003.
frmuscva08
[4621] d. van, M. Schmidt, M. Friedlander, and K. Murphy. Group sparsity
via linear-time projection. Technical report, Dep. o. Comp. Sc., Univ.
o. British Columbia, 2008.
vava91
[4622] H. Van and J. Vandewalle. The total least squares problem. Computational aspects and analysis, volume 9 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 1991.
408
duvawawizu13
[4623] B. Van de Wiele, A. Vansteenkiste, B. Van Waeyenberge, L. Dupr´e,
and D. De Zutter. Fast Fourier transforms for the evaluation of convolution products: CPU versus GPU implementation. International
Journal of Numerical Modelling: Electronic Networks, Devices and
Fields, pages n/a–n/a, 2013.
frva07
[4624] E. van den Berg and M. Friedlander. SPGL1: A solver for large-scale
sparse reconstruction, Jun. 2007.
frva08
[4625] E. van den Berg and M. Friedlander. Probing the Pareto frontier for
basis pursuit solutions. SIAM J. Sci. Comput., 31(2):890–912, 2008.
naseva05
[4626] C. V. van der Mee, M. Nashed, and S. Seatzu. A method for generating infinite positive self-adjoint test matrices and Riesz bases. SIAM
J. Matrix Anal. Appl., 26(4):1132–1149, 2005.
va01-2
[4627] A. J. van Leest. Non-separable Gabor schemes. Their Design and
Implementation. PhD thesis, Tech. Univ. Eindhoven, 2001.
va14-1
[4628] J. Van Schaftingen. Approximation in Sobolev spaces by piecewise
affine interpolation. J. Math. Anal. Appl., 420(1):40–47, 2014.
mova11
[4629] T. van Waterschoot and M. Moonen. Proceedings of the IEEE, title=Fifty Years of Acoustic Feedback Control: State of the Art and
Future Challenges, 99(2):288 –327, feb. 2011.
suvave06
[4630] P. Vandewalle, S. S¨
usstrunk, and M. Vetterli. A frequency domain
approach to registration of aliased images with application to superresolution. EURASIP J. Appl. Signal Process., 2006:233–233, 2006.
vawe07
[4631] V. Varadarajan and D. Weisbart. Convergence of quantum systems
on grids. J. Math. Anal. Appl., 336(1):608–624, 2007.
va67
[4632] S. Varadhan. On the behavior of the fundamental solution of the
heat equation with variable coefficients. Communications on Pure and
Applied Mathematics, 20(2):431–455, 1967.
va88
´
´ e de
[4633] S. Varadhan. Large deviations and applications. In Ecole
d’Et´
Probabilit´es de Saint-Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages 1–49. Springer, Berlin, 1988.
409
va09-2
[4634] R. Varga. Matrix Iterative Analysis 1st Softcover Printing Of The 2nd
Revised and Expanded Ed 2000. Springer Series in Computational
Mathematics 27. Dordrecht: Springer. x, 358 p. EUR 96.25, 2009.
va74-1
[4635] N. Varopoulos. On an inequality of von Neumann and an application
of the metric theory of tensor products to operators theory. (Appendix
by S. Kaijser and N. Th. Varopoulos.). J. Funct. Anal., 16:83–100,
1974.
cosava92
[4636] N. Varopoulos, L. Saloff Coste, and T. Coulhon. Analysis and geometry on groups. Number 100. Cambridge Univ Pr, 1992.
cosava08
[4637] N. Varopoulos, L. Saloff Coste, and T. Coulhon. Analysis and Geometry on Groups Paperback Reprint of the 1992 Original. Cambridge
Tracts in Mathematics 100. Cambridge: Cambridge University Press.
xii, 156 p., 2008.
albahalupava10
[4638] S. Vasanawala, M. Alley, B. Hargreaves, R. Barth, J. Pauly, and
M. Lustig. Improved pediatric MR imaging with compressed sensing.
Radiology, 256(2):607–616, 2010.
va12
[4639] L. Vashisht. On retro Banach frames of type p. Azerbaijan Journal
of Mathematics, 2(1), 2012.
va13
[4640] L. Vashisht. On Φ-Schauder frames. arXiv preprint arXiv:1302.5988,
2013.
va14
[4641] A. Vasil´ev, editor. Harmonic and Complex Analysis and its applications. Berlin: Springer, 2014.
va00-2
[4642] N. Vasilevski. Poly-Fock spaces. In V. M. Adamyan, I. Gohberg,
M. Gorbachuk, V. Gorbachuk, M. A. Kaashoek, H. Langer, and
G. Popov, editors, Differential operators and related topics. Proceedings of the Mark Krein international conference on operator theory
and applications, Odessa, Ukraine, August 18-22, 1997. Volume I.,
Oper. Theory, Adv. Appl. 117, pages 371–386. Birkh¨auser, 2000.
va88-1
[4643] N. Vasilevskij. T¨oplitz operators associated with the Siegel domains.
Mat. Vesn., 40(3-4):349–354, 1988.
410
brva11
[4644] S. Vasishth and M. Broe. The Foundations of Statistics:
Simulation-based Approach. Springer Berlin / Heidelberg, 2011.
luva10
[4645] N. Vaswani and W. Lu. Modified-CS: Modifying compressive sensing for problems with partially known support. IEEE Trans. Signal
Process., 58:4595–4607, Sep. 2010.
va78
[4646] R. Vaud`ene. Stabilit´e g´eom´etrique et r´egularisation dans les espaces int´egraux de type Orlicz `a param`etre; crit`ere de compacit´e de
Kolmogorov-Riesz. Travaux S´em. Anal. Convexe, 8(1):Exp. No. 6,
23, 1978.
va78-1
[4647] R. Vaud`ene. Stabilit´e g´eom´etrique et r´egularisation dans les espaces
int´egraux de type Orlicz `a param`etre et `a variable vectorielle;Crit`ere
de compacit´e de Kolmogorov-Riesz. C. R. Acad. Sci. Paris S’er. A-B,
287(16):A1057–A1060, 1978.
dukova00
[4648] C. Vazquez, J. Konrad, and E. Dubois. Wavelet-based reconstruction
of irregularly-sampled images: application to stereo imaging. In Image
Processing, 2000. Proc. of International Conference on,, volume 2,
pages 319 –322. IEEE, sept. 2000.
ve88-1
[4649] L. Vega. Schr¨odinger equations: Pointwise convergence to the initial
data. Proc. Amer. Math. Soc., 102(4):874–878, 1988.
dogrhove11
[4650] G. A. Velasco, N. Holighaus, M. D¨orfler, and T. Grill. Constructing
an invertible constant-Q transform with non-stationary Gabor frames.
Proceedings of DAFX11, 2011.
ve93
[4651] R. N. J. Veldhuis. A vector-filter notation for analysis/synthesis systems and its relation to frames. Technical report, PO Box 513, 5600
MB, Eindhoven, 1993.
abve89
[4652] E. Velez and R. Absher. Transient analysis of speech signals using
the Wigner time-frequency representation. In Acoustics, Speech, and
Signal Processing, 1989. ICASSP-89., 1989 International Conference
on, pages 2242–2245, 1989.
ve13
[4653] G. Venema. Exploring Advanced Euclidean Geometry with GeoGebra. Washington, DC: The Mathematical Association of America
(MAA), 2013.
411
A
vezh08
[4654] M. Venouziou and H. Zhang. Characterizing the Hilbert transform
by the Bedrosian theorem. J. Math. Anal. Appl., 338(2):1477–1481,
2008.
bemove05
[4655] G. Ventura, B. Moran, and T. Belytschko. Dislocations by partition
of unity. Int. J. Numer. Methods Eng., 62(11):1463–1487, 2005.
spve92
[4656] A. Vershik and P. Sporyshev. Asymptotic behavior of the number of
faces of random polyhedra and the neighborliness problem. Sel. Math.
Sov., 11(2):181–201, 1992.
ve01-2
[4657] R. Vershynin. John’s decompositions: selecting a large part. Israel J.
Math., 122:253–277, 2001.
ve11
[4658] R. Vershynin. Invertibility of symmetric random matrices. preprint,
2011.
ve12
[4659] R. Vershynin. Introduction to the non-asymptotic analysis of random
matrices. In Y. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, pages 210–268. Cambridge Univ Press,
2012.
ve14
[4660] R. Vershynin. Estimation in high dimensions: a geometric perspective. ArXiv e-prints, may 2014.
gokove14
[4661] M. Vetterli, V. Goyal, and J. Kovacevic. Foundations of signal processing. Cambridge Univ. Press, 2014.
gokoveXX
[4662] M. Vetterli, J. Kovacevic, and V. K. Goyal. The World of Fourier
and Wavelets: Theory, Algorithms and Applications.
nuveot84
[4663] M. Vetterli, H. Nussbaumer, and o. others. Simple FFT and DCT
algorithms with reduced number of operations. Signal Process.,
6(4):267–278, 1984.
kuvi12
[4664] K. Vidhya and R. Kumar. Channel estimation techniques for OFDM
systems. pages 135–139, March 2012.
vi12
[4665] F. J. G. Vieli. A uniqueness result for the Fourier transform of measures on the sphere. Bull. Austral. Math. Soc., 86(1):78–82, 2012.
412
klvi95
[4666] N. Vilenkin and A. Klimyk. Representation of Lie Groups and Special
Functions, volume 316 of Mathematics and its Applications. Kluwer
Academic Publishers Group, Dordrecht, 1995.
vi09-2
[4667] C. Villani. Optimal transport: old and new. Grundlehren der mathematischen Wissenschaften. Springer, 2009.
vi11
[4668] P. Villarroya. On boundedness of discrete multilinear singular integral
operators. J. Math. Anal. Appl., 382(2):534 – 548, 2011.
vi93-1
[4669] A. Vince. Replicating tessellations.
6(3):501–521, 1993.
SIAM J. Discrete Math.,
kovivi97
[4670] K. Vincken, A. Koster, and M. Viergever. Probabilistic multiscale image segmentation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 19(2):109 –120, feb 1997.
vian06
[4671] R. Vio and P. Andreani. Comments on the paper The Mexican Hat
Wavelet Family. Application to point source detection in CMB maps
by J. Gonzalez-Nuevo et al. (astro-ph/0604376), 2006.
kavizo12
[4672] Virender, A. Zothansanga, and S. Kaushik. On almost orthogonal
frames. page 6, 2012.
vi09-1
[4673] T. Virtanen. Spectral covariance in prior distributions of nonnegative
matrix factorization based speech separation. In 17th European Signal
Processing Conference (EUSIPCO 2009), pages 1933–1937, Glasgow,
Scotland, UK, August 24-28, 2009.
cevi09
[4674] T. Virtanen and A. Cemgil. Mixtures of gamma priors for nonnegative matrix factorization based speech separation. In T. Virtanen,
A. Cemgil, T. Adali, C. Jutten, J. Romano, and A. Barros, editors,
Independent Component Analysis and Signal Separation, volume 5441
of Lecture Notes in Computer Science, pages 646–653. Springer Berlin
/ Heidelberg, 2009.
cevi08
[4675] T. Virtanen and A. T. Cemgil. Prior structures for non-negative
matrix factorization based audio source separation. J. Acoust. Soc.
Amer., 124(4):1p.(2571), 2008.
413
meryvi08
[4676] T. Virtanen, A. Mesaros, and M. Ryynanen. Combining pitch-based
inference and non-negative spectrogram factorization in separating vocals from polyphonic music. In Proc. ISCA Tutorial and Research
Workshop on Statistical and Perceptual Audition (SAPA2008), pages
17–22, Brisbane, Australia, September 21, 2008.
vide11
[4677] T. Viscondi and A. de. Semiclassical propagator for SU (n) coherent
states. Journal of Mathematical Physics, 52:052104, 2011.
cogerevi10
[4678] A. Viswanathan, A. Gelb, D. Cochran, and R. Renaut. On reconstruction from non-uniform spectral data. J. Sci. Comput., 45(1-3):487–
513, 2010.
bovi99
[4679] E. Viterbo and J. Boutros. A universal lattice code decoder for fading
channels. IEEE Trans. Inform. Theory, 45(5):1639–1642, 1999.
vi87
[4680] B. Viviani. An atomic decomposition of the predual of BM O(ρ). Rev.
Mat. Iberoam., 3(3-4):401–425, 1987.
vo11
[4681] D. Voelz. Computational Fourier optics. A MATLAB tutorial. Tutorial text. Vol. 89. SPIE, 2011.
kovo87
[4682] A. Vol’berg and S. Konyagin. On measures with duplication condition.
Izv. Akad. Nauk SSSR, Ser. Mat., 51(3):666–675, 1987.
navo04
[4683] A. Volberg and F. Nazarov. Heating of the Ahlfors–Beurling operator,
and estimates of its norm. St. Petersburg Math. J., 15(4):563–573,
2004.
vo39
[4684] J. von Neumann. On infinite direct products. Compositio Math.,
6:1–77, 1939.
bojestvo11
[4685] S. Vorontsov, V. Strakhov, S. Jefferies, and K. Borelli. Deconvolution
of astronomical images using SOR with adaptive relaxation. Optics
express, 19(14):13509–13524, 2011.
vo12
[4686] A. Vourdas. Harmonic analysis on rational numbers. J. Math. Anal.
Appl., 394(1):48 – 60, 2012.
vo13
[4687] A. Vourdas. Quantum mechanics on profinite groups and partial order. J. Phys. A, 46(4):043001, 49, 2013.
414
bavo10
[4688] A. Vourdas and C. Banderier. Symplectic transformations and quantum tomography in finite quantum systems. Journal of Physics A:
Mathematical and Theoretical, 43(4):042001, 2010.
prrovy10
[4689] A. Vyas, M. Roopashree, and B. Prasad. Optimizing the modal index of Zernike polynomials for regulated phase screen simulation. In
A. Vyas, M. B. Roopashree, B. R. Prasad, B. L. Ellerbroek, M. Hart,
N. Hubin, and P. L. Wizinowich, editors, Proc. SPIE, Adaptive Optics Systems II, volume 7736 of Poster Sessions, page 773640(7), San
Diego, California, USA, 2010. SPIE.
vy08-1
[4690] J. Vybiral. A new proof of the Jawerth-Franke embedding. Rev. Mat.
Complut., 21(1):75–82, 2008.
vy09
[4691] J. Vyb´ıral. Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability. Ann. Acad. Sci. Fenn., Math.,
34(2):529–544, 2009.
vy12
[4692] J. Vybiral. Average best m-term approximation. Constr. Approx.,
36(1):83–115, 2012.
wa95-4
[4693] H. Wackernagel. Multivariate Geostatistics: An Introduction with
Applications. Springer, 1995.
wa86
[4694] G. Wackersreuther. On two-dimensional polyphase filter banks.
Acoustics, Speech and Signal Processing, IEEE Transactions on,
34(1):192–199, 1986.
wa13
[4695] J. Wade. Ces`aro summability of Fourier orthogonal expansions on
the cylinder. J. Math. Anal. Appl., 402(2):446–452, 2013.
wa87-2
[4696] P. Wagner. Zur Faltung von Distributionen. (On convolution of distributions). Math. Ann., 276:467–485, 1987.
wa90-1
[4697] G. Wahba. Spline Models for Observational Data, volume 59 of
CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
1990.
wa90-2
[4698] G. Wahba. Spline Models for Observational Data, volume 59. SIAM,
1990.
415
wa65-3
[4699] S. Wainger. Special trigonometric series in k-dimensions. Mem.
Amer. Math. Soc., 59:98, 1965.
wa06-3
[4700] M. Wakin. The Geometry of Low-dimensional Signal Models. PhD
thesis, 2006.
wa07-1
[4701] S. Waldmann. Poisson-Geometrie und Deformationsquantisierung:
Eine Einf¨
uhrung. Springer, 2007.
juwa11
[4702] P. Walk and P. Jung. Approximation of L¨owdin orthogonalization
to a spectrally efficient orthogonal overlapping PPM design for UWB
impulse radio. Signal Process., 2011.
wa04
[4703] C. A. e. Walker. Handbook of moire measurement. Optics and Optoelectronics. IoP, Institute of Physics Publishing, 2004.
chwa00
[4704] J. Walker and Y. Chen. Image denoising using tree-based wavelet
subband correlations and shrinkage. Opt. Eng., 39:2900, 2000.
kuwa95
[4705] A. Wallin and O. K¨
ubler. Complete sets of complex Zernike moment
invariants and the role of the pseudoinvariants. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(11):1106–1110, 1995.
wa65-2
[4706] J. Walsh. Interpolation and approximation by rational functions in
the complex domain. Fourth edition. American Mathematical Society
Colloquium Publications, Vol. XX. American Mathematical Society,
Providence, R.I., 1965.
sowa06
[4707] G. Walter and T. Soleski. Prolate spheroidal wavelet sampling in computerized tomography. Sampl. Theory Signal Image Process., 5(1):21–
36, 2006.
wa77-2
[4708] G. G. Walter. Properties of Hermite series estimation of probability
density. Ann. Statist., 5(6):1258–1264, 1977.
shwa03
[4709] G. G. Walter and X. A. Shen. Sampling with prolate spheroidal wave
functions. Sampl. Theory Signal Image Process., 2(1):25–52, 2003.
wa95-6
[4710] S. Walters. Projective modules over the non-commutative sphere. J.
London Math. Soc. (2), 51(3):589–602, 1995.
416
wa01-2
[4711] S. Walters. k-theory of non-commutative spheres arising from the
Fourier automorphism. Canad. J. Math., 53(3):631–672, 2001.
wa03-4
[4712] S. Walters. On Fourier orthogonal projections in the rotation algebra.
J. London Math. Soc. (2), 68(1):193–205, 2003.
wa11-2
[4713] Z.-X. Wan. Finite Fields and Galois Rings. Hackensack, NJ: World
Scientific. 400 p., 2011.
wa06-4
[4714] C. Wang. On Korenblum’s maximum principle. Proc. Amer. Math.
Soc., 134(7):2061–2066, 2006.
wayu09
[4715] C. Wang and Y. Yu. Aronsson’s equations on Carnot-Carath´eodory
spaces. Ill. J. Math., 52(3):757–772, 2009.
huwazh04
[4716] D. Wang, G. Zhu, and Z. Hu. Optimal Pilots in Frequency Domain
for Channel. volume 2, pages 608–612, May 2004.
wa14
[4717] F.-Y. Wang. Analysis for Diffusion Processes on Riemannian Manifolds. Hackensack, NJ: World Scientific, 2014.
kewa09
[4718] H. Wang and Q. Kemao. Frequency guided methods for demodulation
of a single fringe pattern. Opt. Express, 17(17):15118–15127, Aug
2009.
wawa07
[4719] H. Wang and J. Wang. Optimal pilot design for MIMO-OFDM system channel estimation in time domain. pages 307–312, Sep. 2007.
wa11-1
[4720] H.-Y. Wang. Concentration estimates for the moving least-square
method in learning theory. J. Approx. Theory, 163(9):1125 – 1133,
2011.
luwa11
[4721] J. Wang and B. Lucier. Error bounds for finite-difference methods for
Rudin-Osher-Fatemi image smoothing. SIAM Journal on Numerical
Analysis, 49:845–868, 2011.
qiwa14
[4722] J. Wang and T. Qian. Approximation of monogenic functions by
higher order Szeg¨o kernels on the unit ball and half space. Sci. China
Math., 57(9):1785–1797, 2014.
417
dikolishwayi11
[4723] J. Wang, Y. Shi, D. Kong, W. Ding, C. Li, and B. Yin. Sparse
representation based down-sampling image compression. J. Comput.
Appl. Math., 236(5):675–683, 2011.
wa61-1
[4724] J.-k. Wang. Multipliers of commutative Banach algebras. Pacific J.
Math., 11:1131–1149, 1961.
wa11
[4725] J.-R. Wang. Shannon wavelet regularization methods for a backward
heat equation. J. Comput. Appl. Math., 235(9):3079 – 3085, 2011.
wa97-3
[4726] L. Wang. The error estimate of Backus-Gilbert method. Numer.
Math., Nanjing, 19(4):364–369, 1997.
wa09-1
[4727] S. Wang. Simple proofs of the Bedrosian equality for the Hilbert transform. Sci. China Ser. A, 52(3):507–510, 2009.
fawayu11
[4728] S. Wang, H.-C. Yuan, and H.-Y. Fan. Fresnel operator, squeezed
state and Wigner function for Caldirola-Kanai Hamiltonian. Modern
Phys. Lett. A, 26(19):1433–1442, 2011.
wawa09
[4729] T. Wang and Q. Wan. Sparse Signal Recovery via Multi-Residual
Based Greedy Method. In Image and Signal Processing, 2009. CISP’09.
2nd International Congress on, pages 1–4, 2009.
chwa97
[4730] W.-H. Wang and Y.-C. Chen. New approach for scale, rotation, and
translation invariant pattern recognition. Opt. Eng., 36(4):1113–1122,
1997.
huliwa09
[4731] X. Wang, C. Huang, and J. Liu. Gabor-2DLDA: Face Recognition
Using Gabor Features and 2D Linear Discriminant Analysis. In Intelligent Computation Technology and Automation, 2009. ICICTA’09.
Second International Conference on, volume 1, pages 608–610, 2009.
wa02-2
[4732] Y. Wang. Wavelets, tiling, and spectral sets.
114(1):43–57, 2002.
orwa09
[4733] Y. Wang and J. Orchard. Fast Discrete Orthonormal Stockwell Transform. SIAM Journal on Scientific Computing, 31(5):4000–4012, 2009.
orwa09-1
[4734] Y. Wang and J. Orchard. On the use of the Stockwell transform
for image compression. In Y. Wang, J. Orchard, J. T. Astola,
418
Duke Math. J.,
K. O. Egiazarian, N. M. Nasrabadi, and S. A. Rizvi, editors, Proc.
SPIE, Image Processing: Algorithms and Systems VII, volume 7245 of
Transform Methods, page 724504, San Jose, CA, USA, 2009. SPIE.
orwa09-2
[4735] Y. Wang and J. Orchard. The discrete orthonormal Stockwell transform for image restoration. In Image Processing (ICIP), 2009 16th
IEEE International Conference on, pages 2761 –2764, Cairo, 7-10
Nov. 2009, nov. 2009.
waxu12
[4736] Y. Wang and Z. Xu. The performance of PCM quantization under
tight frame representations. SIAM J. Math. Anal., 44(4):2802–2823,
2012.
wa95-5
[4737] Z. Wang. Comments on generalized discrete Hartley transform. IEEE
Trans. Signal Process., 43(7):1711 – 1712, jul 1995.
gowa08
[4738] Z. Wang and G. Gong. New sequences design from Weil representation with low two-dimensional correlation in both time and phase
shifts. Arxiv preprint arXiv:0812.4487, 2008.
wa37
[4739] G. Wannier. The structure of electronic excitation levels in insulating
crystals. Physical Review, 52(3):191 – 197., 1937.
was13
[4740] W. Wasylkiwskyj. Signals and Transforms in Linear Systems Analysis. New York, NY: Springer, 2013.
wa07-2
[4741] D. S. Watkins. The matrix eigenvalue problem: GR and Krylov
subspace methods. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2007.
we04-2
[4742] N. Weaver. The Kadison-Singer problem in discrepancy theory. Discrete Math., 278(1-3):227–239, 2004.
we10-3
[4743] E. Weber. Algebraic aspects of the Paving and Feichtinger conjectures.
In V. B. Joseph A. Ball, editor, Topics in operator theory: Operators,
matrices and analytic functions (Proceedings of the 19th international
workshop on operator theory and applications (IWOTA), College of
William and Mary, Williamsburg, VA, USA, July 22–26, 2008), volume 1 of Operator Theory: Advances and Applications(Vol. 202),
pages 569–578. Basel: Birkh¨auser., 2010.
419
we13
[4744] M. Weber. On C ∗ -algebras generated by isometries with twisted commutation relations. J. Funct. Anal., 264(8):1975–2004, 2013.
smwewuxiya07
[4745] L. Wee Chung, J. Xian, S. Wu, D. Smith, and H. Yan. Spectral estimation in unevenly sampled space of periodically expressed microarray
time series data. BMC Bioinformatics, 8(1):1–19, 2007.
liwe14
[4746] D. Wei and Y. Li. Linear canonical Wigner distribution and its application. Optik - Internat. J. for Light and Electron Optics, 125(1):89
– 92, 2014.
lirawe12
[4747] D. Wei, Q. Ran, and Y. Li. New convolution theorem for the linear
canonical transform and its translation invariance property. OptikInternational Journal for Light and Electron Optics, 123(16):1478–
1481, 2012.
limaratawe09
[4748] D. Wei, Q. Ran, Y. Li, J. Ma, and L. Tan. A convolution and product
theorem for the linear canonical transform. IEEE Signal Processing
Letters, 16(10):853–856, 2009.
we13-1
[4749] J. WEI. Fast Space-Varying Convolution Using Matrix Source Coding
with Applications to Camera Stray Light Reduction. IEEE Trans.
Image Process., 2013.
albowe13
[4750] J. Wei, C. Bouman, and J. Allebach. Fast Space-Varying Convolution
Using Matrix Source Coding with Applications to Camera Stray Light
Reduction. 2013.
liwe10
[4751] K. Wei and T. Liang. Gabor Representation for Radar Signals via
Real-Valued Discrete Gabor Transform. Computer, page 10, 2010.
chwewu12
[4752] X. Wei, Y.-Z. Wu, and L.-P. Chen. A new sequential optimal
sampling method for radial basis functions. Appl. Math. Comput.,
218(19):9635 – 9646, 2012.
we49-1
[4753] A. Weil. Numbers of solutions of equations in finite fields. Bull.
Amer. Math. Soc., 55:497–508, 1949.
we74-2
[4754] A. Weil. Basic Number Theory 3rd ed. Die Grundlehren der mathematischen Wissenschaften. Band 144. Berlin-Heidelberg-New York:
Springer-Verlag. XVIII, 325 p., 1974.
420
sawe09
[4755] K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning
Research, 10:207–244, 2009.
sashwe04
[4756] K. Weinberger, F. Sha, and L. Saul. Learning a kernel matrix for
nonlinear dimensionality reduction. In Proceedings of the twenty-first
international conference on Machine learning, page 106, 2004.
we85
[4757] A. Weinstein. A symbol class for some Schr¨odinger equations on
Amer. J. Math., 107:1–21, 1985.
n
.
we09-3
[4758] M. Weinstein. Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations.
Arxiv preprint
arXiv:0902.1775, 2009.
we10-4
[4759] M. Weinstein. Strange Bedfellows: Quantum Mechanics and Data
Mining. Nuclear Physics B-Proceedings Supplements, 199(1):74–84,
2010.
howe09
[4760] M. Weinstein and D. Horn. Dynamic quantum clustering: A method
for visual exploration of structures in data. Physical Review E,
80(6):066117, 2009.
aublwe09
[4761] P. Weiss, L. Blanc F´eraud, and G. Aubert. Efficient schemes for total
variation minimization under constraints in image processing. SIAM
J. Sci. Comput., 31(3):2047–2080, 2009.
aublwe14
[4762] P. Weiss, L. Blanc F´eraud, and G. Aubert. Processing stationary
noise: model and parameter selection in variational methods. SIAM
J. Sci. Comput., 7(2):613–640, 2014.
aublfowe11
[4763] P. Weiss, A. Fournier, L. Blanc F´eraud, and G. Aubert. On the illumination invariance of the level lines under directed light: application
to change detection. SIAM J. Imaging Sci., 4(1):448–471, 2011.
we00
[4764] F. Weisz. A generalization for Fourier transforms of a theorem due
to Marcinkiewicz. J. Math. Anal. Appl., 252(2):675–695, 2000.
we05-5
[4765] F. Weisz. Marcinkiewicz multiplier theorem and the Sunouchi operator for Ciesielski–Fourier series. J. Approx. Theory, 133(2):195–220,
2005.
421
we09-1
[4766] F. Weisz. Pointwise summability of Gabor expansions. J. Fourier
Anal. Appl., 15(4):463–487, 2009.
we10-2
[4767] F. Weisz. Local Hardy spaces and summability of Fourier transforms.
J. Math. Anal. Appl., 362(2):275–285, 2010.
we10-1
[4768] F. Weisz. Restricted summability of Fourier transforms and local
Hardy spaces. Acta Math. Sin. (Engl. Ser.), 26(9):1627–1640, 2010.
we11
[4769] F. Weisz. 1 -summability of higher-dimensional Fourier series. J.
Approx. Theory, 163(2):99 – 116, February 2011.
we11-2
[4770] F. Weisz. Gabor expansions and restricted summability. Sampling
Theory in Signal &amp Image Processing, 10(3), 2011.
we11-3
[4771] F. Weisz. Marcinkiewicz-summability of multi-dimensional Fourier
transforms and Fourier series. J. Math. Anal. Appl., 379(2):910–
929, 2011.
we11-1
[4772] F. Weisz. Restricted summability of multi-dimensional VilenkinFourier series. Ann. Univ. Sci. Budap. Rolando E¨otv¨os, Sect. Comput., 35:305–317, 2011.
we12
[4773] F. Weisz. Ces`aro-summability of higher-dimensional Fourier series.
2012.
we14
[4774] F. Weisz. Pointwise convergence in Pringsheim’s sense of the summability of Fourier transforms on Wiener amalgam spaces. Monatsh.
Math., 175(1):143–160, 2014.
we80-3
[4775] Y. Weit. On Beurling’s theorem for locally compact groups. Proc.
Amer. Math. Soc., 78:259–260, 1980.
we80
[4776] Y. Weit. On closed ideals in the motion group algebra. Math. Ann.,
248:279–283, 1980.
we80-1
[4777] Y. Weit. On Schwartz’s theorem for the motion group. Ann. Inst.
Fourier (Grenoble), 30(1):91–107, 1980.
we80-2
[4778] Y. Weit. On the one-sided Wiener’s theorem for the motion group.
1980.
422
we81-1
[4779] Y. Weit. On spectral analysis in locally compact motion groups. J.
Funct. Anal., 40:45–53, 1981.
stwewe08
[4780] M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: a
link between diffusion filtering and wavelet shrinkage. Appl. Comput.
Harmon. Anal., 24(2):195–224, 2008.
gowe10
[4781] D. Weller and V. K. Goyal. On the estimation of nonrandom signal
coefficients from jittered samples. Arxiv preprint arXiv:1007.5034,
2010.
we01-3
[4782] H. Wendland. Local polynomial reproduction and moving least squares
approximation. IMA J. Numer. Anal., 21(1):285–300, 2001.
we83-1
[4783] R. Werner. Physical uniformities on the state space of nonrelativistic
quantum mechanics. Found. Phys., 13(8):859–881, 1983.
we84
[4784] R. Werner. Quantum harmonic analysis on phase space. J. Math.
Phys., 25(5):1404–1411, 1984.
we04-1
[4785] R. Werner. The uncertainty relation for joint measurement of position and momentum. Quantum Inf. Comput., 4(6-7):546–562, 2004.
we84-1
[4786] A. Weron. Stable processes and measures: A survey. Probability
theory on vector spaces III, Proc. Conf., Lublin/Pol. 1983, Lect. Notes
Math. 1080, 306-364 (1984)., 1984.
we85-1
[4787] A. Weron. Harmonizable stable processes on groups: Spectral, ergodic
and interpolation properties. Z. Wahrscheinlichkeitstheor. Verw. Geb.,
68:473–491, 1985.
ambafegiklkrwe09
[4788] T. Werther, A. Klotz, G. Kracher, M. Baubin, H. G. Feichtinger,
H. Gilly, and A. Amann. CPR artifact removal in ventricular fibrillation ECG signals using Gabor multipliers. Biomedical Engineering,
IEEE Transactions on, 56(2):320 –327, Feb. 2009.
adwe11
[4789] J. Westerweel and R. Adrian. Particle Image Velocimetry. Cambridge
University Press, 2011.
adelwe13
[4790] J. Westerweel, G. Elsinga, and R. Adrian. Particle image velocimetry
for complex and turbulent flows. In Annual review of fluid mechanics.
Vol. 45, pages 409–436. Palo Alto, CA: Annual Reviews, 2013.
423
wh12
[4791] M. Whiting. Duchamp: a 3D source finder for spectral-line data.
Submitted on 13 Jan 2012, page 17, 2012.
wawh96
[4792] E. Whittaker and G. Watson. A course of modern analysis. An introduction to the general theory of infinite processes and of analytic
functions; with an account of the principal transcendental functions.
Repr. of the 4th ed. 1927. Cambridge: Cambridge University Press.
608 p., 1996.
japuscvawi09
[4793] Y. Wiaux, L. Jacques, G. Puy, A. Scaife, and P. Vandergheynst.
Compressed sensing imaging techniques for radio interferometry.
Monthly Notices of the Royal Astronomical Society, 395(3):1733–
1742, 2009.
bopuvawi09
[4794] Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst. Compressed
sensing for radio interferometry: spread spectrum imaging techniques.
Proc. SPIE, Wavelets XIII, 2009.
wi76-2
[4795] J. Wichmann. On the symmetry of matrix algebras. Proc. Amer.
Math. Soc., 54:237–240, 1976.
wi63
[4796] H. Widom. Asymptotic behavior of the eigenvalues of certain integral
equations. Trans. Amer. Math. Soc., 109:278–295, 1963.
wi13
[4797] L. Wiedemann.
Elektromyografische Untersuchung von
Erm¨
udungsprozessen beim Topspin Schlag im Tischtennis mittels Wavelet-Transformation. 2013.
wi13-1
[4798] C. Wiesmeyr. Construction of frames by discretization of phase space.
PhD thesis, 2013.
hosowi13
[4799] C. Wiesmeyr, N. Holighaus, and P. Sondergaard. Efficient algorithms
for discrete Gabor transforms on a nonseparable lattice. IEEE Trans.
Signal Process., 61(20):5131 – 5142, 2013.
wi60
[4800] E. P. Wigner. The unreasonable effectiveness of mathematics in the
natural sciences. Commun. Pure Appl. Anal., 13:1–14, 1960.
wi91
[4801] C. Wilcox. The synthesis problem for radar ambiguity functions.
Radar and sonar. Pt. I, Lect. Notes IMA Summer Progr., Minneapolis/MN (USA) 1990, IMA Vol. Math. Appl. 32 , 229-260 (1991).,
1991.
424
wi53
[4802] R. Wilder. The origin and growth of mathematical concepts. Bull.
Amer. Math. Soc., 59:423–448, 1953.
wi13-2
[4803] M. Willem. Functional analysis. Cornerstones. Birkh¨auser/Springer,
New York, 2013.
wi06-2
[4804] R. Willett. Some notes on Property A. Arxiv preprint math/0612492,
2006.
wi09-2
[4805] R. Willett. Band-dominated operators and the stable Higson corona.
PhD thesis, The Pennsylvania State University, 2009.
wi11
[4806] R. Willett. An index theorem for band-dominated operators with
slowly oscillating coefficients (after Deundyak and Shteinberg). Integr. Equ. Oper. Theory, 69(3):301–316, 2011.
badaduwi14
[4807] R. Willett, M. Duarte, M. Davenport, and R. Baraniuk. Sparsity
and structure in hyperspectral imaging: Sensing, reconstruction, and
target detection. IEEE Signal Proc. Mag., 31(1):116–126, 2014.
maniwi11
[4808] R. Willett, R. Marcia, and J. Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng., 50(7):072601–
072601–13, 2011.
wiyu12
[4809] R. Willett and G. Yu. Higher index theory for certain expanders and
Gromov monster groups, I. Adv. Math., 229(3):1380–1416, 2012.
wi80
[4810] J. Williams. Fourier efficiency using analytic translation and Hilbert
samples. J. Acoust. Soc. Am., 67:581–588, 1980.
mowi10
[4811] G. Wilson and C. Morgan. An application of Fourier transforms on
finite Abelian groups to an enumeration arising from the Josephus
problem. J. Number Theory, 130(4):815 – 827, 2010.
wi89
[4812] K. Wilson. Grand challenges to computational science. Future Generation Computer Systems, 5(2-3):171 – 189, 1989.
wi10
[4813] M. Wilson. How fast and in what sense(s) does the Calderon reproducing formula converge? J. Fourier Anal. Appl., 16(5):768–785,
2010.
425
wi51
[4814] G. Wing. On the Lp theory of Hankel transforms. Pacific J. Math.,
1:313–319, 1951.
Win91
[4815] D. M. Winkler. Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence. JOSA A, 8(10):1568–1573,
1991.
desowi13
[4816] E. Winokur, M. Delano, and C. Sodini. Biomedical Engineering,
IEEE Transactions on, title=A Wearable Cardiac Monitor for LongTerm Data Acquisition and Analysis, 60(1):189 –192, jan. 2013.
wn12
[4817] W. Wnuk. An operator characterization of continuous Riesz spaces.
Indag. Math., New Ser., 23(1-2):105–112, 2012.
wo00
[4818] W. Woess. Random walks on infinite graphs and groups. Number
138. Cambridge Univ Pr, 2000.
wo11-2
[4819] P. Wojdyllo. Wilson system for triple redundancy. Int. J. Wavelets
Multiresolut. Inf. Process., 9(1):151–167, 2011.
wo99-2
[4820] P. Wojtaszczyk. Wavelets as unconditional bases in Lp (R). J. Fourier
Anal. Appl., 5(1):73–85, 1999.
wo12
[4821] P. Wojtaszczyk. 1 minimisation with noisy data. SIAM J. Numer.
Anal., 50(2):458–467, 2012.
wo92
[4822] J. Wolf. The uncertainty principle for Gelfand pairs. Nova J. Algebra
Geom., 1(4):383–396, 1992.
wo94-1
[4823] J. Wolf. Uncertainty principles for Gelfand pairs and Cayley complexes. Gindikin, Simon (ed.) et al., 75 years of Radon transform.
Proceedings of the conference held at the Erwin Schr¨odinger International Institute for Mathematical Physics in Vienna, Austria, August 31-September 4, 1992. Cambridge, MA: International Press. Co,
1994.
wo74
[4824] K. Wolf. Canonical transforms. I. Complex linear transforms. Journal
of Mathematical Physics, 15:1295, 1974.
wo74-1
[4825] K. Wolf. Canonical transforms. II. Complex radial transforms. J.
Math. Phys., 15(12):2102–2111, 1974.
426
cadajamawo11
wo02-2
[4826] J. Wolff, M. Martens, S. Jafarpour, I. Daubechies, and R. Calderbank. Uncovering elements of style. In Acoustics Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages
1017–1020, 2011.
[4827] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002.
wo11
[4828] M. Wong. Discrete Fourier analysis. Pseudo-Differential Operators.
Theory and Applications 5. Basel: Birkh¨auser. viii, 176 p., 2011.
wo79
[4829] J. Wood. Unbounded multipliers on commutative Banach algebras.
Pacific J. Math., 85:479–484, 1979.
wo97-1
[4830] N. Woodhouse. Geometric quantization. Oxford Mathematical Monographs. Oxford University Press, Second Edition edition, 1997.
wo80-1
[4831] W. A. Woyczynski. On Marcinkiewicz-Zygmund laws of large numbers
in Banach spaces and related rates of convergence. Probab. Math.
Stat., 1(2):117–131, 1980.
wr97
[4832] G. Wright. Magnetic resonance imaging. IEEE Signal Processing
Magazine Magazine, 14(1):56–66, 1997.
gamasawrya09
[4833] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust Face
Recognition via Sparse Representation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on,, 31(2):210 –227, 2009.
wr13
[4834] T. Wright. Infinitely many Carmichael numbers in arithmetic progressions. Bulletin of the London Mathematical Society, 45(5):943–952,
2013.
wr12
[4835] B. Wrobel. Multivariate spectral multipliers for tensor product orthogonal expansions. Monatsh. Math., 168(1):125–149, 2012.
wr13-2
[4836] B. Wrobel. Erratum to: Multivariate spectral multipliers for tensor product orthogonal expansions [MR2971743]. Monatsh. Math.,
169(1):113–115, 2013.
wr13-1
[4837] B. Wr´obel. Laplace type multipliers for Laguerre expansions of Hermite type. Mediterr. J. Math., 10(4):1867–1881, 2013.
427
wr97-1
[4838] G. Wr´obel. Tensor harmonic analysis on homogeneous spaces. Acta
Phys. Polon. B, 28(7):1575–1586, 1997.
daflwu11
[4839] H.-T. Wu, P. Flandrin, and I. Daubechies. One or two frequencies?
The synchrosqueezing answers. Adv. Adapt. Data Anal., 3(1-2):29–
39, 2011.
wu06
[4840] W. Wu. Quantized Gromov-Hausdorff distance. J. Funct. Anal.,
238(1):58–98, 2006.
dagitiwu06
[4841] X. Wu, Z. Tian, T. Davidson, and G. Giannakis. Optimal waveform
design for UWB radios. IEEE Trans. Signal Process., 54(6):2009–
2021, 2006.
wuwu13
[4842] X. Wu and Z. Wu. Volterra operator from Bergman spaces to Morrey
spaces. Eurasian Math. J., 4(1):135–144, 2013.
guhewu05
[4843] Z. Wu, J. He, and G. Gu. Design of Optimal Pilot-tones for Channel
Estimation in MIMO-OFDM Systems. volume 1, pages 12–17, Mar.
2005.
wuzhzo08
[4844] Z. Wu, R. Zhao, and N. Zorboska. Toeplitz operators on analytic
Besov spaces. Integr. Equ. Oper. Theory, 60(3):435–449, 2008.
bowu91
[4845] D. Wuescher and K. Boyer. Robust contour decomposition using a
constant curvature criterion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 13(1):41–51, 1991.
wuzh13
[4846] H. Wulan and J. Zhou. QK and Morrey type spaces. Ann. Acad. Sci.
Fenn., Math., 38(1):193–207, 2013.
gemamexa11
[4847] F. Xaver, G. Matz, P. Gerstoft, and C. Mecklenbr¨auker. Localization
of acoustic sources using a decentralized particle filter. EURASIP
Journal on Wireless Communications and Networking, 2011(1):94,
2011.
xizh97
[4848] D. Xia and D. Zheng. Products of Hankel operators. Integr. Equ.
Oper. Theory, 29(3):339–363, 1997.
xi00
[4849] E. Xia. The moduli of flat pu(2, 1) structures on Riemann surfaces.
Pacific J. Math., 195(1):231–256, 2000.
428
naxi94
[4850] X.-G. Xia and M. Nashed. The Backus-Gilbert method for signals
in reproducing kernel Hilbert spaces and wavelet subspaces. Inverse
Problems, 10(3):785–804, 1994.
xi10-1
[4851] J. Xian. Error estimates from noise samples for iterative algorithm in
shift-invariant signal spaces. Abstr. Appl. Anal., Article ID 214213:9,
2010.
xi12
[4852] J. Xian. Local sampling set conditions in weighted shift-invariant
signal spaces. Applicable Analysis, 91(3):447–457, 2012.
lixi12
[4853] J. Xian and S. Li. Improved sampling and reconstruction in spline
subspaces. Acta Math. Appl. Sin., to appear, 2012.
suxi10
[4854] J. Xian and W. Sun. Local sampling and reconstruction in shiftinvariant spaces and their applications in spline subspaces. Numer.
Funct. Anal. Optim., 31(3):366–386, 2010.
haraxixi09
[4855] Z. Xiang, Y. Xi, U. Hasson, and P. Ramadge. Boosting with spatial regularization. volume 22, pages 2107–2115, British Columbia,
Canada, Dec. 2009.
xi13
[4856] Z.-Q. Xiang. New characterizations of Riesz-type frames and stability
of alternate duals of continuous frames. Adv. Math. Phys., pages Art.
ID 298982, 11, 2013.
xi98
[4857] H. Xiao. On anisotropic invariants of a symmetric tensor: Crystal
classes, quasi-crystal classes and others. Proc. R. Soc. Lond., Ser. A,
Math. Phys. Eng. Sci., 454(1972):1217–1240, 1998.
roxiya01
[4858] H. Xiao, V. Rokhlin, and N. Yarvin. Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems, 17(4):805–838,
2001.
xi01
[4859] J. Xiao. Holomorphic Q Classes. Lecture Notes in Mathematics
Springer, 2001.
xi06
[4860] J. Xiao. Geometric Qp Functions.
Birkh¨auser, 2006.
xizh09
Frontiers in Mathematics.
[4861] X. Xiao and Y. Zhu. Duality principles of frames in Banach spaces.
Acta Math. Sci., Ser. A, Chin. Ed., 29(1):94–102, 2009.
429
diwaxizh07
[4862] X. Xiao, Y. Zhu, Y. Wang, and M. Ding. Some properties of a
bounded linear operator defined by a g-Bessel sequence. J. Fuzhou
Univ., Nat. Sci., 35(3):326–330, 2007.
chlixi10
[4863] Y. Xiao, H. Chen, and F. Li. Handbooks On Sensor Networks. Hackensack, NJ: World Scientific. xxvii, 2010.
chxiyu05
[4864] X. Xie, S. Chan, and T. Yuk. Design of perfect-reconstruction
nonuniform recombination filter banks with flexible rational sampling
factors. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 52(9):1965 – 1981, sept. 2005.
maxi01
[4865] Z. Xiong and H. S. Malvar. A nonuniform modulated complex lapped
transform. IEEE Signal Processing Letters, 8(9):257–260, September
2001.
waxuxu11
[4866] G. Xu, X. Wang, and X. Xu. 2D Hilbert transform and Bedrosian’s
principle associated with fractional Fourier transform. Acta Math.
Sci. Ser. A Chin. Ed., 31(3):814–828, 2011.
xu10-1
[4867] J. Xu. Lecture notes on Mathematical Olympiad courses. For junior
section. In 2 volumes. Mathematical Olympiad Series 6. Hackensack,
NJ: World Scientific. xii and xii, 178 p./v.2., 2010.
xu12
[4868] J. Xu. Lecture Notes On Mathematical Olympiad Courses For Senior
Section In 2 Volumes. Mathematical Olympiad Series 8. Hackensack,
NJ: World Scientific. 500 p./set., 2012.
chqixu14
[4869] J. Xu, H. Chang, and J. Qin. Domain decomposition method for
image deblurring. J. Comput. Appl. Math., 271(0):401 – 414, 2014.
xu01
[4870] Y. Xu. Orthogonal polynomials on the ball and the simplex for weight
functions with reflection symmetries. Constr. Approx., 17(3):383–
412, 2001.
xu06
[4871] Y. Xu. Analysis on the unit ball and on the simplex. ETNA, Electron.
Trans. Numer. Anal., 25:284–301, 2006.
haraxu99
[4872] Y. Xu, S. Haykin, and R. Racine. Multiple window time-frequency
distribution and coherence of EEG using Slepian sequences and Hermite functions. Biomedical Engineering, IEEE Transactions on,
46(7):861–866, 1999.
430
xu10
[4873] Z. Xu. A remark about orthogonal matching pursuit algorithm, 2010.
plrexu10
[4874] Z. Xu, L. Rebollo Neira, and A. Plastino. Subspace modelling for
structured noise suppression. Physica A: Statistical Mechanics and
its Applications, 389(10):2030–2035, 2010.
ya57
[4875] A. Yaglom. Certain types of random fields in n-dimensional spaces
similar to stationary stochastic processes. Teor. Veroyatn. Primen.,
2:292–338, 1957.
yaya09
[4876] T. Yakovenko and R. Yamnenko. Convergence rate for wavelet expansions of generalized accumulated Ornstein-Uhlenbeck processes. 2009.
ya06-2
[4877] S. Yakubovich. On the Plancherel theorem for the Olevskii transform.
Acta Math. Vietnam., 31(3):249–260, 2006.
luya94
[4878] S. Yakubovich and Y. Luchko. The Hypergeometric Approach To
Integral Transforms and Convolutions. Mathematics and its Applications (Dordrecht). 287. Dordrecht: Kluwer Academic Publishers. xi,
324 p., 1994.
ya94
[4879] K. Yamada. Gabor feature stabilities for basic image transformations.
In BMVC94, Proc. of the 5th British Machine Vision Conference,
page 10. BMVA Press, 1994.
ya12
[4880] Y. Yamamoto. From Vector Spaces to Function Spaces: Introduction
to functional analysis with applications. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 2012.
iljiya14
[4881] F. Yan, A. Iliyasu, and Z. Jiang. Quantum computation-based image
representation, processing operations and their applications. Entropy,
16(10):5290–5338, 2014.
yaya11
[4882] D. Yang and S. Yang. New characterizations of weighted MorreyCampanato spaces. Taiwanese J. Math., 15(1):141–163, 2011.
yayuzh12
[4883] D. Yang, W. Yuan, and C. Zhuo. Fourier multipliers on TriebelLizorkin-type spaces. J. Funct. Spaces, 2012.
yayuzh14
[4884] D. Yang, W. Yuan, and C. Zhuo. Musielak–Orlicz Besov-type and
Triebel–Lizorkin-type spaces. Rev. Mat. Univ. Complut. Madrid,
27(1):93–157, 2014.
431
yazh11
[4885] D. Yang and Y. Zhou. New properties of Besov and Triebel-Lizorkin
spaces on RD-spaces. Manuscripta Math., 134(1-2):59–90, 2011.
huwuyazhzh14
[4886] H. Yang, M. Zhu, X. Wu, Z. Zhang, and H. Huang. Dictionary
learning approach for image deconvolution with variance estimation.
Applied optics, 53(25):5677–5684, 2014.
huya11
[4887] J. Yang and T. Huang. Image super-resolution: historical overview
and future challenges. from the book: Super-Resolution Imaging
(edited by Peyman Milanfar). CRC Press (Taylor &amp and amp and
Francis Group), 2011.
humawrya10
[4888] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution
via sparse representation. IEEE Trans. Image Process., 19(11):2861
–2873, nov. 2010.
ya99-2
[4889] Q. Yang. Multiresolution analysis on non-abelian locally compact
groups. PhD thesis, University of Saskatchewan, 1999.
ya13
[4890] Q.-H. Yang. Hardy type inequalities related to Carnot-Caratheodory
distance on the Heisenberg group.
Proc. Amer. Math. Soc.,
141(1):351–362, 2013.
roya99
[4891] N. Yarvin and V. Rokhlin. Generalized Gaussian quadratures and
singular value decompositions of integral operators. SIAM J. Sci. Comput., 20(2):699–718, 1999.
ye12
[4892] P. Ye. Quantum approximation on anisotropic Sobolev and H¨olderNikolskii classes. Taiwanese J. Math., 16(1):71–88, 2012.
ye56
[4893] J. Yen. On nonuniform sampling of bandwidth-limited signals. Circuit
Theory, IRE Transactions on, 3(4):251–257, 1956.
ye13
[4894] J. Yeol. Stability of functional equations in random normed spaces.
New York, NY: Springer, 2013.
chyezh09
[4895] K. Yeon, J. Choi, and S. Zhang. Quantum systems connected by
a time-dependent canonical transformation. Commun. Theor. Phys.,
52(3):416–420, 2009.
432
basayo13
[4896] Y. Yomdin, N. Sarig, and D. Batenkov. Decoupling of Fourier
reconstruction system for shifts of several signals. SampTA 2013,
preprint:4, 2013.
jiyo13
[4897] C. Yonghui and Z. Jiang. Morrey spaces for nonhomogeneous metric
measure spaces. Abstr. Appl. Anal., 2013:8, 2013.
chchkisoyo07
[4898] I. Yoo, K. Chang, D. Cho, B. Kim, and T. Song. A change of scale
formula for conditional Wiener integrals on classical Wiener space. J.
Korean Math. Soc., 44(4):1025–1050, 2007.
kuyo11
[4899] K. Young and L. Kun. Schatten-class operators and frames. Quaestiones Mathematicae, 34(2):203–211, 2011.
boyo78
[4900] J. Youngberg and S. Boll. Constant-Q signal analysis and synthesis.
In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’78), volume 3, pages 375 – 378, 1978.
yo06
[4901] S. Yousefi. Legendre wavelets method for solving differential equations
of Lane–Emden type. Appl. Math. Comp., 181(2):1417–1422, 2006.
ys05
[4902] H. Yserentant. Sparse grid spaces for the numerical solution of
the electronic Schr¨odinger equation. Numer. Math., 101(2):381–389,
2005.
yu97
[4903] G. Yu. K-theoretic indices of Dirac type operators on complete manifolds and the Roe algebra. K-Theory, 11(1):1–15, 1997.
yu97-1
[4904] G. Yu. Localization algebras and the coarse Baum-Connes conjecture.
K-Theory, 11(4):307–318, 1997.
yu98
[4905] G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. (2), 147(2):325–355, 1998.
yu00
[4906] G. Yu. The coarse Baum-Connes conjecture for spaces which admit a
uniform embedding into Hilbert space. Invent. Math., 139(1):201–240,
2000.
yu11
[4907] G. Yu. Large scale geometry and its applications. In Noncommutative
geometry and global analysis, volume 546 of Contemp. Math., pages
305–315. Amer. Math. Soc., Providence, RI, 2011.
433
yu88
[4908] S. Yu. A harmonic analysis for operators on homogeneous Banach
spaces. Chinese Ann. Math. Ser. A, 9(1):23–31, 1988.
yu89
[4909] S. Yu. Vector-valued pseudomeasures. J. Math. Res. Expo., 9(1):17–
23, 1989.
demotryu11
[4910] S. Yu, L.-C. Tranchevent, M. De, and Y. Moreau. Kernel-based Data
Fusion for Machine Learning. Springer Berlin Heidelberg, 2011.
shyayuzh13
[4911] D. Yuan, S. Yang, X. Zheng, and Y. Shen. New proof for Balian-flow
theorem of nonlinear Gabor system. J. Funct. Spaces Appl., pages Art.
ID 530172, 7, 2013.
sayayu10
[4912] W. Yuan, Y. Sawano, and D. Yang. Decompositions of BesovHausdorff and Triebel-Lizorkin-Hausdorff spaces and their applications. J. Math. Anal. Appl., 369(2):736–757, 2010.
siyayu10
[4913] W. Yuan, W. Sickel, and D. Yang. Morrey and Campanato meet
Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005.
Berlin: Springer. xi, 281 p., 2010.
yv08
[4914] M. Yves. The Szego; and AvramParter theorems for general test functions Les th´eor`emes de Szego; et d’AvramParter pour des fonctions
test g´en´erales. Comptes Rendus Mathematique, 346(13-14):749–752,
2008.
za83-1
[4915] A. Zaanen. Riesz Spaces II. North-Holland Mathematical Library,
Vol. 30. Amsterdam - New York - Oxford: North-Holland Publishing
Company. XI, 1983.
za97
[4916] A. Zaanen. Introduction to Operator Theory in Riesz Spaces. Berlin:
Springer. xi, 312 p., 1997.
za11-1
[4917] V. Zacharovas. A Tauberian theorem for the Ingham summation
method. Acta Arith., 148(1):31–54, 2011.
za74
[4918] L. Zalcman. Real proofs of complex theorems (and vice versa). Amer.
Math. Monthly, 81(2):115–137, 1974.
za81
[4919] R. Zalik. The M¨
untz-Szasz theorem and the closure of translates. J.
Math. Anal. Appl., 82:361–369, 1981.
434
za08
[4920] R. Zalik. Bases of translates and multiresolution analyses. Appl.
Comput. Harmon. Anal., 24(1):41–57, 2008.
za10
[4921] R. Zalik. Corrigendum to “Bases of translates and multiresolution
analyses” [Appl. Comput. Harmon. Anal. 24, 41–57 (2008)]. Appl.
Comput. Harmon. Anal., 29(1):121, 2010.
za13
[4922] M. Zarrabi. Some results of Katznelson-Tzafriri type. J. Math. Anal.
Appl., 397(1):109 – 118, 2013.
za11
[4923] G. Zauner. Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf., 9(1):445–507, 2011.
za98
[4924] A. Zayed. Fractional Fourier transform of generalized functions. Integral Transforms Spec. Funct., 7(3-4):299–312, 1998.
za98-1
[4925] A. Zayed. Hilbert Transform Associated with the Fractional Fourier
Transform. IEEE Signal Processing Letters, 5(8):206–208, 1998.
anelza91
[4926] A. Zayed, M. El Sayed, and M. Annaby. On Lagrange interpolations
and Kramer’s sampling theorem associated with self-adjoint boundary
value problems. J. Math. Anal. Appl., 158(1):269–284, 1991.
shza11
[4927] A. Zayed and M. Shubov. Sampling theorem for bandlimited Hardy
space functions generated by Regge problem. Appl. Comput. Harmon.
Anal., 31(1):125 – 142, 2011.
za98-2
[4928] A. I. Zayed. A convolution and product theorem for the fractional
Fourier transform. IEEE Signal Processing Letters, 5(4):101–103,
1998.
ze10
[4929] E. Zehnder. Lectures on Dynamical Systems Hamiltonian Vector
Fields and Symplectic Capacities. EMS Textbooks in Mathematics.
Z¨
urich: European Mathematical Society (EMS). x, 353 p., 2010.
ze06
[4930] E. Zeidler. Quantum Field theory I: Basics In mathematics and
Physics A Bridge Between Mathematicians And Physicists. Berlin:
Springer. xxiv, 1020 p. EUR 96.26 and SFR 152.50, 2006.
ze09
[4931] E. Zeidler. Quantum Field Theory II: Quantum Electrodynamics A
Bridge Between Mathematicians and Physicists. Berlin: Springer.
xxxvii, 1101 p., 2009.
435
ze11
[4932] E. Zeidler. Quantum Field theory III: Gauge theory A Bridge
Between Mathematicians And Physicists. Berlin: Springer. xxxii,
1126 p., 2011.
ze12
[4933] A. Zeiser. Wavelet approximation in weighted Sobolev spaces of mixed
order with applications to the electronic Schr¨odinger equation. Constr.
Approx., 35(3):293–322, 2012.
ze96
[4934] S. Zelditch. Quantum ergodicity of C ∗ dynamical systems. Comm.
Math. Phys., 177(2):507–528, 1996.
ze94
[4935] A. Zell. Simulation of neural nets. Bonn: Addison-Wesley Publishing
Company. 624 p., 1994.
meze05
[4936] T. Zemen and C. Mecklenbr¨auker. Time-variant channel estimation
using discrete prolate spheroidal sequences. IEEE Trans. Signal Process., 53:3597–3607, Sep. 2005.
ze05
[4937] A. Zettl. Sturm-Liouville theory, volume 121 of Mathematical Surveys and Monographs. American Mathematical Society, Providence,
RI, 2005.
ze82
[4938] H. Zettl. Ideals in Hilbert modules and invariants under strong Morita
equivalence of C ∗ -algebras. Archiv der Mathematik, 39(1):69–77,
1982.
zh00
[4939] B. Zhang. Commutator estimates, Besov spaces and scattering problems for the acoustic wave propagation in perturbed stratified fluids.
Math. Proc. Cambridge Philos. Soc., 128(1):177–192, 2000.
olzezh07
[4940] B. Zhang, J. Zerubia, and J. Olivo Marin. Gaussian approximations
of fluorescence microscope point-spread function models. Applied Optics, 46:1819–1829, 2007.
zh02-4
[4941] C. Zhang. A characterization of pseudo almost periodic functions in
Fourier analysis. Acta Anal. Funct. Appl., 4(2):110–114, 2002.
zh13
[4942] C. Zhang. Strichartz estimates in the frame of modulation spaces.
Nonlinear Anal., 78:156–167, 2013.
zh14
[4943] H. Zhang. Multidimensional Analytic Signals and the Bedrosian Identity. Int. Equ. Oper. Theory, 78(3):301–321, 2014.
436
chlitazh04
[4944] H. Zhang, J. Chen, Y. Tang, and S. Li. Analysis of PilotSymbol Aided Channel Estimation for MIMO-OFDM Systems. Proc.
ICCCAS-2004, 1:299–303, Jun. 2004.
krmozh09
[4945] H. Zhang, J. Moura, and B. Krogh. Dynamic field estimation using wireless sensor networks: tradeoffs between estimation error and
communication cost. IEEE Trans. Signal Process., 57(6):2383–2395,
2009.
zhzh11
[4946] H. Zhang and J. Zhang. Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products. Appl. Comput. Harmon. Anal., 31(1):1–25, 2011.
pazh08-1
[4947] J. Zhang and A. Papandreou Suppappola. Compressive sensing and
waveform design for the identification of linear time-varying systems.
pages 3865 – 3868, Las Vegas, NV, April 2008.
hozh12
[4948] J.-F. Zhang and S.-P. Hou. The generalization of the Poisson sum
formula associated with the linear canonical transform. J. Appl.
Math., pages Art. ID 102039, 9, 2012.
kazh10
[4949] K. Zhang and J. Kang. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourierdomain OCT system. Optics express, 18(11):11772–11784, 2010.
liluzh11
[4950] K. Zhang, K. Zhang, C. Liu, and Y. Lu. Toeplitz operators with
BMO symbols on the weighted Bergman space of the unit ball. Acta
Mathematica Sinica, 27(11):2129–2142, 2011.
zh11-2
[4951] T. Zhang. Sparse recovery with orthogonal matching pursuit under
RIP. IEEE Trans. Inform. Theory, 57:6215–6221, Sep. 2011.
brbuoszh10
[4952] X. Zhang, M. Burger, X. Bresson, and S. Osher. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM
J. Imaging Sci., 3(3):253–276, 2010.
buoszh11
[4953] X. Zhang, M. Burger, and S. Osher. A unified primal-dual algorithm
framework based on Bregman iteration. J. Sci. Comput., 46:20–46,
2011.
437
dogulireyazhzh97
[4954] Y. Zhang, B. Gu, B. Dong, G. Yang, H. Ren, X. Zhang, and S. Liu.
Fractional Gabor transform. Optics letters, 22(21):1583–1585, 1997.
lizh14
[4955] Y. Zhang and Y. Li. Rational time-frequency multi-window subspace
Gabor frames and their Gabor duals. Science China Mathematics,
57(1):145–160, 2014.
zh05-3
[4956] Z. Zhang. Characterization of compact support of Fourier transform
for orthonormal wavelets of l2 ( d ). Acta Math. Sin. (Engl. Ser.),
21(4):855–864, 2005.
zhzh00
[4957] Z. Zhang and W. Zheng. Multiplier theorems for special Hermite
expansions on C n . Sci. China Ser. A, 43(7):685–692, 2000.
hezhzh04
[4958] C. Zhao, M. He, and X. Zhao. Analysis of transient waveform based
on combined short time Fourier transform and wavelet transform. In
Power System Technology, 2004. PowerCon 2004. 2004 International
Conference on, volume 2, pages 1122–1126, 2004.
litawazh09
[4959] J. Zhao, R. Tao, Y. Li, and Y. Wang. Uncertainty principles for
linear canonical transform. IEEE Trans. Signal Process., 57(7):2856–
2858, 2009.
zh12-1
[4960] R. Zhao. A similarity invariant and the commutant of some multiplication operators on the Sobolev disk algebra. Int. J. Math. Math.
Sci., 2012:17, 2012.
suzh13
[4961] Z. Zhao and W. Sun. Homogeneous approximation property for
wavelet frames with matrix dilations. II. Acta Math. Sin. (Engl. Ser.),
29(1):183–192, 2013.
nerarozh11
[4962] M. Zhariy, A. Neubauer, M. Rosensteiner, and R. Ramlau. Cumulative wavefront reconstructor for the Shack-Hartmann sensor. Inverse
Problems and Imaging (IPI), 5(4):893–913, 2011.
dazh11
[4963] B. Zheng and B. Dai. A meshless local moving Kriging method for
two-dimensional solids. Appl. Math. Comput., 218(2):563 – 573,
2011.
zh96-2
[4964] D. Zheng. Semi-commutators of Toeplitz operators on the Bergman
space. Integr. Equ. Oper. Theory, 25(3):347–372, 1996.
438
mcmuzh93
[4965] F.-C. Zheng, S. McLaughlin, and B. Mulgrew. Blind equalization of
nonminimum phase channels: higher order cumulant based algorithm.
IEEE Trans. Signal Process., 41(2):681–691, Feb. 1993.
tozh97
[4966] H. Zheng and L. Tong. Blind Channel Estimation Using the SecondOrder Statistics: Asymptotic Performance and Limitations. IEEE
Trans. Signal Process., 45(8):2060–2071, Aug. 1997.
zh03-1
[4967] S. Zheng. Besov spaces for the Schroedinger operator with barrier
potential. PhD thesis, 2003.
chsuzh06
[4968] S. Zheng, W. Chen, and X. Su. Adaptive windowed Fourier transform
in 3-D shape measurement. Opt. Eng., 45(6):063601–063601, 2006.
zh11-1
[4969] V. V. Zhikov. Homogenization of a NavierStokes-type system for electrorheological fluid. Complex Variables and Elliptic Equations, 56(79):545–558, 2011.
wezhXX
[4970] J. Zhong and J. Weng. Dilating Gabor transform for the fringe analysis of 3-D shape measurement. Optical Engineering, 2004, 43(4),
2004.
chzh11
[4971] Y. Zhong and J. Chen. Modulation space estimates for the fractional
integral operators. Sci. China, Math., 54(7):1479–1489, 2011.
xuzh14
[4972] H. Zhou and Z. Xu. The lower bound of the PCM quantization error
in high dimension. Appl. Comput. Harmon. Anal., 2014.
gowazh11
[4973] N. Zhou, Y. Wang, and L. Gong. Novel optical image encryption
scheme based on fractional Mellin transform. Optics communications,
284(13):3234–3242, 2011.
chgowayazh12
[4974] N. Zhou, Y. Wang, L. Gong, X. Chen, and Y. Yang. Novel color
image encryption algorithm based on the reality preserving fractional
Mellin transform. Optics & Laser Technology, 44(7):2270–2281,
2012.
adzh03
[4975] Z. Zhou and H. Adeli. Time-Frequency Signal Analysis of Earthquake
Records Using Mexican Hat Wavelets. Computer-Aided Civil and
Infrastructure Engineering, 18(5):379–389, 2003.
439
hulizh07
[4976] F. Zhu, H. Li, and Y. Huang. Characterization of compactly support of Fourier transform for m-band scaling function and orthogonal
wavelets. J. Ningxia Univ., Nat. Sci. Ed., 28(3):202–205, 2007.
chhusozh11
[4977] H. Zhu, Y. Chen, S. Song, and H. Hu.
Symplectic and
multi-symplectic wavelet collocation methods for two-dimensional
Schr¨odinger equations. Applied Numerical Mathematics, 61(3):308
– 321, 2011.
zh93
[4978] K. Zhu. Zeros of functions in Fock spaces. Complex Var. Theory
Appl., 21(1-2):87–98, 1993.
zh94
[4979] K. Zhu. Interpolating sequences for the Bergman space. The Michigan
Mathematical Journal, 41(1):73–86, 1994.
zh11-3
[4980] K. Zhu. Invariance of Fock spaces under the action of the Heisenberg
group. Bull. Sci. Math., 135(5):467–474, 2011.
zh12
[4981] K. Zhu. Analysis on Fock Spaces. Graduate Texts in Mathematics
263. Springer, 2012.
chzh08
[4982] M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical report, 2008.
luzhzh07
[4983] Z. Zhu, H. Lu, and Y. Zhao. Scale multiplication in odd Gabor transform domain for edge detection. Journal of Visual Communication
and Image Representation, 18(1):68 – 80, 2007.
zezi96
[4984] M. Zibulski and Y. Zeevi. Signal- and image-component separation
by a multi-window Gabor-type scheme. In Pattern Recognition, 1996.,
Proceedings of the 13th International Conference on,, volume 2, pages
835 –839, Vienna , Austria, aug 1996. IEEE.
bacalezi07
[4985] T. Zijian, R. Cannizzaro, G. Leus, and P. Banelli. Pilot-Assisted
Time-Varying Channel Estimation for OFDM Systems. IEEE Trans.
Signal Process., 55(5):2226–2238, May 2007.
zi05-1
[4986] J. Zinn Justin. Path Integrals in Quantum Mechanics. Oxford University Press, 2005.
440
zi11
[4987] P. Ziolo. Geometric characterization of interpolation in the space
of Fourier-Laplace transforms of ultradistributions of Roumieu type.
Collect. Math., 62(2):161–172, 2011.
flzi03
[4988] B. Zitova and J. Flusser. Image registration methods: a survey. Image
and vision computing, 21(11):977–1000, 2003.
zo86
[4989] C. Zorko. Morrey space. Proc. Amer. Math. Soc., 98(4):586–592,
1986.
liwazhzo05
[4990] H. Zou, D. Wang, X. Zhang, and Y. Li. Nonnegative timefrequency distributions for parametric time-frequency representations
using semi-affine transformation group. Signal Process., 85(9):1813–
1826, 2005.
zo06-1
[4991] Y. Zou. Gaussian binomials and the number of sublattices. Acta Crystallographica Section A: Foundations of Crystallography, 62(5):409–
410, 2006.
mo12
[4992] Zouhair Mouayn. Une famille de transformations de Bargmann circulaires. C. R., Math., Acad. Sci. Paris, 350(23-24):1017–1022, 2012.
zu03
[4993] W. Zuniga Galindo. Fundamental solutions of pseudo-differential operators over p-adic fields. Rend. Sem. Mat. Univ. Padova, 109:241–
245, 2003.
zu08
[4994] W. Zuniga Galindo. Parabolic equations and Markov processes over
p-adic fields. Potential Anal., 28(2):185–200, 2008.
zw12
[4995] M. Zworski. Semiclassical Analysis. AMS, 2012.
slzy98
[4996] K. Zyczkowski and W. Slomczynski. The Monge distance between
quantum states. Journal of Physics A: Mathematical and General,
31:9095, 1998.
slzy01
[4997] K. Zyczkowski and W. Slomczynski. The Monge metric on the sphere
and geometry of quantum states. Journal of Physics A: Mathematical
and General, 34:6689, 2001.
zy43
[4998] A. Zygmund. Complex methods in the theory of Fourier series. Bull.
Amer. Math. Soc., 49:805–822, 1943.
441
zy75
[4999] A. Zygmund. The role of Fourier series in the development of analysis. Hist. Math., 2:591–594, 1975.
bocazy10
[5000] A. Zymnis, S. Boyd, and E. Candes. Compressed sensing with quantized measurements. IEEE Signal Process. Letters, 17(2):149 –152,
2010.
442