CO2-expanded ethanol chemical synthesis of a Fe3O4@graphene

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A
This journal is © The Royal Society of Chemistry 2013
Supporting Information for
CO2-expanded ethanol chemical synthesis of a Fe3O4@graphene
composite and its high electrochemical properties as anode material for
Li-ion batteries
Linhai Zhuo, a,c Yingqiang Wu, a,c,d Lingyan Wang, a,c,d Jun Ming,
a,c,d
Yancun Yu, a,c Xinbo Zhang,*b
Fengyu Zhao* a,c
a
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun 130022, China
b
State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun 130022, China E-mail: [email protected]
c
Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China E-mail:[email protected]; Fax: +86-431-85262410; Tel: +86-431-85262410
d
University of the Chinese Academy of Sciences, Beijing 100049, China
Intensity(a.u.)
Fig. S1 SEM image of the cross section of an electrode
10
20
30
40
2(degree)
50
60
70
Fig. S2 XRD patterns of the intermediate of Fe-salt@GO-CE-20 composite.
1 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A
This journal is © The Royal Society of Chemistry 2013
Mass remaining
100
17%
80
60
25%
Fe3O 4@GN-E-20
Fe3O 4@GN-CE-20
40
Fe3O 4@GN-CE-15
20
0
100
200
300
400
500
600
700
800
Temperature (oC)
Fig. S3 TGA analysis for the Fe3O4@GN-E-20, Fe3O4@GN-CE-20, and Fe3O4@GN-CE-15.
Fig. S4 SEM (a) and TEM (b) images of GO.
Fig. S5 SEM image and corresponding carbon, iron, and oxygen elemental mapping of
Fe3O4@GN-CE-20 composite synthesized in CO2-expanded ethanol.
2 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A
This journal is © The Royal Society of Chemistry 2013
Fig. S
S6 SEM imaages of (a) Fe-salt@GO
F
O-CE-15. (b
b) Fe3O4@G
GN-CE-15. ((c) TEM im
mage of
Fe3O 4@GN-CE
E-15
180
Volume (cm g STP)
3
400
2
-1
SBETT = 116 m /g
120
3
Vtotal = 0.254 cm /g
g
3
-1
Volume (cm g STP)
140
100
450
a
160
80
60
b
2
SBET = 15
55 m /g
300
250
200
3
Vtotal = 0.6
634 cm /g
150
100
40
50
20
0.0
350
0.2
0.4
0.6
0.8
1.0
0
0.0
0
0.2
0.4
0.6
0.8
1.0
Re
elative Pressure (P//P0)
Relative Preessure (P/P0)
Figg. S7 Nitroggen adsorptiion/desorptiion isotherm
ms for (a) Fee3O4@GN-C
CE-20, and
d (b)
Fe3 O4@GN-E-20.
Table S1 A comparisoon of electro
ochemical pperformancee of the Fe3O4@GN-CE
E-20 with th
he recent
studies on F
Fe3O4@grapphene comp
posites
Typpe of
Initial
Reversible
R
material
c
efficiency capacity
0.5 C
1C
2C
5C
Referencce
(mA
(
h g-1)
3 F
Fe3O4–rGO
65 %
993 (50 mA h g-1)
647
7
396
193
-
1
F
Fe3O4-GNS
61.5 %
664 (100 mA h g-1)
-
-
-
-
2
Fe3O4/graphene
50 %
1160 (200 mA h g-1)
-
-
-
-
3
G
GN-Fe3O4
65.6 %
1073 (100 mA h g-1)
-
-
-
-
4
Fe3O4/GNSs-1
55 %
612.5
6
(92.5 mA
A h g-1)
-
-
-
-
5
FGCs
-
755.6 (1A h g--1)
-
755.6
-
-
6
GCF
-
84
42.7 (200 mA h g-1)
~ 700
~ 600
~ 400
~ 2000
7
R
RGO-Fe3O4
71 %
877 (46.3 mA h g-1)
736
6
703
-
607
8
G-HM
-
900 (100 mA h g-1)
-
-
-
-
9
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A
This journal is © The Royal Society of Chemistry 2013
(Note,
Fe3O4–graphene
70 %
1280 (100 mA h g-1)
1080
1010
940
10
GNS/Fe3O4
-
900 (35 mA h g-1)
-
-
-
-
11
Fe3O4@GN-CE-20
73.5 %
941 (100 mA h g-1)
~ 930
~ 850
~ 730
~ 460
This work
in this table, 1c = 1000 mA g-1)
1.
Y. Chen, B. H. Song, X. S. Tang, L. Lu and J. M. Xue, J. Mater. Chem., 2012, 22, 17656-17662.
2.
J. Z. Wang, C. Zhong, D. Wexler, N. H. Idris, Z. X. Wang, L. Q. Chen and H. K. Liu, Chem. Eur. J., 2011,
17, 661-667.
3.
G. Wang, T. Liu, X. Xie, Z. Ren, J. Bai and H. Wang, Mater. Chem. Phys., 2011, 128, 336-340.
4.
J. Su, M. Cao, L. Ren and C. Hu, J. Phys. Chem. C, 2011, 115, 14469-14477.
5.
X. Y. Li, X. L. Huang, D. P. Liu, X. Wang, S. Y. Song, L. Zhou and H. J. Zhang, J. Phys. Chem. C, 2011,
115, 21567-21573.
6.
B. J. Li, H. Q. Cao, J. Shao, M. Z. Qu and J. H. Warner, J. Mater. Chem., 2011, 21, 5069-5075.
7.
B. J. Li, H. Q. Cao, J. Shao and M. Z. Qu, Chem. Commun., 2011, 47, 10374-10376.
8.
L. W. Ji, Z. K. Tan, T. R. Kuykendall, S. Aloni, S. D. Xun, E. Lin, V. Battaglia and Y. G. Zhang, Phys.
Chem. Chem. Phys., 2011, 13, 7170-7177.
9.
D. Y. Chen, G. Ji, Y. Ma, J. Y. Lee and J. M. Lu, Acs Appl. Mater. Interfaces, 2011, 3, 3078-3083.
10.
S. K. Behera, Chem. Commun., 2011, 47, 10371-10373.
11.
G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu and H. M. Cheng, Chem.
Mater., 2010, 22, 5306-5313.
4