PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/76178 Please be advised that this information was generated on 2015-02-06 and may be subject to change. Bone Marrow Stromal cells for repair of the spinal cord R.D.S. Nandoe Tewarie Bone M a rro w Strom al ce lls for re p air o f the sp in a l cord ISBN 9 78 -9 0 -9 0 2 5 19 2 -9 Cover design: T.A. N andoe Tew arie Printed by: Q u ick p rin t N ijm eg en This thesis is funded by the N e th erlan d s O rg a n iza tio n for Scien tific Research (N W O ) grant num ber 0 1 7.0 0 1 .2 6 5 . Further fin a n cia l su p p o rt is provided by The M iam i Project to Cure Paralysis at the U niversity o f M iam i, the In te rn a tio n a l C e n te r for S p in al Cord In ju ry at Johns H o p k in s U n iversity and the D e p a rtm e n t o f N eurosurgery from the Radboud U niversity M ed ical C e n te r N ijm eg en. © 2 010, R.D.S. N andoe Tew arie, N ijm eg e n , The N eth erlan d s All rights reserved. No part o f this th esis may be reproduced, stored in a retrieval system or tra n sm itte d in any form by any m ea n s w ithout p rio r p e rm issio n o f the author. Bone Marrow Stromal cells for repair of the spinal cord Een w e te n sch a p p e lijk e proeve op het gebied van de M ed ische W e te n sch a p p e n Proefschrift ter verkrijg in g van de graad van doctor aan de Radboud U n iversite it N ijm eg en op g ezag van de Rector M a g n ificu s prof. m r. S.C.J.J. K ortm ann, volgens b esluit van het college van decanen in het o p e n b a a r te verdedigen op w o e n sd ag 7 ap ril 2 0 1 0 om 15.30 uur precies door Rishi Devindredath Sharma Nandoe Tewarie geboren op 2 m ei 19 78 te Z e v e n a a r Promotor: Prof. dr. J.A. G ro te nh u is Co-promotores: Dr. M . O udega (U n iversity o f Pittsburg) Dr. R .H .M .A . Bartels Manuscriptcommissie: Prof. dr. A .C .H . G eurts Prof. dr. G .W .A .M . Padberg Prof. dr. W .C. Peul (Leids U n iv e rsita ir M edisch C e n tru m / M edisch C e ntru m H a a g lan d e n ) Prof. dr. R .P.H . Veth Prof. dr. P. W e sse lin g Paranimfen: M r. drs. D.R. Buis M w. M r. G.A. N and oe Tew arie D it werk draag ik op aan w ijlen m ijn m o ed er E.K. Nandoe-Bissessur, 28-08-1950 t 23-04-2004 Introduction and Outline Thesis 9 S ubm itted N e u ro re h a b ilita tio n (2010) J Spin C o rd M ed. 2009; 32 (2): 105-114 Review of Literature on Bone Marrow Stromal Cells 31 C ell Transplant. 2006; 15 (7): 563-577 Gene expression pattern and suitability 47 S ubm itted Restorative N eurology (2010) Survival and neuroprotection 65 J N e u ro tra u m a 2009; 26 (12): 2313-2322 Inflammation and cell survival 79 N eu ro rep ort 2010; 21 (3): 221-226 Functional recovery after transplantation 89 S ubm itted C ell Transplantation (2010) Summary and general discussion 105 Nederlandse samenvatting 113 Synthesis 119 A cknow led gem ents Curriculum vitae A bb reviatio ns List o f p u blication s Reference list 126 N e u ro c h iru rg is c h C e n tru m N ijm e g e n 1 General introduction to spinal cord injury and stem cells. Outline of the thesis. A clin ical p e rsp ective o f sp in a l cord injury. Subm itted N e u ro re h a b ilita tio n (2010) Stem cell based th erap ie s for sp in a l cord injury. J Spin C o rd M e d 2009; 32 (2): 105-114 R.D.S. N andoe Tew arie A. H urtado R .H .M .A . Bartels J.A. G ro tenhu is M . O udega Chapter 1 A. Introduction to spinal cord injury Each year, m any people worldw ide suffer from sp inal cord injury (SCI). These injuries cause death o f neural cells, severance and dem yelination o f descending and ascend ing axons, and, consequently, loss o f m otor and sensory function. Endogenous repair efforts fail to repair the spinal cord and, as a result, the functional im p airm ents are p erm anent. M ost people who experience SCI are destined to spend the rem ainder o f their life in a w heelchair3, 35, ” 8, 145, 340 345. Potential treatm ents for SCI are being tested in the clin ic but so far none o f these have em erged as one that reverses the devastating functional consequences o f SCI. H ere we review SCI with an em p hasis on the current status o f clinical care and clinical trials. In an accom panying review we discuss the ap p lication o f stem cells for sp inal cord repair. E P ID E M IO LO G Y A N D ETIO LOGY O F SCI In co n sisten t data reporting m akes it difficult to accurately estim ate the worldw ide incidence o f S C I3, ” 4, 254, 301 315 388. The an nual incidence in the United States is about 4 0 cases per m illion population or about 12,000 cases per year2’6, 4’7, 452. O ver 77 % o f SCI occurred am ong m ales. A num ber o f studies profiling the epidem iology o f SCI indicated that the population o f SCI people has grown over 255,000 (in 2 0 0 7 ) with estim ates between 2 2 7.0 8 0 and 300,938 patients. In the United States and m ost W estern European countries, the average age at injury has increased over the last 3 decades from 28.7 to 39.5 years. M ost injuries occur between the ages o f 16 and 30. The percentage o f people older than 6 0 that suffered from SCI has increased from 4 .7% in 1980 to 11.5% am ong injuries since 2 0 0 0 . In the United States, the m ain causes o f SCI are m otor vehicle crashes (42% ), falls (27.1% ), violence (15.3%), unknown (8.1% ), sports (7.4% ). These num bers are sim ilar in other countries although the percentage o f violence may be sm aller216, 417, 452. Over 70 % o f injuries are contusive in ju rie s54, 195. CONSEQUENCES O F SCI Pathophysiological and anatomical consequences A force to the vertebral colum n causes dam age to the ligam ents and vertebrae (Fig. 1A, B). The torn ligam ents cause instability o f the vertebral colum n. Dislocated bone fragm ents of dam aged vertebrae m ay com press the sp in al cord (Fig. 1A, B). This causes im m ediate neural cell death, axon dam age and d em yelin ation155 (Fig. 2A). The cellular dam age results in instant loss o f m otor and sensory function. After the first destructive events, a sequence o f m olecular and cellular pathophysiological events (Fig. 2A) including an aggressive inflam m atory respon se w ithin the dam aged tissue leads to additional tissue loss at the injury epicen ter and at distant sites34, 65, 155, 192 (secondary injury). On the other hand, there are also various cellular 10 Introduction and Outline Thesis events during the early and later stages o f SCI that could be interpreted as attem pts to correct for the inflicted dam age (Fig. 2B). Functional consequences The functional consequences o f SCI are highly variable and depend on the degree o f tissue dam age, which in turn d ep end s on the im pact severity. In patients with SCI with a relatively sm all am ount o f tissue dam age, som e endogenous recovery offu nction can be observed, which is m ost likely resulting from plasticity o f the sp inal nervous tissue102, '°7. In people with SCI with large tissue dam age the neurological deficits are generally m ajor and perm anent. There are very few reports o f people with a large injury that regain m otor function to a degree that indep en dence can be achieved. In these few cases the injury was generally inflicted to the lower (lum bar) level o f the sp in al cord'97. F ig . 1 . Imaging o f human spinal cord compressive injury. (A) S ag ittal view o f th e cervical spinal cord on m a g n e tic re so n a n c e im ag in g d e m o n stra tin g the d islocated C 5 an d C 6 v erteb ra c o m p re ssin g the sp inal cord (a rro w ). T h e fo rm ation o f a h a e m a to m a ventral to the spinal co lu m n C 1 -C 4 in d icates p o ssible lig a m e n t d a m a g e (a s te ris k ). (B ) C lo s e r view o f the d a m a g e d C 5 and C 6 cervical verteb rae on co m p u te d to m o g rap h y sc a n , cle arly sh o w in g bony d a m a g e o f the v e rte b ra e , w ith d islo catin g fractu re s in the sp inal ca n a l ( a r ro w ). (C ) C o n v e n tio n al X -ray lateral v iew o f th e cervical spinal colu m n a fte r dorsal stab ilizatio n from C 2 to T h 2 . B e c a u s e o f the d a m a g e to ten d o n s an d v e rteb rae stab ilizatio n su rg ery n e e d s to be im p le m en ted in a large n u m b e r o f c a s e s o f S C I . (D ) C o n v e n tio n al X -ra y a n tero -p o ste rio r view o f the s a m e patie n t with stab ilize d cervical v e rteb rae a s in pan el C . 11 Chapter 1 A F ig . 2 . A C U T E - S E C O N D A R Y - C H R O N IC Degenerative and regenerative events after spinal cord injury. A s c h e m a tic rep re se n tatio n o f the d e g e n e ra tiv e (A) an d re g e n e rativ e (B ) e v e n ts th at ta k e p la ce afte r spinal cord co n tu sion injury. R ostral is to the left. In B , the re g e n e rativ e e v e n ts th at ta k e p la ce relatively e arly afte r injury an d over a lim ited tim e period are u pregu lation o f reg e n e ra tio n -a sso c ia te d g e n e s ( R A G s ) , axon sprouting, a n g io g e n e sis, trop hic factor u p reg u lation , S ch w a n n cell invasion. O t h e r re g e n e rativ e e v e n ts su ch a s d e b ris rem oval, ste m cell birth/proliferation, m yelin atio n , an d plasticity m ay a lso occur at later tim e points an d over a longer tim e period. Social consequences The critical-care m edicine practice for people with SCI has considerably im proved during the last decade and is nowadays more widely available. Accordingly, m ore than 95% o f SCI patients survive their initial hosp italizatio n. SCI decreases the lifespan by about 7% each year401. A functionally com plete and high level (cervical) injury im pact the lifespan m ore dram atically than a functionally incom plete or low level (thoracic-lum bar) injury40’. Together, the relatively young age when SCI occurs, the im proved m edical care, and the lack o f effective therapies are respon sib le for the con tinually increasing num ber o f paralyzed people with SCI. This puts a high financial burden on the patient, h is/her fam ily, and society3, ’3’ 348. SCI is the second m ost expensive condition to treat in the United States after respiratory distress syndrom e in infants and is ranked third in m edical conditions requiring the longest stay in hospitals442. The costs o f lifetim e care for a SCI p atient varies between ’ and 3 m illion dollars263. The Centre for D isease Control in the United States estim ated that about ’ 0 billion dollars are sp en t yearly on SCI treatm ent excluding the m anag em en t o f pressure ulcers, a com m on side-effect o f SCI, which adds another billion dollars per year263. 12 Introduction and Outline Thesis C LIN IC A L ASSESSMENT O F FUNCTION AFTER SCI The A m erican S p in a l Injury Association (ASIA) im p airm en t scale is often used to assess the level and the com pleteness o f S C I’54, 2° 5, 251 259. This scale grades the preserved derm atom e for sensory function and the strength o f 2 ° “key” m uscles in the upper and lower lim bs25’. It provides clinician s with a standard for grading sensory and motor function im p airm en t after SCI. Table ’ provides the 5 A SIA scores and their im p licatio ns. Testin g the intrin sic foot muscle, could com plem ent the A SIA score as, in the m ajority o f SCI patients, it provides an earlier and superior indicator of supraspinal influence over m otoneurons projecting to lower extremity m uscles57. Another frequently used scale is the A SIA Lower Extremity M otor Score (LEM S), an ASIA subscore, which provides a prediction of the ability to walk. The LEM S scale is com m only used together with and supplem ents the A SIA scale. A person without neurological deficits scores 5 ° on the LEM S scale. A score of 3 ° or more is predicative for com m unity am bulation ’ year after injury and a score of 2 ° or less predicts lim ited am bulation’97, 251 252 259, 428. Classification o f SCI can also be achieved by m easuring functional ability using the Functional Independence M easure (F IM )’° 5; a 7-p oint scale that m easures ’ 8 item s concerning mobility, locomotion, self-care, bowel a n d /o r bladder function, com m unication, and social cognition. A score of ’ indicates total dependence on a caregiver and a score of 7 indicates com plete ind ep endence’° 6, 264 O ther scales to assess functional ability are the Q u adriplegic Index of Function (Q IF), Modified Barthel Index (M BI), and W alking Index for SCI (W ISCI), C apab ilities o f Upper Extremity Instrum ent (CUE), Sp inal Cord Independence M easure (SCIM ) and the C anad ian O ccupational Performance M easure (CO PM ). 13 Chapter 1 ASIA grade Classification A Com plete B Incom plete C Incom plete D Incom plete E Norm al Level of impairment No motor or sensory function preserved in the S4 and S5 segm ents Sensory but not motor function preserved below neurological level and including S4 and S5 segm ents Motor function preserved below neurological level and more than h alf o f key m uscles below that level have a muscle grade o f < 3 Motor function preserved below neurological level and at least h alf of key m uscles below that level have a m uscle grade o f > 3 Motor and sensory functions are normal Table 1 . Standard neurological classification o f spinal cord injury. The presence of motor and sensory function per dermatome (neurological level) can be tested with the ASIA (American Spinal Injury Association) scale. For motor function, 10 key muscles in all four limbs are scored 0-5 (0 = total paralysis; 5 = normal) for a maximum score of 10 0 . For sensory function, light touch and pin prick are being used at key sensory points on the right and left side o f 28 dermatomes to assess the absence (score will be 0), impaired presence (1) or normal presence (2) o f sensory function. The maximum sensory score is 224 (112 for each o f the tests; 56 for each side). The scoring sheet can be found at http://www.asia-spinalinjury.org/publications/2006_Classif_worksheet.pdf TREATMENT O F SCI An acute and a chronic phase can be distinguished after SCI. Since SCI is often a consequence of severe accidents, clinical care during the acute phase is generally focused on stabilization of the patient. D uring the chronic phase the m ain attention will need to be on preventing and, if unsuccessful, treating SCI consequences such as pain, infections, and pressure ulcers am ong others. Clinical care acutely after SCI To date there is insufficient evidence that would support standards o f care during the acute phase o f SCI. It is advised to m aintain patients in an intensive care unit for close m onitoring of respiratory and hem odynam ic com plications. For adequate spinal perfusion, which is at risk due to injury-induced edema, a m ean arterial pressure of 85-90 mmHg should be m ain tained42. D epen d in g on the type o f injury, surgical interventions should be considered to relieve the spinal cord from com pressing bone fragm ents49, 126. The physician m ay decide to 14 Introduction and Outline Thesis perform surgery to decom press or stabilize dislocated vertebrae and the vertebral column (Fig. 1C, D). Decom pression surgeries49, 126 m ay accelerate functional im provem ents and result in shorter hospitalization and rehabilitation periods264, 316. However, it does not necessarily result in an improved final outcome71. The lack of standards o f care during the acute phase of SCI is in part due to the large variability am ong injuries and m akes its early m anagem ent com plicated. If bone fragm ents continue to com press the spinal cord, early surgery m ay be vital to prevent exacerbation of spinal cord tissue destruction. However, in cases without a clear sign of such urgency there is no consensus on whether and what type of early surg ical/clinical interventions m ust be im p le m ented 126. The lack of standards of care is dem onstrated by a case presented in figure 1. Due to a fall this patient had m ultiple fractures of the cervical spinal cord, including dislocation fractures of the C5 and C6 vertebrae resulting in com pression of the spinal cord. In the acute phase, the patient was admitted at the intensive care unit and monitored. At first, a decom pression lam inectom y and dorsal spondylodesis from C2-TI12 was performed. However, the C5 dislocation fracture was not repositioned sufficiently requiring a second surgery where a corporectomy C5 and C6 including a ventral spondylodesis was performed. The type o f surgical intervention should be considered on a case-to-case basis, which makes it com plicated to study the efficacy of intervention in the acute phase after SCI in random ized and controlled clinical trials. Besides surgical interventions, pharm acological treatm ents to lim it the secondary injury after SCI are often considered. The best-known treatm ent is a high dose o f the glucocorticosteroid, m ethylprednisolone sodium succinate (M PSS) within 8 hours after the injury44'46. Experim entally it was dem onstrated that a high dose o f M PSS reduces the inflam m atory response and lim it tissue loss after dam age to the spinal cord311. The effects of M PSS in patients with SCI were investigated in 3 consecutive N ational Acute Sp inal Cord Injury Studies44'46 (N A SCIS). The results dem onstrated that M PSS treatm ent in the acute phase of SCI resulted in neurological im provem ents up to 6 months after injury. M PSS was the standard of care in the United States and other countries. After a thorough review of the results from the N A S C IS studies and a more com prehensive assessm ent o f the benefits and risks involved in high dose M PSS treatm ent, the therapeutic benefits became disputed64, 225, 287, 288, 344, 425. Especially in patients with com plete SCI high dose steroid treatm ent can lead to adverse effects such as myopathy and wound infection that m ay negatively influence functional outcome and in som e cases m ay be life-threatening225, 344. Currently, m any SCI clinics worldwide have discontinued the ‘standard' acute adm inistration o f M PSS after SCI. The debate on the use of M PSS should be accom panied by efforts to develop alternative treatm ents that counteract the early destructive events occurring during the acute phase of SCI. 15 Chapter 1 Clinical care at later stages after SCI: Preventing complications Different com plications may occur during the later stages of SCI (Fig. 3) that each dem ands specific actions a n d /o r interventions. For instance, SCI can lead to p ain 439, 44°, decreased fertility327, and autonom ic dysreflexia with loss of bladder and bowel control436. It has to be taken into consideration that m any SCI patients get accustomed to the specific injury-related pain they experience and as a result reveal their distress to their physician often at a late stage250 374. For some SCI-related conditions, such as decreased fertility, it is the patient's personal desire that should guide the physician's actions. Other common problems that arise after SCI are septicem ia, respiratory insufficiency, and pneum onia due to muscle atrophy (Fig. 3). These com plications may cause clinical deterioration and could eventually result in death. They often occur without typical sym ptom s. For example, pyelonefritis can occur without flank pain or a fem ur fracture can occur without pain. This may lead to delay or errors in diagnosis and treatm ent’04, ’56. It is im perative that SCI patients receive annual screenings and long-term follow-ups to prevent these secondary com plications. It is advised to treat patients on a regular basis with pneum ococcal and influenza vaccine to prevent opportunistic infections20’ 2°2. M onitoring the skin and urinary tract and im p le m enting aggressive treatm ents against pressure ulcers and urinary tract infections is needed to reduce the risk of septicem ia20’ 2°2. A ppropriate nutrition and exercise should also be incorporated in the (new) lifestyle. Rehabilitation program s should be im plem ented to reduce the risk o f cardiovascular disease40’. G enerally, the possible medical com plications of SCI patients are known, mostly recognizable, and their treatm ent often straightforward. It is different for the psychological problems that arise after S C I37, 397. It m ay be possible to recognize some o f these but treatm ent and responses to the treatm ent are depending greatly on the individual. O ne can expect an initial period o f denial a n d /o r inability to fully com prehend the functional consequences caused by the injury. Next a period of acceptance will have to run its course37, 397. The patient needs to learn to live with the disabilities and this may be accom panied by bouts of depression. The m ental state o f the patient can have its effect on m edical treatm ents439. The psychological consequences o f SCI should not be underestim ated and appropriate guidance of patient and fam ily should have an im portant place in the late care m anagem en t of S C I37, 44’. 16 Introduction and Outline Thesis First years Chronic Fig. 3. Complications after spinal cord injury. The most common complications that occur during the first years after SCI are listed on the left and those that occur mostly at later (chronic) stages are listed on the right. Spasticity and pressure sores occur during the first years but are also common at chronic stages of SCI (UTI = urinary tract infection). C LIN ICA LLY TESTED APPROACHES TO ELICIT FU N CTIO N AL RECOVERY Con tin u in g m edical care after SCI is necessary to m aintain the patient's health and quality of life. However, this generally does not result in dram atic im provem ents in function that would allow the patient to live an ind ependent life. Repair-prom oting pharm aceutical a n d /o r surgical interventions will be necessary to significantly change the functional outcome after SCI (Fig. 4). Here we will review some o f the current treatm ents that are aim ed at lim iting functional loss and /o r im proving outcome after SCI. In addition we discuss possible future treatm ents for spinal cord repair. Table 2 provides a list o f clinical treatm ents for SCI. 17 Chapter 1 Neuroprotection Lim it cell/tissue loss Plasticity Form ation new circuits 1 Transplantation Substitute/replace cells Functional — ► recovery \ Rehabilitation Recruitm ent new circuits t Axon regeneration G row th-m yelination-synaptogenesis Fig. 4 . Different approaches that could result directly and/or indirectly in functional recovery after S C I Neuroprotective approaches D uring the last 30 years, m any experim ental studies have targeted neuroprotection (i.e., tissue sparing) early after SCI to improve outcome. Experim ental evidence has shown that the functional loss after SCI can be lim ited by im p le m enting neuroprotective approaches. The best known neuroprotective approach is acute adm inistration o f M PSS. This has been tested clinically and is still being used around the world44-46. M PSS treatm ent after SCI was first thought to improve functional outcome, but at present its true therapeutic potential is intensely debated225, 287, 288, 344, 425. The m ain goal o f M PSS treatm ent after SCI is to decrease the aggressive inflam m atory response norm ally present w ithin the damaged tissue. This would lim it the contribution o f macrophages and activated microglia to the secondary loss o f nervous tissue. Another exam ple o f a m olecule that could elicit neuroprotective effects after SCI is the tetracycline derivative, m inocycline’8-20. M inocycline m ay exert its protective effects through m echanism s that decrease injury-induced glutam ate-m ediated excitotoxicity’8, 421 a n d /o r im m unom odulatory m echanism s such as blocking m icroglial activation’9, ’’0. Moreover, m inocycline m ay reduce oligodendrocyte and neuronal apoptosis as well as dieback of damaged axons’30 399. These experim entally studies have established m inocycline as a prom ising candidate for early treatm ent after SCI. Currently, a phase I/II clinical study is underway in the United States to assess the efficacy of intravenously adm inistered m inocycline in the acute phase after S C I2’. 18 Introduction and Outline Thesis A- % ? r B Loss o f function A' 3# B’ C ’~ § V Im proved function Fig. 5. Axon regeneration after spinal cord injury. Schematic representation o f axon regeneration that could contribute to functional recovery after SCI. There are 3 types of damages that are inflicted to axons after SCI. Axons may be still in contact with their target neurons but demyelinated (A) due to immediate or delayed death of oligodendrocytes. These axons can become ‘functional’ and contribute to motor recovery when they are remyelinated (A’) by either endogenous oligodendrocytes derived from local stem cells or oligodendrocyte precursor cells, or by transplanted stem/precursor cells or Schwann cells. Axons may be severed and thereby devoid o f contact with their target neurons and demyelinated (B ). In that case, the axons need to regenerate across/beyond the injury, establish synaptic contacts with target neurons, and be myelinated by endogenous or transplanted cells (B’). Unmyelinated axons may be severed and without contact with target neurons (C). These need to regenerate and establish synaptic connections with the original or new target neurons (C’). Axon growth-promoting approaches Functional im provem ents after SCI could be elicited by axon growth-prom oting approaches as this could result in either restoration of damaged axonal circuits or elicit p lastic events’36, ’6’ 363 (Fig. 5). Examples of axon growth- or plasticity-prom oting treatm ents are the adm inistration of Cethrin® or N O G O antibodies. Cethrin® is a Rho antagonist that reduces the levels of intracellular GTPase-associated sign aling proteins Rho and Rac to physiological levels’’6, 443. Elevated Rho has axon growth-inhibitory effects through the above m entioned pathway294. N O G O antibodies neutralize axon growth-inhibitory effects o f oligodendrocyte m yelin-bound Nogo2’ 72. Thus, both Cethrin® and N O G O antibodies m ay result in enhanced axon growth a n d /o r axon plasticity after SCI. Both treatm ents are currently tested clin ically for their efficacy to repair the injured spinal cord2’. After SCI axons m ay still be intact but not functional due to injury-induced conduction block. A dm inistration o f the potassium channel blocker, 4-am inopyridine (4-AP) may restore such a conduction block and this could restore axon function and thus contribute to improved 19 Chapter 1 function. The efficacy of 4-AP in SCI patients has been tested clinically but so far the outcome has been m odest95, 1,2 ,57. Cell transplantation-based approaches Neuroprotection as well as axonal regeneration could be achieved by tra n sp lan tin g growthprom oting cellular or a-cellular substrates. Exam ples of cellular substrates that are clinically tested are olfactory ensheathing cells, peripheral nerves, and activated m acrophages. Grafting olfactory ensheathing cells into the spinal cord is being exam ined in Ch in a, Australia, and Portugal94, ,27, 231. Autologous peripheral nerves are being grafted into the injured spinal cord in Taiw an80 173 and activated autologous m acrophages in Israel378 and Belgium 209. Thus far, there is no clear evidence that these transp lan tatio n strategies elicit m ajor functional changes. Approach Elicit neuroprotection Main objectives Limit cell/tissue loss Examples *M P , ^minocycline, riluzole Elicit axon regeneration Promote growth, myelination, *Cetrin^, *N O G O Provide growth substrate (transplantation) Support axon regeneration Promote cell survival / axon growth SCs, *O EG , *PN G ^Activated macrophages Facilitate plasticity Promote formation new circuits *Cetrin^, *anti-NOGO-A Restore conduction block Limit spasticity Limit osteoporosis Improve bowel/bladder Increase axon excitability Decrease reflex activity Prevent fractures Limit uncontrolled release Alleviate (neuropathic) pain Manage infertility Elicit neuroprotection Add/silence repair genes Decrease hyperexcitability Facilitate erection, ejaculation Limit cell death Promote regenerative events Enhance effects other interventions Replace the lost neural cells Increase proliferation endogenous cells * 4-AP *Baclofen, Fampridine Risedronate, vibration Gut stimulants, Ditropan Colostomy tube Amitryptaline, botulinum toxin Sildenafil, vibration, levitra Hypothermia Gene therapy: Viral vectors siRNA Stem cells/progenitors *AIT-o82 (Neotrofin) Prevent muscle atrophy Promote regenerative events? Facilitate (controlled) movements Facilitate muscle action Promote regenerative events? Targeted physical therapy: *Locomat, *treadmill training Robotic prosthetics Electrical stimulation: ^Alternating currents, IST-12 Cell replacement Elicit muscle strength/use Enable movements Enable movements Table 2. Therapies fo r the injured spinal cord. Most of the listed approaches are or have been extensively studied in experimental models of spinal cord injury. For each a few examples are given that are investigated in the laboratory or clinic (indicated by asterisks). The approaches listed under the line are comparatively novel. 20 Introduction and Outline Thesis Frontiers in treatment o f SCI A relatively new concept that does not focus on anatom ical a n d /o r functional repair but rather on supporting the patient to achieve some degree of independence is the use o f robotics to enable execution of specific motor tasks. Currently, there are concerted efforts to em ploy cerebral (cortical) control for steering robotic devices in com bination with micro-chip technologies that would enable fine-tuning of the robotic m ovem ents depending on the tasks’", 227 33’. Other com paratively novel approaches im p le m ent physical a n d /o r electrical activity to elicit spinal cord repair. Although these approaches are generally designed to improve muscle strength/use, it has been hypothesized that these particular approaches could also elicit regenerative cellular events that could contribute to improved outcome’32 ’82. Moreover, locomotor activity27, 67, 362 446 and electrical stim ulatio n5’ 342 369 m ay promote spinal cord repair via stim ulation of plastic m echanism within existing axon circuits involved in motor function. A relatively new concept within the more conventional field of cell-based approaches to repair the spinal cord is the transp lantatio n of stem cells to either replace lost cells or elicit regenerative cellular events after SCI. Stem cells have been studied for their potential to restore degenerative diseases in the central nervous system, such as Parkinson's disease, A lzheim er's disease, am yotrophic lateral sclerosis, and m ultiple sclerosis2’4, 276, 3’7 or in traum atic injuries such as transient brain traum a235, 357 or S C I’2’ 122 2° 4. Stem cells hold prom ise for spinal cord repair, but their true potential has not yet clearly been shown. At this time, stem cell-based therapies are at an early stage, and the associated risks are still unclear. To enable future use of stem cells for therapeutic purposes, discussions on all related issues and especially the moral aspects need to be held today. As with any medical intervention, the questions to be asked are whether this approach is the m ost likely one to achieve success and whether the risks justify the benefits. The challenges are to further develop these concepts within current ethical and social boundaries to increase our knowledge and, through experim ental research, evaluate if they provide any clinical benefit for patients. B. Stem cell-based therapies Stem cells proliferate, migrate, and differentiate to form organism s during em bryogenesis. D uring adulthood, stem cells are present within tissues/organs including the central nervous system6, ’5’ 26’ 347, 4’6 where they m ay differentiate into neurons’23. After the identification and characterization o f stem cells, a great deal of interest has been given to their potential for treatm ent o f spinal cord injury (SCI), traum atic brain injury, and degenerative brain d iseases52 ’33, 141 339, 393, 394. Considering their characteristic abilities to self-renew and differentiate into any cell type in the body the therapeutic promise o f stem cells is justified. Before effective therapies can be developed there are several issues that need to be addressed and resolved. 21 Chapter 1 These issues range from increasing our basic knowledge about the stem cell's biology to prevailing over moral concerns fueled by religious a n d /o r political ideas. STEM CELL D EFIN ITIO N S A stem cell is defined by its ability o f self-renewal and its totipotency. Self-renewal is characterized by the ability to go through an asym m etric division in which one of the resulting cells rem ains a ‘stem cell', without signs of aging, and the other (daughter) cell becomes restricted to one o f the germ layers. A stem cell m ay become quiescent and at later stages reenter the cycle o f cell division309, 343. A true stem cell is a totipotent cell; it can become any cell type present in an organism . By m any the zygote is considered to be the only true totipotent (stem) cell because it is able to differentiate into either a placenta cell or an em bryonic cell. Others define the cells o f the inner cell m ass within the blastocyst as em bryonic stem cells (ESC). These cells are pluripotent as they cannot become a placenta cell (Fig. 6). Besides ESCs, undifferentiated cells can be found am ong differentiated cells o f a specific tissue after birth. These cells are known as adult stem cells, although a better term would be ‘som atic stem cell' since they are also present in children and um bilical cords. There is am ple evidence that adult stem cells are not restricted to a particular germ layer and can transdifferentiate82 2,1 2,7,282, 46°. An im portant advantage o f adult stem cells over ESC is that they can be harvested without destruction of an embryo. As a result, adult stem cells have gained am ple interest for their application in a variety o f disorders. DIFFERENTIATION The pluripotent stem cell differentiates into a m ultipotent cell o f the three germ layers. These three layers are the ectodermal layer (from which skin and neural tissue originate), the mesodermal layer (connective tissue, muscle, bone and blood cells), and the endodermal layer (gastrointestinal tract and internal glandular organs) (Fig. 7). The m ultipotent cell differentiates into a unipotent cell of a particular cell lineage within its own germ layer. The unipotent cell is capable of becom ing a cell type within that particular cell lineage. At the successive phases of differentiation (or determ ination), the resulting progeny are known as progenitor cells; ‘stem cell-like' cells capable of self-renewal. W ithin the central nervous system, unipotent neural progenitors become the neurons and glial cells present in brain and spinal cord (Fig. 6). In the classic embryology, the totipotent stem cell becomes unipotent through successive phases of fate restriction. The steps in this process were thought to be irreversible. However, recently it was shown in vitro that the fate of m ultipotent cells can be chanced to another 22 Introduction and Outline Thesis germ layer82' 2"' 2’7'282' 46°. This process is known as transdifferentiation. The unlim ited potential of transdifferentiation prompted m any investigators to obtain cells that norm ally derive from stem cells that are more difficult to harvest from stem cells that are easier to harvest. For instance, it is less com plicated to harvest stem cells from skin262' 447 or bone marrow382' 4’° than from the b rain ’90' 336. Transdifferentiation has often been shown using non-specific markers and ignoring possible artifacts due to culturing m ethods122,335. Therefore, the existence of transdifferentiation is still debated335,412. It should be kept in m ind that forced differentiation into a cell from a lineage within an unnatural germ layer could result in abnorm al phenotypes that after grafting could induce carcinogenesis392. P r o g e n it o r N e u ra l P r o g e n it o r N e u ro n Fig. 6. From embryonic stem cell to differentiated neural cell. Embryonic stem cells from the inner cell mass o f the blastocyst are pluripotent and go through phases of differentiation that changes them into unipotent cells. Here this process is depicted for the generation o f neural cells; oligodendrocytes, neurons, and astrocytes. 23 Chapter 1 ^ B la s t o c y s t Zygote G astrula Muscle Bone Blood Connective tissue G-I tract Glandular organs Fig. 7. All tissues in an organism originate from the 3 germ layers. These layers are the ectoderm layer, endoderm layer, and the mesoderm layer. Neural cells that form the central and peripheral nervous system derive from the ectoderm. POTENTIAL O F STEM CELLS FOR SPINAL CO RD REPAIR After SCI, endogenous regenerative events occur ind icating that the spinal cord attem pts to repair itself. Schwann cells, the m yelin atin g and regeneration-prom oting cell in the peripheral nervous system, m igrate from spinal roots into the dam aged tissue and m yelinate spinal cord axons’38, 4o8. The expression of regeneration-associated genes is increased in damaged neurons’44. There is a surge in proliferation o f local adult stem cells and progenitor cells’98, 253, 278 However, axonal growth is thwarted by growth-inhibitors present on oligodendrocyte myelin debris and on cells that form scar tissue’42 389, 420. Also, the new-born stem cells and progenitor cells do not integrate functionally into the injured spinal cord tissue. Thus, the endogenous regenerative events that occur after injury fail to repair the spinal cord. Improved functional outcome after SCI m ay be elicited by neuroprotective approaches that lim it secondary tissue loss and thus the loss of function. Alternatively, functional recovery could be elicited by axon growth-promoting approaches that result in restoration of damaged a n d /o r formation o f new axon circuits that could become involved in function. There is little doubt that stem cells and neural progenitor cells could become invaluable com ponents of repair strategies for the spinal cord. They can become neural cells that m ay support anatom ical/functional recovery. A lternatively, they m ay secrete growth factors that could support neuroprotection a n d /o r axon regenerat ion. The potential o f stem cells or progenitor 24 Introduction and Outline Thesis cells to support spinal cord repair has been investigated extensively90' ’59, 4’4. Their shortcomings for repair are also understood75' 47’. Over the last decade, stem cells have often been studied without im p le m enting explicit criteria that would define the used cells as such. Consequently, the therapeutic potential o f true stem /progenitor cells is still unknown. Other matters related to the use of stem /progenitor cells for SCI also need to be resolved before effective therapies can be developed. How can the cells be best obtained? Do they need to be differentiated in vitro before transp lan tatio n? How can survival of grafted stem /progenitor cells be improved and uncontrolled division and differentiation be prevented’99? How can functional integration of the transplanted cells be im proved? Cell replacement in the injured spinal cord Considering the ability of stem cells to become any cell type, their potential use for cell replacem ent strategies is com m onsense. W ith the appropriate com bination of (growth) factors (induction cocktail), ESC can be used to obtain neurons and glial cells3’' 232. ES-derived neurons can survive and integrate following injection into the injured rat spinal cord’0’. It was shown that transplanted mouse ESC m yelinate axons in the m yelin-deficient shiverer rat spinal cord53. Also, mouse ESC grafted into the injured (normal) rat spinal cord result in improved functional recovery260. Im portantly, ESC were found to survive well w ithin the injured spinal cord suggesting that long-term treatm ents could be achieved using this approach’84. H um an ESC can be directed towards m ultipotent neural precursors63, motor neurons224, 228 and oligodendrocyte progenitor cells200. The latter were found to differentiate into mature oligodendrocytes in vitro and in vivo297. Moreover, these cells are able to m yelinate axons after transp lantatio n into the spinal cord of m yelin-deficient shiverer m ice and adult rats200. Neural progenitor cells (i.e., m ultipotent cells from which the cells o f the central nervous system arise) often aggregate into neurospheres. Cao and colleagues58 showed that neural progenitor cells transplanted into the injured rat spinal cord favored differentiation into astrocytes. These results indicated the need for differentiation protocols prior to grafting59. Fetal neural precursor cells genetically modified to express noggin, an antagonist o f bone m orphogenetic protein, differentiate preferably into neurons and oligodendrocytes383. Transp lan tatio n of these cells into the injured mouse spinal cord resulted in improved functional outcome383. However, this result could not be shown by others using the sam e approach’22. H um an neural progenitor cells can be harvested from blastocyst-stage embryos and m anipulated to generate functional neurons and glia299. W hen human neural progenitor cells were grafted into the injured rat spinal cord some of them were found to differentiate into oligodendrocytes92 93. Moreover, this finding was accom panied by improved functional outcome92 93 (Fig. 8). 25 Chapter 1 M esenchym al stem cells from bone m arrow may also have therapeutic prom ise for S C I285, 322. Although still debated66, these particular adult stem cells have been shown to differentiate into bone, fat, tendon and cartilage cells337. It has been published that these cells can also transdifferentiate in vitro into liver333, skeletal’28, ,29, 432 and cardiac m uscle249, 3,0 cells, and into central nervous system cells’3, 47, 2,2 270 27’ 333, 37°. This makes m esenchym al bone marrow stromal stem cells interesting for strategies for repair of the injured spinal cord. M any m edical fields are exploring m esenchym al stem cells for instance for repair of the heart after myocardial infarction’’9, 365, osteogenesis imperfecta in orthopedics68, ’72, organogenesis in internal m edicine255, 3° 7, intervertebral disc disease in neurosurgery’64, 366-368, and stroke/ neurodegenerative diseases in neurology222, 404. Neuroprotection A neuroprotective strategy im plem ented soon after SCI would be the first line o f defense against injury-induced tissue loss, and could contribute to an improved neurological outcome. It has been demonstrated that neural progenitor cells can protect against excitotoxicity233, 24’. Also, neural progenitor cells secrete a variety o f molecules that could protect neural cells from death m echanism s other than excitotoxicity233, 24’. Thus, transplantation o f these cells into the injured spinal cord could in fact exert neuroprotective effects. Bone marrow stromal cells have also been shown to elicit neuroprotective effects as grafting into the injured adult rat spinal cord resulted in tissue sp arin g ’70, 3° 4. This may have resulted from the secretion of a num ber of growth factors’43, 2’9, 247, 457. Axon regeneration Prom oting axon growth in the injured spinal cord could contribute to restoring function. The ability of neural progenitor cells to secrete a variety of neurotrophic factors indicates that they could promote growth of damaged axons233, 24’. Adult neural progenitor cells were found to provide a perm issive guiding substrate for corticospinal axon regeneration after spinal cord injury334. The stem cell-like olfactory ensheathing cells assist axon regeneration in the injured spinal cord in a different m anner. These cells are capable o f preventing axons from recognizing growth-inhibitory m olecules thereby allow ing them to elongate into otherwise inhibitory terrain346, 349. 26 Introduction and Outline Thesis Totipotent em bryonic stem cell Fig. 8. Potential effects o f stem cells on spinal cord repair. Although transplanted stem cells could elicit axon regeneration and/or neuroprotection through secretion o f growth factors, the most logical contribution to repair could come from their ability to replace lost neural cells. This could result in remyelination of de-myelinated axons if they become oligodendrocytes, restoration of (new) circuits if they become neurons, and providing scaffolding and nutrition o f the injured area if they become astrocytes. Generally, the latter is not preferred because astrocytes express a number o f axon growth inhibitory molecules that could prevent axon regeneration and thus limit the overall restoration. C LIN IC A L APPLICATION O F STEM CELLS FOR SCI The translation of approaches developed in the laboratory involving stem cells into the clin ic is in progress. The use o f stem cells harvested from tissue from an adult has facilitated the use of stem cells in the clin ic as it has practically dism issed the moral objections surrounding the use o f stem cells derived from an embryo. Nevertheless, for reasons described below the use of ESC is often preferred over that o f adult stem cells. The use of human ESC for spinal cord repair in the United States has been proposed by Geron, a California-based biotechnology com pany. The application o f adult human stem cells for treatm ent o f SCI is in progress in m any countries around the world257. For instance, autologous bone marrow-derived stem cells have been transplanted in the injured spinal cord o f 25 patients in Guayaquil, Ecuador, a trial that is supported by a California-based biotechnology com pany, Prim eCell Therapeutics LLC. Encouraging results have been reported such as improved w alking and sensory perception. It has been suggested that surm ounting the ethical hurdles (see below) could benefit the clinical application of ESC2’. 27 Chapter 1 EM BRYO NIC VERSUS AD U LT STEM CELLS ESC can develop into more than 2 0 0 different cell types present in the hum an body379 and under the appropriate circum stances into an entire organism 283. H um an ESC have been isolated from blastocyst-stage embryos4’9. They have also been created using som atic cell nuclear transfer’4, ’5 or parthenogenetic activation o f eggs83, 43’. Isolated ESC do not undergo senescence and retain high telom erase activity and normal cell cycle signaling, which explains their rapid proliferation in culture28’ 320. These p lastic characteristics make the ESC suitable for central nervous system repair strategies. However, transp lantatio n o f ESC can result in teratom as due to uncontrollable cell proliferation300 353, 386. Also, ESC in culture m ay undergo genom ic and epigenetic changes that could lead to transform ation although this can be prevented using proper culture techniques467. Transp lanted ESC are prone to be rejected after injection into adult tissue and long-term treatm ent with im m unosuppressive drugs may be required to prevent this loss300. These findings have to some extent tem pered the enthusiasm for application o f ESC in repair strategies for the central nervous system, despite the fact that ESC possess by far the greatest potential and could be applied in a broad selection of reparative cell therapies. An alternative for ESC are stem cells obtained from tissue after birth. For instance, neural progenitor cells have been harvested from adult brain234, 426 and spinal cord258. However, adult stem cells are less plastic than ESC and divide less frequently in culture’08. Also, their differentiation potential m ay decrease in tim e450. This makes them a possible but somewhat lim ited alternative for ESC. On the other hand, they offer the advantage that they can be transplanted without genetic m odifications or pre-treatm ents. Im m une rejection would not be an issue with adult stem cells when the cells are isolated from the p atient’49 (autografting). Also, adult stem cells show a high degree o f genom ic stability during culture’35, 429 and usually do not result in tum or form ation’35. Finally, there is much less moral concern surrounding the use of adult stem cells because they can be harvested from the patient. These latter features support the use of adult stem cells over ESC for strategies aim ed at rep airing the central nervous system. This is certainly true if strategies can be developed that circum vent the potential drawbacks of using adult stem cells such as the lower p lastic ability and lower rate of proliferation in vitro compared to ESC. ETHICAL A N D SOCIAL CO N CERN S O n e o f the issues that surround the use of ESC is the tim e point at which we consider an embryo a person’48, 332 36°. According to the Roman Catholic Church and other religious institutions an embryo “m ust be treated from conception as a living person”36’. This im plies that a blastocyst cannot be used to harvest. Others consider an embryo to be a person only after the 2 0 th week of gestation’48, 332 im p lying that ESC can be harvested from blastocysts. Also, 28 Introduction and Outline Thesis in that case, ESC could be harvested form embryos that were generated but not selected for in vitro fertilization. These would otherwise be discarded. D iscussions on what constitutes ‘life' and when does ‘life' start are often intense as they are driven by moral concerns fueled by religious and political ideas. These issues need to be addressed with respect to all opponents. Rules regarding the harvest and use o f stem cells can only be set after full agreem ent by all groups within a society. Ethical issues that surround the use o f adult stem cells mostly involve their possible m isuse437. For instance, oocytes can be derived from stem cells o f m ale origin which allows the production o f a child from one or two male biological p aren ts’74, 293, 438. The potential biological problems and psychological effects on the child are unknown. It would also be possible that the offspring develops defects due to acquisition of pairs o f (recessive) genes’74, 293, 438. Therapeutic cloning and genetic m anipulation are other issues that surround the use of stem cells. C lo n in g o f cells, genetically matched for the host, could in theory be beneficial for organ transplantatio n as it may solve issues such as organ shortage and rejection. G enetic m anipulation could convert ESC into gametes, which would allow germ line gene therapy (G LGT)293. IN D U C ED PLURI POTENT STEM CELLS It is now possible to obtain pluripotent cells by reprogram m ing differentiated cells, such as fibroblasts, via the introduction o f 4 transcription factors, O C T3/4, SO X 2, KLF4, and M YC (induced pluripotent stem (iPS) cells)295, 3’9. This new technology which was first described by Takahashi and Yam an aka407 for mouse fibroblasts and has now been applied for other mouse cells306 and for human som atic cells465. O f the 4 transcription factors, M YC and KLF4 can be substituted by others33, 466. The underlying m echanism s for this typically straightforward and robust reprogram m ing procedure are still unknown and intensely debated. At present it is still unclear in how closely iPS-cells resem ble conventional ESC and whether application of iPScells would result in sim ila r functional results as can be obtained with ESC. Com parative gene expression profiles o f human ESC and human iPS-cells is now ongoing239, 465. Several hurdles need to be overcome before iPS-cell technology can produce cells for clinical use295 such as the use of retroviral vectors to introduce the transcription factors and the need for selection markers to identify the reprogram m ed cells, as well as the use of the oncogene M Y C and the integration o f retroviral vectors into the genome. These needs are required for proper reprogram m ing but they modify the cell genetically and modified cells face regulatory obstacles for therapeutic app lication s. Nevertheless, it is evident that the iPS-cell technology is prom ising and has opened exciting avenues for the clinical application o f pluripotent cells without the ethical obstacles that come along with the use of ESC. 29 Chapter 1 C. Outline ofthe thesis In Chapter 1 a general introduction to the etiology, clinical grading, and treatm ent options for spinal cord injury are reviewed in Part A. Aspects o f stem cell term inology, advantages and disadvantages of stem cell app lication are reviewed in Part B. I n Chapter 2 the literature on the use of the Bone M arrow Stromal Cell (BM SC), a specific type o f adult stem cells, for repair of the injured spinal cord is reviewed. Transdifferentiation, neural induction based on morphology and electrophysiological properties are som e o f the aspects that are discussed. In Chapter 3 we compared the gene profiles o f B M SC early and late in culture and discuss their potential for spinal cord repair in light o f our results. In Chapter 4 we present an in vivo study, in which we have investigated B M SC survival as well as their neuroprotectyive effects in the contused adult rat spinal cord. Chapter 5 describes a study on the effects of different im m unosuppressive agents on B M SC survival w ithin the contused adult rat spinal cord. In Chapter 6 we studied whether a com bination therapy of BM SC transp lantatio n and im m unosuppression would improve the overall outcome in term o f locomotor and sensory function after a contusive injury in the rat spinal cord. Finally, in Chapter 7 and 8 the findings are sum m arized and discussed in light o f future scientific anc clinical perspectives 30 THE MIAMI PROJECT TO CURE PARALYSIS 2 Review of literature on the use of bone marrow stromal cells. Bone marrow stromal cells for repair o f the sp inal cord: towards clinical application. Cell Transplantation 2006; 15 (7): 563-577 R.D.S. Nandoe Tewarie A. Hurtado A .D .O . Levi J.A. Grotenhuis M. Oudega Chapter 2 IN TRO D U CTIO N Stem cells are defined by their capacity for self-renewal and differentiation into different cell types343, 355, 379. In the early em bryonic phase, stem cells are totipotent but after a few divisions the cells are determ ined to become specific for one of the three germ layers; the ectodermal layer, which will give rise to skin and neural tissue, the mesoderm al layer, which will give rise to connective tissue, muscle, bone and blood cells, and the endodermal layer, which will give rise to gastrointestinal tract and internal glandular organ cells. In the classic embryology, this ‘determ ination' o f the stem cells is thought to be an irreversible process. Recently, it has become clear that the determ ined stem cell is in fact phenotypically p lastic and is able to give rise to cells from different germ layers, a process known as transdifferentation30, ,9,, 270 27’ 277. Because of their versatility, stem cells have gained am ple attention over the last years for their potential in rep lace m en t/re p air approaches. However, the term ‘stem cells' has been used loosely without clear and appropriate criteria that define the used cell types. For exam ple, CNS-derived neurospheres have been used extensively as a source for neural stem cells (N SCs), whereas it is now clear that they are in fact heterogeneous cell populations consisting m ostly of neural progenitors and precursors, i.e., cells that are already directed towards the neural lineage. Recently, Parker and colleagues321 elegantly dem onstrated an overlap of , 8 % o f stem ness genes between CNS-derived neurospheres and the O 7 .2 N S C clone, which fulfills the in vitro and in vivo operational definition of a stem cell32’ 395, 413. Interestingly, this percentage of overlap increased two-fold when the O 7 .2 N S C clone was cultured as a neurosphere reflecting a shift from a “stem -like” to a “differentiated” gene expression pattern32,. The stroma o f bone marrow houses m ultipotent cells that can differentiate into lineages of blood cells, stromal and skeletal tissue88, 96, 152 ,78, ,79, 245. It has been reported that these stem cells can also transdifferentiate into liver cells333, skeletal129, 432 and cardiac249, 3,0 muscle cells, and C N S cells13, 47, ,29, ,66 ,8°, 2,2 238, 27°, but this is still debated66, 435. Bone m arrow is relatively easy to obtain, which circum vents the ethical concerns that surrounds the use of em bryonic stem cells. Because of its availability and its reported aptitude to transdifferentiate, stem cells from bone marrow are thought to serve as an alternative source for other types o f stem cells that are needed for specific therapeutic approaches. As with stem cells in general, there is much confusion regarding the correct term inology and abilities of cells derived from bone marrow. These cells have been referred to as “bone marrow stromal cells (B M SCs)” or “stromal cells”, because they reside in the stroma o f bone marrow, or as “bone marrow stem cells” or “bone marrow-derived stem cells”, because a percentage o f the cells have stem cell abilities. The cells have also been referred to as “m esenchym al stem cells” or “bone marrow-derived m esenchym al stem cells”, because of their origin from the mesoderm al germ layer. Due to this confusing term inology it is difficult to have a clear understanding of the true identity o f the cells used in the various studies. In 32 Review o f literature on Bone Marrow Stromal Cells addition, their ability to differentiate or transdifferentiate is unclear due m ain ly to the large variety of induction protocols used by different groups. For exam ple, one group reported that about 1 % of human and mouse B M SCs can be induced into the neural lineage370, whereas another group using a different induction protocol reported that 8 0 % of human and rat B M SCs could become neural cells448. Clearly, different protocols lead to highly variable results and this makes it difficult to fully understand the abilities of the B M SC and thus its potential for therapeutic approaches. The m ajority of groups working with cells derived from the stroma o f bone marrow does not attem pt to further isolate subpopulations and thus study a heterogeneous cell population that includes true stem cells as well as precursor and progenitor cells. Therefore, we propose that “bone marrow stromal cells” is the proper term inology for this collection of cells. We oppose that they are referred to as stem cells unless proper attem pts have been m ade to isolate a homogenous subpopulation o f clonally related cells that express known ‘sternness' genes such as Nanog, Oct-4, and Myc. Moreover, we concur with Parker and co-workers321, that stem cells in general are best defined operationally. Thus, the term ‘stem cell' can only be applied when the cells are m ultipotent, able to populate a developing area or repopulate an ablated or degenerated area with appropriate cell types, able to be serially transplanted, and able to self-renew. For a more in-depth discussion on this operational definition for stem cells we refer to a previous publication321. HARVEST A N D CU LTURING O F BMSC Although some sm all variations exist, B M SCs are harvested according to largely sim ilar protocols am ong the m any groups studying these cells for their potential in a variety of therapeutic approaches. Bone m arrow cells are removed from usually long bones such as the femurs and tibiae by flushing with cold phosphate-buffered saline with low percentage o f fetal bovine serum . These cells are washed and cultured in Dulbecco's Modified Eagle's M edium or Iscove's Modified Dulbecco's M edium with 1 0 -2 0 % fetal bovine a n d /o r horse serum . After 3-5 days in culture, non-adherent cells, m ain ly red blood cells that have a short lifespan o f about 72 h in these culture conditions, are removed, and the rem ain ing cells washed and further cultured in the sam e m edium . Usually within two weeks after initiatio n, the cultures consist of spindle-shaped cells with some monocytes and m acrophages present13, 247. The adherent cells are removed by trypsinizatio n and then replated for further expansion or used experim entally. These particular cells, i.e., the p lastic adherent cells, are considered to be ‘the BM SCs'. G en erally these cells are not further phenotypically characterized. However, several groups did analyze the presence o f a battery o f surface antigens and with great consistency demonstrated the presence on human B M SC s of M H C class I, C D 13, CD 44, CD 63, CD 73, C D 2 9 , C D 9 0 , C D 10 5, and C D 16 6 and the absence of M H C class II, C D 14 , CD 45, and CD34. 33 Chapter 2 Several other surface antigens (i.e., S H 2, SH3, C D 7 1, C D i2 o a , and C D 124 ) have been described for rat B M SC s457. With this in m ind we reviewed the literature on the use of BM SCs (harvested as described above) for repair of the spinal cord. W e will focus prim arily on the application o f BM SCs and not only the stem cell fraction thereof. Nevertheless, through transdifferentiation the stem cell portion and possibly the precursors and progenitors after de-differentiation can give rise to cells from the neural lineage; neurons, astrocytes, and oligodendrocytes. Especially for sm aller focal traum atic and dem yelinating lesions it could be beneficial to acquire neural cells from B M SCs in vitro prior to transp lantatio n into the spinal cord or m anipulate them in vivo such that they can replenish lost neural cells. DIFFERENTIATIO N O F BMSC IN TO NEURAL LINEAGE IN VITRO To get a better understanding o f the true nature of BM SC-derived astrocytes, oligodendrocytes and neurons it is im perative to define criteria for each of them. Is it acceptable to merely assum e that cells that express markers specific for a particular neural cell will also have relevant functional properties or should it be a requirem ent to dem onrtrate this at least io vitro? The expression of certain m olecules has been accepted as an ind icatio n of differentiation into a particular neural cell type. Asttocytes ex press g lial fibrillary acidic protein (GFAP) and oligodendrocytes express rat insulin promoter (RIP) and m yelin-basic protein (M BP). Neurons are identified by the prepence of (3 - 3 tubulin (im m ature neurons), neuronal marker N (N euN ), neuron-specific enolase (NSE), neurofilam ents (NF), and microtudule associated protein-2 (M A P-2). However, the expression o f cell-specific markers alone is not adequate and, except for astrocytes, morphologieal fharacterisfics that are in aoparent agreem ent with a specific cell type can be m islead ing243,448a Indisputably, the dent criteria ior a BM SC-derived neural cell are its functional properties, which unfortunately is much easier to dem onstrate in vitro than in vivo. Nevertheless, u nless BM SC-derived cells positive for RI P- or M BP m yelinate central axons in vitro their designation as oligodendrocytes should be taken with caution. Sim ilarly, unless BM SC-derived cells positive for n euronal markers have appropriate electrophysiological properties their designation as neurons should be carefully considered. In line with this, we propose to use the additive -lik e for cells that express particular markers but have not been fijn ctio sa ily characterized. We believe that this would better reflect the uncertainty of the true nature o f the paeticular cell. Several groups have reported tCat B M SCs can differentiate into cells that; express neuronal markers or into cells that have a neuron-like morphology47, 270■272, 314, 370 371 387. Figure 1A dem onstrates rat B M SC s isolated and cultured according to earlier described m ethods13. When brain-derived neurotrophic factor (BD N F) is added to the culture, the presence o f neuronal-like cells can be observed (Fig. 1B). To benefit m ost from the ability o f B M SCs to give rise to neural 34 Review o f literature on Bone Marrow Stromal Cells cell;;, it is im perative to investigate and optim ize the culture conditions that are necessary for this transdiffeeentiation. Padovon and co-workers3’4 demonstrated that hum an B M SCs proliferated beet and expreeted the highest percentage of7(33-tubulin (about 2 7 % of the total population) when cultured in the presence o f 2 0 % fetal bovine stru m and 1 o n g /m l basic fibroblast growth faetor (bFGF or FG F-2). With fibronectin as a grcwth stbstrate this percentage was further incteased to approx. 4 8 % 3’4. B D N f rrr fe u ro tro p fin -3 (NT-3) eliciaed the e x p ^ ^ o n o f (33-tubulin up to ovor 4 0 % oUthe cellst whicU could not f t further in cre ase f by com bining them with FG F-2 (’4. Witlf these culture conditionst tlfe cells; did not expreet N euN . In the stm e m edium but without serum, about ’ 0 % o f the cells differentiated into GFAP-positive astrocytes^4. Unfortunately;, the iautkroirs did n ot further com bine these different cdture conditions to postibly enhance the induction of BM SCs tee differentiate into neuronal like c o IIs , AlthoabO thu study of Padovan and colleagubs04 may suggest that serum is necesaary for neural induction, nestin-positive neural precursor ce1Is were found i n serem-free cuiture conditions444. These nestin-positive cells differentinted into GFA P-positive ashrocytes atsa:se;cd on morphology; approx. 4 0 % o f the populatiun) cor N eu N - positive ne u ro n a li ike cellr fa p>prox. ’ 9 % ) ufter 5 days in co-cu l°ure with uerelaell ar granule ceHs445. Tha grcfupr men tioned above reported elegant and co m p te lie rsive stud ies. U n fo rtu n a te ! a general consensus for culture cenditions fot neura1 induction of BM SCa has n otyet been esstablished. B Fig. 1. Panel A depicts undifferentiated rat BMSCs 7 days in culture expressing green fluorescent protein (GFP). The cells were isolated and cultured according to a previously described protocol and infected with lentiviral vectors encoding GFP. Addition olbcain-derived neurotropiic factor- pushes the BMSCa info neurai-like cells as can bn seen in panel B. 35 Chapter 2 A number of studies have s hown that B M SCs can be induced to become neural-like cells in - vitro by a dding g rowth factorst ,89, 273 280 3583 4° 5, cJibju'tyiry'l crACM/1 P100 or c hem ical a gents as p-m ercaptohthanol an d dimhtfyluulfoxide i n coml;)in;a^io n w itf butylatnd fyic^i'oxyianiuol 3444iii449, Using thess various induction fjro^ocols, 2 -7 6 % of the cells became neural-like cells. Thess results may indicate that depending on the growth factor the sam e intracellular pathway resulting i n neural l nduction gets differentiaily activated. However, more Iikely i s that the different growth factors exert their activity through different intracellular pathways that result in different degrees u f neural induction. Padovan and colleagues34 investigated whether am ong B M SC s there is a subpopulation that can more nasily differentiate i nto the neural Iineage. They compared unsorted BM SCs and a population o f BM SCs sorted on the pressnce of CD 133 on their m em brane and demonstrated that it higher percentage of7the latter was able to express neural markera. Thi;; phenom enon wns n lao demonstnated by com paring gene expression paU erns of7the different ssbpopulations o f B M SCs cells4’’ 045. Although thi:> particular population of7C D i33-p o sitive cells. or cells derived thereof, were not further d e ln e d dunctionally, thess results make it c lia r that the B M SC population wWen obtained as described above is n aeterogeneous cell population. Interestingly, and stuonglg em p h asizin g that more com plete criteria are im perative to d e ln e BM SC-derived neuronal c^lls^ Lu and coworkerst43 demonstnated that the neuron-like cells derived from B M SCs by adding p -m ercaptoethanol to the culture m edium 32 448 14/49 are actually dying cells! Tim e-lap se m icroscopy revealed that the cellular exXxnsions protruding from the cells are m ereln a result of cellular shrinkage. Lu and colleagues.43 took thi:; investigation one level further and demonstnated that these morphological changes of the B M SCs wem actually due to cellular toxicity, They stowed that cells eeposed to several stuessors. sucO a s d etnrgentSr chloride a nd exereme p H , exhibited the s am e morphological cOaracteristics. i.e., neuronal-like cells. as the B M SCs coltured in the presence of - m ercaptoethanol. Cleariy, neural cells obtained in vitro from B M SCs need to be functionally diaracterized. In case of BM SC-derived neurons, dem onstnating appropriate electrophysiological behavior is cruci^i. ELECTRO PHYSIO LO GICAL ACTIVITY O F NEURON-LIKE (CELLS So far only n lew groups published in vitro evidence that BM SC-derived neuron-like cells have electrophysiological activity appropriate for neurons185, ,86, 2,3 445. Kohyama and co lleagu es^ demonstnated that s uch cells exhibited a resting m em brane potential (Vrest) o f - 2 ° m V a nd 50 m V a t , 4 a nd 2 8 d ays in vitro, resp ectively Thi;; was nhe l - i t study that idemonstnated 'that BM SC-derived neuron-like cells acquite a Vrest resti'ebling that o f neurons, w hidi i s approxim atele - 70 m V. Jiang and colleagues185, 186 cultured BM SC-derived neuron-like cells long-term with different m itogens a nd cytokines, then co-cultured them with fetal in- ouse brain 36 Review o f literature on Bone Marrow Stromal Cells astrocytes and dem onstrated that the neuronal-like cells had a V rest between -8.4 and -55.4 mV. These authors also dem onstrated that prolonged co-culture with the fetal astrocytes resulted in a further decrease o f the resting m em brane potentials. Moreover, these cells were then able to fire action potentials’85, ,86. Regrettably, this study did not investigate the potential of these cells to fire trains o f action potentials, a characteristic o f fully matured neurons62. Electrophysiologically active cells derived from B M SCs were also described by W isletGendebien and colleagues445. They reported that after 4-6 days in culture some of the cells demonstrated sensitivity to the neurotransm itters, GABA, glycine, serotonin, and glutam ate, possessed an outward K+ current but no inward Na+ current, and exhibited a V rest of about -37 mV. These characteristics correspond with those described for neurons in stage , o f their m aturation445. W islet-Gendebien and colleagues445 further showed that after 7-15 days in culture the cells were able to fire a single-spike action potential and had acquired Vrest o f -56 m V (characteristics that corresponded to neurons in stage 2 of their m aturation62. These findings are exciting and dem onstrate that cells within the B M SC population can differentiate in m aturation stage 2 neurons when cultured under the appropriate conditions. It is unfortunate that W islet-Gendebien and co-workers445 could not dem onstrate the presence of fully mature neurons (stage 3)62, which are able to fire trains of spikes and exhibit a normal V rest o f -70 m V. The results from the studies mentioned above indicate that in vitro the BM SCderived neuronal-like cells acquire a more negative V rest in tim e. Perhaps they could have succeeded in creating fully matured neurons if they had cultured their cells for longer than ,5 days. The differentiation o f BM SCs into fully m ature neurons in vitro rem ains one o f the more intriguing challenges in the field of stem cells and C N S repair. DIFFERENTIATIO N O F BMSC IN TO NEURAL LINEAGE IN V IVO The first study that provided evidence that B M SCs can differentiate into neural-like cells in vivo was from M ezey and Chandross270. Using a m ice model, they transplanted m ale bone marrow cells into the peritoneal cavity o f female recipients. The grafted bone marrow cell preparation did not contain neuron- or glia-like cells at the tim e o f transp lantatio n, although it should be noted that about , 8 % of the cells expressed the neural precursor cell marker, nestin when cultured for several weeks. Using in situ hybridization techniques, Y-chrom osom e co ntaining neurons were located in the brain o f the host, suggesting that the grafted B M SCs had crossed the blood-brain-barrier and formed neurons within the C N S. Interestingly, Cogle and colleagues87 also dem onstrated Y-chrom osom e co ntaining neurons that were nicely integrated in the hippocam pus of three fem ale hum ans that had received transplan ts of m ale bone marrow cells up to 6 years earlier. It should be m entioned that a fusion between a grafted B M SC and a host cell could result in false-positive results. In several studies it has been reported that B M SCs can spontaneously fuse with other cells in 37 Chapter 2 vitro4'5’ 458. W hereas this is a real possibility, Cogle and co-workers87 used fluorescence in situ hybridization techniques to reveal the presence of only one X chromosome, concluding that in their study the neurons could not have been the result o f cell fusion. The Y-chrom osom econtaining, transgender cells accounted for approxim ately ' % o f all neurons and ' - 2 % of all astrocytes and microglial cells in the hippocam pus. These studies provide exciting evidence that B M SC s can m igrate across the blood-brain-barrier and differentiate into neural cells in the mature C N S , which is prom ising for the use o f BM SCs in C N S reparative approaches. BMSC FOR SPIN AL CO R D REPAIR Spinal cord injury results in cell death, axonal damage, progressive loss of tissue, and im paired motor and sensory functions. Some restoration o f function has been reported resulting from endogenous self-repair processes or from applied interventions. At present, due to the lack of repair approaches that cause m eaningful functional restoration, spinal cord injury results in a w heelchair bound life. In general it is thought that functional recovery can be achieved by addressing several key areas; prevention of injury-induced cell death (neuroprotection) close and away from the injury, prom oting axonal regeneration by decreasing the inhibitory nature of the environm ent at the injury site or by increasing the in trin sic ability o f injured neurons to grow their axon, and prom oting m yelination of regenerated axons and dem yelinated intact axons. It appears that a com bination of these approaches followed by intensive rehabilitation to develop and stabilize new axonal circuits will be necessary. Moreover, the interventions need to be applied sim ultaneously and /or successively thereby creating optim al conditions for morphological and functional repair. A typical feature o f the injured cord is the progressive loss o f the central gray and peripheral white m atter creating large fluid-filled cysts. To provide axons with a substrate to grow across these cavities transp lantatio n o f cells has been widely explored. M any cell types, alone or in com bination, have been investigated over the last decades55, 354. Over the last years, the potential beneficial use of B M SCs in restorative approaches of the spinal cord has attracted am ple attention. Table ' provides an overview of studies in which B M SCs were applied into the damaged spinal cord and the results that were obtained. Clearly, am ong these studies some results are confusing and in disagreem ent with each other. For optim ization o f B M SC transp lantatio n paradigm s for application in clinical trials several crucial questions regarding cell survival, m igration, neuroprotection, axonal regeneration and functional recovery need to be addressed. 38 Review o f literature on Bone Marrow Stromal Cells Cell survival An essential aspect for successful cell transp lantatio n approaches is survival o f the grafted cells. In vitro, B M SCs are cultured in m edium co ntaining 1 0 -2 0 % serum. Factors other than present in serum are not essential for their survival and proliferation. In fact, addition of growth factors such as B D N F , FG F-2, or neurotrophin-3 (NT-3) instigates differentiation o f the B M SCs into neural-like cells rather than affect survival314. In vivo, in a rat contusion injury model, Hofstetter and colleagues170 showed that more B M SC s survived when transplanted one week after injury compared to im m ediately after injury. The surviving cells were located within trabeculae that span the injury site8’ 17°. However, with the one week delay only 1 % o f the cells (about 3000 total) survived at 4 weeks after grafting and although this is an increase over the percentage o f cells that survived im m ediate transp lantatio n (< 0 .15 % ) the total num ber of surviving cells was very low170. It has been proposed that one o f the m echanism s underlying death o f cells transplanted into the spinal cord is injury-induced inflam m ation409, 455. The cellular and m olecular com ponents o f the inflam m atory response could initiate cell death28, which would also explain improved survival with delayed grafting paradigm s. If this were the case, grafting into a chronically injured cord would further im prove cell survival. Unfortunately, so far there have been no conclusive results on their survival rate in the chronically injured spinal cord. In one study, BM SCs grafted into a contusion site at 3 months after injury reportedly survived an additional 4 weeks but actual numbers were not provided472. From the data so far, it has become clear that the survival of the B M SC s is com prom ised after transp lan tatio n into the injured spinal cord. Several recent publications have reported that in vitro B M SCs produce and secrete a variety of growth factors such as glial cell line-derived neurotrophic factor (G D N F )143, 457, nerve growth factor (N G F)143, 219, 247, B D N F 74, 219, 247 and, albeit in sm aller am ounts, FG F-2 247. These factors may have pronounced effects on repair-related processes such as neuroprotection and axonal outgrowth, but they may also affect B M SC survival a n d /o r proliferation in vivo through an autocrine action457. If this is the case why then do B M SCs survive poorly within the injured spinal cord? It is possible that the grafted B M SCs sim ply do not secrete enough of the necessary growth factors to positively effect their own survival w ithin an extrem ely harsh injury m ilieu with m any cells and factors that negatively influence survival. Also, there m ay be batchto-batch differences in the ability to produce growth factors, which was dem onstrated for human B M SC s291 and that could result in highly variable results m asking the true potential of B M SCs to survive the spinal injury m ilieu. Clearly, for the developm ent o f safe and effective clinical application the survival of B M SCs after transp lan tatio n into an injury has to be improved. Especially when the cells also function to deliver factors that are most likely necessary to optim ize the neuroprotective and axonal regeneration response. Future research should concentrate on decreasing death of 39 Chapter 2 B M SCs within the lesion area, possibly by elevating local levels o f growth factors essential for survival or by preventing the up regulation o f apoptotic m olecules or prom oting the expression of anti-apoptotic molecules. In vitro m od ified Chopp et a l, 2000 rat no C o ntu sio n at T 9 level. Cells grafted 7 d p i. Su rvival 5 w eeks. 250,000 H ofstetter et a l, 2002 rat no C o ntu sio n at T 9 level. Cells grafted im m ed iate o r 7 d p i, 2 m m rostral and caud al. Survival 5 w eeks. 300,000 A kiyam a et a l, 2 0 0 2 b m ice no EB-X lesion# T 10 level. C ells grafted 3 d p i. Rats were im m u n o su p p ressed . Survival 3 w e eks. Corti et a l, 2002 m ice no C ells injected in tail vein after 10 , 000,000 X -irrad iatio n . Su rvival 3 m o nths Sy stem ically in fused B M S C s m igrate tow ards sp in al cord. Inoue et a l, 2003 rat no EB-X lesion lu m b ar sp in al cord. 10 0,00 0 C ells grafted 3 d p i, sy ste m ic or 10 , 000,000 fo cal. Survival 3 w eeks. R em yelination of dem yelinated axons after B M S C s transp lan tatio n . Lee et a l, 2003 m ice no C o ntu sio n at T 11 level. Cells grafted 7 dpi in and 2 mm rostrally to in ju ry. Su rvival 4 w eeks. 14 rat no C o ntu sio n in ju ry T 9 level. Cells grafted im m ed iately. Survival i , 2 , 3,4 w e eks. O hta et a l, 2004 rat no Ankeny et a l, 2004 rat no C o ntu sio n injury T 9 level. 2 dpi transp lan tatio n o f cells into lesion cavity. Survival 8 w eeks. Lu et a l, 2004 rat no B M S C s -N T 3 into lesioned dorsal co lu m n 5 days after c A M P in L4 DRG and N T 3 im m ed iate rostral to graft. Su rvival 3 m o nth s. Satake et a l, 2004 Rat No C o ntu sio n T 9-10 level. 3 , 5,7 dpi cell injection lu m b ar sub arachn oid sp ace. Zurita et a l, 2004 rat no 3 0 So urce te P ublication Sig u rjo n sso n et al, hum an no 2005 Lu et a l, 2005 rat Yes§ Injury m odel Num ber of cells 5,000 3,000 M ain results A d d itio n al results Sig n ificantly im proved U pregulation o f nestin in ependym al m o tor o utco m e at 2 w ks. and a ssociated cell layers. Tra n sp la n te d B M S C s form guiding stra n d s at the injury site. Better BM SC su rvival w ith delayed grafting (7 d p i). M otor o utcom e im proved at 5 w eeks. R em yelination of dem yelinated axons after B M S C s tra n sp lan ta tio n . M ore m yelinated axons with focal in jection . Focal ap plicatio n m ore efficient. N eural differen tiation : B M S C s differentiate into n eurons in the brain and astrocytes in the cord. 1 ,000,000 N europrotective: signifient reduction o f cavity vo lum e . B M S C s su rvival decreased in tim e up to 3 w eeks. M otor o utco m e sig nifican tly im proved up to 14 dpi. C o ntu sio n injury T 9 level. 5,000,000 Im m ed iate cell grafting in C S F (4 th v e n tricle ). Survival 5 w eeks. N europrotective: reduction o f cavity vo lum e w ith 4 7 % . Sig n ificant im p ro vem en t o f m o tor o utco m e after 5 w e e k s. B M S C s m igrated to cord. 60,000 N euro p rotective: BM SC s reduce cavity volum e. Increased spared tissu e vo lu m e and w h ite m atter. No sig nifican t im p ro vem en t in m o tor outco m e a fter 8 w eeks. 200,000 Axonal regeneration: c A M P and N T -3 com bined prom oted axonal growth o f sensory axons. 1 ,000,000 H o m in g o f transplan ted cells tow ard s lesion area. Som e B M S C s differentiated into nestin-p ositive im m a tu re neurons o r glial cells. C o ntu sio n at T 7 level. C ells 1 ,000,000 grafted 3 m o post injury at lesion site. Survival 4 w e eks. Sig n ificant im provem ent in m o tor o utco m e (B B B ) after 2 w eeks in the ch ro n ica lly injured rat. B M S C s survive and form bridges in the cavity. 20,000 Grafted cells in d istin g u ish ab le from neurons ch ick and also electrophys. active. During differentiation lo ss o f C D 34 exp ressio n by B M S C s. 10 0,00 0 Neural induced cells in vitro do not express neural m arkers in v ivo . B D N F secretin g B M S C s led to higher axon d en sity. No chang e in m o tor o utco m e at 3 m o nth s. In ovo surgery and cell im plantation in chicken embryo (stage 15 -16 ) . Suvival 4-9 days. D orsal co lu m n lesion C 3 . Su rvival up to 3 m o nth s. § BMSCs were neurally induced following the procedure described by Woodbury et al., 2002 and modified to express BDNF. # EB-X lesion=Ethylbromide injection with X-irradiation to create a demyelinating injury 40 Review o f literature on Bone Marrow Stromal Cells Cell migration Are B M SC s able to m igrate towards or away from the site of in ju ry/tra n sp lan ta tio n ? In vitro studies have shown that B M SCs express CXCR 4, the receptor for the chemokine, C X C L 12 (also known as stromal derived factor-1, SD F-1 12. C X C L 12 has been im plicated in cell m igration possibly through the extracellular signal-regulated kinase (ERK) and Akt phosphorylation pathways39, 134. Interestingly, under some pathological conditions reactive astrocytes produce C X C L 12 39, 274 It is possible that following spinal cord dam age upregulation of the level of C X C L 12 attract CXCR 4-positive B M SC towards the injury site. This could be the m echanism at the basis of the hom ing of BM SCs into spinal cord injury sites. However, at this tim e it is not known whether this particular chemokine is present within the injured spinal cord. In vivo, system ically adm inistered BM SCs have been reported to m igrate towards injury sites in the brain222 240 28°, but the results regarding hom ing towards the injured spinal cord have been conflicting. Recently, 111In-oxine-labeled B M SCs were shown to m igrate poorly towards the injured spinal cord following intravenous ad m in istration 96. On the other hand, B M SCs labeled with iron-oxide microbeads were detected using m agnetic resonance im aging within a spinal cord com pression injury after intravenous adm inistration406. Satake and co workers373 demonstrated that B M SC s grafted into the lum bar subarachnoid space aggregated onto the cord near a thoracic contusion injury site and that a few migrated into the contusion injury. Possibly, the m eninges may have prevented more B M SCs to migrate into the spinal cord parenchym a. Obviously, if B M SCs are able to m igrate towards an injury site in the adult spinal cord, it would allow for system ic delivery of the cells thereby avoiding invasive transplantatio n strategies. M igration of transplanted B M SCs away from an injury site in the spinal cord might be beneficial for outgrowth o f regenerating axons. It was reported that such m igration did not occur in a contusion inju ry m odel96. However, at present, the question whether B M SCs are truly capable of m igration within the injured spinal cord has not explicitly been answered. Future research should focus on these questions because the outcome is crucial for the design of B M SC transplantatio n paradigm s for clinical application to repair the injured spinal cord. Neuroprotection Although grafting of cells into the injured spinal cord is typically applied to generate a growth response, a neuroprotection effect can usually also be observed408. Repeatedly, it has been demonstrated that cellular grafts lim it the loss of nervous tissue in the injured cord338, 4° 8. In fact, in anim al models o f spinal cord injury and repair im provem ents in motor perform ance seen after cell transp lantatio n are often contributed to neuroprotection rather than axonal regeneration. Grafting B M SCs into the contused adult spinal cord also promotes tissue sparing, which was evidenced by sm aller cavities and preserved host white m atter5, 10 3° 4. 41 Chapter 2 It is likely that the m echanism underlying the neuroprotective effect o f B M SC transplants is related to the ability of the cells to produce and secrete factors that either arrest a n d /o r prevent the onset of cell destructive events. B M SC s are known to produce and secrete factor (G D N F )’43, 457, nerve growth factor (N G F)’43, 2’9, 247, B D N F 74, 2’9, 247 and, albeit in sm aller am ounts, FG F-2 247. These factors have all been im plicated in neuroprotective effects. N G F and B D N F increase survival’50 4,8 and decrease apoptotic death o f neurons and oligodendrocytes39’. B D N F also increases oligodendrocyte proliferation267. G D N F has been im plicated in the rescue of motor neurons25, 78 possibly by activating M AP kinase and Bcl-2, an anti-apoptotic regulator78. FG F-2 is known to positively effect tissue sp arin g ’87, ,88, 269 and promote neuronal survival and angiogenesis269 following spinal cord injury. Another molecule produced by B M SCs that could positively influence tissue sp aring is V E G F, a potent angiogenic factor’58. Axonal regeneration In a few studies the axonal regeneration prom oting abilities of B M SCs have been addressed. Lu and co-workers244 demonstrated that transp lantatio n of native B M SC s into the contused spinal cord promoted modest sensory and motor axon regeneration, whereas grafting of neurally-induced BM SCs did not result in axon growth. O ne explanation for the failure of the neurally-induced BM SCs to promote axonal regeneration in the injured spinal cord is that these cells die soon after transp lantatio n. The neural induction of the B M SC s was performed according to an earlier described method32 448, 449, which, as had been already recognized by Lu and colleagues245, causes B M SCs to die rather than become neuron-like cells. An alternative explanation for the lower axonal growth response observed by Lu et al244 is that neurally induced BM SCs are less effective in elicitin g such a response than undifferentiated B M SCs, for instance because they produce and secrete less growth-promoting factors. At present it is known that B M SC s produce and secrete several growth factors. However, it is unknown whether neurally induced B M SCs actually produce growth factors or whether they do so but in lower am ounts than undifferentiated BM SCs. Indirect evidence that the neurally induced B M SCs do not produce enough growth factors to stim ulate axonal regeneration was provided in two studies dem onstrating that transp lantatio n of neurally induced B M SCs genetically modified to produce and secrete B D N F did improve the axonal growth response244, 248. In another study, a multifaceted and intriguing spinal cord injury/regeneration model was used to investigate the regeneration-prom oting capacity of B M SC s244. B M SCs modified to secrete NT-3 were transplanted in a transection injury of the m id-thoracic dorsal colum ns one week after adm inistration o f cA M P into the L4 dorsal root ganglion as a preconditioning stim ulus for the sensory neurons. This was then combined with injection o f NT-3 after injury/grafting within and beyond the injury site244. The com bination of all interventions resulted in regeneration of ascending sensory axons into and from the B M SC graft. Either cA M P or NT-3 adm inistration alone did not result in such an axonal response. 42 Review o f literature on Bone Marrow Stromal Cells These results suggested that a cam binatorial approach that stim ulates both the neural soma and axon m ight effectively increase the axonal regeneration. Surprisingly, in the study of Lu and colleagues244 app lication of cAM P alone at the level o f the sensoty neurons did not result in improved sensory grow/th wUile it had been im plicated in such a response earlier292 as well as in other types of axonal regeneration responses329. Clearly, as with m any other prom ising cell types for transplantation in to th e injured spinal cord, more extensive studies need to be performed before B M SC s can be used effecti vely in rep air strat egies. Functional recovery It has been reported that B M SC results in significant im provem ent of hindlim b locomotor perform ance when transplanted in the acutely45’, sub-ocutely8’ anti chrnninally472 contused spinal cord. In all three studies hindlim b function was evaluated using the open-field IB B-rent, which scores for jo in t m ovem ents, paw flace m e n t, weight suppnrt, and fore/hindlim b coordination23. Although a valid way to test hindlim b function, the BBB test has lim itations; the scoring is subjective and difficult for fore/hindlim b coordination. This affects the proper assessm ent o f hindlim b motor performance. Othur sensorim otor tests ruch as foot print, grip and beam walking, and analysis o f gait uoiug the CatW aln® provide a morn com plete m easurem ent of hindlim b function. In addition, it wns anfortunafe that these particular studies8’ 45’ 472 did not investigate; wUethor tWe im p ro v rm e n ti in brhanio r vasre associa ted with an axonal regeneration respanse. Considering that in these atudius th a oUservei functional im provem ents appeared relatively noon after injury and transplantation, it seem s than neuroprotective m ech anism s3, r° t54, possibly through secretion op growth fattoas, rather than axonal regeneration responses242'244 were at th f basis of the im provum ents. So far studies on behaoioral effects following intrasn inal tran sp lp n taiiu n o f BM SCs have used a variety of models in differ ent species. In mice or rat different num bers o f B M SCs were grafted acutely into the cervical244 or thoracic spinal cord’0 ’70, 45’, or sub-acutely8’ or chronically472 in the thoracic spinal cord. M ost m odels involved a contusion injury’0 8’ ’7° 45’, others a partial transection model244. The servival p erio t after transp lantatio n as well as thn studied end points varied am ong fhese s ta lie s . (Hi ven the m ajor differences betwuen th ese approaches, it is difficult to com pare the respective results and thus to proporly value the effects of B M SCs on functional recovery and axonal regeneration in the injured spinal cord so far. This brings up the question whether there should be one particular model that should be used uniformly by groups that study the use o f BM SCs in spinal cord repair. Is there a best model? W e do not support the idea o f only one model. In hum ans, the m orphological and functional outcome following spinal cord injury is highly variable. Nervous tissue loss, axonal dieback, neuronal death, and scar formation depend largely on factors such as the site and degree o f injury and the post-injury care. A p p lyin g one particular model will ultim ately only 43 Chapter 2 benefit a percentage of spinal cord injured patients. However, one particular in vivo model can be superior to another to answer a particular aspect of spinal cord injury and repair. For instance, neuroprotective effects of B M SC transp lan ts can best be addressed in contusion injuries, whereas their effect on axonal regeneration is most reliably assessed in com plete transection injuries. The highly variable outcome after human spinal cord injury requires testing o f B M SC transplantatio n (and of other approaches) in a variety of in vivo injury models. This would allow proper judgm ent whether following a certain injury B M SC grafting or an alternative intervention would be best. For understanding the potential o f B M SCs for spinal cord repair it would be better to have certain studies ind ependently repeated to confirm the results, which if that would be the case m ay establish B M SC grafting as the type of intervention best suited for a particular type of injury. C LIN IC A L APPLICATION O F BMSC There is considerable experience with the harvesting o f B M SCs from the iliac crests of patients206. In the clinic, following chem otherapy a n d /o r radiation therapy, the bone marrow m icroenvironm ent is damaged resulting in dim inished or delayed hem atopoiesis’09, 266. A llogeneic marrow transp lan ts have been explored for reconstitution of the dam aged marrow stroma, although at present it seem s that recipients o f such transp lan ts have only host-type marrow stromal cells after tran sp lan tatio n 390 402. Also, B M SCs are more increasingly used for surgical approaches for spinal fusion or for degenerated disc disease275, 434. B M SCs have several features that make them ap p e alin g candidates for transplantation after spinal cord injury in the human which include the facts that (a) they can be relatively easily isolated under local anesthetic206, (b) human B M SC s can be rapidly and extensively expanded in cell culture’3, 47, (c) there is no evidence that they produce tumors in vivo, even after im m ortalization to ensure an unlim ited source o f self-renewal ex vivo'’ " 5, (d) they have demonstrated capacity for tissue repair3, 244, and (e) they secrete growth factors in vivo that can enhance regen eratio n /rep air73, 74. Clearly, BM SCs may be a good candidate for transplantation into the injured spinal cord. However, a concern is that a considerable variation exists am ong donors290 29’. M any factors that are difficult to control can influence the variations between donors, such as gender, genetic background, and general health. Therefore, we agree with Neuhuber and colleagues290 29’ that specific param eters need to be found that allow rapid and reliable selection o f B M SCs with therapeutic potential. Based on the above-m entioned features of BM SCs, there is much excitem ent about the potential use o f these cells for spinal cord repair. However, it is also clear that B M S C are not the so-called “silver bullet”, the one therapy that will promote regeneration and restore function in the injured spinal cord. In fact, it is generally accepted in the field of spinal cord 44 Review o f literature on Bone Marrow Stromal Cells injury and repair that such a “silver bullet” does not exist. Sp inal cord injury is particularly complex and involves a variety of histopathological destructive and som etim es constructive events. A treatm ent for spinal cord injury aim ed at repair of function needs to deal with all of these events in a tim ely, m ost likely sequential, fashion. There have already been several clinical trials that have used intravenous adm inistration of BM SCs for specific diseases such as patients with m align ancie s237, but also efficacy trials in osteogenesis im perfecta68, ,72, 298, H urler's syndrom e and m etachrom atic leukodystrophy210. Each of these trials has had various degrees of success depending on the m easured end-points. A positive outcome from all of these trials is that only one o f the 68 patients that entered in the studies m entioned has suffered any side effects (i.e., mild urticaria as a reaction to the fetal bovine serum album in in which the cells were grown), ind icating that B M SCs can be used safely in clinical settings. There is considerable debate as to which patients with a spinal cord injury would be the ideal candidates for testing cell types (including BM SCs) that have shown potential for clinical applications. H um an trials approved by the United States Food and Drug Adm inistration (FDA) require safety data prior to efficacy data. Consequently, most cellular transplantation strategies tested in clinical trials in the United States have focused on patients with functionally com plete sp inal cord injuries (ASIA A; Am erican Spinal Cord Injury Association). However, for proper evaluation o f the efficacy o f transplantation strategies regarding functional im provem ents patients with incom plete lesions (represented by A SIA B-D) may be more beneficiary. C lin ical trials tran sp lan tin g B M SCs after spinal cord injury are ongoing in several countries including Korea, Mexico, Colum bia and Brazil. Other than a Korean study318 results from these trials have not been published yet. In this particular study, six functionally com plete spinal cord injured (ASIA A) patients received a B M SC transp lan t com bined with the adm inistration of granulocyte m acrophage-colony stim ulating factor (G M -CSF). All patients were operated on in the first two weeks after injury and a total of 1.8 ml with a density o f 1.1 x 10 6 B M S C s/ I was injected at the epicenter of a contusion lesion at 5 mm below the dorsal surface. In 5 out of 6 patients motor and sensory function improved, with 4 patients o f them switching from the A SIA A to the A SIA C level. Follow-up evaluations up to 18 months after transp lantatio n revealed no serious com plications. Although these results are very prom ising, detailed inform ation concerning neurological exam ination is lacking. Further studies in this arena will need to focus on reproducibility, safety and finally efficacy. C O N C L U D IN G REMARKS Studies on the ability o f BM SCs to transdifferentiate in vitro into the neural lineage often use different protocols370, 448, 449. This leads to a great deal of confusion on the true capacity o f these cells and thus their therapeutic potential. There clearly is a need for a consensus on how to 45 Chapter 2 induce B M SC s into the neural lineage in vitro. Moreover, this procedure and in particular alternative ones that claim a higher efficiency need to be repeated independently. Also, there is a need for standardized criteria (operational definition)32’ that will result in the proper designation o f BM SC-derived cells as neurons or oligodendrocytes. O n ly then it w ill be possible to optim ally benefit from the therapeutic potential of BM SCs for spinal cord repair. In vivo, the use o f BM SCs in spinal cord injury models is still relatively new (see Table ’ ) and m any questions remain unanswered. Some o f these questions are: To what extent do B M SCs survive when grafted into the contused spinal cord and does tim e o f transplantation make a difference? Do B M SCs migrate towards and away from the transplantation site and if so where to? To what extent do B M SCs differentiate when transplanted into the injured cord? Can grafted BM SCs support spinal cord repair and if so what m echanism s underlie the biological effects? Based on the reported differences between in vitro and in vivo results, it is clear that the influence of the m ilieu of the injured spinal cord on B M SCs is not fully understood. This is a com plicated issue because of the abundance and variety o f factors in injured nervous tissue all with different effects on B M SC survival, m igration, and differentiation. For transplantation purposes, it appears that differentiation of B M SCs prior to grafting would be best for effective repair for sm aller, focal lesions o f the spinal cord or for specific aspects in larger, more routinely seen, injuries. For instance, BM SC-derived oligodendrocytes could be used to address specifically a dem yelinating disease such as m ultiple sclerosis or the effects o f rem yelination on functional restoration o f the spinal cord after injury. Differentiation into neurons would allow addressing a motor neuron disease such as am yotrophic lateral sclerosis. However, is ex vivo differentiation o f B M SCs prior to grafting in the spinal cord necessary. In theory, the C N S environm ent m ay induce the cell to develop into the required cell type. Im plantatio n paradigm s using undifferentiated B M SCs in vivo have shown prom ise in the laboratory and clinical trials are ongoing. 46 3 Gene expression pattern and suitability of bone marrow stromal cells. Early passage Bone Marrow Strom al C s lls express genes involved in nervous system developm ent supporting their relevance for neural repair. Submitted Restorative Neurology (2010) R.D.S. Nandoe Tewarie K. Bossers B. J.A. Grotenhuis J. Verhaagen M. Oudega Blits Chapter 3 IN TRO D U CTIO N The application o f mesoderm al bone marrow stromal cells (BM SC) for nervous system repair has been explored extensively’65, 323. B M SC may promote repair through their ability to differentiate into neural cells’7, 47, 76, 370 a n d /o r the secretion of growth-promoting m olecules’43, 2’9, 454, 457. The true potential of B M SC to repair nervous tissue is still under investigation. A more com prehensive understanding o f the neural repair potential o f B M SC and possibly of the underlying m olecular m echanism s may be obtained by gene expression profiling. B M SC express genes com m on to cells from the m esoderm al lineage such as bone, cartilage, and adipose cells’6, ’37, 223. O n the other hand, they also express genes that are typical for epithelial, endothelial, and neural cells’85, 38°, which may point at their proposed ability to differentiate across lineages. Few groups have studied genes involved in nervous system developm ent expressed by BM SC. It was shown that 3’ 2 genes including neural progenitor genes are co-expressed in human-derived hippocam pal neural stem cells and undifferentiated B M S C 56. G enes encoding for the neurotrophins nerve growth factor and brain-derived neurotrophic factor are expressed in undifferentiated B M S C and in neurally-induced BM SC, with reduced expression in the latter453, 454. The expression of genes encoding for neurotrophins and proteins characteristic o f neural progenitors in cultured B M SC may indicate their ability to support repair after transplantation into nervous tissue. To further evaluate the overall repair potential we profiled gene expression of BM SC from passage (P) 3, which are typically used for transp lantatio n studies in our laboratory, using 44k whole genom e rat microarrays. W e also compared the gene profiles of P3 and P’ 4 B M SC to investigate effects o f long-term culturing on gene expression. MATERIAL A N D M ETHODS BM SC isolation and culture B M SC were isolated from Sprague-D aw ley rats (8-’ ° weeks, 2 ° ° - 2 5 ° g ; H arlan, In d ian ap o lis, IN , USA) as described previously’3. Briefly, rats were deeply anaesthetized and decapitated and their femurs and tibias im m ediately removed. The marrow from these bones was aspirated with a syringe, plated on p lastic culture dishes, and cultured for 48-72 h in Dulbecco's m inim al essential m edium (Invitrogen, Carlsbad, CA, USA) with ’ ° % fetal bovine serum (Hyclone, Logan, UT, USA) and ’ % p enicillin-streptom ycin (Invitrogen) at 3 7°C / 5 % C O 2. Next, non-adherent cells were removed through w ashing with Hank's buffered salt solution (Invitrogen) and fresh culture m edium was added to the adherent cells. These were grown to confluency and then harvested using ° . 2 5 % trypsin, diluted ’ :2 in m edium , plated, and cultured at 3 7 °C /5 % C O 2. B M SC were obtained from 3 rats and cultured in 4 different batches to ensure the availability o f biological replicates for microarray analysis. 48 Gene expression pattern and suitability o f bone m arrow strom al cells RNA isolation and amplification From P3 and P14 BM SC, total RN A was isolated using Trizol-based and RN easy M ini Kit RNA isolation methods. Cells were first hom ogenized in ice-cold Trizol (Life Technologies, Grand Island, New York). After phase separation by addition of chloroform, the aqueous, RNAcontaining, phase was transferred to a new RNAse-free 1.5ml tube and mixed with an equal volume o f 7 0 % RNAse-free ethanol. Next, an RN easy M ini colum n (Q iagen, V alen cia, California) was used to isolate RN A according to the manufacturers' guidelines. RN A yields and purity were determ ined using a N an o D ro p N D -10 0 0 spectrophotom eter (Nanodrop Technologies, W ilm ington, Delaw are). RNA integrity was determ ined by the RNA Integrity Num ber (RIN) as measured by the A gile nt 2 10 0 bioanalyzer (Agilent Technologies, Palo Alto, California). RNA was am plified and a total o f 500 ng cR N A labelled with Cy3 or Cy5 using the A gilent Low RN A Input Fluorescent Linear Am plification kit (Agilent Technologies) according to the m anufacturers' guidelines. Microarray design and hybridization For the m icroarray experim ents we used 44K whole genom e rat m icroarrays (Agilent Technologies) and a design consisting o f direct com parisons between P3 and P14 B M SC (3 biological replicates each). Fragm entation and hybridization was performed according to the manufacturer's guidelines (Agilent Technologies) using A gilent solutions and buffers. Briefly, target solution was prepared co ntaining Cy3 and Cy5 labelled cR N A sam ples (500 ng in total). The cR N A was hydrolyzed for 30 m inutes at 60 °C , followed by hybridization in hybridization buffer on the m icroarray probes for 17 h in a rotating cham ber at 6 0 °C . After hybridization, the slides were washed in wash solution 1 (6x SSPE, 0 .0 0 5 % N-Lauroylsarcosine) for 5 min and then in solution 2 (0.06x SSPE, 0 .0 0 5 % N-Lauroylsarcosine) for 1 m in. The m icroarrays were then transferred to acetonitrile solution for 1 m in and dried under pressurized nitrogen gas. Data analysis M icroarrays were scanned with an A gilent m icroarray scanner. Red (Cy3) and blue (Cy5) intensity was acquired using Feature Extraction software V7.5.1 (Agilent Technologies). Arrays were norm alized based on quantile norm alization. Differential gene expression was determ ined by fitting a lin ear model to the norm alized data. N ine m icroarrays were used for com parisons between P3 and P14 BM SC. Expression of a particular gene was accepted with an inten sity o f A >6 ,6 , to exclude outliers based on background staining. Oversaturated genes were also removed from our analyzed set o f genes. In the subset of genes, we looked for the presence of a clear neural relation in the nam e o f the gene and for this we searched for neur*, glia*, oligo*, nerv* am ongst others. Furthermore, we searched online in the present gene database for a known function in any neural processes. 49 Chapter 3 Gene Ontology overrepresentation Overrepresented G ene O ntology (G O )-classes were indentified using the web-based application G O stat (http://gostat.w ehi.edu.au)26. W e first determ ined the num ber of genes that were expressed in P3 a well as in P14 B M SC (cut-off: > 2 x background intensity) and these served as a reference for the fraction o f differentially expressed genes. For each top-level G O term (e.g., biological process, cellular com ponent, m olecular function), we determ ined the overrepresented G O -classes. The overrepresentation o f a G O -class within a set of differentially expressed genes m eans that this G O -class is statistically higher represented than would be expected by chance26. Statistical inference was calculated with Fisher's Exact Test. The B en jam ini and Hochberg False Discovery Rate model was used to correct for m ultiple testing. The m in im al length of considered G O -p ath s was 3. Significance was set at P < 0.01. RESULTS B M SC have emerged as candidate cells for repair o f the brain167, 273, spinal cord6’ 324, and peripheral nerves17, 356. Profiling gene expression of B M SC may present inform ation on their repair potential. Here we determ ined the gene expression profile of P3 BM SC, which we typically em ploy in our transplantation studies. Im portantly, we have focused on genes associated with neural cells/events (searches for neur*, glia*, oligo*, nerve* in their name) and on genes with a neural function as indicated in the gene database. In this study we have also compared gene expression of P3 and P14 B M SC to assess the effects o f long-term culturing. Gene expression profile in P3 BM SC 100 highest expressed genes Am ong the 10 0 highest expressed genes, 55 genes encode for ribosomal proteins, 20 for proteins involved in protein binding processes, 6 for proteins involved in cell differentiation and proliferation, 4 for proteins involved in apoptosis, and 3 for proteins involved in enzym e activity (Fig. 1). The Notchy, Tubb2, and G ja i genes were am ong the top 10 0 highest expressed genes. These genes are im plicated in central nervous system developm ent. Notchy (Notch homolog 3) is involved in Notch sign allin g in cell differentiation1’ 183, 194, forebrain developm ent18’ 256, and neuronal fate co m m itm ent193, 256. Tubb2 is a m em ber of the tubulin superfam ily which is im plicated in nervous system developm ent8, 3 236. Gja 1 (gap junction protein 1) is involved in protein and receptor binding in several processes including neuron m igration and neurite m orphogenesis120 162. 50 Gene expression pattern and suitability o f bone m arrow strom al cells other Fig. 1 . Schematic representation o f the top 100 genes with the highest level o f expression in bone marrow stromal cells at passage 3 . The numbers in the graph indicate how many genes out of the top 100 encode for proteins known to be involved in the indicated respective processes. Nervous system development The genes expressed in P3 B M SC were studied for their involvem ent in nervous system developm ent in general (Table 1A), oligodendroglial developm ent and m yelination (Table 1B), astroglial differentiation (Table 1C), and neuronal processes (Table 1D ). These genes m ay be indicative of the potential of B M SC to become neural cells, and may thus be im portant for their potential to contribute to neural repair. Am ong those involved in nervous tissue developm ent (Table 1A) were the genes that encode for nestin (Nes)147, 226, insulin-like growth factor 1 (Igf 1)4° 79, and neural proliferation, differentiation, and control (Npdc 1)117, 396. G enes im plicated in oligodendroglial developm ent and m yelination (Table 1B) were Cog1, Erbb2, Mobp and Plp2 97, 171 328, 375. P3 B M SC expressed genes involved in gliagenesis (Table 1C) such as Igf1, Pdgfra, and Erbb2 77, 230 328 and in glia m igration such as Cspg4 461 462. A m ong those involved in neuronal processes (Table 1D ) were genes im plicated in cell proliferation and neurite developm ent (glial cell line-derived neurotrophic factor, Gdnf)124 and synaptic plasticity (Ras homolog enriched in brain, Rheb)456. Cell cycle and developmental processes There were several genes involved in cell cycle and developm ental processes expressed in P3 B M SC (Table 2; not including nervous system developm ent genes as they are listed in Table 1). Am ong these were genes for stem cell factor KL-2 receptor binding (Kitl), which is im portant for proliferation o f myeloid and lymphoid hem atopoietic progenitors4, 352, insulin-like growth factor 1 (Igf 1) 40 79, transform ing growth factor beta (Tgfb 3) 43, 268, vascular endothelial growth factor C (Vegfc)48, 289, and growth arrest and D N A-dam age-inducible 45 gam m a (Gadd45g)468. W e also identified the gene for adipose differentiation-related protein (ADRP) which is indicative for the m esoderm al origin of B M S C 3°2 376. 51 Chapter 3 Growth factors and growth factor signalling P3 B M SC expressed several genes encoding for growth factors or for proteins involved in growth factor sign allin g (Table 3). These m ay play a role in cell growth, differentiation and maturation and are thus potentially im portant for repair. Am ong those encoding for growth factors were the genes for vascular endothelial growth factor C (Vegfc)48, 289, glial cell linederived neurotrophic factor (Gdnf)'24, 38’, and platelet-derived growth factor alpha (Pdgfa). G enes involved in growth factor sig n allin g were the gene for fibroblast growth factor receptor like 1 (F g fri)398 and for neurotrophin receptor associated death dom ain (Nradd). Cell death We found several genes in the P3 B M SC that are involved in cell death (Table 4). These are of interest as they m ay be targets for im proving B M SC survival after transp lantatio n in the injured nervous system. Som e of these genes are for members of the tum or necrosis factor superfam ily, which is involved in cell death113, 411, and others are im plicated in the caspase pathway (Casp2, Caspy, Casp6, Caspii), which is involved in apoptotic m e ch anism s50 203. Comparison between Gene expression profiles o f P3 and P14 BM SC We found that 6687 genes are expressed in P3 as well as in P14 BM SC. O f these genes, 159 were more than 1.5-fold higher expressed in P3 B M SC and 43 were more than 1.5-fold higher expressed in P14 BM SC. Thus, o f the genes expressed in both P3 and P14 B M SC , 20 2 genes (3%) were differentially expressed and these genes were considered biologically relevant. We found that from the 43 genes that were higher expressed in P14 than in P3 BM SC, 6 genes were over 3 tim es higher expressed (Table 5A). Am ong these were genes involved in cell death regulation (clusterin; Clu, and growth arrest-specific protein 2; Gas2)22h 384 and cell differentiation and proliferation (clusterin; Clu, and odd-skipped related 2 protein; Osr2)'96, 384, 423. From the 159 genes that were higher expressed in P3 than P14 BM SC, 12 genes were over 3 tim es higher expressed (Table 5B). Am ong these were genes involved in cell death (gremlin 1 homolog, Grem i)296, 474, brain developm ent, motor axon guidance, and neuron m igration (stromal cell-derived factor-1 gamma, S D F-1)K’ 229, 303, and in cell survival (chemokine (C -C motif) ligand 2, Ccl2) 125. We used G O stat (http://gostat.w ehi.edu.au) to perform functional data m in in g by G O -an alysis on the 2 0 2 differentially expressed genes to identify overrepresented G O -classes (Table 6). The group o f 6687 genes expressed in both P3 and P14 B M SC was used as a reference. From the 159 genes that were higher expressed in P3 than P14 BM SC, 85 (53%) were annotated in the G O database. W e found a total of 43 G O -classes that were overrepresented including 29 in cellular m etabolic processes and (G O :0048513/ G O :0 0 0 7 2 75 / 9 in developm ental G O :0 0 4 8 7 3 1/ processes and cell proliferation G O :0 0 3 2 5 0 2/ G O :0 0 4 8 8 56 / GO :0035 2 95/ G O :0 0 0 15 6 8 / G O :0 0 0 19 4 4 / G O :0 0 08283). From the 43 genes that were lower expressed in 52 Gene expression pattern and suitability o f bone m arrow strom al cells P3 than P14 BM SC, 22 genes (5 1% ) were annotated in the G O database. Two G O -classes were overrepresented and these were involved in organ developm ent (GO: 0048513) and response to m echanical stim ulus (GO : 0 0 0 9 6 12 ). DISCU SSION We found that P3 and P14 BM SC express numerous genes encoding for proteins involved in oligodendroglial developm ent and m yelination, astroglial differentiation, and neuronal proliferation and neurite form ation. Other genes expressed by these cells play a role in nervous system developm ent in addition to their functioning in other pathways. These findings may reflect the described ability of BM SC to differentiate across lineages and become neural cells. If B M SC possess such an ability it would greatly benefit their use in nervous tissue repair as grafted B M SC could replace lost a n d /o r damaged neural cells. It was reported that B M SC can differentiate into neural cells in vivo2'5 or be induced to become one in vitro'00 371 445, but the evidence is controversial66, 243, 291. We found that B M SC express genes that encode for proteins involved in the developm ent o f tissue in general and in growth factor signalling. The expression o f these genes m ay indicate the potential o f B M SC for cell-based repair as the gene products could promote tissue formation and functioning372 427. We also found that B M SC express genes involved in cell death m echanism s. This could be benefited from as these genes can be targeted to improve survival o f BM SC transplanted into the injured nervous tissue. It has been demonstrated that survival of B M SC is low after transp lantatio n in for instance the damaged spinal cord170, 285. Improved survival could enhance the overall repair efficacy o f a B M SC tran sp lan t322 324, 472. O ur functional data m in in g revealed that 9 overrepresented G O -classe s in P3 B M SC (compared to P14 BM SC) were involved in developm ental processes and cell proliferation. O n the other hand, 1 overrepresented G O -class in P14 (compared to P3 BM SC) was involved in organ developm ent and m echanical stim ulus. Together, these findings suggest a dim inished plasticity of B M SC after long-term culturing. Th is idea is corroborated by the finding that the expression level of the S D F-1 gene was more than 3 tim es higher in P3 than P14 BM SC. S D F-1 gene encodes for a protein involved in brain developm ent, motor axon guidance, and neuron m igration86, 89, 229, 303 and m ay be indicative of the overrepresentation of developm ental processes in P3 compared to P14 BM SC. Also supporting the idea is that no genes involved in neural developm ent were higher expressed in P 14 B M SC than in P3 BM SC. In the present study, the gene expression profiles of B M SC that were cultured for a shorter and longer period were com pared to exam ine possible effects after long-term culturing. To our knowledge the effect of long-term culturing on gene expression in B M SC has not been investigated previously. In 3 % of the genes that were expressed in P3 and in P14 BM SC, 53 Chapter 3 expression levels had significantly changed after long-term culturing. Previously, it was shown that, after a sciatic nerve crush, the expression level o f 5 % of the genes in neurons that had their axon damaged changed significantly’88. This resulted in a crucial phenotypic change as this group of genes were involved in regenerative events in the dam aged neurons’88. Franssen and colleagues’39 showed that 7 % of the genes that were differentially expressed between cultured Schwann cells and cultured olfactory ensheathing glial cells were expressed with more than 3 tim es difference. Further studies will be necessary to elucidate the relevance of the 3 % of genes differentially expressed between P3 and P ’ 4 BM SC. O ur data showed that both P3 and P ’ 4 B M SC express genes involved in developm ental and differentiation pathways in general, and in nervous system developm ent, m yelination and gliagenesis in particular. The overrepresentation o f differently expressed genes involved in these pathways alters significantly between P3 and P ’ 4 and pointed at a decrease in plasticity in long-term cultured BM SC. 54 Gene expression pattern and suitability o f bone m arrow strom al cells APPEN DIX Table 1. Genes expressed in P3 B M SC involved in nervous system pathways. A: Nervous system development Gene Name Exp Gene N M _o i2987 XM_239373 731 7 ,69 Nes Cog1 N M _o i9i 39 11,69 Gdnf L15011 NM_031357 N M _178866 NM_017003 7,56 6,89 6,9:2 Ctxn Cln2 lgf1 915 Erbb2 NM_ 1003401 N M _100.4:231 7,74 10,32 NM_012529 7J5 Description Ontology Nestin Predicted: component of oligomeric golgi complex 1 Glial cell line derived neurotrophic factor N eu ron-specific cortexin Ceroid-lipofuscinosis, neuronal 2 insulin-like growth factor 1 CNS development CNS development, myelin formation anti-apoptosis, cell proliferation, CNS/PNS, neurite development CNS development CNS. development CNS development CNS development Enc1 Npdc1 V-erb-b2 erythroblastic leukemia viral oncogene horn 2 Ectodermal-neural cortex 1 neural prol / diff and control, 1 Ckb creatine kinase, brain CNS development neural proliferation and differentiation CNS development B: OUgodendroglial development Gene Name Exp Gene XM_239373 7,69 Cog1 NM_017003 9^47 Erbb2 NM_0 12720 7 >697 Mobp NM_207601 1:2,61 Plp2 Description Predicted: component of oligomeric golg i complex 1 V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 Myelin-associated oligodendrocyte basic protein Proteolipid protein 2 Ontology -structural component olf myelin sheath myelination myelin formation myelin protein C: Astroglial differentiation Exp Gene N M L031022 Gene Name 9,65 Cspg-4 Chondroitin sulfate proteoglycan 4 Insulin-like growth factor" 1 N M L178866 6,9:2 X M L214030 9>72 lgf1 Pdgfra NM_017003 9.15 Erbb2 Description Predicted: platelet derived growth factor" receptor alpha polypeptide V-erb-b2 erythroblasticleukemia viral oncogene homolog 2 Ontology glial cell migration, neuron fate commitment:, remodelling, etc glial cell differentiation gliagenesis glirl d ll diffe^entiftitn 55 Chapter 3 D : neuronal processes Gene Name Exp Gene Description N IVL019139 11,69 Gdnf N IVL013216 9,43 Rheb Glial cell line derived neurotrophic factor Ras homolog enriched in brain N M_ 0 12922 7,65 Casp3 Caspase 3 NM_031022 9,64 Cspg4 Chondroitin sulfate proteoglycan NM_012987 7,31 Nes Nestin NM_130740 7,63 Pacsin2 NM_053389 7,09 Sip1 NM_1025400 7,01 Smndc1 XM_233798 10,76 Crim1 NM_031357 L15011 6,89 7,55 Cln2 Ctxn Protein kinase C and casein kinase substrate in neurons 2 Survival of motor neuron protein interacting protein 1 Predicted: survival motor neuron domain containing 1 Predicted: cysteine-rich motor neuron 1 Ceroid-lipofuscinosis, neuronal 2 Neuron-specific cortexin 56 Ontology anti-apoptosis, cell proliferation, CNS/PNS, neurite development regulation of neuronal synaptic plasticity neuron apoptosis, cell fate commitment glial cell migration, neuron fate commitment, remodelling, etc neuron differentiation, CNS development CNS development CNS development Gene expression pattern and suitability o f bone m arrow strom al cells Table 2. Expression of genes involved in cell cycle and developm ental processes in P3 BM SC. Gene Name Exp Gene Description NM_178866 6,92 Igf1 Insulin-like growth factor 1 NM_013174 9.51 T gfb3 Transforming growth factor, beta 3 XM_237999 11 ,51 Gadd45g NM_053 653 8,68 Vegfc NM_031022 VO,9 Cspg4 XM_215993 8,74 Edf1 XM_341934 7,56 Tgfb1i1 A B105879 9,03 XM_345649 7,53 XM_216438 7,43 ADRP XM_224733 7,01 Gdfi Predicted: growth arrest and DNAdamage-inducible 45 gamma Vascular endothelial growth factor C Chondroitin sulfate proteoglycan 4 (Cspg4) Predicted: endothelial differentiation-related factor 1 Predicted: transforming growth factor beta 1 induced transcript 1 Scf mRNA for stem cell factor KL2 , complete cds] Similar to development- and differentiation-enhancing factor 2 ; PYK2 Adipose differentiation-related protein (ADRP) Predicted: growth differentiation factor 1 Ontology growth factor activity, antiapoptosis, cell development protein binding, cell growth, embryonic development protein binding, cell differentiation, apoptosis, regulation of cell cycle growth factor activity, cell proliferation, angiogenesis cell differentiation, cell proliferation, angiogenesis transcription, cell differentiation protein binding, cell differentiation, cell fate commitment stem cell factor receptor, regulation o f apoptosis growth factor activity 57 Chapter 3 Table 3. Expression o f genes encoding for growth factors or proteins involved in growth pathways in P3 BM SC. Gene Name Exp Gene Description N M _o i9i 39 11,68 Gdnf NW L139259 7,83 Nradd N M_053401 9,64 Ngfrap1 NM_053 653 8,68 Vegfc N M _o i28oi 8,59 Pdgfa N M _ io ii92i 10,35 Pdgfrl XM_214030 9,72 Pdgfra NM_031525 9,14 Pdgfra NM_199114 8,25 Fgfrl1 N M_0221 82 9,23 Fgf7 Glial cell line derived neurotrophic factor Neurotrophin receptor associated death domain Nerve growth factor receptor associated protein 1 Vascular endothelial growth factor C Platelet derived growth factor, alpha Platelet-derived growth factor receptor-like Predicted: platelet derived growth factor receptor, alpha polypeptide Platelet derived growth factor receptor, beta polypeptid Fibroblast growth factor receptor like 1 Fibroblast growth factor 7 NM_178866 6,92 Igf1 Insulin-like growth factor 1 NM_1004274 10,41 Igfbp4 Insulin-like growth factor binding protein 4 58 Ontology anti-apoptosis, cell proliferation, CNS/PNS, neurite development signal transduction, neurotrophin p75 binding induction of apoptosis growth factor activity, cell proliferation, angiogenesis growth factor activity, cell proliferation, cell migration cell surface protein gliagenesis, positive regulation of cell proliferation and cell migration anti-apoptosis, positive regulation of cell proliferation negative regulation of cell proliferation growth factor activity, positive regulation of cell proliferation anti-apoptosis, cell development, glial cell differentiation regulation of cell growth Gene expression pattern and suitability o f bone m arrow strom al cells Table 4. Expression of genes involved in cell death m echanism s in P3 BM SC. Gene Name Exp Gene Description Ontology XM_226833 8,29 C1qtnf3 NM_139194 8,07 Tnfrsf6 NM _013049 7,87 Tnfrsf4 N M _o io o 6952 7,76 Trap1 XM_222503 7,23 Tnfrsfn a NM _01010945 7,11 N M _ i8io 86 10,33 NM _013091 9,96 Tnfrsf12 a Tnfrsf1a NM _0 1012123 9,61 C1qtnf5 XM_226833 9,49 C1qtnf3 NM _030836 9,48 Arts1 N M _ i8io 86 8,47 Tnfrsf12 a BC061751 7,96 XM_342470 9,91 X M _2 i 6650 9,14 NM_0535i6 9,0 9 N0I3 Nucleolar protein 3 (apoptosis repressor with CARD domain) regulation of apoptosis XM_342137 8,45 Amid regulation of apoptosis X M _23566i 8,34 Predicted: apoptosis-inducing factor (AIF)-like mitochondrion-associated inducer of death Predicted: similar to TGF-beta induced apoptosis protein 12 NM_053736 8,77 Casp11 Caspase 11 regulation of apoptosis, inflammatory response NM _022522 7,69 Casp2 Caspase 2 regulation of apoptosis, inflammatory response NM _012922 7,65 CasP3 Caspase 3 regulation of apoptosis, neuron apoptosis, cell fate commitment NM_031775 7,291 Casp6 Caspase 6 regulation of apoptosis, inflammatory response Predicted: C1q and tumor necrosis factor related protein 3 Tumor necrosis factor receptor superfamily, member 6 Tumor necrosis factor receptor superfamily, member 4 Tumor necrosis factor type 1 receptor associated protein Predicted: Tumor necrosis factor receptor superfamily, m emna Similar to transm protein induced by tumor necrosis factor alpha Tumor necrosis factor receptor superfamily, member 12a Tumor necrosis factor receptor superfamily, member 1a Predicted: C1q and tumor necrosis factor related protein 5 Predicted: C1q and tumor necrosis factor related protein 3 Type 1 tnf receptor shedding aminopeptidase regulator Tumor necrosis factor receptor superfamily, member 12a induction of apoptosis induction of apoptosis cell death positive regulation of angiogenesis cell death positive regulation of angiogenesis cell death Androgen receptor-related apoptosis-assoc protein CBL27 APi5 Predicted: apoptosis inhibitor 5 anti-apoptosis Predicted: similar to apoptosis rel protein APR-3; p18 protein induction of apoptosis 59 Chapter 3 NM_139259 7,827 Nradd Neurotrophin receptor associated death domain signal transduction, apoptosis NM _019139 11,69 Gdnf Glial cell line derived neurotrophic factor anti-apoptosis, cell proliferation NM_199270 7,79 Bre Brain and reproductive organexpressed protein apoptosis NM _053401 9,64 Ngfrap1 Nerve growth factor receptor (TN FRSF16) associated protein 1 induction of apoptosis NM_133546 6,87 M ydn6 Myeloid differentiation primary response gene 116 apoptosis, response to stress NM _012588 8,52 Igfbp3 Insulin-like growth factor binding protein 3 positive regulation of apoptosis NM _01012154 7,179 Tbrg4 Predicted: Transforming growth factor beta regulated gene 4 apoptosis XM_216265 6,842 Ing4 Predicted: Inhibitor of growth family, member 4 apoptosis, cell cycle arrest, neg regulation of cell proliferation XM_237999 1 1 ,51 Predicted: Growth arrest and DNAdamage-inducible 45 gamma apoptosis, regulation of cell cycle NM_133544 11,04 Gadd45 g Usmg5 Upregulated during skeletal muscle growth 5 apoptosis, regulation of cell cycle NM _012756 10,76 Igf2 r Insulin-like growth factor 2 receptor regulation of apoptosis NM_013174 9,51 T gfb3 Transforming growth factor, beta 3 regulation of apoptosis, cell growth, regulation of cell cycle NM _031525 9,14 Pdgfrb Platelet derived growth factor receptor, beta polypeptide anti-apoptosis, positive regulation of cell proliferation NM _017003 9,15 Erbb2 V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 anti apoptosis, positive regulation of cell proliferation 60 Gene expression pattern and suitability o f bone m arrow strom al cells Table 5. D ifferentially expressed genes between P3 and P14 B M SC with A > 3 fold difference. A: Upregulated at P14 Gene Name Exp NM_053021 3,96 U87983 3,66 N M _o i2862 Gene Description Clu Clusterin (Clu) 3,39 Mgp receptor for hyaluronan-mediated motility Matrix Gla protein XM_574454 3,0 9 NM_0 0 10 1211 8 NM 00 10 118 89 3,08 LOC49 9156 Osr2 3,04 Cldn9 Predicted: similar to growth arrestspecific protein 2 - mouse Predicted: odd-skipped related 2 (Drosophila) Predicted: claudin 9 Ontology protein binding, apoptosis, cell differentiation /proliferation, etc regulation of bone mineralisation cell cycle arrest positive regulation of cell proliferation cell adhesion molecule B: Upregulated at P3 Gene Name Exp Gene Description Ontology NM_012893 N M_080886 2,99 3,19 Actg2 Sc4mol Actin, gamma 2 Sterol-C4 -methyl oxidase-like protein binding, cytoskeleton oxidation reduction XM_231258 3,25 E-FABP NM_031776 XM_233037 3,27 3,30 Gda Pappa in d i i b in n o i tal te m XM_214778 3,45 TSP-2 similar to Fatty acid-binding protein, epidermal Guanine deaminase Predicted: pregnancy-associated plasma protein A Thrombospondin 2 XM_573502 3,78 AF217564 3,79 SD F-1 similar to Fc gamma (IgG) receptor II alpha precursor Stromal cell-derived factor-1 gamma N M _ i0 0 76 i 2 8 , 3 , Ccl7 Chemokine (C-C motif) ligand 7 N M_030834 NM_031530 4 ,4 0 4 ,44 Slci 6a3 Ccl2 Monocarboxylate transporter Chemokine (C-C motif) ligand 2 NM_019282 5,0 9 Gremi Gremlin 1 homolog, cysteine knot superfamily (Xenopus laevis) Ppptidase activity, response to glucocorticoid stimulus angiogenesis, positive regulation of synaptogenesis brain development, motor axon guidance, neuron migration, etc chemokine activity, immune response transporter activity anti-apoptosis, immune response, chemokine activity apoptosis, cell-cell signalling 61 Chapter 3 Table 6. Overrepresented G O -classes in significantly different expressed genes between P3 and P14 B M SC (A > 1,5 fold difference) com pared to total subset of expressed genes. GO CLASS GEN E O NTOLO GY GROUP Total P-value 25 252 3,45e- ° 6 UPREGULATED AT P3 Biological process organ development G O :ooo6o66 alcoholic metabolic process 15 75 4 ,10 E-06 G0 :0 0 0 8 2 0 2 steroid metabolic process 11 37 4 ,1°E -o 6 G O :ooo6694 steroid biosynthetic process 9 23 4,84E- o 6 G O :o o i6i 25 sterol metabol ic process 8 19 G0:0032501 multicellular organismal process 38 554 G O :o oo7275 multicellular organismal development 31 4 °9 6,82E-°5 G0 :0 0 0 8 20 3 cholesterol metabolic process 7 17 6,82E-°5 G O :o o i6i 26 sterol biosynthetic process 6 12 1,°5E-°4 G O :oo4873i system development lipid biosynthetic process 27 11 345 62 1 ,67E-° 4 G O :ooo86io G0:0032502 developmental process 38 601 6,29 E- ° 4 G O :ooo6o o7 glucose catabolic process 7 27 0,001 G O :oo46i 64 alcohol catabolic process 7 28 0,001 00:0046365 monosaccharide catabolic process 7 28 0,001 G0 :0 0 19 320 hexose catabolic process 7 28 0,001 00:0048856 anatomical structure development 28 0,002 G0 :0009605 response to external stimulus 14 4 °9 123 G0 :0 0 0 60 9 6 glycolysis 6 21 0,002 G 0:0044275 cellular carbohydrate catabolic process 7 31 0,002 G O :0 0 i 6052 carbohydrate catabolic process 7 31 0,002 G0:0035295 tube development 7 31 0,002 G0:0065008 regulation of biological quality 17 201 0,003 G0:0006936 muscle contraction 6 25 G0 :0 0 0 30 12 muscle system process 6 25 0,005 G0:0006695 cholesterol biosynthetic process 4 9 0,005 G0 :0 009058 biosynthetic process 23 325 0 0 :0 0 4 24 4 6 hormone biosynthetic process 3 4 0,005 G0 :0 0 30 19 9 collagen fibril organization 3 cellular lipid metabolic process 13 4 122 0,005 G0:0044255 00 :0 0 4 8 8 78 chemical homeostasis 9 62 G0:0006935 chemotaxis 5 17 5 -0 3 3 , 6,82E-°5 3,77E-°4 0,002 0 5 0 0 , 0 5 0 0 , 0,005 5 0 00 , 62 L.Ù 00:0048513 0,005 Gene expression pattern and suitability o f bone m arrow strom al cells G O :0042330 taxis 5 17 0,005 G O :o o o i568 blood vessel development 8 50 0,006 G O :o o o i944 vasculature development 8 51 0,007 G O :ooo6oo6 glucose metabolic process 7 39 0 ,0 0 7 G O :0007267 cell-cell signaling 11 95 0 ,0 0 7 G O :0055082 cellular chemical homeostasis 8 52 0 ,0 0 7 G O :ooo6873 cellular ion homeostasis 8 52 0 ,0 0 7 G O :0030005 cellular di-, trivalent inorganication homeostasis 7 40 0 ,0 0 7 G O :0055066 di-, tri-valent inorganic cation homeostasis 7 0 ,0 0 7 G O :ooo8283 cell proliferation G O :o o 5o8oi ion homeostasis 15 8 40 182 55 0,009 G O :0044421 extracellular region part 28 306 3,45E-° 6 G O :o oo56i 5 extracellular space 25 286 3,69e-0 5 G O :o oo5578 proteinaceous extracellular matrix 9 59 0,005 0,008 Cellular component Molecular function G O :0008201 heparin binding 5 17 0,005 G O :0005125 cytokine activity 6 29 0,008 G O : oo42379 chemokine receptor binding 3 5 0,008 G O :ooo8oo9 chemokine activity 3 pattern binding 5 5 20 0,008 G O :o o o i871 G O :o oo5539 glycosaminoglycan binding 5 20 0,009 G O :0030247 polysaccharide binding 5 20 0,009 0,009 UPREGULATED AT P14 Biological process G O :0048513 organ development 10 252 0,005 G O :ooo96i 2 response to mechanical stimulus 3 9 0,008 proteinaceous extracellular matrix 6 59 0,004 Cellular component G O :0005578 63 I JOHNS HOPKINS fli M E D I C I N E Ä 4 4 Kennedy Krieger Institute 4 Survival and neuroprotection. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. J Neurotrauma 2009; 26 (12): 2313-2322 R.D.S. Nandoe Tewarie A.Hurtado G.J. Ritfeld S.T. Rahiem D .F. W endel M .M .S. Barroso J.A. Grotenhuis M. Oudega Chapter 4 IN TRO D U CTIO N A contusion o f the adult spinal cord causes acute death of neural cells at the lesion epicenter and sets off a series of events resulting in additional tissue loss and the formation of cystic cavities’55, 3° 5. Transp lan tatio n o f growth-promoting cells is considered a prom ising approach for repair of the contused spinal cord3’3 3’3. Bone marrow stromal cells (BM SC) are am ong the candidates for cell-based spinal cord repair strategies285. These m esenchym al cells secrete growth factors that could support repair’43, 247. Their potential was confirmed by the finding that transp lantatio n o f B M SC into the contused adult rat spinal cord resulted in functional recovery’70 3° 4, 45^ 473 473. The m echanism s underlying these functional im provem ents observed after B M SC transplantation are incom pletely understood. A B M SC graft could contribute to repair by sp arin g spinal cord nervous tissue at the site of transplantatio n. It is known that B M SC secrete brain-derived neurotrophic factor (B D N F)247, which has been im plicated in lim itin g spinal cord tissue loss after injury364. A t present, the evidence for B M SC grafts to elicit tissue sp aring in the injured spinal cord is still am biguous304, 45’, 464 . Following an insult to the spinal cord, a cytotoxic environm ent develops at the injury epicenter to d im inish in strength in tim e’55. M ost likely these circum stances decrease the survival of cells transplanted into the lesion and consequently their effects on sp inal cord repair. At present, quantitative evidence o f the survival and neuroprotective effects of B M SC transplanted into a spinal cord contusion is sparse, which obscures their spinal cord repair potential. W e transplanted B M SC into a m oderately contused adult rat spinal cord at ’ 5 m in (acutely) and at 3, 7 and 2 ’ days (delayed) post-injury and determ ined tissue sparing and B M SC survival up to 4 weeks post-transplantation. MATERIAL A N D M ETHODS Timeline of the experiment Rats received a moderate contusion o f the T9 sp inal cord. Some of these rats received a B M SC injection into the injury epicenter at ’ 5 m in, 3, 7, or 2 ’ days post-contusion. These BM SCtransplanted rats were euthanized at ’ 5 m in, 3, 7, and 28 days post-injection. O ther contused rats did not receive the B M SC injection (control rats) and, to match survival tim es of the B M SC-transplanted rats, were euthanized at ’ 5 m in, and 3, 7, ’ 0, ’ 4, 2 ’ , 24, 28, 3’ , 35, and 49 days post-injury. Their spinal cords were removed and prepared for histology to enable analysis o f tissue sparing and BM SC num bers. D etails on the used techniques are described below. 66 Survival and neuroprotection Animals Adult female Sprague-D aw ley rats (n = 121), 16 0 -18 0 g; H arlan, In d ian ap o lis, IN , USA) were used in these experim ents. All an im a ls were housed according to the guidelines by the N ational Institutes of Health and the United States D ep artm ent of Agriculture. The institutional A nim al Care and Use Com m ittees of the University o f M iam i and Johns H opkins University approved all surgical procedures. Culture and lentiviral transduction of BM SC B M SC were obtained from the marrow o f femurs and tibias o f adult fem ale Sprague-D aw ley rats (n = 8) according to a previously published protocol13. Passage 0 cells were infected with lentiviral vectors (LV) encoding for green fluorescent protein (GFP) at an M O I of 150. The vectors were generated using the ViraPow er Lentiviral Expression System (Invitrogen)36. Expression was under control o f the human cytom egalovirus promoter and the Woodstuck hepatitis virus Post-transcriptional Regulatory Elem ent284. The titer o f the lentiviral stocks varied from 1-3 x 10 9 T U /m l. O n ly passage 3 cultures with a transduction rate of about 9 5 % were used for transplantation. With enzym e-linked im m une sorbent assays (ELISA) we determ ined whether the B M SC secreted B D N F and glial cell-derived neurotrophic factor (G D N F ). For this, m edium of nearly confluent passage 3 cultures (with an average of 2 x 10 6 cells) was refreshed, removed 24 h later, and used for B D N F ELISA (B D N F Emax Im m unoA ssay System; Promega Corporation, M adison, WI) and G D N F ELISA (G D N F Emax Im m unoA ssay System; Promega) according to the m anufacturer's instructions. Standard curves of the ELISA kits were linear between 7.8 and 500 p g /m l for B D N F and 15.6 and 10 0 0 pg/m l for G D N F . ELISAs were analyzed with a microplate reader (SpectraM ax M5, M olecular Devices, Sunnyvale, CA). The cells in culture secreted 14.1 p g /m l/2 4 h of B D N F. The am ount of G D N F was below the reliability level o f the ELISA. Contusion injury Rats (n = 108) were anesthetized with 1 - 2 % isoflurane in oxygen and their backs were shaved and cleaned with Betadine and 7 0 % alcohol. Lacrilube ophthalm ic ointm ent (Allergen Pharm aceuticals, Irvine, CA, USA) was applied to the eyes and gentam icin (1.2 mg in 0.03 ml; Abbott Laboratories, North Chicago, IL, USA) was injected intram uscularly. D uring surgery, rats were kept on a heating pad to m aintain their body tem perature at 37 ± 0.5 °C . A lam inectom y was performed at the eighth thoracic vertebra to expose the ninth thoracic spinal cord segment, which was subsequently m oderately contused (NYU im pactor; 10 g, 12.5 m m.; G runer 19 9 2). To ensure consistency between contused rats, the contusion im pact velocity and com pression were monitored and all rats with more than 5% error in these m easurem ents were removed from the study. Rats that rem ained in the study displayed 67 Chapter 4 h in d lim b p a ra ly sis and scored less than 3 at 1 d ay and less than 7 at 3 days p o st-in ju ry on the B a sso -B e a ttie -B re sn a h a n (BBB) scale 23, 24. Im p le m e n ta tio n o f these crite ria ensured a p p ro p ria te n e s s o f the co n tu sio n in ju ry and c o n siste n c y a m o n g the e x p e rim e n ta l a n im a ls . All la m in e c to m ie s and inj uries w ere perform ed by th e sa m e in ve stig a to r. After in ju ry, o verlying m u scles w ere sutured in leyers and the al<in w as closad with m etal w ound c lip s. Th e rats received Ringee’ s solution (10 m < suecutaneoua) and g e n ta m ic in (1.2 m g, in tra m u scu la r). Th e rats w ere kept in a sm a ll a n im r l ie su b a te r at 3< ° C un til full recovery and then returned to the ir cages w ith ad Ubhum access to w ater and food. D u rin g the first w eek p o st-in ju ry g e n t rm ic in ( i.e m g; Abbott L a b o ra to rie s IMorth C h icago , 11_, USA; in tra m u scu la r) w as a d m in i stored daHy. T h e a n a l gedic, bup ren o rp h 1ne (Bu ferencx®; 0 .0 0 6 m g; R eckitt Benckiser, Rich m ond, V A , U SA; sub cu taneaus) w as rd m in istered im m e d ia te ly after surgery and o n ce for t_e next; three days. Tine thadders w ere exprhssecJ m a n u a lly tw ice a day un til reflex bladder function retu rned. U rin _ ry tract i n frc tio n did not occur in au y o f tne groups. BM SC transportation C o n tu se d tats w ern c n a e sth a tiz e d w ith a n in tra m u s c u la r in je ctio n o f 25.7 m g /k g ke ta m in e , 5 .14 m g /k c x y la z in e , and ce85 r u g m a cep ro m a e in e and tli eir co ntused s p in a l cord w as expo sedi A total oC 1 x sd>s B M S C in s jxi D M e M vrais; injectod into the co n tusio n e p ic e n te r usin g te ch n iq u e s d t s c r iged p re vio u sly’75. B M S C in je c tio n s w ere m ad e at 15 m in , 3, 7, and 21 d a y / p o st-co n tu sio n . In the 15 m in ero up , the re tt re m a in e d eedated w ith the co ntused sp in a l cord tdvered with a sal in e -m o is ta n ga nze u nti l B M S C in je ctio n . A ll tra ns p la n ta tio n s w ere perform ed ey the cam e in ve stig a to r. After in je c tio n , m u scles w ere sutured in laye rs and the skin closed w ith m etal w ound c lip s . go st-surgery caret w as r s dexcribed above. Assessment o f BM SC viability during nho injection proteVr red Th e effeete o f t t a in je ctio n procedures o r the n u m b e r c r B M S C w ere d e te rm in e d in vitro u sin g the sa m e tools and m etho ds a r used So’ aceuai t rc n s p la n ta tio n . First, we asse sse d the v ia b ility o f 1 x 1 o 6 B M S C in s (el D M E M in an e p e e n d o rf tube after 5 h on ice (the typ ica l le n gth o f a trd n sp lu n te tio n se ssio e ti A sa m p lu oS tli ese cel Is w es s tr in e d w it i trypan blue (1:1; S igm a) and t°ie . urce ntage o f lie ing (u n stain ed ) B M S C cal culated u s in g a h em acyto m o te r. S eco nd , we a sse rse d taMdSCZ v ia b ility iafter in je ctio n . B M S C in D M E M w ere kept on ice for 5 h and then in je cte d into an e p p e n d o rf tube (1 x i r 6 B M t C in 5 ml D M E M pen tube) n sin g the sa m e pulled g la ss injeceion n e ed le a tt a c le d to a H a m ilto n syri ngn as used for tra n s p la n tatio n into the rat sjuinal cord. T h e se cells w ere then kept at 3 1 ° C / 5 % C O 2 for 1, 3, and 5 h (n = c for each tim e p o ia t). B M S C tha_ w ere not p assed through the g la ss n fe d le and kept in the in cu b ato r for the se m c timet perioda served as controlc (n = 3 eon each tim e p o in t). Ait the celected tim e s, and im m e d iately after pecsi n | tli ro uu t the h la rs n eed le (tim e p o in t 0), ce lls w ere stain e d with tryp an blue (11:1; S ig m e ) and the p e rc rn (a g e o f livin g (u n stain e d ) B M S C calcu lated u sin g a 68 Survival and neuroprotection hf;m^cytome:^ei'. The effect o l passing throughi thè glass aendle wes determ ined by thè differenee i n hhe paraentax as o f Ii\/ingj B M SC betwean control asci Itim e p ain t o celi s. ’SX/1'iethier the ii'i(^ub)ohl(^n conditions Cad aliTect^sJ d M SC dnath ln tim e wes cjalsulotesd Oroia the differenee in \zisiSiililty b etwenn contrmi cells a ad ceCs tdet were passed tOron^la tbe glass n endlh a t 1 , 3, and s Ir. TNird, we determ iaed Iiow m cnd </«sli^ passes tdirongla the needle. A sassipile m l1 x io 6 B M SC in 5 mI D M SM thet were injected into a s ^ppanCerlT^uge usine a pallsd glass needle attached e H am ilton tnringe wes otnised v/ithi tri^p>aa blus (1:1; SiCiaie) to calnulste the total nem der of lihing ^unc1;Esi^ed) BM dC u :singf a SemolytometelP Histolngical MroceOures At 15 m in, 3, 3, a isd 28 de^s cfter d M SC injeuèion, rats wern nncosthetized as aSiond (ncte thet tho in m in d^icus» remhmed anensthstized nnSil fìnatidn). C ostm i rats thet were contused bet did noS seeeive a B M SC thantcltsst were sin;as;sdOntizzd 15 m in, and a, 7, 10, 4 21 , C8, 28, 31, 355, nnd so dco'd p a st-m isa r Thhcm timo n aiste ooi'r^sf3(3nC with the murvinal tim es efth e BM SCtrantelw nfnd satc. After deap sehetion wes condrm ed, thu heart wes expaced und 0.1 ml H aporine (500 IU; l-la n s; Sabein, IVInlvllle, N'Y', l_lSA) injedted into /hie l^ft \^€5Sìdricle5. Next, 3 0 , mi caline follownd do 50ic:> ml icn-mold 4 % paraformeldehyde in paoupaate buffer (PB; 0.1 IM, pH n-4 ) vsea pjurtipi^d theongd ithie vasculsr system. Thn sp in si ccnrd wes removed and kept occrnigat in the eame fìoctlve nt 4 °C . TO m , a 15 m ni long segm ent Cif the sptincl cord centeted at sbe contusion wes diesectod mut, liispct in paeipaTte-duffnred t ^ <^ sunnaue 0 0 M, p a 7.4) fai' no 0, esd Nrooen w itirn Sìliiini^on M Em eoddin g Mictrix (Theumo Electron Tc^rp>or;ation, Pistsbergh, fssii, O d A r Frorn thnse blonks, :?o (jrnn-thick eoriodntcl nections were o it ori a cryostat, sn^nnt^d onto glans elide/, and stored ct -2-8 °C . Frons innse antr n ln e cd groug, a 1 maa tliicd section wes takan dromo t in epicenter csf 'thie Icsion for im paratis>n olsnns^t;lEÌn plcsUic seetions fci> Iì^ 1i 1> minrassopy. The j m ei tdieb tissun ItiI o le were t a p i ih 2 <:8S oluta raldellyde n^i'tl-e s% sunrosc in f3t for at le ast eoi Ir £it 4 °C . In ( % osmiuns tetraooirJe in e B for S2-16 li, .ehydsatxd, and ^m^edOs!^ io [ifj^ n -^ rii1!:!!^«; (Udectron |bc^Trou::^f:)^ Sieroinh^, s or1t '^aclcisiJt^on, I^B,. C^nT:-m tliia1 tsnnsvinrsb e^i:tiont 'Nere cot ssn a R eid1eo1:-Juno uitra-m icrotom e, utniceed vsi'thi a 1 % toluidino (ili/a^:SX^ m ^thj/len^ Silun-:1^ noliem Siorat^ uolution assi asad ^o anai;y;se g5ane)ai hlietoloji4: of7the s p in a 1 cord aind trarnspìlant £md df;^ei'l55id^ ^i^san lous ct tàe iaijur^dtr^istp:>lhsst s^fmi^^nte^r'. Measdrdmem o f apmol nord tiszue a»a ring ^Co rics g of7 sptincl eors( ti^eu^ vs^s temesse0 in a olin<^ec( foshiien in horioontal (sr^syil isic^e^tsthicesJ cryoutct ss^c^ion^ Lisiing e (Sovalicri ect;im^^oi> ^anctican of^^tl;rno Incfcstis;at^r®> (i^ S V Bioucience, ^^llisto n , ^T"). (!ili m^asnrens^n^s wese take!n Io). ^h^ aamn ionnrtigator> F: rom ^^ch ^ n i^ e l, ever}! ^en.h croou^nt; s^c^1© ' (orcionim ivtezvals) lites es^cJ tn dsi^n^m^si^ tne mccium^ a ;. mm Ir^ng1 e^g^m^nt c:en^erf5c( at; t;he contu^ionftrEm tpilantation epi^^nt^r and thet of7apared 69 Chapter 4 tissue within this segm ent. Tissue was considered spared if7 it lacked cavities, areas with high density of7 in tltra tin g sm all cells, resem bling nsutropails and lympaocytes, and nturons with darkly-stained cytnnlasm ic N issl bodies409. The volsm e of spared tissue was expressed as a percentage o f tha average volume of a co mp arable uninjured spinal cond segmdnt. Measurement o f - he number o f BM SC wWCoo the conSurep spinal cord From each rat transplantdd w itli E3 INd:^C, every tunth cryoctat section weis coveued with a glass slip with Vectashield with D A P 1 (4'-6-diam iding-:^-p^l'^a;by'^isictole^ Vector Laboratories, inc.) and used to dielte;rmine tl-v«; num ber o f l r F^^p>oci^ive n M SC in t h i contu siopia In t l i se sections, in a blinded fashion, tlm consusion areo with G FP -co citive celln was outlined uncJ^r a 2.5 x objective. T h in , ijncd^r t 63 n objpctive (oil im m ersion), gride of 250 by 250 | m (coueting iTramv area, 6 3 p nm 2) we re placed ovsr 'tO/6; outline d a res and each GFP-uor:i^ive ceil with a secognizdbie n u n le d w st countdd using / h i o ^ ic a l fractionator 'T^ncr'tion o f Stereo Investigaton® (Kit S I1 B icscience, W illiston, V T, UOA). T h i sam plin g interval was: x = 25 o mm , y aa ^ 50 (sm . A ) m easurem erts wero ta)en bo the sam e inveFtinarsr. "Thii^ ^euulrtii^jej nunrtjirii^^ wade us ed to c;sl'^ulsit:e; t S i tota l num ber c f GFP-pocitihe B M SC within t lo ^ontusiioni These totel numbere w /te 1;i^ n x p r e o t e d as a f^ercei^tai^^ o f the totri numbes fomnch Ft 15 m in poctinjection, Assessment e f BM SC migeaaion We hound tin^t traesplanted B M SC h id migrated cway from t in injection ¡¡it;«;. Their num bee location, s n t distance from shy contu^ic^n epicenter were cSe^erminird in one serips ofcryostst ^«j'c'ticsns; oS each o C ^hnen transplanted rats. Because it is peonsible t h it B M S C lind migrated eeyond 8 mire w hicf wei;:; tfe I'oximsite; dis^tanc:t; from tine; in"ury epicentat to ihe e d is of tine; section in rosCral an d cau d d direction, we also sectioned and oxemined the contiguous 10 mm long eoctral and crsiurl^l spinal cord segment. A ) GFP-pocitive CM UC outsida of7 t h i contu nioc were c:ounted m anually unden a 4 o x oUjective. Statisti'car analysiv We uned Sigm srtat® (Systat Software, inc., San Jore, CA) U 55/X) ■fo>r t h i rtatistical analyses. T h i t-Sest was uned to determ ine differences betw/een groups which; were accepted at po 0.05. T h i relationship tetw een tissue sparing and B M SC num ber was diteri'nined by the Pearson correlation coefficient (n). 70 Survival and neuroprotection RESULTS B M S C transplants in the contused spinal cord W ith all tra n s p la n ta tio n p a ra d ig m s, G F P -p o s itiv e B M S C w ere found w ith in the c o n tu sio n at 15 m in after the in je ctio n (Figs. lA -C ) . Th e n u m b e r o f B M S C w ithin the co n tu sio n w as no ticeab ly d ecreased at 7 days (Figs. lD -F ) and 28 days (Figs. i G - 1) after in je ctio n . T im e o f In je c t io n 1 5 m in ( a c u t e ) 7 d d e la y e d 2 1 d d e la y e d Fig. l . BM SC transplants within a moderate contusion in the adult rat thoracic spinal cord decrease in size during 28 days post-injection. The transplant is shown at 1 5 min ( A - C ) , 7 days (D-F) and 2 8 days ( G - l ) after an injection at 15 min (acute), 7 days and 2 1 days, respectively, post-injury. represents 600 jmin in ( A - 1) . A ll microphotographs are from horizontal cryostat sections. Bar in A Spared tissue in the contused adult rat spinal cord W e q u a lita tiv e ly asse sse d the co ntused s p in a l cord se g m e n t o f adult rats w ith ou t (controls) and w ith a B M S C tra n s p la n t u sin g to lu id in e b lu e -sta in e d tra n sve rse se m ith in p la s tic sectio ns o f the co n tu sio n e p ic e n te r and cresyl vio le t-sta in e d h o rizo n ta l cryostat se ctio n s o f the co ntused s p in a l cord se g m e n t (Fig. 2). In tra n sv e rse p la s tic sectio n s, a lo o sely o rg a n ize d t ra n s p la n t that filled up the c o n tu sio n w as found at 3 days after an acute in je ctio n (Fig. 2A ). A t 28 days after a B M S C in je ctio n into the 2 1-d a y old co n tu sio n the s p in a l cord w as not o n ly d ecreased in size but a lso c o n tain e d one or m ore large cavities (Fig. 2B ). O n h o rizo ntal sectio n s, after an acute in je ctio n , cavitie s w ere not p re se n t at 3 days (Fig. 2C) but could be 71 Chapter 4 found at 28 days (Fig. 2D ). With a 7 day delayed injection, sm all cavities were found at 3 days (Fig. 2E) and much larger ones at 28 days (Fig. 2F) post-injection. Fig. 2. Spared tissue in the contused aduIt- rat spinal coI'd after BMSC transplantation. (A) Loosely organized tissue in contusion euicenter at a days after sin acute BMSC injection. (B) Cavities present in the contusion epicenter at 28 days aCtrr a 21 day delayed transplaetation of BMSC. Note that the spinal cord has also decreased in size. (C) At 3 days after ncute BMSC injection, damaged tissue but not cavities was observed. (D) At 28 days after acute injection, large cavities were found in the contused segment. (E) WitO a 7 day delayed BMSC injection, damaged tissue and few small cavities were found at 3 days post-trnnsplantation. (F) /At s 8 days after BMSf injection into the 7-day old contusion, large cavities were found in the centusfd segmfnt. Images in A and O are from toleidine blue-stained transverse semithin plastic sections. Images in C-O are from cresyl violet-stainod horizontal cryostat sections (rostral to the left). Bar in A represents 150 jjLrn in (A-B). Bar in C hepresents 600 |jJin in (C-F). Using Stereo I n v e s t ig a t o ( software (M BF Bioscience) we determ ined that the volume of spared tissue in the contused spinal tord segm ent gradually decreased to 10.1 ± 1.7 m m 3 at 49 days post-injury in control ra ts and to 11.5 ± 0.9 m m 3 at 49 days post-injury in B M SC trainsplanted rats (Tabln 1). Because narrow ing o f the contused segm ent occurs, we determ ined th t aolume o f spared tissue relative to th at o f a com parable segm ent from u nii-s jured an d u u tre ated s ft ina 1 co rd (21.9 ± 3.4 m m 3i SD , n =¡5; Fig. 3A). W e found that with B M SC injected at 15 m in, 3, or 7 days after injury the; volume o f spared tissue was significantly higher in tranuplantee ratr than in control rats at the respective endpoints (i.e., 28, 31, and 35 days post-inj ury). W e then determ ined the relative change in spared tissue volume in transplanted and control rats between the sam e tim e periods after contusion (Fig. 3B). Im portantly, in B M SC 72 Survival and neuroprotection t r a n s p l a n t e d rats th e v o l u m e o f s p a r e d t i s s u e a t 15 m in a fter in je c tio n w a s s im il a r to t h a t fo u n d in con tro l rats o f m a t c h i n g survival t i m e s . T h e resu lts s h o w th a t t i s s u e s p a r i n g d u r in g t h e 2 8 - d a y s t h a t B M S C w e r e p r e s e n t w a s i n c r e a s e d with a c u t e a n d 3-d ays d e l a y e d but n o t with 7 a n d 2 1 - d a y s d e l a y e d B M S C t r a n s p l a n t a t i o n c o m p a r e d to th e lo ss t h a t o cc u rs in con tro l rats w ithin th e s a m e t i m e p e r i o d s . id q 1 2 0 ■ i3 co :<r +' 1 0 0 80 ■ r*r\ ■ 3 ^ W 60 WId -n W Z 8 40 ■ (5 c 2 0 ■ 0 15m 3d 7d lOd 14d 21d 24d 28d 31d 35d 48d A Time after injury/transplantation 60 -1 50 ■ □ Control ■ BMSC T3 « 40 ■ (D ra ffi 30 &.H <u.!= - ¡ a s 2 0 -h 0 B ■ J _ 15m-28d ■ ■ ■ 3d-31d 7d-35d 21d-49d Time Intervals Fig. 3. BM SC transplantation elicits tissue sparing in the contused adult rat spinal cord. (A) Bar graph showing the volumes of spared tissue in the contused spinal cord segment in rats without (control, open bars) and with (closed bars) BMSC transplants. Spared tissue volume is expressed as a percentage o f the volume o f a comparable uninjured spinal cord segment. Time points of the x-axis refer to control rats. The survival times o f BMSC-transplanted rats that matched these time points were 15 m /15 m, 15 m /3 d, 15 m /7 d, 3 d /7 d, 7 d/7 d, 21 d/15 m, 21 d /3 d, 15 m /28 d, 3 d/28 d, 7 d/28 d, and 21 d/28 d (see also Table 1 ). Asterisks indicate a significant difference control and BMSC transplanted rats (* = p<0 . 0 5 ; * * = p<0 . 0 3 ; * * * = p<0 .0 1 ). (B) In this graph the decrease in spared tissue volume occurring during the 28 day time period is shown. The volume at the endpoint is expressed as a percentage o f the volume at the starting point. The time periods refer to control rats. The matching time points of transplanted rats are listed above. 73 Chapter 4 Loss o f B M S C transplanted into the moderately contused rat spinal cord W e fo u n d t h a t 9 5 % o f B M S C surviv ed a p e r i o d o f 5 h on ice a n d 9 2 % surviv ed w h e n p a s s e d th ro u gh a pull ed g l a s s n e e d le . T hu s, our m e t h o d s could h a v e r esu lted in a m a x i m u m o f 1 3 % d e a th a m o n g B M S C in jec ted into th e c o n t u s io n . F r o m th e i n t e n d e d 1 mill io n c ells , 6 . 7 x 1 0 5 B M S C p a s s e d th ro u gh th e n e e d l e alive. T a k i n g t h e g r e a t e s t p o s s i b l e p e r c e n t a g e o f de a th d u e to t r a n s p l a n t a t i o n into ac c o u n t , th is i m p l ie s t h a t 8 x 1 0 5 B M S C w e r e i n je c te d into th e c o n t u s io n o f wh ic h 1.3 x 1 0 5 c e lls ( 13% ) w e r e d e a d . T o c o r r e ct for v ariabili ty d u e to our p r o c e d u r e s , B M S C n u m b e r s w e r e e x p r e s s e d a s a p e r c e n t a g e o f th e n u m b e r fo u nd a t 15 m in p o s t-in je c t io n . W e fo u nd a t 15 m in p o s t-i n je c t io n t h a t 3 5 % , 2 5 % , 5 8 % , a n d 3 2 % o f th e c a lc u l a t e d a v e r a g e o f 6 .7 x 1 0 5 (live) B M S C w e r e p r e s e n t a n d a liv e in th e c o n t u s io n w ith th e in je c tio n m a d e a t 15 min, 3, 7 a n d 2 1 - d a y s post-inju ry, r e s p e c t iv e ly . T h e r e w a s no direct r e l a t i o n s h i p b e t w e e n th e p e r c e n t a g e s a n d th e t i m i n g o f th e in je c tio n ; cell lo ss d u r in g th e first 15 m in p o s t-i n je c t io n w a s 3 5 % with a c u t e a n d 3 8 % with d e l a y e d p a r a d i g m s . T h e a v e r a g e n u m b e r s o f B M S C a n d c o r r e s p o n d i n g p e r c e n t a g e s (relativ e to th e n u m b e r at 15 m in po s t-in je c t io n ) a r e listed in T a b l e 2 (als o Fig. 4A) a n d revea l th a t th e n u m b e r o f B M S C a t 7 d a y s p o s t-in je c t io n w a s s ig n i fi c a n tl y h ig h e r afte r a c u t e (p < 0 . 0 1 ) a n d 3-d ays d e l a y e d (p < 0 . 0 0 5 ) in je c ti o n s c o m p a r e d to 7 -d a ys a n d 2 1 - d a y s d e l a y e d in je c t i o n s ; 3 2 % a n d 5 2 % vs. 9 % an d 9 % , r e s p e c t i v e l y (Fig. 4B ) . T h e n u m b e r o f B M S C in th e c o n t u s io n a t 2 8 d a y s p o s t-in je c t io n w a s c lo s e to 0 in all g r o u p s , in d ic a ti n g r e je c tio n o f th e t r a n s p l a n t e d cells. Tissue sparing and B M S C survival are strongly associated The relationship b e tw e e n tissue sp arin g and B M S C survival w a s a s s e s s e d u s i n g th e P e a r s o n c o r r e la t io n c oeffi cient. W e fo u n d t h a t wit h an a c u t e a n d 3-d ays d e l a y e d in je c tio n , th e p o s it iv e c o r r e la t io n w a s la r g e with r = 1 . 0 a t 3, 7, a n d 2 8 d a y s p o s t-in je c t io n . With a 7-d ays d e l a y e d in je c tio n , th e p o s it iv e c o r r e la t io n w a s la r g e with r = 0 . 7 9 a t 3 d a y s a n d wit h r = 1 . 0 at 7 a n d 2 8 d a y s p o s t-in je c t io n . With a 2 1 - d a y s d e l a y e d in je c tio n , t h e re w a s no c o r r e latio n b e t w e e n B M S C n u m b e r a n d s p a r e d t i s s u e v o l u m e . T hu s, in g r o u p s t h a t r e c e i v e d th e B M S C t r a n s p l a n t d u r in g th e first w e e k p o s t-c o n t u s i o n , w e fo u n d a strong p o s it iv e a s s o c ia t i o n b e t w e e n t i s s u e s p a r i n g an d B M S C survival w ith r v a l u e s b e t w e e n 0 . 7 9 a n d 1. 0 . 74 Survival and neuroprotection Fig. 4. BM SC survivat in a moderate contusion in the adult rat thoracic spinal cord ts /oio. (A) The number of BMSC transplanted acutely (15 min post-injury) or delayed (3 , 7 , and 21 days post-injury) into a moderate condusion decreases over 28 days post-injection. The numbers are oxpressed as a percentago of the numbers Boundat 15 min post-injection. (B) de:ath veithiin the moderate contusion at 7 days post-injection is ¡significantly lower abter ac ute and 3 -day delayed injoctions thnn with 7 and 21 j day delayed injection's. Percentages are relative to the number at 15 min post-transplantation. Bars represent standard error o f the mean. * = p<0 .0 1 ; * * = p<0 . 0 0 5 . Migration o f B M SC into adjacent spinal nervous tissue T h e n u m b e r o f B M S C in th e t r a n s p l a n t sit e could d e c r e a s e a s B M S C m i g r a t e a w a y fr o m th e in je c tio n site. W e fo u n d t h a t a f e w d a y s afte r i n je c tio n B M S C s ta r te d to m i g r a t e a w a y m a i n l y fro m th e rostral a n d c a u d a l a s p e c t s o f th e t r a n s p l a n t (Figs. 5A). O n e w e e k a fter in jec tio n , B M S C w e r e fo u n d in th e do r sa l anai v e n t ra l c o l u m n s s o m e a s fa r a s 7 m m a w a y fr o m th e c o n t u s io n e p i c e n t e e . M o s t of1" t h e s e c s l l s w e r e s p i n d l e - e h a p e d with a s m a ll n u c l e a s a n d several e x t e n n io n s (Fig. e B). With a 3 d a y f o st-inju ry in je c tio n , a to tal of72 , 1 0 0 ± <349 B M S C a t 7 d a y s a n d 8 2 0 ± 9c) a t 2 8 d a y s p o s t - t r a n s p l a n t a t i o n had m i g r a t e d a w a y fr o m th e t r a n s p l a n t sita (Fig. 5C). S i g n if ic a n t ly (p < 0 . 0 0 1 ) m o r e B M S C w e r e f e u a d rostra! (8 0 ± 1 4 % ) t h t n c a a d a l ( f o ± 9 % ) to th e t r a n s p l a a t a t ;i o n site. T h e to tal n u m b e r of7 m i g r a t e d B M S C r e p r e s e a t e d 1 . 2 % of7 t h e n u m b e r o e B M j C in th e c o n t u s i o r f t 15 m in p o s t . n j e c t i o n an d 2 . 4 % o f th e n u m b e r a t 7 d a y s p o s C i n je c t i o e . A t 2 8 da ye p o s t - i n je c t fo a , a l m o s t tw ico a s m a n y B M S C w e r e fo u n d o u t f i d r o f th e c o n t u s io n c o m p a r e d to within . Thus, B M S C tlrat had m ^ r a t e d aw/ay fr o m th e i n jec tio n site into th e a d j a c e n t s p i n a l cord t i s s u e a p p e a r e d to be p r o t e c t e d c o m p a r e d to t h o s e t h a t r e m e r n e d w ith.n th e c o n t u s i o r . 75 Chapter 4 û C/) 4000 O 3000 CD CÛ 2000 ■0O ) 1000 Œ V— g) "e 0 7 days 28 days Time after Transplantation Fig- 5- BM SC transplanted into the moderately contused adult rat spinal cord contusion migrate into spinal cord white matter. (A) GFP-positive BMSC (arrow) ‘leaving’ the transplant (T) at its rostral edge. (B) Several GFP-positive BMSC that have migrated approximately 5 mm into the rostral lateral white matter (W M ). (C) Bar graph showing the number of BMSC that migrated out of a transplant at 7 and 28 days post injection. BMSC were injected at 3 days post injury. All microphotographs confocal images from horizontal 2 0 jjm thick cryostat sections. Bar in A represents 15 jjm in panels A and B. D ISC U SSIO N Survival o f B M S C t r a n s p l a n t e d a c u t e ly (15 m in po st-inju ry) or d e l a y e d (3, 7, a n d 2 1 d a y s p o s t injury) into a m o d e r a t e l y c o n t u s e d ad u lt r at s p i n a l cord is lo w with f e w o r n o n e o f th e c e lls left a t 2 8 d a y s p o s t-in je c t io n . B M S C lo ss a t th e 7 -d a y p o s t-in je c t io n t i m e p o i n t w a s 6 8 % with a c u t e a n d 4 8 % wit h 3-days d e l a y e d i n je c t i o n s wh ic h w a s s ig n ific a n tly lo w e r th a n with 7- an d 2 1 - d a y s ( 9 1 % both) d e l a y e d in je c ti o n s . This in d ic a te d t h a t th e c o n t u s io n e n v i r o n m e n t is m o r e d e l e t e r i o u s to t r a n s p l a n t e d B M S C d u r in g th e s e c o n d a n d fourth w e e k a fter i m p a c t t h a n d u rin g t h e first w e e k a f te r i m p a c t . In con tro l rats, th e a m o u n t o f s p a r e d t i s s u e g r a d u a l ly d e c r e a s e d in t i m e until 4 6 % o f t h a t in a c o m p a r a b l e u n i n ju r e d s p i n a l cord s e g m e n t a t 4 9 d a y s po st-injury. T h e p r e s e n c e o f B M S C r esu lted in i n c r e a s e d a m o u n t s o f s p a r e d t i s s u e c o m p a r e d to c on tro ls . A c u t e a n d 3 -d ays d e l a y e d , but n o t 7- a n d 2 1 - d a y s d e l a y e d , i n jec tio n o f B M S C s ig n ific a n tly im p r o v e d t i s s u e s p a r i n g . T h e r e w a s a la r g e p o s it iv e c o r r e la t io n b e t w e e n s p a r e d t i s s u e v o l u m e a n d B M S C n u m b e r with i n je c t i o n s d u r in g th e first w e e k p o s t-c o n t u s i o n . 76 Survival and neuroprotection Effects o f B M S C on t i s s u e s p a r i n g w e r e a s s e s s e d by d e t e r m i n i n g th e v o l u m e o f s p a r e d (intact) t i s s u e 409 w ithin th e c o n t u s e d s p i n a l cord s e g m e n t . T his r e v e a le d an i n c r e a s e d v o l u m e o f s p a r e d t i s s u e a t 7 a n d 2 8 d a y s po s t-in ju ry with an a c u t e B M S C i n jec tio n an d a t 6, 1 0 , a n d 31 d a y s po s t-in ju ry with a 3-d ay d e l a y e d B M S C in je c tio n . T h is p a r t ic u la r a p p r o a c h o f m e a s u r i n g s p a r e d t i s s u e is e m p l o y e d reg u lar ly but it d o e s n o t t a k e into a c c o u n t n a r r o w i n g o f th e s p i n a l cord, which t y p ic a lly o cc u rs afte r a c o n t u s io n . T h er efo re , w e a l s o d e t e r m i n e th e v o l u m e o f s p a r e d t i s s u e r elativ e to t h a t o f a c o m p a r a b l e s e g m e n t fr o m u n in ju r e d a n d u n t r e a t e d s p in a l cord409. T h is r e v e a le d an i n c r e a s e d v o l u m e o f s p a r e d t i s s u e a t t h e a b o v e m e n t i o n e d t i m e p o i n t s but a l s o a t 35 d a y s po s t-in ju r y with a 7 -d a ys d e l a y e d B M S C i n jec tio n . O u r resu lts d e m o n s t r a t e d t h a t a c u t e ly t r a n s p l a n t e d B M S C c o n tr ib u t e d to s p a r i n g o f n e r v o u s t i s s u e fo ll o w in g a m o d e r a t e c o n t u s io n o f th e th o r a c ic rat s p i n a l cord b e t t e r th an d e l a y e d t r a n s p l a n t e d B M S C . T h e r e d u ce d lo s s o f th e a c u te ly t r a n s p l a n t e d B M S C d u r in g th e first w e e k a f te r in je c tio n c o r r e la t e d c lo s e l y w ith th e i n c r e a s e d v o l u m e s o f t i s s u e s p a r i n g . Previo u sly, it w a s r e p o r t e d t h a t a c u te ly t r a n s p l a n t e d B M S C red u ce d th e s iz e o f c a v itie s a t 3 w e e k s a fter an i n jec tio n into th e c o n t u s i o n 451 a n d a t 5 w e e k s a fter an i n je c tio n into th e 4 th v e n t r i c l e 304. In th e p r e s e n t stu dy , w e h a v e a s s e s s e d s p a r e d t i s s u e v o l u m e r e la t iv e to t h a t o f a c o m p a r a b l e s e g m e n t fr o m a n u n i n ju r e d a n d u n t r e a t e d s p i n a l cord to a c c o u n t fo r th e n o r m a l ly o c c u rr in g s h r i n k a g e . D e s p i t e th is d iff e re n c e in a p p r o a c h , our resu lt s a r e in a g r e e m e n t a s th ey in d ic a te d t h a t a c u te ly t r a n s p l a n t e d B M S C e x e r t n e u r o p r o t e c t i v e a c t i o n s o n th e n e r v o u s t i s s u e w ithin th e c o n t u s e d s e g m e n t . T h e eff ects o f th e s e n e u r o p r o t e c t i v e a c t i o n s r e m a i n v is ib le until 28 days p ost-transplantation. tran sp lan tatio n of BM SC into Y osh ihara a 9-day and old c o l la b o r a t o r s 463, m oderate 464 c o n t u s io n d em onstrated did not that r e su lt in n e u r o p r o t e c t io n w ithin th e c o n t u s e d s e g m e n t w h ic h is in c o n c u r r e n c e with o ur f i n d i n g s t h a t d e l a y e d t r a n s p l a n t e d B M S C fail to e x e r t n e u r o p r o t e c t i v e a c t i o n s . O n e p o t e n t i a l m e c h a n i s m by w h ic h t r a n s p l a n t e d B M S C resu lt in n e u r o p r o t e c t i o n m a y be by s e c r e t i n g B D N F 326, 364 W e u se d E L IS A to c o n firm t h a t th e B M S C u se d for t r a n s p l a n t a t i o n in o u r s tu d y p r o d u c e d an d s e c r e t e d B D N F . Fu ture s tu d ie s in w h ic h th e p ro du ctio n o f B D N F by B M S C o r th e a c t i o n s o f B D N F a r e blo cked will h e lp to e lu c id a te th e role o f B M S C - d e r i v e d B D N F on n e u r o p r o t e c t io n . O u r d a t a s h o w e d th a t 0 . 0 2 % o f a c u te ly t r a n s p l a n t e d B M S C had surviv ed u p to 2 8 d a y s in a m o d e r a t e s p i n a l cord c o n t u s io n . In a p r e v io u s study, it w a s s h o w n t h a t 0 . 1 7 % o f B M S C a c u te ly i n je c te d into a n d n e a r a m o d e r a t e - s e v e r e c o n t u s io n (25 m m , N Y U i m p a c to r ) in th e rat s p i n a l cord had surviv ed a t 5 w e e k s p o s t - i n ju r y / in je c t i o n 170. W h e n B M S C w e r e g r a ft e d into a 7 -d a y old c o n t u s io n , 6 t i m e s m o r e c e lls ( 0 . 9 9 % ) had survived a t 5 w e e k s po s t-in ju ry (i.e., 4 w e e k s p o s t in je c tio n ) . In o u r s tu d y w e u s e d a l e s s s e v e r e c o n tu s io n inju ry but fo u n d a lo w e r B M S C survival a t t i m e p o i n t s th a t w e r e c lo s e (a cu t e i n jec tio n - 2 8 d a y s survival h e r e vs. 35 d a y s s u rv iv al170) or e x a c t ly m a t c h i n g (7 d a y s d e l a y e d i n je c tio n - 2 8 d a y s survival h e r e vs. 35 d a y s s u rv iv al170), n a m e l y 0 . 0 2 vs. 0 . 1 7 a n d 0 vs. 0 . 9 9 , r e s p e c t iv e ly . A p o s s i b l e e x p l a n a t i o n fo r this d i s c r e p a n c y is t h a t in H o f s t e t t e r e t a l . 17° th e B M S C w e r e i n je c t e d 2 m m rostral a n d c a u d a l a s well a s into 77 Chapter 4 t h e c o n t u s io n le s i o n . It w a s n o t s tu d ie d w h e t h e r th e s u rv iv in g B M S C w e r e in fa c t t h o s e i n je c te d n e a r r a th e r t h a n in th e c o n t u s io n a s h a s b e e n d e s c r i b e d for a s im il a r p a r a d i g m in a 7d a y old m o u s e s p i n a l cord c o n tu s io n m o d e l 222. O t h e r s h a v e r e p o r t e d survival o f B M S C in s p i n a l cord le s i o n s but w i t h o u t q u a n t i f i c a t i o n ’0' 3° 4, 84, 85 96472' 473. H o f s t e t t e r e t a l . ’7° i n je c t e d B M S C into th e c o n t u s e d s p i n a l cord a c u te ly or o n e - w e e k d e l a y e d a n d e x a m i n e d d u r in g th e e n s u i n g w e e k s lo c o m o t o r fu n ctio n o f th e hind li m bs. Both g r o u p s w e r e n o t directly c o m p a r e d a n d t e s t e d fo r s ig n i fi c a n c e , but th e d a t a fr o m this s tu d y i n d ic a te d t h a t im p r o v e d B M S C survival w a s a s s o c i a t e d with i m p r o v e d lo c o m o t o r f u n c t i o n ’70. In g e n e r a l , this a g r e e s w ith o u r d a t a t h a t im p r o v e d survival o f t r a n s p l a n t e d B M S C elicits p o s itiv e effects o n s p i n a l cord repair. S t u d i e s t h a t i n v e s t i g a t e th e c o r r e la t io n b e t w e e n B M S C survival a n d m o t o r a n d s e n s o r y fu n ctio n a r e in p r o g r e s s . Survival o f graft ed B M S C d u rin g th e first w e e k p o s t-in je c t io n w a s s ig n i fi c a n tl y lo w e r w h e n t h e c e lls w e r e g r a ft e d 7 a n d 2 ’ d a y s po s t-in ju r y c o m p a r e d to ’ 5 m in a n d 3 d a y s po st-injury. N o rm a lly , i m m u n e c e lls i n v a d e c o n t u s e d t i s s u e ra p id ly to be fo llo w e d by i n f l a m m a t o r y cells i n c lu d in g m a c r o p h a g e s . T h e p e a k in m a c r o p h a g e p r e s e n c e is ar o u n d 7 d a y s post-inju ry, to r e c e d e t h e r e a f t e r 34, ’ 92 34’ . W e fo u n d t h a t B M S C surviv ed b e s t w h e n i n je c te d i m m e d i a t e l y o r 3 d a y s a fte r injury, w h ic h is w h e n th e n u m b e r o f i n f l a m m a t o r y c ells is still i n c r e a s i n g in th e c o n t u s io n le s io n . Possibly , m a c r o p h a g e s a r e directly inv olved in t r a n s p l a n t e d B M S C lo ss w h ic h w o u ld e x p la i n t h e g r e a t e r lo s s a t in je c tio n t i m e s w h e n m o r e m a c r o p h a g e s c a n b e fo u nd in th e c o n t u s io n . T h e r e l a t i o n s h i p b e t w e e n m a c r o p h a g e s a n d t r a n s p l a n t e d B M S C w ithin th e inju red s p i n a l cord is still po o rly u n d e r s to o d . W e o b s e r v e d t h a t s o m e o f th e t r a n s p l a n t e d B M S C m i g r a t e d fr o m th e c o n t u s io n into th e rostral a n d c a u d a l w h it e m a t t e r . T o our k n o w l e d g e , this is th e first e v i d e n c e t h a t B M S C t r a n s p l a n t e d into a c o n t u s io n sit e in t h e ad u lt rat th o r a c ic s p i n a l cord m i g r a t e into th e a d j a c e n t n e r v o u s t is su e . N e u h u b e r a n d c o l l e a g u e s 29’ d e s c r i b e d th a t h u m a n B M S C g rafted in a h e m i s e c t i o n in t h e a d u lt r at cervical s p i n a l cord m i g r a t e d into th e n e a r b y s p i n a l ti s s u e . O u r data suggested th at the conditions at and p e r m i t t e d m i g r a t i o n o f th e i n je c te d B M S C . n e a r b y th e 3-d ay old s p i n a l In th e inju red ad u lt c e n t r a l cord c o n tu s io n nervous system , c h e m o t a c t i c fa c t o r s a n d c yto k in es such a s m a c r o p h a g e i n f l a m m a t o r y p r o t e i n - ’ , m onocyte c h e m o a t t r a c t a n t p r o t e i n - ’ , a n d in terleu k in -8 h a v e b e e n i m p l i c a t e d in B M S C m i g r a t i o n 433. In s u m , w e h av e g a t h e r e d e v id e n c e t h a t B M S C t r a n s p l a n t e d i m m e d i a t e l y a n d 3 d a y s after a c o n t u s io n s urviv e b e t t e r w ithin th e le s io n e n v i r o n m e n t d u r in g t h e first w e e k afte r i n jec tio n c o m p a r e d to B M S C t r a n s p l a n t e d a t 7 a n d 2 ’ d a y s post-inju ry. T h e im p r o v e d survival is t r a n s i e n t but th e B M S C t r a n s p l a n t eli cit ed n e u r o p r o t e c t i v e effects t h a t r e su lt e d in im. p r o v e d t i s s u e s p a r i n g u p to 2 8 d a y s afte r i n jec tio n . 78 JOHNS HOPKINS i e D i c i N n Kennedy Krieger Institute 5 Inflammation and cell survival. Reducing macrophages to improve bone marrow stromal cell survival in th e c o n t u s e d s p i n a l cord. N euroreport 20 10 ; 21 (3): 221-226 G .J. Ritfeld R .D .S . N a n d o e T e w a r i e S.T. R a h ie m A. H u r t a d o R.A. R o o s J.A. G r o t e n h u i s M. O u d e g a Chapter 5 IN TRO D U CTIO N A c o n t u s iv e s p i n a l cord inju ry c a u s e s i m m e d i a t e d e a t h o f ne u ral c ells a n d d is ru p t io n o f axo n c ir cuits’ 55. T h e n u m b e r o f m a c r o p h a g e s in th e inju ry site r a p i d l y i n c r e a s e s o v e r th e e n s u i n g d a y s a n d c o n tr ib u t e to fu rth er d e s t ru c tio n o f local n e r v o u s t i s s u e 34. T h e r e is no th e r a p y a v a i la b le t h a t effectiv e ly i m p r o v e s fu n ctio n afte r s p i n a l cord injury. T r a n s p l a n t a t i o n o f m e s e n c h y m a l b o n e m a r r o w s tr o m a l c ells ( B M S C ) h a s b e e n e x p lo r e d for s p i n a l cord r e p a i r 285. In d iff e r e n t m o d e l s y s t e m s , B M S C t r a n s p l a n t a t i o n r e su lt e d in t i s s u e s p a r i n g a n d , in s o m e c a s e s , m o t o r fu n c t i o n ’70, 286, 291 351 473. T h e s e r e su lt s w a r r a n t fu rth er in v e s t i g a t i o n o f B M S C fo r n e r v o u s s y s t e m re p a ir . Survival o f a l l o g e n e i c B M S C t r a n s p l a n t e d into th e d a m a g e d s p i n a l cord is lo w ’70, 286, 403. S e v e r a l s tu d ie s h a v e p o i n t e d a t a role o f m a c r o p h a g e s in th e lo s s o f B M S C a f te r i n je c tio n into th e inju red n e r v o u s s y s t e m 9’, 403. S o far, q u a n t i t a t i v e e v i d e n c e t h a t w o u ld s u p p o r t such a role is sparse. C y c l o s p o r in e A (CsA), m in o c y c li n e (M C ), and m e th ylp red n iso lo n e (MP) treatm ent d e c r e a s e s m a c r o p h a g e infilt ration into a s p i n a l cord le s i o n 22 ’77, 265, 3’ ’ 399, 403. T h e p r e s e n t s tu d y f o c u s e s o n th e eff ic acy o f t h e s e t h r e e d r u g s to r e d u c e m a c r o p h a g e infi lt ration a n d w h e t h e r this w o u ld resu lt in i n c r e a s e d survival o f s u b s e q u e n t l y t r a n s p l a n t e d B M S C . M ATERIAL A N D M ETH O D S Spinal cord contusion and post-surgery care Ad u lt f e m a l e S p r a g u e - D a w l e y ra ts ( n = 7 6 , 2 0 0 - 2 3 0 g ; a n a e s t h e t i z e d w ith an intrap eriton eal H a r la n , I n d i a n a p o l i s , IN, USA) w e r e i n jec tio n o f 6 0 m g / k g o f K e t a m i n e H Cl ( P h o e n ix P h a r m a c e u t i c a l s , St. J o s e p h , M D , USA) a n d 0 . 4 m g / k g m e d i t o m i d i n e ( D o m it o r , a n alp h a -2 a d r e n e r g i c a g o n i s t ; O rio n C o r p o r a t io n , E s p o o , Fin la n d ) . T h e 1 0 th th o r a c ic s p i n a l cord s e g m e n t w a s e x p o s e d a n d c o n t u s e d u s i n g th e In fin it e H o r iz o n I m p a c t o r a t a fo r ce o f 2 0 0 k D yn (Fig. ’ A). C o n s i s t e n c y b e t w e e n a n i m a l s w a s g u a r a n t e e d by r e g i s t e r i n g th e i m p a c t fo r ce a n d s p in a l cord d i s p l a c e m e n t . T h e w o u n d w a s c lo se d a n d th e rats w e r e g iv e n a n t i s e d a n ( a t i p a m e z o l e hy dr ochloride; ’ .25 m g / k g , in t r a m u s c u l a r ) , an a l p h a 2 - a d r e n e r g i c a n t a g o n i s t t h a t r e v e r s e s s e d a t i v e a n d a n a l g e s i c effects o f m e d it o m id i n e . All surgical p r o c e d u r e s w e r e p e r f o r m e d by th e s a m e i n v e s t i g a t o r . P o s t-s u r g e ry m a i n t e n a n c e w a s a s d e s c rib e d p r e v io u sly 286. 80 Inflamm ation and cell survival Fig. i. Schematic representation o f the experiments and BM SC harvest and transduction, (a) Rats were contused at the 1 0 th thoracic spinal cord segment and then divided into 4 groups that received CsA, MC, M P or saline, (b) BMSC were harvested, transduced to express GFP using lentiviral vectors, and grown in DMEM. (c) GFP-expressing BMSC in a passage 3 culture which were used for transplantation into the epicenter o f the 3 -day old contusion. Abbreviations: BMSC, bone marrow stromal cells; CsA, cyclosporine A; ip, intraperitoneal; MC, minocylcine; M P, methylprednisolone; sc, subcutaneous. Bar in C represents 1 0 fxm. Drug administration C o n t u s e d rats w e r e di vid ed into 4 g r o u p s t h a t r e c e i v e d CsA , M C , M P , o r s a li n e ( n = i 8 eac h; Fig. lA) s t a r t i n g 5 m in afte r th e c o n t u s io n . All i n je c t i o n s w e r e p e r f o r m e d by th e s a m e i n v e s t i g a t o r . C s A (Bedfo rd Labs, Bedfo rd, O H , USA) w a s a d m i n i s t e r e d s u b c u t a n e o u s l y o n c e p e r d a y a t a d o s e o f 3 0 m g / k g for th e first t h re e d a y s a n d 15 m g / k g fo r th e n e x t s e v e n d a y s 4“3. M C (Sigm a-Ald rich, St. Louis, M O , USA) w a s a d m i n i s t e r e d i n t r a p e r i t o n e a l l y a t a d o s e o f 5 0 m g/kg tw ic e a day fo r th e first tw o d a y s 399. MP (Sigm a-Ald rich) was adm inistered i n t r a p e r i t o n e a l l y o n c e a t a d o s e 3 0 m g / k g 22. S a l i n e w a s giv e n to c o n tr o ls fo llo w in g th e s a m e r e g i m e a s fo r M P . B M S C culture and lentiviral transduction B M S C w e r e o b t a i n e d fro m f e m u r s o f ad u lt f e m a l e S p r a g u e - D a w l e y rats (n =4 ) a s pr e v io u sly d e s c r i b e d ' 3,286 (Fig. lB ) . B M S C a t p a s s a g e o w e r e t r a n s d u c e d o v e r n i g h t u s i n g len tiv iral v e c t o r s e n c o d i n g fo r g r e e n f l u o r e s c e n t p r o te in (GFP) a t a n M O I o f 1 5 0 '75, 286 (Fig. lB ) . T r a n s d u c e d B M S C w e r e c ultu re d in D - 1 0 m e d i u m a t 37 °C/5 % C 0 2. B M S C fro m th e third p a s s a g e (Fig. 1C) w e r e u sed for th e t r a n s p l a n t a t i o n e x p e r i m e n t s . T h e tr a n s d u c t io n r ate o f th e B M S C w a s d e t e r m i n e d u s i n g a F A C S c a n / F A C S o r t e r ( B e c to n D ic k in s o n I m m u n o c y t o m e t r y S y s t e m s (BDIS) B io s c i e n c e s , S a n J o s e , CA). T h e n u m b e r o f v ia b le ( G F P -p o s itiv e ) c ells r elat iv e to th e total n u m b e r o f c ells w a s d e t e r m i n e d r e v e a l i n g a t r a n s d u c t io n r a te o f 63 % . 81 Chapter 5 Transplantation o f B M S C A t t h re e days afte r injury, 24 rats (6 rats fr o m each gr ou p) w ere an ae sth e tiz e d with i n t r a p e r i t o n e a l i n je c t i o n s o f 6 0 m g / k g o f K e d a m in e HCl ( P h o e n i x P d a r m a c e u t i c a l s ) a n d 0 . 4 m g / k g o S m n d i t o mid ine (D o m it o r ; O rio n C o r p o r a tio n). T h e 1 0 th th o r a c ic s p i n a l cord s e g m e n t w a s e x p o s e d a n d 5 ml D M E M wit h 1 x 1 0 6 B M S C (Fig. 1A) w a s i n je c te d into th e c o n t u s io n e p i c e n t e r 13. Four extra c o n t u s e d rats w e r e s im ila rly i n je c t e d a n d p e r fu s e d wit h fixatide (sad below) 15 m in latnr. T h n s d rats w e r e u s e d to d n r n r m i n e th e n u m b e r o f B M S C in th e c o n t u s io n a t 15 m in p o s t-in jn c tio n . All B M S C i n je c t i o n s w e r e p e r f o r m e d by th e s a m e i n v e s t i g a t o r . A fts r t h e inje ctio nn , th e r a ts w e r e m a i n t a i n e b a s S e s c rib n d pr e v io u sly 286. General histology Three days (n=24) and ten days (n=48) afte r injury, rats w e r e an aesth etized with an in t i a p b r i t o n e o l in je c t i c n o f 9 0 m g / k n o f K s t a m i n e HCl ( P h o e d i x P h a r m a c e u t i t a l f an d 0 . 6 m g / k g of7 m e d i t o m i d i n e (Orion C o r p o r a t io n ) . A fte r d e e p s e d n tin n w a s o o n f i r m e d , 0 . 1 rrH H n f a r i n e ( 5 0 0 IU; H e n r y Sgh ein , M elv ille , N's'^ USA) w a s rnjncted inter th e left v e n t r i c l e o f th e h eart. T h e n , 5013 ml s a li n e fo llo w e d by 5 0 0 ml ice-cold 4 % p a r a e o r m a l d e h y d e in p h o s p h a t e buffer (PB; 0 . 1 M, pH 7.4) w a s p u m p e d th ro u gh th e v a s c u l a r syn te m . S p i n t l c o r d s w e r e r e m o v e d w i t h s u t d a m a g i n g thd a n a t o m i c a l id tegrity , post-fix ad fo r 2 4 h is t h e s a m f fixative, a n d tr a n s f e r r e d to 3 0 % t u c r o s e in p h e s p h a t a - b u f f e r e d s a l i n e ( P B S ; o .i M, p H 7 . f ) 'foi^ 4 8 h. A 12 mm lo n g s p i n a l cord s e g m e n t c e n t e r o d a t th e c o n t u s io n w a s cut into ;>o juui^ thick ho riz o n t a l c r y o s t a t s e c t i o n s whlclr w e re m o u n t e d o n g l a s s sli des. Immunocytochemicnl pronedures For c h a r a c t e r iz a ti o n o f fd d B M S C , 8 - w e t c h a m b n r g l a r s s lid e r (BD Fa lc o n ; B D B io s c i a n c e s , Bedfo rd, MA) w e r e c o a t d d wit h 1 0 0 (jil/ml po ly -D -lys in e For 1 li a t r o o m t s m p e r a t u r e . Atter w a s h i n g 2 x 5 m i c w i t l d o u fle -d i s ti lle d w a t e ^ 3 0 0 0 B M S C in 2 5 0 jjlI D - 1 0 m e d i o m w e r e p l a t e d p e r w e ll. A fte r tw o d a y s a t 3 s °C /5 % C O 2 th e c o k u re u w s r n w a s h e d 3 x 5 m in with P B S an d fixed wit h 4 % p a r a f o r m a l d e h y d e in P B ( 1 0 m i n , roo m t e m p e ratu re. N e x t 1 th e cultu res w e r e w a s h e d 5 x 5 m in w ith P B S , in c u b a te d with 5 % n o r m a l g o t s s d r u m ( N G S) in P B S for 3 0 m i n u a n d th e n i n c u b t t e d o v e r n i g h t a t 4 sC with antiloodies Bgainst: C D 9 0 (i:icxo; I m m s n o t e c h , B r u s s e l s , B e lg i u m ) , C D 1 0 5 (r: 'd0 0 ; N ^ , B e a f o e D i c k e n s o n ) , C D 3 4 (1 : i 0 0 i 8 G 1 2 cl nnn IgC^^ B e c t o n D i c l < a i s t o ) , C D 4 5 (1:10)0; H 1 3 0 c l o n e I g G 1, B e c t o n D i c k e n s o n ) , a n d H U 'l- D R ( 1 : 1 0 0 ; D ak o , G lo s tr u p , D e n m a r k ) diluted in PB wit h 5 % N G S . S o m e cu ltu res w a r e in c u b a te d with PB with 5 % N G S only. a n d s e r v e d a s n e g a t i v e (no p r i m a r y an tib od y) c o n tr o ls to e x c lu d e a fa lsep o s it iv e o u t c o m e ° IMext, culturen w e r e w a s h e d 3 x 5 m in w ith PB a n d th en i n t u b a t e d w ith go ata n t i - m o u s e I g G -A l tx a 5 9 s ( 1 : 5 0 0 io PB ; M o k c u ^ P r o b t s , C a r ls b a d , CA) for 2 h a t r oo m t e m p e r a t u r e . A f t e r w a r d s , cu ltu res w e r e w a s h e d 3 x 5 m in with PB a n d c o v e r e d with a g l a s s slip 82 Inflamm ation and cell survival with V e c t a s h i e l d a n d DA PI (V ector L a b o ra to ri e s , Inc., B u r li n g a m e, CA). T h e slide;;; w e r e e x a m i n e d a n d i m a L e s w e r e t a k e n with a n O l y m p u s Flu o eiew F V 1 0 0 0 c o n fo c a l m i c r o s c o p e . For i m m u n o s t a i n i n g of7 ac tiv a te d m acropeages, e v e ry 1 0 th c r y o s t a t s e c t io n w a s pre in c u b a te d a t r o o m t e m p e r a t u r e for 3 0 m in in 5 % N G S a n d 0 . 3 % T riton X - 1 0 0 in 0 . 0 1 M P B S (pH 7.4) a n d t h t n in c u b a te d wit h a n t i b o d i e s a g a i n s t E D 1 ( s : 2 0 0 ; S e r o t e c , R a leigh , NC) in 5 % N G S for 2 h a t r o o m t e m p e r a t u r e fo llow ed by o v e r n i g h t in c u b a tio n a t 4 °C. Afteh w a s h i n g 3 x 5 m in with P B S , s e c t io n s w e r e in c u h a te d with goah a n t i - m o u s o A le x a , 9 4 anti bodi e s ( 1 : 2 0 0 ; M o l e c u la r P r o f t s ) in P B S ( 0 . 0 1 M; pH 7.4) a t r o o m t r m p t F a t u r e for 2 Is. T h e s e c t i u s s w e r e th e n w a s h e d r n d c o v e r e d with f g l a s s slips in V e c t a s h i e ld with DAPI (V ectur L ab o sa to ries , Inc.). T S e c o v e r s l ip s w e r e s t o l e d w t h nail p o li sh. All s e ca io n s w e r e s to re d a t - 2 0 °C until e n c ly s is . Qeantitative a c se s a c r e a ts For a n a l y s i s o b G F P - p o s ih i e e B M S C , e y e r y 1 0 th c a^ci^tat a ec r io n w a s c o v e r e d wit h a g l a s s slip with V e c t a s h i eld m o u n t i n g m e d i d m with D A P I (Vectoe Labora doriee, In c) . S t e r e o i n v e s t i g a t o r (M ic ro B rig h t F ie ld Inc., C o lc h e s te r , V A, USA) w a s u s e d to d e t e r m i n e th e nu m b e rs o f surviv ing B M S C in th e c o n t u s i o n 168. T h e wect io n r w e r e 2 0 0 m m a p a r t s p a n n i n g t h a wid th o f th e s p i n a l cord. In e v e r y r e c t io n c o n t a i n i n g G S P p o s itiv e c ells, th e dra n s p l a n t e d a r e a w a s o u tlin ed m a n u a l l y a t 4 X m a g n i f t a a i o n a n d c o v e r e d hy a 215c) x 2 5 0 fom grid. A t 6 0 X m a d n ifih a t io n with oil i r o m e r s i c n , G F b - p o s i t i v e c eils with a d i s c e r n a b l e D A P I - p o s it iv e nucieuw w e rn m a r k e d u sin g t h e o p tic a l f r a c t i o n a ( o r witM a 6 0 x 6 0 fim c^ourrtinsih Urcmh. N u m b e u t w e s e corresSeW fo r th e 63 % tra n s d uction note ob th e tf l\/l Î2C wi th i_^-Cf |tPi For ea cV o i th e g r o u p s , B M S C survival w a s c nlc u la ted as th e number o f BM SC rela tiv e to th e n u m b e r oh B M S C at 15 m in afte r t r a n s p l a n t a t i o n (wh icF w a s 1 a 8 t 5 9 ± n r 9; S E M , n c 4 ) , Td e effe c t e f t r e a t m e n t on B M S C survivai w a s a c n e s n e f by e x e r e t a i n g B M S C uurvival f"oa eiachi g r o u p a s a p e r c e n t a g e of7th a t in c o n tr o ls. For a n r l s s i s o f m a c r o f h w g n s w e e m p l o y e d a m e t h o d p revio u sln e m p l o y e d H a y a sh i a n d oolle agu htin 3i T his m y t h o d u s e s 'thn-eie s e c t i o n s p e r rat 'for e x a m i n a t i o n : o n a s e c t io n tC ro u eL the; c e n t e r c f thw c o n t u n i o n / t r a n s p i a e t (vui'tt t i e d o n s e s t c e lle l a 2 s t a i n i n g ) , an d s u c tio n s 2 0 0 mm cinsisinl a n d v e n t ra l to tFn c c n t e r . T h r a r e a fractio at o 2 stai n i n g in t h e s e sactions w a s hoterm inen u s i n g Sii^d eEFciol< 4 . i ; 0 . i a henthllloent I m a g i n g Inn rvatio ns, Inc, S a n t a f i o n i c a , CA, USA) a n d n x d 'c n a e d a s a p ^rc:u;ii^t£ijge o f t h a t in co n tr o l a n i m a l s . Statistica/ aoalysis S i g m a n t a t ® ( Sys ta t S c ft w a r n , Inc., S a n J o s e , CA, U s a ) w a e u se d tor sta tis tic al a n a l y s e s u sin g o n e - w a y A N O V A a n d th e B o n fe r ro n i po v t-h oc /est. D i ft e t e n c e s w e r e a c c e p t e d a t p < 0 . 0 5 . 83 Chapter 5 Ethics and surgical approval All rats u s e d in this s tu d y w e r e h o u sed a c c o r d i n g to th e g u id e li n e s o f th e N a t i o n a l In s titu te o f H e a lt h a n d U n ite d S t a t e s D e p a r t m e n t o f A gricu lt u re. T h e d e s c r i b e d a n i m a l p r o c e d u r e s w e r e approved by th e I n s titu tio n al Anim al Care an d Use C o m m itte e a t th e J o h n s H o p k in s University . RESULTS Characterization o f B M S C in vitro Cu lt ured G F P - p o s i t i v e c e lls expressed CD90 (Fig. 2A) and C D 10 5 (Fig. 2 B ). T h e s e tw o e x t r a c e l lu la r m o l e c u l e s a r e bo th w e ll-k n o w n B M S C m a r k e r s 38,98. N o n e o f th e c e lls e x p r e s s e d t h e blood cell m a r k e r s , C D 3 4 (Oig. 2C) a n d C D 4 5 or th e i m m u n e cell m ar k e r , H L A -D R . No s t a i n i n g w a s v is ib le i f th e p r i m a r y a n t i b o d y w a s o m i t t e d . T h e d a t a c h a r a c t e r iz e th e c ells u sed for t r a n s p l a n t a t i o n a s B M S C . ( a ) — ( b ) - ' ( c ) Fig. 2 . Characterization o f in vitro. Cultured cells expressed the BMSC markers, CD 9 0 (a) and CD 10 5 (b), but not the blood cell marker, CD34 (c) . Scale lia r=io |xm. CsA, MC, and M P reduces macrophage infiltration into the spinal cord contusion Mi o ro s c o p ie a n a ly s i s o f m a c r o p h a g e p i e s e n c e in th e c o n t u s io n r e v e a l e d high n u m b e r s in c o n tr o ls (Fig. 3a) c o m p a i e d to t r e a t e d rats; (Fig. 3b) a t 3 d a y s a fter injury. T h e n u m b e r s a p p e a r e d i n c r e a s e d in t r e a t e d rats a t 1 0 d a y s (Fig. 3c) c o m p a r e d to 3 d a y s (Fig. 3b) af ter c o n t u s io n . Q u a n t i t a t i v e a n a l y s i s d e m o n s t r a t e d t h a t a t t h r e e d a y s post-inju ry, r elativ e to c o n trols, m a c r o p h a g e i n S ltr e t ion w e s 4 6 ± 1 0 % with CtA -, 4 7 ± 3 % w ith MC-, a n d 63 ± 3 % with M P - t r e a t m e n t SFig. 3dS. A N O V A r e v e a le d t h a t th e n u m b e r fo r e a c h o f th e t r e a t m e n t g r o u p s w a s s ig n i fi c a n tl y s m a l l e r ( p < o . 0 0 1 ) hhan t h a t fo r c o n tr o ls. T h u s t r e a t m e n t - i n d u c e d reducti a n w a s 5 4 % wrth Cs A, 513 % with M C , a n d 37 % with M P c o m p a r e d to c on tro ls. 8-4 Inflamm ation and cell survival T r e a t m e n t - i n d u c e d redu ction w a s n o t s ig n i fi c a n t l y d iffe re n t fr o m c o n tr o ls a t ten d a y s p o s t inju ry (Fig. 3d). T h e s e re su lts s h o w e d th a t all t h re e d r u g s w h e n a d m i n i s t e r e d fo ll o w in g th e t r e a t m e n t r e g i m e d e s c r i b e d a b o v e red u ce d m a c r o p h a g e infilt rati on into th e ad u lt rat s p i n a l cord c o n t u s io n a t t h re e d a y s post-inju ry. B M S C survival in contusion is not affected by CsA, MC, or M P treatment B M S C w e r e p r e s e n t in th e c o n t u s io n a t s e v e n d a y s p o s t-in je c t io n (Fig. 4 a ). Q u a n t i t a t i v e a n a l y s i s r e v e a le d t h a t B M S C survival in th e c o n t u s io n a t s e v e n d a y s p o s t-in je c t io n w a s 2 7 ± 4 % with CsA, 2 4 ± 4 % with M C , a n d 33 ± 2 % w ith M P t r e a t e d rats. In s a li n e - in je c t e d contr ol rats, B M S C survival w a s 2 1 ± 7 % . T o a s s e s s th e effe ct s o f t r e a t m e n t , w e e x p r e s s e d B M S C survival in e a c h t r e a t m e n t g r o u p r e la t iv e to t h a t in th e con tro l g r o u p (Fig. 4b). W e fo u nd t h a t B M S C survival w a s 1 2 6 ± 1 7 % with CsA, 1 1 1 ± 1 9 % with M C , a n d 155 ± 1 2 % with M P tr e a t e d r ats r e la t iv e to con tro l rats (Fig. 4b ). A N O V A r e v e a le d no d iff e r e n c e in B M S C survival b e t w e e n t r e a t m e n t a n d con tro l g r o u p s ( p = 0 . 1 6 ) . Fig. 3 . Cyclosporine A (CsA), minocycline (M C), and methylprednisolone (MP) treatment reduced macrophage infiltration into the contusion. Photomicrographs o f ED-1 positive cells in control rats (a) and CsA-treated rats (b) at 3 days postcontusion and in CsA-treated rats at 10 days postcontusion (b). In panel (c) the more intense staining was found associated with cellular debris. (d) Bar graph shows that at 3 days postinjury (open bars) relative to controls (Con), macrophages infiltration in the contusion was decreased significantly with CsA, MC, and MP treatment. At 10 days postinjury (solid bars), the decrease in macrophage presence in the contusion of treated rats was not statistically different from that in Con. ^Significant difference between treated and Con groups at 3 days postinjury with P<0 . 0 0 1 . 85 Chapter 5 (a) Fig. 4 . Cyclosporine A (CsA), minocycline (M C), and methylprednisolone (MP) treatment did not improve bone marrow stromal cell (BM SC) survival. (a) Photomicrograph of green fluorescent protein-positive cells within the contusion at 7 days postinjection. (b) Bar graph showing BMSC survival relative to controls (Con). The differences were not statistically different, although there was a trend towards higher numbers in CsA-treated rats. B M S C presence initiates macrophage infiltration into the spinal cord contusion. W e a s s e s s e d th e e ffe ct o f a B M S C t r a n s p l a n t on m a c r o p h a g e p r e s e n c e in th e c o n t u s io n a t te n days po s t-in ju ry r e lat iv e to that at t h re e days post-inju ry. With a BM SC tran sp lan t, m a c r o p h a g e infilt rati on r e la t iv e to c o n tr o ls w a s 2 . 4 fold in Cs A- a n d M P - t r e a t e d rats , a n d 6 .9 fold in M C - t r e a t e d rats. T h e s e d i ff e r e n c e s w e r e s t a t is ti c a ll y s ig n i fi c a n t ( p < o . o o i ) . In th e a b s e n c e o f a B M S C t r a n s p l a n t , m a c r o p h a g e p r e s e n c e in tr e a t e d rats r e la t iv e to c o n tr o ls w a s u n c h a n g e d . O u r d a ta d e m o n s t r a t e d t h a t th e p r e s e n c e o f a B M S C t r a n s p l a n t s ig n ific a n tly i n c r e a s e d m a c r o p h a g e infi lt ration into th e c o n t u s e d ad u lt r at s p i n a l cord. D ISC U SSIO N Q u a n t i t a t i v e i n v e s t i g a t i o n s h a v e d e m o n s t r a t e d t h a t survival o f B M S C t r a n s p l a n t e d into th e c o n t u s e d a d u lt rat s p i n a l cord is lo w ’70' 286. Previo usly, it w a s p r o p o s e d t h a t m a c r o p h a g e s w h ic h a r e n a tu r a lly p r e s e n t w ithin an in ju ry sit e a r e inv olved in th e lo s s o f B M S C t r a n s p l a n t e d into the central a c ti v a te d n e r v o u s s y s t e m 9’ . O u r p r e s e n t r e su lt s s h o w e d t h a t a d e c r e a s e d m a c r o p h a g e s a t th e t i m e o f B M S C i n jec tio n presence o f (th ree d a y s post-in jury) d o e s n o t i n c r e a s e survival o f g rafte d B M S C . It is p o s s i b l e t h a t o u r t r e a t m e n t r e g i m e n s fa iled to lower m a c r o p h a g e infi lt rati on to a level w h e r e B M S C survival w o u ld h av e b e e n im proved. The m a x i m u m redu ction w h ic h w a s a c h i e v e d h e r e w a s 5 4 % . B e c a u s e m a c r o p h a g e in v a s io n into a s p i n a l cord inju ry site is ty p i c a lly la r g e 34, ’ 55, 3’ ’ th is red u ction m a y still le a v e m a n y m a c r o p h a g e s t h a t cou ld p o t e n t i a l ly c o n tr ib u t e to B M S C loss. An ad d itio n al o b s e r v a t i o n is t h a t th e t r e a t m e n t effe c t wh ic h w a s p r e s e n t a t t h re e d a y s po s t-in ju ry w a s n o t s ig n i fi c a n t a t t e n d a y s post-injury. 86 Inflamm ation and cell survival Alth o u gh we used treatm en t p r o to c o ls known to eff ectiv ely reduce th e presence of m a c r o p h a g e s 22' ’77, 3"' 399, 403 t h e y m i g h t n o t h a v e b e e n e ffe ct iv e e n o u g h for suffi cient an d p r o l o n g e d redu ction o f m a c r o p h a g e s . A n a l t e r n a t i v e e x p l a n a t i o n fo r th e o b s e r v e d lack o f i m p r o v e d B M S C survival w o u ld be t h a t a n y t r e a t m e n t - i n d u c e d redu ction in m a c r o p h a g e p r e s e n c e w a s m a s k e d by a s u b s e q u e n t i n c r e a s e in m a c r o p h a g e infilt rati on d u e to th e in tro d u c tion o f B M S C into th e e n v i r o n m e n t . This n o tio n is s u p p o r t e d by o u r da ta b e c a u s e in a n i m a l s with a B M S C t r a n s p l a n t w e fo u nd that m acrophage infilt rati on was d r a s tic a lly increased. It is likely that these ext ra m a c r o p h a g e s h a v e e x a c e r b a t e d th e lo ss o f B M S C ’40. It is i m p o r t a n t to k e e p in m i n d t h a t o th er fa c t o r s t h a n i n v a d e d m a c r o p h a g e s a r e m o s t likely a l s o involved in t r a n s p l a n t e d B M S C loss such a s th e lack o f o x y g e n a n d / o r n u t r i e n t s within t h e d a m a g e d t i s s u e 470. Previo u sly, it w a s reported that BM SC are hypo-im m u nogen ic; th e y suppress th e p r o life r atio n a n d fu n ctio n o f T-cells, B-cells, n a tu ra l killer c ells, an d d e n d r i ti c c e lls 208' 424. H o w e v e r , t h e s e p u b li c a ti o n s did n o t i n v e s t i g a t e p o s s i b l e eff ects o f B M S C on m a c r o p h a g e i n v a s io n . It is p o s s i b le t h a t th e i m m u n o s u p p r e s s i v e p r o p e r t i e s o f B M S C a f fec t o n ly th e a d a p t i v e i m m u n i t y d u e to th e lo w e x p r e s s i o n level o f h u m a n le u k o cy te a n t i g e n (HLA) m a j o r h i s t o c o m p a ti b il it y ( M H C ) c la s s I a n d th e a b s e n c e o f c o - st im u la to r y m o l e c u l e s 208, 469. T h is w ould e x p la i n w h y th e r e c r u it m e n t o f m a c r o p h a g e s (acquired i m m u n ity ) w o u ld n o t be affe c ted by BMSC. L o w e r in g t h e n u m b e r o f m a c r o p h a g e s in th e in ju red s p i n a l cord n e e d s to b e a d d r e s s e d with c a u ti o n . It is well k n o w n t h a t m a c r o p h a g e s c a n s u p p o r t s p i n a l cord r e p a i r by p r o m o t i n g a x o n r e g e n e r a t i o n a n d m y e l i n a t i o n w h ic h m a y be a c c o m p a n i e d by im p r o v e d f u n c t i o n ’46, 35°. T h e s e c o n s t r u c ti v e e ffe ct s o c c u r w h ile m a c r o p h a g e s a lso e x e r t d e s t r u c ti v e effects such as ne u ral cell d e a t h 400. B e c a u s e o f this dual role, d e c r e a s i n g th e n u m b e r o f m a c r o p h a g e s w ithin a s p i n a l cord inju ry could le a d s i m u l t a n e o u s l y to b en eficial a n d d e t r i m e n t a l e f f e c t s 350. T h u s it is i m p o r t a n t to aim for a redu ction in m a c r o p h a g e s th a t w o u ld n o t j e o p a r d i z e th eir p o s it iv e c o n tr ib u t io n s to s p i n a l cord repair. C O N C LU SIO N W e h y p o t h e s i z e d th at a d e c r e a s e d m a c r o p h a g e p r e s e n c e in a n a d u lt rat s p i n a l cord c o n tu s io n w o u ld support survival of a BMSC tran sp lan t. With CsA, MC, and MP treatm en t w e su c c e ss fu lly lo w e re d m a c r o p h a g e infilt ration; ho w e v e r , th is redu ction , w h ic h w a s m a x i m u m 54 % , did n o t i m p r o v e t r a n s p l a n t e d B M S C survival. S u r p r is in g ly , w e fo u n d t h a t B M S C p r e s e n c e in th e c o n t u s io n in rea lity i n c r e a s e d m a c r o p h a g e p r e s e n c e by a l m o s t 4-fold. B a s e d on our c u r r e n t k n o w l e d g e it is to be e x p e c t e d t h a t m a c r o p h a g e s a r e inv olved in t h e lo s s o f B M S C afte r in je c tio n into th e in ju red s p i n a l cord. T h e f i n d i n g t h a t a la r g e d e c r e a s e in m a c r o p h a g e 87 Chapter 5 infilt ration failed to im p r o v e survival o f s u b s e q u e n t l y i n je c te d B M S C , p o i n t a t key r o le s o f o ther in ju ry-rela te d e v e n t s in th e lo s s o f a n i n t r a s p i n a l B M S C t r a n s p l a n t . 88 6 Functional recovery after transplantation L o c o m o t o r a n d s e n s o r y fu n ctio n r e c o v e r y a fter a u t o l o g o u s b o n e marrow/ s tr o m a l cell t r a n s p l a n t a t i o n in th e c o n t u s e d ad u lt rat s p i n a l cord. Su bm itted Cell Transplantation G .J. Ritfeld R .D .S . N a n d o e T e w a r i e S.T. R a h ie m A. H u r t a d o K. V a jn M. O u d e g a Chapter 6 IN TRO D U CTIO N C o n t u s i v e inju ry to th e a d u lt rat th o r a c ic s p i n a l cord c a u s e s i m m e d i a t e l o c o m o t o r a n d s e n s o r y i m p a i r m e n t s o f th e h i n d li m b s 2’3, 246, 4° 8. L o c o m o to r fu n ctio n g r a d u a l ly i m p r o v e s until a p l a t e a u is r e a c h e d after 2-5 w e e k s d ep en d in g on th e im pact s e v e r ity 24, 6° 2° 7, 33°. S p o n t a n e o u s re s t o r a t io n o f s e n s o r y fu n ctio n is m o s tly a b s e n t ’76, 459 but s o m e r e c o v e r y w a s r e p o r t e d to occur m o n t h s afte r th e i m p a c t 27. T ransplantation o f repair-prom oting e x t e n s i v e l y e x p lo r e d a s an intervention c e lls into th e contused spinal cord has been to r e s t o r e fu n ctio n o v e r w h a t is s p o n t a n e o u s l y o b s e r v e d 29, 122 3’3, 325, 338. O n e o f th e c a n d i d a t e cell t y p e s for s p i n a l cord r e p a i r is th e b o n e m a r r o w s tr o m a l cell ( B M S C ) . T h e s e c e lls a r e rela t iv e ly e a s y to o b ta in via a b o n e m a r r o w b i o p s y w h ic h w a r r a n t s th e ir giv e n p r o m i s e fo r clinical a p p l i c a t i o n 285, 325, 43°. Cu rren tly, th e ability o f B M S C t r a n s p l a n t s to r e s t o r e fu n c t io n a f te r s p i n a l cord c o n t u s io n is d e b a t e d . S o m e i n v e s t i g a t o r s r e p o r t e d b e n e fic ia l effects on m o t o r f u n c t i o n ’69, ’79, 472 473 but o th e r s a r e in d i s a g r e e m e n t ’ ^ 385, 463. S p i n a l cord t i s s u e s p a r i n g h a s b e e n p r o p o s e d a s a p r o b a b le m e c h a n i s m o f B M S C - m e d i a t e d r e p a i r 286, 3° 4. Effects o f a B M S C g r a ft on s e n s o r y fu n ctio n r e s t o r a t io n afte r s p i n a l cord c o n t u s io n h a s n o t b e e n d e s c ri b e d . MATERIAL AND METHODS Ethics and surgical approval All rats u s e d in th is s tu d y w e r e h o u s e d pre- an d p o s t- s u r g e r y a c c o r d i n g to th e N a t i o n a l I n s ti tu te s o f H e a lt h a n d th e U n ite d S t a t e s D e p a r t m e n t o f A gricu ltu re g u id e li n e s . Air in th e c a g e s w a s c o n t i n u o u s ly r e fr e sh e d a n d w a t e r a n d food w e r e a v a i l a b l e ad libitum. A t all t i m e s d u rin g th e e x p e r i m e n t , r a ts w e r e k e p t w ithin a do u b le-b a rr ie r facility. All a n i m a l p r o c e d u r e s w e r e a p p r o v e d by th e In s titu tio n a l A n i m a l C a r e a n d U s e C o m m i t t e e a t th e J o h n s H o p k in s Univer sity . B M S C culture and lentiviral transduction B M S C w e r e h a r v e s t e d fr o m th e m a r r o w o f th e f e m u r s o f ad u lt f e m a l e S p r a g u e - D a w l e y rats (n=4 , 2 ° ° - 2 3 ° g ; H a r la n , I n d i a n a p o l i s , IN, USA) a c c o r d i n g to p r e v io u s l y d e s c r i b e d p r o t o c o l s ’3, 359. Len tiv ira l vectors encoding fo r green pr e v io u s l y d e s c r i b e d ’75 a n d u s e d a t an fluorescent p r o te i n (GFP ) w ere prepared M O I o f ’ 5 ° to t r a n s f e c t B M S C a t p a s s a g e ° . as For t r a n s p l a n t a t i o n , B M S C fr o m p a s s a g e 4 w e r e u s e d o f which 6 3 % e x p r e s s e d G F P a s d e t e r m i n e d by F A C S c a n / F A C S o r t e r (B e c to n D ic k in s o n I m m u n o c y t o m e t r y S y s t e m s B io s c i e n c e s , S a n J o s e , CA, USA ). Previo usly, w e s h o w e d t h a t o v e r 9 5 % o f th e c e lls w e u se d fo r i n t r a s p i n a l in je c tio n e x p r e s s e d C D 9 ° a n d C D ’ ° 5 , w h ic h a r e ty pica l B M S C m a r k e r s , a n d n o n e o f t h e m e x p r e s s e d C D 3 4 a n d C D 4 5 , both blood cell m a r k e r s , or H L A -D R , an i m m u n e cell m a r k e r 359. 90 Functional recovery salFter tr;^nsfDls>nts)tion Pre-surgery procedures Ad u lt fem ale Sp ra gu e-D aw ley rats (n=40, 200-230g; Hadnn) wi^re; sedatkd with i n t - a p e r i t o n e a l injec1;ions of7 6 0 m g / k g K e t a m i n e HCl ( P h o e n ix O hnrm o ceu tlc als , S 3. J o s e c h , M D , USA) a n d 0 . 4 te g / k g rr^ecJi1;ot^icdine ( D o m i t o s ® , a n a l p h a - 2 - a d r e n e r g i c a g o n i s t ; O rio n C o r o o r a t i o n , E s p o o , F i n la n d ) . A fter d e e p a e d c t io n w a s verified, th e b ac k o f the; r a ts w a s ohav ed and c l e a n e d with B e e a d i n e a n d 7 0 % alcohol, L acrilu b e B i n t m e n t 0 m g / k g gen tam icin (Abbot Laboratories N o sta (ilhiicEjjjio, :s n p p li e d to tli e e ) e s , an d IL, USA) was adm inistered in t ra m u s c u la r ly . Spinal cord contusion T h e lo w e r th o r a c ic (T) s p in a l c r l u m n w a s e x p o o e d , 1tloe lo m i n a o f th e T 9 w a s r e m o v e d , a n d the; e x p o s e d u n d e r l y i n g T 1 0 s p i n a l eord o e g m e n t c o n t u s e d u s i n g th e In fin it e H o r iz o n I m p a c t o r a t a fo rce o f 2 0 0 k D y n e 36, r77. C o e s i c t e n c y n e t w e e n rats w a s g u a r n n S n e d usiir'igt th e r e c o r d s on tg h comn>j'e;s^ion r a te a n d v elo city b f ta n i m u n c to t; rain fr o m wXieh 1;o ns;e v a l u e s Usviatrrd ovwr r % w e r e e xc lu d ed fr o m th e sltudy. TOe w o u n d rite w a s rinsmscJ with p h o s e h a t e -b u fp e r e d s a l i n e (XBS) with 0 . 1 % g e n t a m i c i n (A b bo t L a b o ra to rie s ) a n k th e m u s c l n s w e r e c lo s e d in l^y.'ei'ss u s i n g 5 .0 s u tu res . T h e skin w a s c lo se d wit h M ic hel w o u n d clips. Cost-contusion procedures After c lo s u r e od th e w o u n d , th e ra ts received a subcutrnrous in je c tio n of7 1 . m g/kg a t i p a m e z o l e h rd ro ch lo rid e ( a n t i s e d a n ® ; a n a l p h a 2 - a d r e n n r r i c n n t a g o n ie t ; tKtzgo inc., N e w Yo rk , N Y , USA ), to r e v e r s e th e c e d a t iv e a n d u n a l g e s i a eObcts cC m e d it o m id i n x . T e n ml la c t a ted R i n g u r 'r s o lutio n w a s inju cte d s u b c e t o n e n u s l y a n d 5^ i^g/^lcjsr g e n t a m i c i e (/^laijo'tt; L a b o ta t o r ie s) iritramr-^culai'ly. T h e rato w e r e k e p t in a s m a ll a n i m c l i n c e b a t o t a t 3 7 ° C untii 'full / e c o c e x an d w n r e tkiern r e tu r n e d tee th eir c a g e s i Until thuE) s e c o n d srur'j^fesr;!) a t t h r e e d a y s p o s t - c o n t u s i o n , th e ta ts r e c e iv e d d a il y 5 ml R in ger's solutio n (subcutaneour), (5 m eb k b c e n t a m i c i n (AOOca L a b o ra to ri e s ; in tram u s c u ln r ly ), an d 0 . 0 5 m g / k g O u p rn n o rp h in (Bu^|i'e;n(r^<r>; S e c S i t t X e nckirh) P h a r m a c e u t i e a j s Inc., R ic h m o n d , VA; s u b c u t a n e o u s l y b T h e b la d d e r w a s m o e u a l l y empOied tw ic a frier day. CsA admicistration S t a r t i n g 5 m in afte r th e c o n tu a i v e injury, c o n e u e e i rats r e c e iv e d C eA (Bedfo rd Labs; OeObord, O H , USA) s u b c u t a n e o u e l y o n c e p e r d a y a t a C o s e oC 3 0 m g t k i fit- 1;he Oirst thoee dn y t after c o n t u s io n in ju ry a n d 15 m g / k g for th e fol lowin g d a y s t n r o u o e s u t th e survival p n d o d r°3. Q f 0 er e o n f e r e U r afr reeelveU s a i in e inje n tio n s. C haptsr 6 B M S C transplantation A t t h re e d a y s a fter c o n t u s io n , rats w e r e s e d a t e d wit h i n t r a p e r i t o n e a l i n je c t i o n s o f 6 0 m g / k g K e t a m i n e HCl ( P h o e n ix P h a r m a c e u t i c a l s ) a n f 0 . 4 m s / k g m e d i t o m i d i n e (Orion C o r p o r a t i o n ) T h e T 1 0 s f i n e l cord s e / m e n t w a a r e - e x p o s e d a n d 1 x 1 0 6 B M S C in D M E M s e D M E M a l o n e (total v o l u m t w a s 5 / J if1 both c a s e s ) w a s i n je c te d into th e conUusion e p i c e n t e r u s i n g a H a m / l o n s y r in g e w ith a pu ll ed g l a s s n e a d l e a t t a c h a d (tip d i a m e t e r : 1 5 0 frm) fixed w ithin a m i c r o m a n i p u la to r'75,4o8. A fter in je c tio n , t S s w o u n S w a s c lo s e d a s den crib ed a b o ve . Post-injection procedures After c lo s u r e o f thn w o u n d , raSs w n r e /ullg r e c o v e r e d in a s m a ll a n i m a l in c u b a to r a t 3C°C b e f t a e b e i n g r e t v r n e d tn th eir c a g e s . T h e rats r e c e i v e d 5 ml L a c t a t e d R i n g e r 'c s o lutio n d a il y for 2 d a y s (su b c u t a n e o u s ly ) a n / 6 m g / k g g e n f a m i c i n (AbOoUt C ab o rato ries ) da il y fo r e e v e n d a y s c o s tin je c tio n tin 0r a 72uscularl) 7). T h e rats w e r n i n je c t e d wit h 07.03 m g / k g B a p a e n o r p h i n (Rackitt B e n c k is e r P h a n m a c e u ti c a ls Inc.; r u b c u ta n e o n s ly ) dail y fo r th e first 3 d a y s p o s t - i n je c t io a . B la d d e r s w e r e m a n u a l l y e m p t i e d tw ice pier d a y until re flex v o i d i n g s t a i t e d . T h r o u g h o u t th e r e m a i n d e r o f th e e x p e s i m e n t th e ra ts w o r e m o n i t o r e d daily. In c a s e of7 c s i n o r d i s t r e s s rats w e r e g iv e n 0 . 0 3 m g / C g e u o r e n s r p h i c (RecCitt B n n ck ixer P h a n m a c e u t i c a ls Inc.) s u b c u t a n e o u s l y dail y fo r 3 da ys. Experimental groups R a ts wit h a T 1 0 c o n t u s i c n r e c e iv e d e i th e r B M S C / D M C M o r D M E M only'’ a n d w e r e t e e v t e d with C s A c r s a ! i r e . T h u s t h e r e w e r e e e x p e r i m e ntal gr o u p s : B M S C / C s A ( n = 9 ), B M S C / s a l i n e (n = 8 ), D M E M /C sA (n = i2), and D M E M /s a lin e (n = i0). Testine o f locomotor function Ali rets w e r e i e c l u d e d in l o c o m o t o r f u n c t i r e te s t in g i A u t o m a t e d h i n d i i m ! m o v a m e n t s w e r e a n a l y z e d fo r eig h t w e e k s p o s t-c o n t u s i o n r n i n g t h e B a s e o - B e a t t i e - B r e e n a h a n ( f B B ) t e s t 23. Rats w e r e fa m il ia r i z e d wit h th e o p e n field befo re injury. T h r e e d a y s a f te r th e c o n t u s io n , j u s t b efo r e inj ec tio n , ra ts w e r e t e s t e d a n d t h o s e w ith a s co re a b o v e 5 w e r e r e m o v e d fr o m th e stu dy . Rats w e r e t e s t e d o n c e a w e e k fo r e i g h t w e e k s afte r th e i n jec tio n into th e c o n t u s io n e p i c e n t e r o v e r a p e riod o f 4 m in by tw o e x a m i n e r s o b li vio us o f th e t r e a t m e n t s . S p e c i fi c lo c o m o t io n - r e l a te d fe a t u r e s w ere assessed u sing th e BBB su b - sc o re 220. P a w p o sit io n (p arallel initiall y o r a t liftoff) a n d t o e c l e a r a n c e ( o c c a s io n a l, fr e q u e n t, o r c o n s i s t e n t ) for e a c h hind p a w , a n d th e tail p o s it io n (up, do w n) a n d trunk s ta b ili ty (yes, d e t e r m i n e d . T h e s c o r e s o f both lim b s a n d tail a n d trunk w a s s u m m e d no) w e r e ( m a x i m u m s co r e p o s s i b l e w a s 8). T h e p a t t e r n o f lo c o m o t io n w a s a s s e s s e d u s i n g th e f o o t p r i n t a n a l y s i s which w a s m odified fro m t h a t o f D e M e d i n a c e l i a n d c o l l e a g u e s 99. H i n d p a w s w e r e inked a n d fo o t p r i n t s w e r e m a d e 92 Functional recovery after transplantation on p a p e r w ithin a r u n w a y o f a b o u t 1 m l e n g t h a n d 7 c m wid th . The; p r in t s w e r e u s e d to m e a s u r e s trid e le n g th , b a s e o f s u p p o r t , nnd a n g le o f paw/ r o tatio n . A v e r a g e v a l u e s p e r paw/ w ene c a lc u l a t e d fr o m a t l e a s t 5 s e q u e n t i a l ste p n . V a ln e e fo r both p a w s w e r e a v e r a g e d . Stride; le n g th w a s d e f in e d h / th e d i s t a n c e b e t w e e n th e c e n t r a l p a d s o f tw o c o n s e c u t i v e p r in t s on e a c h sid e. B a s e o f s u p p o r t w a s d e t e r m i n e d by m e a s u r i n g t h e c o r e to c o re d i s t a n c e o f th e hind p a w s c e n t r a l p a d s . Limb) r otation was d e f in e d by t h e a n g l e f o r m e d by th e i n t e r s e c t i o n o f th e line th rou gh th e prin t o f th e third digit nn d th e p r i n t r e p r e s e n t i n g th e m e t a n a r s o p h a l a n g e a l i o i n t a n d th e line shro u gh th e c e n t ra i p a d p a ra lle l to th e walki n g d irectio n . F o o t p r i n t t e s t i n g w a s p e r f o r m e d a t 4 a n d 8 w e e k s afte r t r a n s p l a n t a t i o n a t w h ic h t i m e s all ra ts e xhibited w e i g h t s u p p o rt . S e n s o r i m o t o r fu n ctio n o f th e h i n d li m b s w a s a s s e s s e d a t four a n d eight w e e k s post c o n t u s io n u s i n g t h e h o riz o n t a l la d d e r t e s t 218. W e u s e d a 1 0 0 c m lo n g h o riz o n t a l la d d e r which t h e rats c ro v se d t h re e t fm e s e a c h t est. T h e pa s s a g e s w e r e v i d e o t a p e d a nd la ter p l a y e d b ac k for a c c u r a t e e v a lu a t io n . O nly th e m i d d le 6 0 c m o f th e la d d e v w e s u s e d fo r m e a s u r e m e n ts. S m a ll (foot: o r p a r t o . foo t), m e d i u m (foot a n d p a r t o f lo wer leg), a n d la rg e (full leg) s lip s w e r e c o u n t e d a n d e x p r e s s e d a s a p e r c e n t a g e o f th e to tal n u m b e r o f s t e p s . Testing o f sensory function M e c h a n i c a l allo d yn ia w a s d e t e r m i n e d by m e a s u r i n g fo o t w it h d r a w a l in r e s p o n s e to a n o r m a lly i n n o c u o u s m e c h a n ic a l s t i m u lu s a p p l i e d wit h an (ele ctr on ic) v o n Frey a n e a s t h e s i o m e t e r 69, 70. D u r in g th e t e s t , ra ts w e r e in a p l e x i g la s b o x wit h an e l e v a t e d m e s h floor. T h e rats w e r e a c c l i m a t e d fo r 5 m in b efo r e t e s t i n g . T h e von Frey tip w a s a p p l i e d p e r p e n d i c u l a r l y to th e midp l a n t a r a r e a o f e a c h hind p a w a n d d e p r e s s e d until p a w w i t h d r a w a l, a t wh ic h t i m e th e p r e s s u r e (in g) w a s r e c o r d e d (3 t i m e s e a c h te s t ). T h e v a l u e s fo r b o t t p a w s w e r e a v e r a g e d . W it h d raw al r e s p o n s e to a n o r m a l ly i n n o c u o u s h e a t s o u r ce , a p p l i e d u s i n g a H a r g r e a v e ' s h e a t s ou rce, w a s u s e d to t e s t th e r m a l h y p e r a l g e s i a 160. T h e rats w e r e k e p t in a p l e x i g la s box with a n e l e v a t e d m e s h floor for 5 min to a c c l im a t e . T h e r a d i a n t h e a t s o u r c e v^th c o n s t a n t i n t e n s it y w a s a i m e d a t th e m i d - p l a n t a r a r e a o f e a c h hind pawn. T h e t i m e Sin sec) fro m ¡nitial h e a t s o u r c e a c tiv a tio n to p a w w i t h d r a w a l w a s reco rd ed . A s e c o n d und third m e a s u r e m e n t w u s p e r f o r m e d 5 a n d 1 0 m in la ter. T h e v a l u e s fr o m both p v w s w e v e evenn ged. Statistical analysis O ne-w ay an alysis o f variance (AN O V A ) fo ll ow ed by F i s h e r 's p r o te o fe d le u s t - s i g n i n c a n t d iff e re n c e ( P L S D ) t e s t w a s u s e d to d e t e r m i n e s tatis tic al p iff e r e n c e s b e t w e e n g r o u p s . In c a s e o f u n e q u a l v a r i a n c e (F te s t ), a n o n p a r a m e t r i c a n a l y s i s (Kruskal-Wallis t e s t fo llo w ed by M a n n W h i tn e y U-test) w a s u se d . S t a ti s ti c a lly s ig n i fi c a n t d if f e r e n c e s w e r e a c c e p t e d a t P < 0 . 0 5 . 93 Chapter 6 RESULTS Surgery data Forty -e ight ra ts w e r e inc lu ded in th is study. All r a ts w e r e c o n t u s e d a n d t h re e d a y s la ter i n je c te d with B M S C / D M E M ( n = 1 7 ) o r D M E M o n ly ( n = 2 2 ) into th e c o n t u s io n e p i c e n t e r . T w o r ats died p rior to th e t r a n s p l a n t a t i o n s u rgery. S e v e n r a ts w e r e r e m o v e d fr o m th e s tu d y b e c a u s e th eir B B B s c o r e w a s h ig h er th a n 5 a t 3 d a y s p o s t - c o n t u s i o n (n=5) o r th eir i m p a c t p a r a m e t e r s w e r e o v e r 5 % o f f fro m th e i n t e n d e d v a l u e s ( n = 2 ) . N o n e o f th e i n je c te d rats died d u rin g th eir survival per io d . B M S C transplants did not improve open field locomotor ability A u t o m a t e d o p e n field l o c o m o t o r fu n ctio n w a s e v a lu a t e d u s i n g th e B B B t e s t 23, 24 a n d a n a l y z e d u s i n g t w o - w a y A N O V A , which did n o t s h o w a n y d i ff e r e n c e s b e t w e e n t r e a t m e n t g r o u p s a n d th e control g r o u p . T h e a v e r a g e B B B s c o r e o f con tro l ( D M E M / s a l i n e ) rats w a s 1 1 . 0 ± 0 . 0 (SEM ) a t e i g h t w e e k s after i n jec tio n into th e c o n t u s io n . T h e o th e r g r o u p s had s im il a r s c o r e s ; 1 1 . 4 ± 0 . 2 for th e B M S C / s a l i n e g r o u p , 1 1 . 1 ± 0 . 1 fo r th e D M E M / C s A g r o u p , a n d 1 0 . 9 ± 0 . 1 fo r th e B M S C / C s A g r o u p (Fig. 1A). All rats r e a c h e d th e p l a t e a u s c o r e o f 11 a t 3 -4 w e e k s p o s t - i m p a c t , w h ic h w a s c o n s i s t e n t with p r e v io u sly p u b lis h e d d a t a fo r rats wit h a s im il a r c o n t u s i o n o n l y 60. T h e s c o r e o f 11 refle c ts th e ability to s u p p o r t th eir w e i g h t on th eir h i n d li m b s a n d to m a k e fr e q u e n t ly to c o n s i s t e n t l y p l a n t a r s t e p s w i t h o u t f o r e lim b -h in d lim b c o o r d in a t io n . B M S C transplants increased open field locomotion-related features (BBB sub-score). T h e s e n s itiv ity o f th e B B B s c a l e c a n b e i n c r e a s e d by e v a lu a t in g ind ividual c h a r a c t e r is ti c s o f lo c o m o t o r fu n ctio n u s i n g th e B B B s u b - sc o rin g s c a l e 220. T w o -w a y A N O V A s h o w e d s ig n i fi c a n t d iff e r e n c e s a c r o s s t r e a t m e n t g r o u p s (F (3,252) = 55.6; p < 0 . 0 0 0 1 ) . For control rats th e B B B s u b s c o r e w a s 1 . 4 ± 0 . 3 (SEM ) a t e i g h t w e e k s a fter in je c tio n . R a ts with a B M S C t r a n s p l a n t exhib ited a s c o r e o f 5.7 ± 0 . 3 w h ic h reflec te d a s ig n i fi c a n t 4-fold i n c r e a s e c o m p a r e d to c o n tr o ls T h e d iff e r e n c e b e t w e e n t h e s e B M S C tr e a t e d rats a n d c o n tr o ls b e c a m e s ig n i fi c a n tl y n o t ic e a b le s t a r t i n g t h re e w e e k s po st-transplantation (Fig 1 B ) . Betw een three and six w e e k s af ter t r a n s p l a n t a t i o n , C s A t r e a t e d rats had h ig h er s u b - sc o re s t h a n c o n tr o ls but this effect w a s no lo n g e r p r e s e n t a t s e v e n o r a t e i g h t w e e k s . T h e s c o r e s in rats w ith B M S C a n d C s A w e r e not d iffere n t fr o m co n tr o ls. 94 Functional recovery after transplantation " B M S C /s a lin e - DIVlEEM/C:ss^O - B M S C /C s A " D M E M /s a lin e 1w Tim e after Contusion B 2w 3w 4w 5w 6w 7w 8w Tim e after C ontusion Fig. i . BM SC did not improve automated hind limb movements in the open field but enhanced locomotion-related features. Automated hind limb movements were assessed using the BBB scale and locomotion-related features were assessed using the BBB Sub-scoring scale. A. None o f the groups demonstrated improved BBB scores over that of the controls. B. Rats w itha BMSC transplant only (squares) reached significant higher scores than rats with controls with DMEM injections (circles), rats with DMEM injection and CsA treatment (quadrilaterals), and rats with BMSC transplants and CsA treatment (triangles). In both graphs the error bars indicate the standard deviation of the mean. Single asterisks: significant difference between BMSC/saline group and DMEM/saline (control) group (p<0 .0 5 at 3 and 4 weeks; p<o.oi at 5-8 weeks). Double asterisks: significant difference between BMSC/saline group and DMEM/CsA and BMSC/CsA grou p (p<0 .0 5 at 5 and 6 weeks; p<o.oi at 7 and 8 weeks). Number sign: significant difference between DMEM*/CsA group and DMEM/saline group) (p<0.05 at 4-8 weeks). Section sign: si gnificant difference between BMSC/CsA group and DMEM/saline group (p<o.oi a t 4 -8 weeks). B M S C transplants improved some aspects o f the pattern o f locomotion F o o t p r i n t a n a l y s i s w a s u s e d to i n v e s t i g a t e c h a n g e s in strid e le n g th , b a s e o f s u p p o r t , an d a n g l e o f p a w r otatio n w h ic h ar e f e a t u r e s o f th e p a t t e r n o f lo c o m o t io n . .Ait e i g h t w e e k s af ter in je c tio n into th e c o n t u s io n , o n e - w a y A N O V A s h o w e d no d i ff e r e n c e s a m o n g g r o u p s in str id e le n g th (F (3.14) = 1 . 1 7 ; p = o . 3 5 ; Fig. 2A) or in b a s e o f s u p p o r t (F (3.17) = 1 . 9 4 ; p = 0 . 1 6 , Fig. 2 B ). O n e - w a y A N O V A did revea l d i ff e r e n c e s in a n g l e o f hind p a w r o tatio n (F (3,115) = 8 . 2 9 ; p = 0 . 0 0 2 , Fig. 2 C ). T u key p o s t - h o c c o m p a r i s o n sOowed t h a t a B M S C t r a n s p l a n t result;, in a 2 6 % s m a l l e r a n g l e o f r otatio n (M = 1 9 . 7 ; 9 5 % CI [18 .7, 2 0 .7 ]) th an (control a n im a lh (M/I = 2 6 .5 ; 9 5 % CI [ 2 6 . 0 , 2 7 .0 ]; Fig. 2 C ). R a ts t h a t r e c e i v e d ChA had a 1 9 % s m a l l e r a n g l e o f r otatio n (M = 2 1 .5 ; 9 5 % CI [20 .5, 22.5]; Fig. 2C) c o m p a r e d to c o n tr o ls an d rats t h a t r e c e i v e d th e c o m b in a t i o n o f B M S C a n d C s A s h o w e d a 3 6 % s m a l l e r a n g l e o f r otatio n (M = 1 6 . 9 ; 9 5 % CI [1 5 .9, 1 7 .9 ]; Fig. 2C). 95 Chapter 6 140 • 120 ■ : _ 100 ■ UJ 80 ■ ? E E M 40 ■ 20 ■ . A BM SC saline DMEM C sA BM SC C sA DMEM saline Fig. 2 . (left) BM SC transplants improved some aspects o f locomotion pattern. We applied the footprint analysis to assess specific characteristics of locomotion pattern. A. The average stride length was not different between groups. B. The average base of support was decreased at 4 and 8 weeks in rats that received a BMSC transplant compared to rats that rteceived a DMEM injection (asterisks, p<0 . 05 ). There were no differences between the other groups. C. The average angle of hind paw rotation was decreased at 4 and 8 weeks in the BMSC/saline (asterisks, p<0 . 0 5 ), DEME/CsA (number signs, p<0 . 0 5 ), and BMSC/CsA (section signs, p<0 . 0 5 ) group. There were no differences among the groups that received BMSC and/or CsA treatment. In all three graphs the error bars indicate the standard deviation o f the mean. 35 ■ c —- 30 ■ .2 2 25 J +S lil 25 +l 20 15 '« 10 ■ 5 - c C BM SC saline DMEM C sA BM SC C sA DMEM saline B M S C transplants improved sensorimotor function. After a c o n t u s io n inju ry to th e s p i n a l cord, rats ex hibit i m p a i r e d i n t e g r a t i o n o f s e n s o r y an d m o t o r in p u t s. C h a n g e s in s e n s o r i m o t o r fu n ctio n w e r e t e s t e d with a h o riz o n t a l la d d e r 2’8 by c o u n t i n g th e n u m b e r o f s lip s o f f th e r u n g s by th e r a t's hind p a w ( sm all sli p), hind p a w an d p a r t o f leg ( m e d i u m slip) or w h o l e hi nd leg ( large slip). T h e n u m b e r o f slip s w e r e q u a n tifie d a n d e x p r e s s e d a s a p e r c e n t a g e o f th e to tal n u m b e r o f s t e p s . T h e a v e r a g e n u m b e r o f s t e p s w a s ’ 5 .0 ± 0 . 3 a t e i g h t w e e k s . O n e - w a y A N O V A s h o w e d s i g n i f i c a n c e s a c r o s s g r o u p s (F (3,23) = 4 2 . 7 ; p < 0 . 0 0 0 ’ ). C o ntro l rats m a d e s lip s in 7 0 . 3 ± 4 . 7 % o f th eir s t e p s a t e i g h t w e e k s (Fig. 3), w h ic h 96 was s ig n i fi c a n tl y d iffe re n t fr o m BMSC tr e a t e d an im als, who showed a 70 % Functional recovery after transplantation i m p r o v e m e n t (IVI = 2 1 . 4 ; (ill [1 8.8, 2 4 .0 ] ; (Fig. 3). Fiats with B M S C a n d C s A t r e a t m e n t s h o w e d a 52 % i m p r o v e m e n t Irons c o n tr o ls (M = 33.8; CI [3 1.2, 3 6.4]) a n d rats t h a t r e c e i v e d C s A t r e a t m e n t o n ly s h o w e d a 2 6 . 6 % i m p r o v e m e n t fr o m c o n tr o ls (M = 52.3; CI [49 . 6 ,5 5 .0 ^ . M 120 ÎÈ [H BM SC/sali ne W 100 +l □ DMIEM/CsA LU < /> Q. 0) </> 75 •*—1 £o 80 07 BM SC/C s A ■ DMEM/saline 60 40 in = w 20 0 s m all m ed iu m large slips/step F'g. 3. Presence o f a BM SC transplant improved performance on the horizontal ladder. The number o f small, medium, and large slips was assessed individually. These numbers were also added and expressed as a percentage o f the total number o f steps necessary to cross the horizontal ladder. The assessment was done at 8 weeks post-transplantation. Rats with a BMSC transplant (white bar) had a significant better performance (i.e., lower percentage of slips/steps) than control rats (black bars) (asterisks, p<0 . 0 5 ). This was also the case for rats with CsA treatment (dark gray bars) and rats with BMSC and CsA (light gray bars). The error bars indicate the standard deviation of the mean. B M S C transplants improved recovery fro m mechanical ailodynia. After a th o r a c ic c o n t u s iv e s p i n a l cord inju ry rats d e v e l o p allo d y n ia o f th e hi nd p a w s . Ain (ele ctronic) v o n Frey a n e a s t h e s i o m e t e r 69, 70 w a s u s e d to t e s t w h e t h e r a B M S C t r a n s p l a n t w o u ld b e b e n e fic ia l fo r r e c o v e ry fr o m m e c h a n ic a l (tactile) a l l o d y n i a . O n e - w a y A N O V A (F (3,23) = 24 .4 ; p < o .o o o i ) a n d T u k e y 's post- ho c c o m p a h i s o n s s h o w e d t h a t a t eigha w e e k s p o s t t r a n s p l a n t a t i o n , a n i m p r o v e m e n t o f 2 1 % in r e c o v e ry fr o m m e c h a n ic a l al l t d y n i a w a s o b s e r v e t in rats wit h a B M S C t r a n s p l a n t s (M = 8 8 . 0 ; CI [8 5 .8 ,9 0 .2]), co m p a r e d to c o n tr o ls (IV1 =. 5 8.2; CI [56.5, 59.9]; Fig. 4A ). T r e a t m e n t wit h C s A (M = 7 2.8 ; Cl [7 0 .2 , 75.4]) o r B M S C a c d C s A c o m b in e d [ M = 7 0 . 7 ; CI [ 6 9 . 6 , 7 1.8 ] did n o t c h a n g e th e w i t h d r a w a l r e s p o n s e c o m p a r e d to c o n tr o ls (Fig. 4A). 97 Chapter 6 120 .2 100 f 80 <s * Hi 60 E +l « £ 40 U(Q 2 3 20 0 BMSC saline A DMEM CsA BMSC CsA DMEM saline 9 8 ^ 7 5^2 6 ■^w 6 Ow c g +l 5 Si I ^O 4 3 h -S 2 1 0 B BMSC saline DMEM CsA BMSC CsA DMEM saline Fig. 4 . Presence o f a BM SC transplant decreases mechanical and thermal allodynia. Allodynia o f the hind paws was assessed using a von Frey aneasthesiometer (A) and a Hargreave’s heat source (B) at 8 weeks post transplantation. A. Rats with a BMSC transplant but none of the other treatment groups had significantly higher response times (i.e., lowered (improved) hyper-sensitivity) to a mechanical (tactile) hind paw stimulus compared to the control rats (asterisks, p<0 . 05 ). B. The response times of rats with a BMSC transplant was significantly higher than in controls (asterisks, p<0 . 0 5 ), which indicated lowered (improved) hyper-sensitivity to a thermal hind paw stimulus. In both graphs the error bars indicate the standard deviation o f the mean. 30 B M SC sa lin e DMEM C sA BM SC C sA DMEM sa lin e Fig. 5. The presence o f a BM SC transplant improved the amount o f spared tissue. The volume of spared tissue was assessed at 8 weeks post-transplantation and expressed as a percentage of the volume of an uninjured comparable spinal cord segment. We found that rats with a BMSC transplant had significantly more spared tissue than control rats (asterisks, p<0 . 0 5 ) . The other treatment groups were not different from the control group. The error bars indicate the standard deviation of the mean. 98 Functional recovery ^fte r transfDlsintsition B M S C transplants improved recovery fro m thermal allodynia C o n t u s e d rats a lso d e v e l o p th e r m a l allo d y n ia , w h ic h c a n be m e a s u r e d with a H a r g r e a v e ' s h e a t s o u r c e ’60. O n e - w a y A N O V A s h o w e d d i ff e r e n c e s a c r o s r g r o u p s (F ( 3 . 2 3 = 2 0 .7 ; p < o . o o o ’ ). Fiats; w it S a s o n t u s i o n o n l y (no t r e a t m e n t ) w i t h d r e w th eir hind p a w s a t 6 . ’ ± 0 . 3 s (Fig. 4B ) . Rats t h a t r e c e i v e d th e B M S C t r a n s p l a n t w i t h d r e w th e ir hind p a w a t 7 . 6 ± 0 . 3 s wh ic h r e p r e s e n t e d a 2 5 % i m p r o v e m e n t o ver c o n tr o ls (Fig 4 B ). T h e o t h e r g r o u p s w e r e n o t d i ff e re n t fr o m th e control group) (Fig 4B ). B M S C transplants elicited tissue sparing. S p a r e d t i s s u e v o l u m e s a t th e c o n t u s io n sit e were m e a s u r e d a t e i g h t w e e k s after i n jec tio n into t h e c o n t u s io n using; S t e r e o I n v e s t i g a t o r ® s o f tw a r e ( M B F B io s c i e n c e ) in a b lin d e d f a s h i o n . For all m e a s u r e m e n t s th e Coefficient; o f Error ( G u n S e r s e n C o eff ic ient) w a s < 0 .0 5 . T he volum es w e r e e x p r e s s e d a s a p e r c e n t a g e o f th e v o l u m e of7a c o m p a r a b l e s e g m e n t o f a n a iv e (unin ju re d) s p i n a l cord. O n e - w a y A N O V A s h o w e d difhere n c e s s c r o s s g r o u p s (F (3,’ 9 ) = 2 0 . 7 ; p = o . o o o 5 ) In control rats (c o n t u sio n only) th e v o l u m e of7 s p a r e d t i s s u e w a s ’ ¿4.9) ± ’ .6 % (SE M ) o f t h a t o f an u n in ju r e d s p i n a l cord (Fig. 5). With a B M S C t r a n s p l a n t th e v o l u m e w a s 2 4 . 8 ± ’ . 4 % , wh ich represented a s ig n i fi c a n t 6 6 % i n c r e a s e in s p a r e d t i s s u e v o l u m e c o m p a r e d to c o n tr o ls (p<o.c>5; Fig. 5). In rats with d a il y C s A t r e a t m e n t t h e s p a r e d t i s s u e v o l u m e w a s ’ 7 .8 ± ’ .7 % a n d ia ra ts wit h a B M S C t r a n s p l a n t a n d C s A tr e s l m e n t th e v o l u m e w a s ’ 9 . 2 ± ’ .6 % o f t h a t o f a n u n i n ju r e d s p in a l cord s e g m e o t (Fig. 5). T h e v o l u m e s ie t h e s e t w o g r o e p s w e r e s im il a r a s t h e v o l u m e in c o n tr o l rats. CoorelatioEs between tissue sparing and motor and sensory function. T h e r e l a t i o n s h i p b e t w e e n t i s s u e s p a r i n g e n d m o t o r a n d s e n s o r y fu n ctio n p e r t r e a t m e n t g r o u p (Tabl e ’ ) an d p e r fu n ctio n (Tab le 2) w a s a s s e s s e d u s i n g th e p e a r s o n c o r r e la t io n c o e f fic ie n t (r). B M S C t r a n s p l a n t a t i o n r esu lte d in s s t r o n g a s s o b a S.on (r > 0 .7 5) b e t w e e n t i s s u e o p a r i n g an d BIBB sub-sco re, h a r i z o n ta l la d d e r w a lk in g , a n g l e erf7 r otatio n, a n d m e c h a n i c a l allod yn ia . A m o d e r r te associa tion (a > 0 . 5 0 , < 0 .7 5) w a s fo u n d b e t w e e n t i s s u e s p a r i n g a n d th e rm a l allo d yn ia (Tnble ’ ). With C s A t f e a t m e n t t i s s u e s p a t i n g w a s s t r o n g ly a s s a c i a t e d wit h th e a n g l e o f r otatio n, m o d e r a t e l y wit h B B B sub-sc ore , a n d w e a k l y (s < 0.5(0) with h o rizo ntal la d d e r w a lk in g , m ech an ical allo d y n ia , an d th e r m a l allo d y n ia (Table 1). With both BMSC t r a n s p l a n t a t i o e a n d C s A t r e a t m e n t t i s s u e s p a r i n g w a s s . r o e g l y a s s o c i a t e d with th e a n g l e o f ro tatio n , m o d e r a t e l n w i t h th e B B B sun-sco re, h o rizo n tal la d d e r w a lk in g , a n d th ern fal allo d yn ia , and w eak ly w XE m e n h a n ic a l allo d y n ia (Table 1). In o u r control rats 'tine r e ln ti o n s h ip w a s s t r o n g b e t w e a n t i s s u e s p a e i n g a d d th e r m a l alln d yn ia bot w e a k fo r all o th e r f n n c t i o n s l If7 all fo ur t r e a t m e n t g r o u p s w e r e p o o le d t o g e t h e r p e r s p e c if ic hunction (Tabln 2), t i s s u e s p ar i n g w a s s tr o n g ly a s s o c i a t e d .with BIBB s x b - s c o r e (Fig. 6A), m o d e r a t e ln a s s o c i a t e d with 99 Chapter 6 ho riz o n t a l la d d e r w a lk in g (Fig. 6 B ) , a n g l e of7 r otatio n (Fig. 6C), a n d th e rm a l a l lo d y n ia (Fig. 6 D ) , a n d w e a k l y a s s o c i a t e d with m e c h a n i c a l allo d yn ia (Fig. 6 E ) . 35 r = 0.85 30 ♦ ♦ = 25 8 20 : ♦ I ♦ ♦ Ϋ 3 10 H 5 0 0 1 2 3 4 5 6 B B B su b -score 8 7 0 20 40 60 80 100 Horizontal ladder (% slips/steps) 35 r = -0.73 30 r = 0.57 .E 25 | 20 ♦ ♦ ♦ ♦♦ ♦ <D 15 13 « 10 V) F ♦ ♦ ♦ H+t ♦ ♦ 5 0 0 5 15 10 20 25 30 A ngle o f rotation (degrees) 35 30 Fig. 6. The amount o f tissue sparing correlated with motor and r = 0.39 ♦ ♦ .E 25 8 20 Q. </> 15 0) 3 10 ♦ ♦♦ ♦ ♦ % ♦ ♦ I-- 5c 0 0 20 40 60 80 100 M echanical allodynia (grams) 100 0 1 2 3 4 5 6 7 8 9 Thermal allodynia (sec) sensory outcomes. The relationship between tissue sparing and motor and sensory function (with all four treatment groups pooled) was assessed using the Pearson correlation coefficient (r). Correlations between tissue sparing and individual groups are described in text. Scattergrams show tissue sparing was strongly associated with (A) BBB sub-score, moderately associated with (B) horizontal ladder walking, (C) angle of rotation and (D) thermal allodynia, and weakly associated with (E) mechanical allodynia. Funct iona l r e c o v e r y afte r nspl antation Fu n ction Treatm ent BBB B M S C / saline 0.01 DMEM / CsA 0.35 DMEM / CsA B M S C / CsA - B M S C / CsA DMEM / saline - DMEM / saline - B M S C / saline 0.86 B M SC / saline 0.78 BBB Subsfore DMEM / CsA B M S C / CsA Horizontal Ladder slips/step r - B M S C / saline - 0.85 - 0.04 - 0.74 - 0.40 B M S C / CsA DMEM;/ / saiine Treatm ent Foot Print (anale) B M S C / saline MechanicaV Allodrnia 0.73 0.67 DMEM / saiine DMEM / CsA F u n c tio n DMEM / CsA B M S C / CsA DMEM / ¡saline; Thermal Allodrnia B M S C / saline DMEM / CsA B M S C / CsA DMEM / saline r -0.92 -0.96 -0.95 0.20 0.10 0.10 0.70 0.30 0.73 0.99 Table 1 . Correlation between tissue sparing motor and sensory function. The relationship between the different outcomes pertreatment group was determined by the Pearson correlation coefficient (r). Abbreviations: * r = Pearson correlation coefficient; BBB = Basso-Beattie-Bresnahan open field locomotor scale; BMSC = bone marrow stromal cells; CsA = cyclosporine; DMEM = Dulbecco’s minimal essential medium. * F u n ctio n r BB B B B E S u b s c o ro 0.85 Horizontal L a d d e r - 0.70 Fo o t Pric( (an gle) - 0.73 M ech an ica l Allodynia 0.39 T herm al Allodynia 0.57 Table 2 . Correlation between tissue sparing motor a n f sensoryfunction. The relationship between the different outcomes was determined per specific function by the Pearson correlation coefSicitnt (r). Abbreviafons: * f = Pearson correlation coeffitient; BBB = Batso-Beattie-Brestchan lecomotot scale. 101 Chapter 6 D ISC U SSIO N W e e v a lu a t e d l o c o m o t o r a n d s e n s o r y r eco v e ry in rats with a c o n t u s e d t h o r a c ic s p i n a l cord th at re c e iv e d a B M S C t r a n s p l a n t into th e e p i c e n t e r o f th e inju ry a t t h r e e d a y s p o s t - i m p a c t . T h e m a i n f i n d i n g in o u r s tu d y is t h a t th e p r e s e n c e o f a B M S C t r a n s p l a n t r esu lts in im p r o v e d m o to r a n d s e n s o r y fu n ctio n . Ra ts t h a t r e c e iv e d a B M S C t r a n s p l a n t had i m p r o v e d B B B s u b -sc o res, s m a l l e r a n g l e o f hind p a w r o t a tio n , im p r o v e d p e r f o r m a n c e on th e h o riz o n t a l la dder, a n d le s s h y p e r s e n s i t iv it y to m e c h a n ic a l a n d th e r m a l s tim u li . B M S C - t r a n s p l a n t e d rats did n o t b e n e fit fu n c t io n a lly fr o m d a il y C s A t r e a t m e n t . T h e a m o u n t o f s p a r e d t i s s u e a t th e c o n t u s io n sit e in B M S C -tran sp lan ted rats, but n o t in a n y o f th e o th e r g r o u p s , w a s i n c r e a s e d s ig n ific a n tly c o m p a r e d to c o n tr o ls. M o r e o v e r , rats wit h a B M S C t r a n s p l a n t s h o w e d a s t r o n g c o r r e la t io n b e t w e e n th e a m o u n t o f t i s s u e s p a r i n g a n d th e fu n c t io n a l o u t c o m e . O u r d a ta s u g g e s t th a t B M S C - m e d i a t e d t i s s u e s p a r i n g in th e c o n t u s e d ad u lt r at s p i n a l cord is i n t im a t e ly inv olved in r e c o v e r o f m o t o r an d s e n s o r y fu n ctio n. S o far, th e b e n e f i t s o f B M S C for m o t o r fu n ctio n r e s t o r a t io n had b e e n u n c l e a r a s se v e r a l s t u d i e s ,0, 385 463 w e r e at varian ce with e a r lie r reports th a t described m otor fu n ctio n i m p r o v e m e n t s ’ 69, 170 472 473. W e n o w d e m o n s t r a t e t h a t B M S C t r a n s p l a n t a t i o n h a s w i d e s p r e a d b e n e fi ts fo r m otor fu n ctio n r e s t o r a t io n a fter spinal cord c o n t u s iv e injury. A p o s s i b le m e c h a n i s m t h a t m a y u n d e r l ie t h e s e m o t o r fu n ctio n i m p r o v e m e n t s is B M S C -e l ic it e d n e rv o u s t i s s u e s p a r i n g 286, 304. In d e e d w e fo u n d t h a t rats with B M S C had i n c r e a s e d a m o u n t s o f s p a r e d tissue a t th e c o n t u s io n site and, in t e r e s t i n g ly , th is s t r o n g ly c o r r e la t e d wit h fu n ctio n a l outcom es. W e did n o t o b s e r v e a b e n e fic ia l eff ect o f t r a n s p l a n t e d B M S C o n a u t o m a t e d hind limb m o v e m e n t s a s a s s e s s e d in th e o p e n field (B B B - te s t) . A lso , B M S C t r a n s p l a n t s had no eff ect on str id e le n g th a n d b a s e o f s u p p o r t . A n a l y s i s o f o p e n field lo c o m o t io n with th e B B B - t e s t r e v e a le d t h a t all ra ts r e a c h e d a p l a t e a u o f a b o u t , , . Such a s c o r e fo r rats t h a t r e c e i v e d o n ly th e c o n t u s io n a n d n o t a B M S C t r a n s p l a n t a n d / o r C s A t r e a t m e n t is in a g r e e m e n t w ith a p r e v io u s p u b li c a t i o n 60. O u r o b s e r v a t i o n t h a t B M S C - t r a n s p l a n t e d rats did n o t exhibit im p r o v e d BBBs c o r e s o v e r co n tro l rats is in full c o n c u r r e n c e w ith p r e v io u s r e p o r t s ’0, 385 463 bu t in con flict with o t h e r s ’69, ’ 7°, 472, 473. T h e lack o f i m p r o v e m e n t s o f a u t o m a t e d w a lk in g in th e o p e n field is s u r p r i s i n g in light o f the observed im provem ents in s p e c if ic fe a t u r e s o f lo c o m o t io n , locom otor pattern, an d s e n s o r i m o t o r p e r f o r m a n c e . It a p p e a r s likely t h a t B M S C - i n i t i a t e d m e c h a n i s m s t h a t c a u s e th e o b s e r v e d i m p r o v e m e n t s w o u ld a l s o b e f u n d a m e n t a l to o p e n field a u t o m a t e d lo c o m o t io n . Future research will need to fo c u s o n th is u nexpected finding and e lu c id a te possible underlying m e c h an ism . W e fo u n d t h a t t h e p r e s e n c e o f a B M S C t r a n s p l a n t r e su lt e d in im p r o v e d r e s p o n s e s to m e c h a n ic a l a n d th e r m a l s tim u li to th e hind p a w s a t 8 w e e k s a fter t r a n s p l a n t a t i o n . T o our k n o w l e d g e this is th e first r e p o r t t h a t d e s c r i b e s e ffe ct s o f B M S C t r a n s p l a n t s in th e inju red 102 Functional recovery after transplantation ad u lt r at s p i n a l cord on s e n s o r y fu n ctio n r e s t o r a t io n . A p o s s i b l e m e c h a n i s m t h a t u n d e r l ie s the; i n c r e a s e d s e n s o r y fu n c t io n is t i s s u e s p a r i n g elicited by th e B M S C t e a n s p l a n t 286,3°4. W e did finp t h a t rata with B M S C had i n c r t a e e d a m o u n t s oh s p a r e d t i s s u e a t t h e c n n tu s i o n eite a n d , in teres ain gly, th is s t r o n g ly c o r r e la t e d w ith f u n c t io n a l o u t c o m e s . R a ts t h a t r e c e i v e d da ily C s A exhib ited im p r o v e d o u t c o m e s in s o m e o f th e m o t o r t e s t s but n o t in th e s e n s o r y t e s t s . O ve r a ll, the: C s A t r e a t m e n t did n o t b e n e f i t th e o u t c o m e in a n y o f th e fu n ctio n a l pests op B M S C - t r a n s p l a n t h d rats. P rev io u rly, it haa O c e t r e p o r t e d t h a t t e e a t m e n t with C s A s u p p o r t s c eilu lar a n d f u n c t io n a l r e p a i r a fter s f i n a l cord inju ry’77. H o w e v e r , w e did not o b s e r v e a n y such fu n c t io n a l b e n e f i t s o f C s A t r e a t m e n t in t r a n s p l a n t e d rats. A t p r e s e n t it is u n c le a r th ro u gh w h ic h m e c h a n i s m C s A t r e a t m e n t w o u ld in flu e n c e fu n c t io n a l g a i n s m e d i a t e d by t r a n s p l a n t e d B M S C . The presence fontu sion o f a B M S C tra n sp la n t increased site a t 8 w n e k s po st-transplantation th e a m o u n t o f s p a r e d t i s s u e a t th e cem pared to con tro l rats . This w a r not o b s e r v e d in t;he o t h t r t r e a t m e n t g r o u p s . Important;ly, c o r r e la t iv e a n a t y s i s r e v e a le d t h a t th e a m o u n t o f tisoue s p a r i n g w a s s t r o n g ly a s s o c i a t e d with fu n c t io n a l o u t c o m e in r a ts wit h a B M S C t r a n s p l a n t . T h e s e f i n d i n g s r e v e a le d t h a t B M S C - m e d i a t e d t i s s u e s p a r i n g in th e c o n t u s e d adult ra t s p i n a l cord is in t im a t e ly inv olved in re c o v e r o f m o t o r a n d s e n s o r y fu n ctio n. 103 7 Summary and general discussion. Chapter 7 S p in a l cord inju ry (SCI) resu lts in n e r v o u s t i s s u e lo ss a n d i m m e d i a t e f u n c t io n a l i m p a i r m e n t s . E n d o g e n o u s r e p a r a t i v e e v e n t s o cc u r w ithin th e d a m a g e d s p i n a l cord but g e n e r a l l y t h e y do not r esu lt in m e a n i n g f u l r e s t o r a t io n o f fu n ctio n . T hus, S C I - m e d i a t e d lo s s o f fu n ctio n is p e r m a n e n t a n d p e o p l e w h o e x p e r i e n c e SCI m a y b e d e s t i n e d to s p e n d th e r e m a i n d e r o f th eir lives in a w h e e lc h a i r . A p p r o a c h e s a i m e d a t r e p a i r i n g th e s p i n a l cord a n a t o m i c a l l y a n d fu n c t io n a lly ar e b e i n g i n v e s t i g a t e d in la b o r a to r ie s a r o u n d th e w o rld . S o m e o f th e m o r e p r o m i s i n g a p p r o a c h e s a r e b e i n g t e s t e d in th e c linic but s o fa r n o n e o f t h e s e h a v e e m e r g e d a s o n e t h a t r e v e r s e s th e d e v a s t a t i n g f u n c t io n a l c o n s e q u e n c e s o f SCI. One of th e poten tial treatm en ts that c ould support spinal cord repair is th e t r a n s p l a n t a t i o n o f cells t h a t a r e k n o w n to c o n tr ib u t e to cellu la r, a n a t o m i c a l , a n d fu n ctio n a l r e s t o r a t io n . B o n e M a r r o w S t r o m a l C e lls ( B M S C ) h av e r e c e i v e d a m p l e a t t e n t i o n fo r their p r e s u m e d p o t e n t i a l to r e p a i r c e n t r a l n e r v o u s s y s t e m (CN S) le s i o n s . An i m p o r t a n t a d v a n t a g e o v e r o th e r ce llu la r c a n d i d a t e s fo r s p i n a l cord r e p a i r is t h a t B M S C c a n b e o b t a i n e d fro m rou ti n e b o n e m a r r o w b i o p s i e s fr o m th e p a t i e n t . T his a d v a n t a g e a l lo w s fo r a u t o lo g o u s t r a n s p l a n t a t i o n in w h ic h reje c tio n o f th e t r a n s p l a n t e d c ells m a y b e m i n i m a l. T h e overall g o a l o f th is th e s i s w a s to i n v e s t i g a t e th e p o t e n t i a l a n d suita bil ity o f B M S C to r e p a i r th e in ju red s p i n a l cord. T his w a s a d d r e s s e d in a s e r i e s o f e x p e r i m e n t s t h a t fo c u s e d on ra t B M S C g e n e profi li ng, B M S C survival a fter t r a n s p l a n t a t i o n , a n d th e ir eff ects on t i s s u e s p a r i n g a n d o n l o c o m o t o r a n d s e n s o r y fu n ctio n r e s t o r a t io n . For th e in vivo e x p e r i m e n t s a rat s p i n a l cord c o n t u s io n m o d e l s y s t e m w a s e m p l o y e d to m i m i c th e m o s t fr e q u e n t ly o cc u rr in g t y p e o f h u m a n s p i n a l cord injury. In th e fo ll o w in g s e c t io n , th e m a i n r e su lt s fr o m t h e s e s tu d ies a r e s u m m a r i z e d a n d d i s c u s s e d in light o f w h a t is k n o w n fr o m th e c u r r e n t li te r a t u r e a n d w h a t w o u ld be n e c e s s a r y to a c h i e v e a n a t o m i c a l a n d fu n c t io n a l r e p a i r o f th e s p i n a l cord. In C h a p t e r 1, SCI a n d a v a rie t y o f re la t e d a s p e c t s a r e in tro d u c ed . In th e U n ited S t a t e s th e i n c id e n c e a n d p r e v a l e n c e o f SCI h a s b e e n stu died in d e p t h . A n n u a l ly , a p p r o x i m a t e l y 1 1 , 0 0 0 n e w c a s e s o f SCI o cc u r in th e US. T h e s iz e o f th e g r o u p o f s p i n a l cord inju red p e o p l e in th e US h a s c o n s e r v a t i v e l y b e e n e s t i m a t e d b e t w e e n 2 5 0 , 0 0 0 a n d 4 0 0 , 0 0 0 . L e s s is k n o w n a b o u t th e i n c id e n c e o f SCI in E u r o p e a n d T h e N e t h e r l a n d s . M a i n l y b e c a u s e o f th e la r g e v ariab ili ty a m o n g SCI it is difficult to d e f in e t h e b e s t clinical p r a c tic e . D u r in g th e e ar ly p h a s e , t r e a t m e n t s t h a t s t a b i li z e th e p a t i e n t ' s health a n d a t t e m p t to limit th e overal l lo s s o f tis s u e / f u n c t i o n n e e d to be i m p l e m e n t e d . O p t i m a l t r e a t m e n t n e e d s to be d e t e r m i n e d o n a c a s e - t o - c a s e b a s i s . D e c o m p r e s s i o n s u r g e r y w ith o r w i t h o u t fixation o f th e s p i n a l c o l u m n m a y a c c e l e r a t e f u n c t io n a l i m p r o v e m e n t s a n d resu lt in s h o r t e r h o sp ital an d reh a b ilita t io n p e r i o d s . A s lo n g a s p r o p e r clinical trials h a v e n o t b e e n e x e c u t e d th e effects o f t h e t i m i n g o f d e c o m p r e s s i o n s u r g e r y will r e m a i n elu siv e. 106 Sum m ary and general discussion P h a r m a c o lo g i c a l t r e a t m e n t s to limit s e c o n d a r y injury a f te r th e initial d a m a g e h a v e b e e n stu died in t e n s iv e ly . B e s t -k n o w n is t r e a t m e n t with high d o s e m e t h y l p r e d n i s o l o n e ( M P ) . T h e effects o f M P in p a t i e n t s wit h SCI w e r e i n v e s t i g a t e d in 3 c o n s e c u t i v e N a t i o n a l A c u t e S p i n a l Cord Injury S t u d i e s ( N A S C I S ) . T h e r esu lts d e m o n s t r a t e d t h a t a c u t e M P t r e a t m e n t r e su lt e d in n e u r o lo g ic a l i m p r o v e m e n t s u p to 6 m o n t h s a f te r injury a n d , a s a resu lt o f t h e s e fi n d i n g s , M P w a s th e s t a n d a r d o f c a r e for m a n y y e a r s . H o w e v e r , a fter a th o r o u g h re v ie w o f th e resu lts from t h e N A S C I S s tu d ie s a n d a m o r e c o m p r e h e n s i v e a s s e s s m e n t o f th e b e n e fi t s a n d risks involved in high d o s e M P - t r e a t m e n t , th e t h e r a p e u t i c b e n e fi ts o f M P t r e a t m e n t h a v e b e e n d is cr ed ited . E s p e c i a lly in p a t i e n t s with c o m p l e t e SCI high d o s e ster o id t r e a t m e n t c a n le a d to a d v e r s e effects such a s m yopathy and w ound infe ctio n t h a t m a y n e g a t i v e l y i n fl u e n c e fu n ctio n a l o u t c o m e a n d in s o m e c a s e s m a y b e life - th r e a t e n i n g . Cu rren tly, m o s t cli nics h av e d i s c o n t i n u e d t h e ‘ s t a n d a r d ' a c u t e a d m i n i s t r a t i o n o f M P a f te r SCI. C h ap ter 1 a l s o in t ro d u c e s s t e m c e lls (SC) a s a p o t e n t i a l t h e r a p y fo r SC I. O v e r th e la st y e a r s , S C h a v e g a i n e d a t t e n t i o n in th e field o f o r g a n r e p a i r a n d o r g a n o g e n e s i s . E m b ry o n ic s t e m c e lls (ESC) ar e th e c e lls within th e i n n e r cell m a s s o f th e b la st o c y s t. D u r in g d e v e l o p m e n t t h e s e c e lls a r e r e s t r a i n e d to g e r m la y e r s w h e r e th eir fa t e is d ir e c t e d . U n d i ffe r e n t i a t e d SC-like c ells c a n b e fo u n d a m o n g d iff e r e n ti a t e d c e lls o f a s p e c if ic t i s s u e a fte r birth. T h e s e c e lls ar e kn o w n a s ad u lt SC , alth o u g h a b e tt e r te r m w o u ld be ‘ s o m a t i c S C ' s i n c e th e y a r e a l s o p r e s e n t in children a n d umbili cal cords. It h a s b e e n r e p o r t e d t h a t S C a r e a b le to c r o s s g e r m la y e r s in vitro given th e right ‘ in d uctio n cocktail' o f grow th fa ctors. Even th o u g h this is still pro fo u n d ly debated am ong s c i e n t i s t s , th is p r e s u m e d potential has open ed m any n e w a v e n u e s for r e s e a r c h in d iffe re n t d is c i p l in e s . O n e o f th e i s s u e s t h a t s u r r o u n d th e u s e o f E S C is th e t i m e p o i n t a t w h ic h w e h a r v e s t th e c ells fr o m th e e m b r y o . C a n a t t h a t t i m e th e e m b r y o in fa c t b e c o n s i d e r e d to be alive, to be a p e r s o n ? D i s c u s s i o n s on w h a t c o n s t i t u t e s ‘ life' a n d w h e n ‘ life' s ta r ts a r e o ften i n t e n s e a s th ey a r e driven by m o r a l c o n c e r n s fu e le d by re lig io u s a n d politic al id e a s . T h e s e i s s u e s n e e d to be a d d r e s s e d w ith r e s p e c t to all o p p o n e n t s . Ethical i s s u e s t h a t s urrou n d th e u s e o f S C involve p o s s i b l e m i s u s e , such a s with t h e r a p e u t i c c lo n i n g a n d g e n e t i c m a n i p u l a t i o n . A d u lt S C h av e le s s ethical b a r r ie r s a n d a r e t h e r e f o r e i n t e r e s t i n g c a n d i d a t e s fo r i n t e r v e n t i o n p a r a d i g m s . C h ap ter 2 r e v i e w s th e u s e o f B M S C s in n e u r o s c i e n c e in g e n e r a l a n d fo r r e p a i r o f th e inju red s p i n a l cord s p ecific all y. B M S C a r e m e s e n c h y m a l SC-lik e c ells t h a t r e s i d e in th e b o n e m a r r o w . This p a rt ic u la r lo c atio n a l lo w s fo r e a s y h a r v e s t fro m th e p a t i e n t a n d , c o n s e q u e n t l y , for a u t o lo g o u s t r a n s p l a n t a t i o n w ith m i n i m a l r e je c tio n . Ethical i s s u e s a r e a l s o u n d e r m i n e d a s B M S C c a n b e h a r v e s t e d fr o m b o n e m a r r o w fr o m ad ults. W h e t h e r B M S C c a n t r a n s d i f f e r e n t i a t e into c e lls fr o m th e ne u ral cell l i n e a g e , o r o th er l i n e a g e s for t h a t m a t t e r , is still u n c l e a r an d d e b a t e d a m o n g s c i e n t i s t s . H o w e v e r , th e e a r ly r e p o r t s t h a t B M S C a r e in fa c t c a p a b l e o f t r a n s d i f f e r e n t i a t i o n h a v e la u n c h e d a p l e th o r a o f in v e s t i g a t i o n e x p l o r i n g th eir r e p a i r p o t e n t i a l . 107 Chapter 7 S o m e e x a m p l e s a r e th e s tu d ie s on th e u s e o f B M S C fo r r e p a i r o f th e h e a r t m u s c l e after m y o c a r d ia l infa rc tio n in c ard iology , o s t e o g e n e s i s i m p e r f e c t a in o r t h o p e d i c s , o r g a n o g e n e s i s in in t e rn a l m e d ic i n e , in t e r v e r te b r a l d i s c d i s e a s e in n e u r o s u r g e r y , a n d s trok e / n e u r o d e g e n e r a t i v e d i s e a s e s in n e u r o lo g y . A s th e d e b a t e o n th e p o t e n t i a l o f B M S C to t r a n s d i f f e r e n t i a t e c o n t i n u e s , th e y c ould a l s o be u se d fo r r e p a i r fo r th eir n a tu ra l ability to p r o d u c e a n d s e c r e t e m a n y r e p a i r - r e la t e d m o le c u le s . T his ability cou ld be b e n e f i t t e d fro m in for i n s t a n c e th e in ju red s p i n a l cord a s t h e s e m o le c u le s could s u p p o r t ce llu la r a n d a n a t o m i c a l re p a ir . H o w e v e r , w h e n B M S C a r e u se d fo r s p i n a l cord r e p a i r w i t h o u t d iff e re n tia t io n into n e u r a l c e lls p rior to t r a n s p l a n t a t i o n , it is p o s s i b l e t h a t th e i n je c te d c ells d iff e r e n t i a t e in viv o into m e s e n c h y m a l cell t y p e s such a s fat, m u s c le , c a rt ila g e , or b o n e c e lls . This w o u ld be a real c o n c e r n a s t h e s e c e lls w o u ld i m p a i r th e o verall r e p a i r o f th e s p i n a l cord. S o far, r e p o r t s t h a t th is in fa c t o c c u rs h a v e n o t b e e n p u b lis h e d . A lso , in th e in vivo s tu d ie s d e s c r i b e d in th is t h e s i s w e h a v e n o t fo u n d a n y s i g n s t h a t this t a k e s p lace . C h ap ter 3 d e s c r i b e s th e g e n e e x p r e s s i o n profile o f ad u lt rat B M S C for wh ic h 44k w h o l e g e n o m e rat m icroarrays w ere em p lo yed . The m ajor go al o f this s tu d y was to increase our u n d e r s t a n d i n g o f th e p o t e n t i a l a n d suita bil ity o f B M S C fo r s p i n a l cord r epair. In ad d itio n , w e a i m e d to a s s e s s th e effects o f lo n g -ter m c u ltu rin g o n g e n e e x p r e s s i o n by c o m p a r i n g B M S C fro m th e 3 rd (P3) a n d 1 4 th (P14) p a s s a g e in cultu re. Both P3 a n d P 1 4 B M S C e x p r e s s e d g e n e s inv olved in n e u r a l d e v e l o p m e n t a l e v e n t s such a s glial d iff e re n tia t io n a n d m y e li n a t io n , an d n e u r o n a l p r o life r a tio n a n d n e u r ite f o r m a t io n , i n d ic a t i n g th e p o t e n t i a l o f B M S C to d iff e re n tia t e into n e ural l i n e a g e . B M S C a l s o e x p r e s s e d g e n e s e n c o d i n g fo r grow th fa c t o r s a n d for p r o t e i n s inv olved in g r o w th fa c t o r s ig n a l i n g . A to tal o f 6 6 8 7 g e n e s w e r e e x p r e s s e d in P3 a n d in P 1 4 B M S C , with a 9 7 % o v e r l a p o f g e n e s e x p r e s s e d a t a s im il a r i n t e n s i t y a n d 3 % ( 2 0 2 g e n e s ) e i th e r h ig h e r in P3 B M S C (15 9 g e n e s ) o r higher in P 1 4 B M S C (43 g e n e s ) . F u n ctio n a l d a ta m i n i n g by G e n e O n t o l o g y ( G O ) -a n a ly s i s r e v e a le d t h a t 8 5 / 1 5 9 an d 2 2 / 4 3 w e r e a n n o t a t e d in t h e G O d a t a b a s e . In P3 B M S C , 4 3 G O - c l a s s e s w e r e o v e r r e p r e s e n t e d with 9 inv olved in o rg a n d e v e l o p m e n t a n d cell p r o life r a tio n . In P 1 4 B M S C , 2 G O - c l a s s e s w e r e o v e r r e p r e s e n t e d wit h 1 inv olved in o r g a n d e v e l o p m e n t . O ve r all, o u r g e n e pro fili n g d a t a s u p p o r t th e u s e o f B M S C for ne u ral r e p a ir . A n u m b e r o f g e n e s a r e e x p r e s s e d in B M S C fr o m which th e p r o d u c t could s u p p o r t c e llu la r r e p a i r o f th e s p i n a l cord. A lso , w e fo u n d e v id e n c e t h a t lo n g -te r m c u ltu rin g o f BM SC may decrease th eir p l a s t i c ab ili ties a fter t r a n s p l a n t a t i o n . Furth er g e n e pro fili ng r e s e a r c h will b e n e e d e d to im p r o v e o u r u n d e r s t a n d i n g o f th e n e r v o u s s y s t e m r e p a i r - p o t e n t i a l o f B M S C a n d to p o s s i b ly p r o v id e a b a s i s for m a n i p u l a t i o n o f th e B M S C to i n c r e a s e th eir eff ic acy p rior to t r a n s p l a n t a t i o n . One p o s s i b l e w a y by w h ic h B M S C cou ld s u p p o r t s p i n a l cord r e p a i r is by li m itin g th e p r o g r e s s i v e t i s s u e lo s s (e.g., e li c it in g t i s s u e s p a r i n g ) t h a t n o r m a l ly o cc u rs afte r th e initial 108 Sum m ary and general discussion d a m a g e . Im p o r t a n t ly , to profi t fr o m this ability p o o r survival o f B M S C afte r t r a n s p l a n t a t i o n into th e c o n t u s i o n e n v i r o n m e n t is a p o t e n t i a l li m itin g fa ctor. In C h ap ter 4 th e survival o f B M S C a n d th e e ffe ct s o n t i s s u e s p a r i n g afte r t r a n s p l a n t a t i o n into th e c o n t u s e d rat s p i n a l cord a r e d e s c r i b e d . W e i n je c t e d B M S C into th e m o d e r a t e l y c o n t u s e d ad u lt rat th o r a c ic s p i n a l cord a t 15 m in (acute) a n d a t 3, 7 a n d 2 1 d a y s (dela yed) po s t-in ju r y a n d q u a n tifie d t i s s u e s p a r i n g a n d B M S C survival u p to 4 w e e k s p o s t - t r a n s p l a n t a t i o n . B M S C survival w ithin th e c o n t u s io n at 7 d a y s p o s t - t r a n s p l a n t a t i o n w a s s ig n ific a n tly h ig h e r with a n a c u t e in je c tio n ( 3 2% ) a n d 3-days delayed i n jec tio n U n fo rt u n a t e ly , (52 % ) th an w ith a 7- or 2 1 - d a y s d e l a y e d BM SC presence at 28 days i n je c tio n po st-transplantation was (9% both; p < o . o i ) . c lo s e to 0 in all p a r a d i g m s , in d ic a ti n g m a s s i v e cell d e a th . In c o n t u s e d rats w it h o u t a B M S C t r a n s p l a n t (contro ls), th e v o l u m e o f s p a r e d t i s s u e g r a d u a l ly d e c r e a s e d until 4 6 % ( p < o . o o i ) o f th e v o l u m e o f a c o m p a r a b l e u n i n ju r e d s p in a l cord s e g m e n t a t 4 9 d a y s post-inju ry. A c u t e a n d 3-d ays d e l a y e d but n o t 7- a n d 2 1 - d a y s d e l a y e d in je c tio n o f B M S C s ig n ific a n tly im p r o v e d t i s s u e s p a r i n g , w h ic h w a s s t r o n g ly c o r r e la t e d (r = 0 . 7 9 - 1 .0 ) to B M S C survival in th e first w e e k a f te r i n je c tio n into th e c o n t u s io n . This s e t o f resu lts d e m o n s t r a t e d t h a t B M S C t r a n s p l a n t e d into th e c o n t u s e d s p i n a l cord o f an ad u lt rat surviv e p o o rly a n d B M S C d e a th w a s g r e a t e r w h e n c e lls w e r e i n je c te d d e l a y e d c o m p a r e d to e a r ly a f te r c o n t u s io n . T h e d a ta fu rth er s h o w e d t h a t th e n e u r o p r o t e c t i v e e ff e c t s o f B M S C t r a n s p l a n t e d into a m o d e r a t e rat s p i n a l cord c o n t u s io n d e p e n d s tr o n g ly on th eir survival d u rin g th e first w e e k p o s t-in je c t io n ; a c u t e ly i n je c te d B M S C elicit m o r e t i s s u e s p a r i n g th an d e l a y e d i n je c te d B M S C . T h e resu lts o b t a i n e d in th is s tu d y to s o m e d e g r e e c h a n g e s o m e i d e a s on c e ll- b a s e d r e p a i r a p p r o a c h e s for th e in ju r e d s p i n a l cord. For lo n g it w a s th o u g h t t h a t d e l a y e d t r a n s p l a n t a t i o n o f c ells w ith in a c o n t u s io n e n v i r o n m e n t w o u ld be b en eficial fo r t r a n s p l a n t e d cell survival a n d , c o n s e q u e n t l y , fo r th e e ffe ct s m e d i a t e d by th e cells, a s it w o u ld c ir c u m v e n t th e h e ig h t o f th e inju ry-i nitia ted e n d o g e n o u s i n f l a m m a t o r y a n d i m m u n e r e s p o n s e s . This w i s d o m w a s g e n e r a l l y a c c e p t e d w ith in th e field o f s p i n a l cord in ju r y / r e p a ir m a i n l y b e c a u s e o f its logical r a t i o n a l e an d a s lo n g a s th e a c tu al d e l a y o f cell in tro du c tion w ithin th e inju ry w o u ld n o t p a s s th e t i m e p o i n t w h e r e g e n e r a l d e t e r io r a ti o n o f th e s p i n a l cord w o u ld limit o r e v e n p r e v e n t a n y b e n e fi t s fro m cell t r a n s p l a n t s . Even th o u g h this idea w a s gen era lly acknow ledged, strong sup po rtin g q u a n t i t a t i v e e v i d e n c e h a s b e e n la ck ing. O u r d a ta in d ic a te t h a t it m a y b e m o r e b e n e fic ia l to t r a n s p l a n t B M S C e a r ly r a th e r th a n la te a t l e a s t to b e n e fi t fr o m th eir t i s s u e s p a r i n g abili ties. Furth er r e s e a r c h will b e n e c e s s a r y to d e t e r m i n e th e u n d e r l y i n g m e c h a n i s m s o f th e i m p r o v e d B M S C survival w ith ea r ly a s o p p o s e d to d e l a y e d t r a n s p l a n t a t i o n . A lso , it r e m a i n s to be d e t e r m i n e d w h e t h e r th is w o u ld a l s o p e r t a in o t h e r c a n d i d a t e cell t y p e s fo r s p i n a l cord repai r. 109 Chapter 7 Tli e go al o f C h ap ter 5 w a s to im p r o v e B M S C survival a fter t r a n s p l a n t a t i o n into a c o n tu s io n e n v i r o n m e n t . W e h y p o t h e s i z e d t h a t r e d u c i n g m a c r o p h a g e infi lt ration p rio r to in tro du cti on o f B M S C w o u ld i m p r o v e th eir survival in ^ e c o n t u s e d ^ o r a c i c ad u lt ra t s p i n a l cord. Quickly af ter a c o n t u s iv e i m p a c t to th e s p i n a l cord a n i o v a s io n o f m a c r o p h a g e r c a n b e o b s e r v e d . W e f em onstrated that m e th ylp red n iso lo n e tre a rm e n t (M P) regim es r esu lted in of a c y c lo s p o r i n e s ig n i fi c a n t (CsA), decrease m in o c y c li n e (p< o .o o i) in ( M C ), or m acrophage infilt ration a t t h r e e d a y s post-inju ry. D e s p i t e th is p r o m i s i n g result , survival o f B M S C ( i x i o 6/5 ml) in jr c t e d into th a c o n t u s io n e p i c e n t e r nt th is 3-day t i m e point; w n s not; s ig n ific a n tly d iffere n t fro m t f a t o f B M S C i n je c te d into a n im a l s wUli o u t th e m a c r o p h a g e - r e d u c in g t r e a t m e n t s . In fact, t h t fer e s t n c e of" E3M S C resulteri in r s ig n i fi c a n t a v e r a g e f .9-fold i n c r e t s o ( p < o . o o i ) in m a c r o p h a g e infi lt ration into th e c o n t u s i o n o f treateri rats to la tive to c o n tr o ls. O n e c o n c lu s io n fro m tlie sh re su lts is th a t B M S C in je c te d w ithin th e c o e t u s i o n e p i c e n t e r a t t r a c t ad ri;tional i n f l a m m a t o r y c e lls e v e n wit h c o n c u r r e n t a d m i n i s t r a t i o n of7 m a c r o p h a g e - r e d u c i n g dr u gs . It m a y be t h a t t h o s e n M S C t h a t die s o o n a f te r i n jec tio n recruit t h e s e extra m a c r o p l i a g e s . D e a t h o f Isn ahn lan ted IBM/ISC is a multi-factorial .oroblem w h ic h shotld be addressed in a m u lt id ir c ip li n a r y m a n n e r . Fu ture s tu d ies should Ire d ir e ct e d t o w a r d s f i n d i n g a n d s u b s e q u e n t l y m a n i p u l a t i n g o th e r c u e s fo r coN d e a t h t e c h a s p a t h w a y s in n e c r o s i s o r a p o p t o s i s o f th e t r a n s p l a n t e d cells. In C h ap ter Or w e i n v e s t i g a t e d th e e ffe ct s o f B M S C grofts con hin d l i m ° lo c o m o t o r a n f s e n sory l u e c t i o r in a d u lt rate witd a c o n t u s e d t h o r a c ic s p i n a l cord. R a ts w e r e c o n t u s e d u s i n g th e In fin it e H o r i z o n s i m c a c t o r a t a fo r ce o f 2 n n kDyn a n d n ^i D M E M w i t t w r o 6 B M S C s or D M E M n lo n e w a s i n je c te d into th e inju ry c p i c e n t e r th reo d a y s la t e r. S o m e rats r e c e iv a d C s A dail y th rou g h o s t th e survival p e riod. Even t h o u g t it w a s s h o w n t h a t C s A t r c a t m n n r did not im p r o v e B M S C survival, its a S m i n i s t r a t i o n nould support; r e p a i r - r e la t e d e v e n t s t h a t t o f e t h e r with tfcse of OMSC could resu lt in im prnv nd outcom ea. Two m onths afte r dM SC t r a n s p l a n t a t i o n r a ts had i n c r e a s e d B a s o c - l e a t t i c - B r e s n a h a n (BIBB) sub-scGres, a 1 7 % s m a ll e r l a s a o f o u p p a r t d f th e hinh lim b s, a 3O % s m a l l e r a n g l e o f hind p a w r o t a tio n , a n d p e r fo r m e d 38 % b e tt e r o n th e h o r i z o n t a l la dder. In ad d itio n , a t 4 w e e k s p o r t - t r a n s p l a n t a t i n n , t h e s e rats exhib ited a 31 % a nd 5 0 % i m p r o v e m e n t in th eir r e s e o e s e to a n r e c h a n ic a l an d th e rm a l s tim u lu s, r esp eceiv e ly , to th e n io d p a w s . A t 8 w e e k s p o s t - t r a n r p l a n t e t i o n , t h e rats still exM b ited a 2 2 % i m p r o v e m e n t in tCeir r o s p o n s e to a m e c h n n i c a l s t i m u lu s but n o t a n y Io n g e r ter n th e r m a l s tim u lu s. R a tr th o t rnceiv ed C s A t s e a t m e n t a l o n n did n o t d e m o n s t r a t n fu n ctio n a l c h a n g e s c o m p a r e d to c o n tr o ls e x c e p t fo r a 2 9 % s m a l l e r a n g l e o f hind p a w r o tatio n . T h e r e w a s no overall ad d itive e ffect o f C s A t r e a t m e n t o n B M S C - m e d i a t e d fu n c t io n a l i m p r o v e m e n t s . O u r d a ta r e v e a le d t h a t t r a n s p l a n t a t i o n o f B M S C into a 3-d ay old c o n tu s io n in th e ad u lt rat s p i n a l cord i m p r o v e d s o m e a s p e c t s o f lo c o m o t o r a n d s e n s o r y fu n ctio n. O u r resu lts s u p p o r t furth er e x p lo r a t i o n o f B M S C fo r th e d e v e l o p m e n t o f s p i n a l cord r e p a i r s t r a t e g i e s . 110 Sum m ary and general discussion This t h e s i s m a y s e r v e a s a s t a r t i n g p o i n t o f m a n y s t u d i e s th a t fo c u s on u n d e r s t a n d i n g an d im p r o v i n g th e e ffic ac y o f B M S C to r e p a i r th e in ju red s p i n a l cord. T h e s tu d ie s in th is th e s i s d e m o n s t r a t e t h a t B M S C h av e th e g e n e t i c ability to be e ffect iv e in n e r v o u s s y s t e m r epair, t h a t t h e y elicit t i s s u e lo ss w h ic h g r e a t l y d e p e n d s on th e ir survival, a n d t h a t th e y d e s p i t e th eir s h o r t c o m i n g s r e su lt in b e h a v io r a l i m p r o v e m e n t s a f te r s p i n a l cord c o n t u s iv e injury. It is c lear fro m o ur resu lt s t h a t B M S C survival is a n i m p o r t a n t i s s u e t h a t n e e d s to be a d d r e s s e d such th at th eir e ffe ct s on r e p a i r c a n b e o p t i m i z e d . 111 8 Nederlandse samenvatting. Chapte r 8 L etsel v a n h et r u g g e n m e r g kan r e s u lt e r e n in fu n c t ie v e r li e s v a n d e e x t r e m i t e i t e n . In d ie n het v e rlie s v a n fu n c t ie h e r m u h e n t is, k u u t e n p a ti U n t e n v o o r d e r e s t v a n hun le v en r o l s t o e l g e b u n h e n z ijn . I n t e r v e n t i e s t r a t e g i e n zi jn gerin ht o p f h u n t i o u t t l t e p u ptom is clc herste l v a n h e t h e s c p a d i g h e r u g g e n m e r g , m p a r h e b h e n to t h u td e n ie t g e le id t o f fun(rtiuhel e v e rb eteu iu g . CunP anks d e v e le u n d e r z h e k e n p p b a s a a l w e te n s c p a p h e r lij k g e b i e d is t r a n s l a t i e pp a r h e klinie k v o o r a l s o o g n iet m u g e li jk . hen v a n h e m g g e lij k h e d e n mm h et b e s c P a d i g d r u g g e n m e r g te h e r s t e ll e n is d o o r m iddel v a n h e t r a n s p l u n t a t i e v a n c e lle n . o u h e M a r r o w S t r n m a l C e l le n ( B M S C ) z:ijn s t a m c e l l e n die g e m a n k e lijk te v erk rij gen ^ijn m i n h e ls b d e n m e r p h u n (r tie s . H ie r d o o r is a u t o l g g e c e l t r a n s p l a n t a t i e m o g e li jk en is h et nisico p p a f s t o t i g g d o o r h e t lic h a a m m i n i m a a l . In dit p r o efs ch r ift is h e ge s c h ik th e id vun B M S C v o o r h erstel v a n h e t h e s c P a d ig d r u g g e n m e r g h e s tu h d e rd . hen sehie e x d e r i m e n t e n z ijn u it g e v o e r d , w aau in h e g e n e x p r e s s i e v an B M S C , o v e h e v i g g v a n h e c e lle n pa t r a n s p l a n t a t i e e n hun in v lo e d p p d e f u n c O u d e le u itk n m s t is b e s tn h o e rd in h en r u g g e n m e r g l e t s e l m o h e l in d e rat. In H oofdstuk 1 w o r d ^ e n a l g e m o e n o v e r z i c h t v a n r u g g e n m e r g l e t s e l ge u ntro d ucherd. In h e V e r e n i g d e S t a t e n z ijn h e i n c ih e n t i e e n p r e v a l e n t i e vun r u g g e n m e r g l e t s e l u itgeb re id u n d e rz o c h o m e t h e n i n c ih e n t i e vun u n g e v h e r 1 1 , 0 0 0 p a t i ë n t e n h e r jp ar. D e m l e s t v o o r k n m e n h e o o r z a k e n zi jn ^ g e v a l l e n , g e w e l d , s o o r l e n zie k te . W e t e n s c P a p l e i n k bewij s v o o r h e b e s t e b e P a n h e l m e t o o h e i s e r niet, m e h e v a o w e g e h e g r o t e v a ria b ilite it v a n d e u n g e v a l l e n . In h e v r o e g e f a s e is d e h e h a n h e l r n g ger icho p p O e m o d u p a m is c h e s t a b i li s a t i e v a n h e p a t i ë n t . H i e r r a k o m r d e h e h a n h e i r n g v a n h e ( in stabiele ) w e r v e lk o lo m pan h e o rd e, w p arbij h en h e c o m p r e s s i e v e l a m i o e c t o m i e al p a n n iet g e c o m b i o o e r d m e t fixatie vun h e t i n s t a b i e l e s e o m e n t v a n h e w e r v e l k o l o m h e f fu n cO un o el herste l ka n b e v o r d e r e n e n ka n r e s u lt e r e n in he n kort et verb>lijf in h e t z i e k e h huis e n reva lip atiek lin iek . In h e c h r o n is c h e f a s e stpu n t> reventie v a n infe(rties un d o o rlig p le k k e n ce tl trp£il, w p a r b ij a s h e c t e n a l s pijn e n in fertilite it o o k in g g e n s c h o o w g e o o m e n d ie h e n te w o r h e n . h e t e r e k iin is c h e s t u d i e s zi jn o o o Z z a k e i ij k o m h et v o o r h l e l v a n h en p p e r a t i e in h e vroege fa se adequpat te h e stu d e re n . D e lp a t s t e j a r e n is h e t g e b r u ik v a n s t a m c e l l e n (SC) in h e w e t e n s c p a p ste rk t o e g e o o m e n . n m b r y u p a le s t a m c e l l e n (ESC) zijn c e lle n in h e zi ch u n t w i n k e le n h e b la s t o c y s te . Al v r o e g in de untw inkelr n g b e v in d e n h e z e S C zi ch in h e k i e m l a g e n e c t o - / m e s o - en e n d o h e r m . N a he g e b o o r t e z ijn s t a m c e l l e n o o k p a o w e z i g in v e rs c h il le n h e o p a l e n . V e r s c h i lle n h e h u b lic a tie s h e b b e n p u g g e t o u n d dan m e t hen j u i s t ^ d u c l e pro to co l S C in s t p a t z ijn zich te u n t w in k e le n tot cel lij h e fh uip a n h e r e k i e m l a g e n , h o e w e l hieroveu o o g g h e n c u n s e n s u s is bereikt. H ie r d o o r is er hen n i e o w e g o l f v a n i n t e r m s e v o o r heg gebru i k v an S C u n t s t p a n . 114 Nederlandse sam envatting H e t b e la n g r ij k s t e a r g u m e n t t e g e n h e t g e b r u ik v an s t a m c e l l e n is d e d i s c u s s i e o v e r w a n n e e r e e n e m b r y o e e n m e n s e l i j k p e r s o o n g e n o e m d kan w o r d e n . Is h e t b e g in v a n h e t le v e n bij d e b e v ru c h tin g v a n d e eicel o f bij le v e n s v a t b a a r h e i d v a n d e fo e t u s ? Dit is e e n d i s c u s s i e vol e m o t i e . P o t e n t i e e l m is b ru ik v a n s t a m c e l l e n is d e v o o r n a a m s t e o o r z a a k v a n d e v e l e eth is c h e discussies. In H oofdstuk 2 is d e b e s c h i k b a r e li t e r a t u u r k e n n is o v e r d e m o g e li jk h e d e n v a n B M S C v o o r h erste l v a n h et b e s c h a d i g d r u g g e n m e r g b e s t u d e e r d . B M S C zi jn m e s e n c h y m a l e S C die in het beenm erg aan w ez ig zijn . H ie r d o o r zi jn ze g e m a k k e l ijk te v erk rij gen m i d d e ls b e e n m e r g p u n c t i e . D o o r d e m o g e lijk h e id v a n a u t o g r a f t in g is h et risico o p e e n a f s t o t i n g s r e a c t i e g e m i n i m a l i s e e r d . T e n s l o t t e zi jn er bij h et g e b r u ik v a n v o l w a s s e n s t a m c e l l e n g e e n e t h is c h e bezw aren, aan g ezien er g e e n e m b r y o n a a l w e e f s e l w o r d t gebruikt. D o o r d a t v e r s c h il le n d e pu b li c a ti e s h e b b e n a a n g e t o o n d d a t B M S C k u n n e n t r a n s d i f f e r e n t i ë r e n , is er d e l a a t s t e j a r e n toenem end a a n d a c h t h ier vo o r o n t s t a a n o p h et g e b i e d v a n h e rstel v a n d e h a r t s p i e r na m y o c a r d i n f a r c t e n in d e c a rd io lo g ie , o s t e o g e n e s i s i m p e r f e c t a in d e o r t h o p e d i e , o r g a n o g e n e s e in de interne geneeskunde, n euro degen eratieve a a n d o en in g en in de n e u r o lo g ie en g e h e r n i e e r d e d i s c u s in t e r v e r t e b r a li s in d e n e uro chirurgie. D o o r hun m e s o d e r m a l e o r i g i n e z ijn B M S C e e r d e r g e n e i g d te d i ff e r e n ti ë r e n in c e lt y p e n van d e b e t r e f f e n d e k i e m la a g . ruggenm erg n iet z u ll e n H e t is o n z e k e r o f d e z e c e lle n d iff e r e n ti ë r e n in vet, bot, in e e n kraakbeen o m g e v in g van o f spierw eefsel. het Het is n o o d z a k e li jk d e ge s ch ik th e id v a n B M S C v o o r herste l v a n h e t b e s c h a d i g d r u g g e n m e r g g o e d te o n d e r z o e k e n e e r dit in e e n k lin is ch e s e t t i n g t e t e s t e n . In H oofdstuk 3 w o r d e n d e r e s u lt a t e n b e s c h r e v e n v a n o n d e r z o e k n a a r d e g e n e x p r e s s i e v an B M S C m e t b e h u lp v a n 4 4 k to t a a l r a t g e n o o m m ic ro a r ra y s . T o t n o g t o e is d iff e re n tia t ie v an celtypen , waaronder m em braanm arkers. o ok D eze BMSC, z ijn echter b e o o r d e e ld aan n i e t s p e c if ie k en de hand som s van z e l fs m o r fo lo g ie en onbetrouw baar. Het b e p a l e n v a n h et g e n e x p r e s s i e p a t r o o n v a n B M S C is e e n b e t e r e m a n i e r o m d e g esch ik th eid van dit c e l t y p e v o o r n e u r a le d iff e re n tia t ie t e bepalen . D a a r n a a s t is o ok h et e ffect v an l a n g d u r i g e c e lk w e k e n o p d e g e n e x p r e s s i e v a n B M S C b e s t u d e e r d d o o r p a s s a g e (P) 3 en P 1 4 te v e rg e lijk e n . Z o w e l P3 a ls P 1 4 B M S C b r e n g e n v e r s c h e i d e n e g e n e n t o t e x p r e s s i e die e e n rol sp elen in neur(on )ale processen zoals g lia le d i ff e re n ti a t ie en m y e li n i s a t i e , n euronale p r o life r a tie en n e u r i e t fo r m a t ie . D e g e n e x p r e s s i e v a n d e z e g e n e n b e v e s t ig d d e p o t e n t i e v a n B M S C o m te t r a n s d i f f e r e n t i ë r e n in d e n e u r a l e cellijn . In t o t a a l k o m e n 6687 genen to t e x p r e s s i e m e t e e n 9 7 % o v e r la p in g e n e x p r e s s i e . V a n d e o v e r i g e 3 % k o m e n 1 5 9 g e n e n h o g e r to t e x p r e s s i e in P3 e n 4 3 g e n e n h o g e r in P 1 4 . F u n c t io n e le d a ta s t r u c tu r e r in g l a a t e e n o v e r r e p r e s e n t a t i e v a n 4 3 G O - k la s s e n in P3 B M S C z i e n , w a a r v a n 9 e e n rol s p e l e n in o r g a a n o n t w ik k e lin g en c e lp r o life r a tie . In P 1 4 B M S C zijn s le c h t s 2 G O - k la s s e n o v e r g e r e p r e s e n t e e r d , 115 Chapter 8 w a a r b ij 1 e e n rol s p e e l t in o r g a a n o n t w i k k e li n g . D e r e s u lt a t e n s t e u n e n d e p o t e n t i e v a n B M S C als g e s c h ik te k a n d i d a t e n v o o r v e rd e r o n d e r z o e k o p h et g e b i e d v a n d e n e u r o w e t e n s c h a p p e n . Tevens blijkt uit d e s tu d ie d a t la n g d u r i g e c e lk w e k e n de p l a s ti c i te i t v a n d e c e lle n doet afnem en. H oofdstuk 4 b eschrijft d e o v e r le v i n g v a n B M S C na t r a n s p l a n t a t i e in h e t b e s c h a d i g d e r u g g e n m e r g v a n d e rat. O p v r o e g e (15 m in) en la te (3, 7, 2 8 d a g e n ) t i j d s t i p p e n na r u g g e n m e r g l e t s e l z ijn B M S C g e t r a n s p l a n t e e r d in h e t e p i c e n t r u m v a n d e la e s i e en is c e lo v e r le v i n g en w e e f s e l v e r l i e s g e a n a l y s e e r d to t 4 w e k e n na c e l t r a n s p l a n t a t i e . C e l o v e r le v in g is h o g e r 7 d a g e n na c o n t u s i o n e e l r u g g e n m e r g l e t s e l als d e c e lle n d i r e c t ( 3 2% ) o f 3 d a g e n (52%) na h e t in itië le t r a u m a zi jn g e ï n j e c t e e r d . V e r g e l e k e n m e t e e n in je c ti e o p 7 d a g e n o f 21 d a g e n na in itië le t r a u m a ( 9 % b e i d e n , p < 0 , 0 1 ) is dit verschil s ig n ifican t. H e l a a s zijn 2 8 d a g e n na c e l t r a n s p l a n t a t i e o p alle t i j d s p u n t e n b ijn a g e e n B M S C m e e r t e t r a c e r e n , m o g e li jk e r w i js d o o r m a s s a l e c e ld o o d . In h et c o n t u s i e m o d e l z o n d e r B M S C t r a n s p l a n t a t i e (co n t ro le rat) n e e m t h et v o l u m e g e s p a a r d w e e f s e l g e le id e li jk a f to t 4 6 % ( P < 0 . 0 0 1 ) v e r g e l e k e n m e t e e n o n b e s c h a d i g d r u g g e n m e r g o p e e n v e r g e l i j k b a a r s e g m e n t in d e rat. D ir e c t e en B M S C - i n je c t i e na 3 d a g e n , m a a r n i e t i n je c tie na 7 o f 21 d a g e n , le id e n to t e e n s i g n i f i c a n t e t o e n a m e v a n h et g e s p a a r d e r u g g e n m e r g v o l u m e , m e t e e n s te r k e c o r r e la t ie (r = 0 . 7 9 - 1 .0 ) to t B M S C o v e r le v i n g g e d u r e n d e de eerste week. H e t doel v a n H oofdstuk 5 w a s o m B M S C o v e r le v i n g te v e r b e t e r e n in h et b e s c h a d i g d r u g g e n m e r g , d o o r d e i n v a s ie v a n m a c r o f a g e n na h et initieel t r a u m a te r e d u c e re n a l v o r e n s B M S C te t r a n s p l a n t e r e n . B e h a n d e l i n g m e t c y c lo s p o r i n e (CsA), m in o c y c li n e (M C ) o f m e t h y l p r e d n i s o l o n ( M P ) r e s u lt e e r t in e e n s ig n i f i c a n t e a f n a m e ( p < 0 . 0 0 1 ) v a n m a c r o f a a g infilt ratie 3 d a g e n na initi eel le tsel. O n d a n k s dit v e e l b e l o v e n d e r e s u lt a a t , is er bij B M S C t r a n s p l a n t a t i e 3 d a g e n na h e t initieel letse l, e e n v e rg e l ijk b a r e c e lo v e r le v i n g t u s s e n de b e h a n d e l d e e n c o n t r o le g r o e p ( sa l in e inje cti e) n a 7 d a g e n . D e a a n w e z i g h e i d v a n B M S C a l l e e n z o r g t v o o r e e n 3 .9 m a a l t o e n a m e v a n m a c r o f a a g infilt rati e in h e t b e s c h a d i g d e r u g g e n m e r g v e r g e l e k e n m e t c o n t r o le r a tt e n , o n d a n k s d e t o e d i e n i n g v a n i m m u n o s u p p r e s s i v a . In H oofdstuk 6 w o r d t b e s c h r e v e n o f h et b e w e z e n n e u r o p r o t e c t i e f effe c t v a n d e B M S C de f u n c t io n e l e u it k o m s t b e ï n v lo e d t o n d a n k s d e m a s s a l e c e ld o o d na t r a n s p l a n t a t i e . V e r g e l e k e n m e t c o n t r o le r a tt e n blijken B M S C to t 2 m a a n d e n na t r a n s p l a n t a t i e te r e s u lt e r e n in e e n v e r h o o g d e B a s s o - B e a t t i e - B r e s n a h a n (BB B) s u b s c o r e , m e t e e n v e r b e t e r d e s t a n d e n r o t a tie v an d e o n d e r s t e l e d e m a t e n , w a a r b ij d e r a t t e n 3 6 % b e t e r fu n c t i o n e e r d e n o p d e h o r i z o n t a le la d d e r t e s t . V i e r w e k e n na t r a n s p l a n t a t i e is bij d e B M S C g e t r a n s p l a n t e e r d e g r o e p e e n 5 0 % v e r b e t e r d e r e s p o n s e o p m e c h a n i s c h e e n t h e r m i s c h e stimuli v e r g e l e k e n m e t d e c o n tr o le 116 Nederlandse sam envatting g r o e p . A c h t w e k e n na c e l t r a n s p l a n t a t i e h a d d e n d e b e h a n d e l d e r a t t e n n o g e e n 2 2 % v e r b e t e r d e r e s p o n s e o p m e c h a n i s c h e stimuli m a a r n i e t m e e r o p t h e r m i s c h e stim uli . Er is g e e n t o e g e v o e g d e w a a r d e v a n t o e d i e n i n g v a n C s A o p B M S C - g e m e d i e e r d e f u n c t io n e l e u it k om st. T r a n s p l a n t a t i e v a n B M S C in e e n 3 -d a g e n o u d e c o n t u s ie v a n h et r u g g e n m e r g v a n d e r at leidt to t e n i g h erstel in s e n s o m o t o r e fu n ctie . V e r d e r o n d e r z o e k is n o d ig o m h e t e ffe c t v a n B M S C t r a n s p l a n t a t i e te o p t i m a l i s e r e n . 117 9 Synthesis. Acknow ledgm ents Curriculum vitae A bbreviations List o f publications References Chapter 9 A ck n o w led gem en ts: First o f all, I w o u ld like to t h a n k m y p r o m o t o r Prof. dr. A n d r é G r o t e n h u i s , for p r o vid in g m e with t h e o p p o r t u n i t y to o b ta in m y D o cto ral d e g r e e a n d fo r his s u p e r v i s i o n t h ro u g h o u t this effort. T h a n k you for y o u r s u p p o r t a n d c o n f i d e n c e yo u h av e g iv e n m e fr o m th e v ery first d a y I w a lk e d into y o u r cli nics a t N i j m e g e n . Y o u h av e h e l p e d m e to b e li e v e in m y s e l f a n d to d e v e l o p a s a do cto r, e m p h a s i z i n g both on p r o f e s s i o n a l skills a n d e m p a t h y t o w a r d s p a t i e n t s . S e c o n d ly , I w a n t to t h a n k m y c o - p r o m o t o r M a r tin O u d e g a fo r his p r o f e s s i o n a l g u id a n c e , but a l s o for b e i n g a g o o d friend. I will n e v e r f o r g e t th e s u r p r i s e B I R D d a y b a r b e q u e a t y o u r p l a c e in M ia m i a n d t h e g o o d b y e d i n n e r h o s t e d by yo u a n d y o u r wife . I a l w a y s fe lt c o m fo r t a b le a n d a t h o m e . I h a v e l e a r n t a lot fr o m you in s c i e n c e a s well a s a p e r s o n . Y o u c r e a t e d a n e n v i r o n m e n t for m e to do r e s e a r c h , but a l s o to r e v i e w p a p e r s a n d g a v e m e r e s p o n s ib i li t y to m a n a g e a la b o r a to r y w ith t e c h n ic i a n s . Ever y d a y a t w o r k w a s fun! I a l s o w a n t to t h a n k R o n a ld B a r t e ls for a l w a y s s o l v i n g i s s u e s a n d h e l p i n g to k e e p th e p a c e in p r o c e e d i n g with this th e sis . I a m g r a te fu l for all th e h e lp in th e la b fr o m Larisa Rivero n , Y a s m i n a A b a j a s , M a r i o V e l e z , V a n e s a R o d r ig u ez, B rian B l i e s n e r a n d S u e Liu fo r th eir a s s i s t a n c e in histo lo gy; th e M ia m i P r o je c t viral v e c t o r c o re for p r o v id in g lentiviral s u b s t r a t e s ; Dr. A. M arcillo , P a o l o D i a z a n d o th e r s fr o m th e M ia m i P r o je c t a n i m a l c o re for a s s i s t a n c e in c o n t u s io n in ju rie s; Dr. B e a t a Frydel a n d B rid g e t S h a w fo r i m a g i n g a s s i s t a n c e ; R o b er to C a m a r e n a fo r p h o t o g r a p h y ; P e g g y B a t e s an d A n n a G o m e z fo r th eir EM w ork. I w o u ld like to t h a n k Dr. A. H u r t a d o a n d Dr. M. B a r r o s o for th eir critical v ie w on th e w o r k a s well a s fo r all th e fun w e had o u t s i d e work. E s p e c i a lly A n d r e s , w ith his d e d i c a t io n a n d har d w o rk h e l p e d m e th ro u g h t h o s e la te h o u rs in th e o p e r a t i n g r o o m s . W e had lots o f g o o d t i m e s t o g e t h e r a m i g o . I w a n t to t h a n k all c o -au th o rs for critically r e v i e w in g th e p u b lis h e d w o rk a n d fo r th eir h e l p in t h e la b orato ry. Sp ecific ally , I w a n t to e x p r e s s m y g r a t i t u d e t o w a r d s m y brother Krishen a n d s is t e r G e e t a for t h e lo n g p h o n e c a lls a n d vis its to b rin g h o m e to th e USA. L a s t bu t c e r t a i n ly n o t le a st , I w a n t to t h a n k m y lo v in g w ife T e ju n a fo r her e v e r l a s t i n g p a t i e n c e , for s u p p o r t to finish th is t h e s i s n e x t to m y b u s y clinical s c h e d u le s a n d for n e v e r c o m p l a i n i n g . For h e r lo ve a n d care , a n d fo r o u r d a u g h t e r Pa llavi, w h o s e h a p p i n e s s b r in g s jo y to o u r lives e v e r y da y. Y o u a r e t h e love o f m y life. O n l y with y o u r s u p p o r t I h a v e b e e n a b le to finish this th e sis . 120 Sy nthesis The; la s t s e n t e n c e I w a n t to u s e to d e d i c a t e th is w o r k to m y la te m o th e r , w h o s u p p o r t e d m e th ro u g h o u t m y li fe a n y e n th u s i a s tic a lly s u p p o r t e d m y p l a n s fo r this t h e s i s . U n fo rt u n a t e ly , s he leet us b e fo r e her t i m e , but hep i n f l e e n c e s a r e s t r o n g e r t h e n ever; I o w e y o u uvepything. 121 Chapter 9 C urriculum V itae: Rishi w a s born o n M a y 2, 1 9 7 8 a t Z e v e n a a r , T h e N eth e r la n d s. H is p a r e n t s m o v e d ba ck to S u r i n a m e a t th e a g e o f 2 w h e r e h e lived until his eixth yea r. A fte r r e t u r n i n g to T h e N e t h e r l a n d s he c o m p l e t e d s e c o n d a r y s c f o o l a t Aitrink C o lle g e ( Z o e t e r m e e r , 1 9 9 0 - 1 9 9 6 ) , an d w e n t on to stu d y M e d i c i n e a t L e id e n U n iv e r s i ty M e d i c a l C e n t e r ( L U M C , 1 9 9 6 - 2 0 0 f) . D u r in g th is p e r io d t e w a s u ctiv e in sevebal c o m m i t t e e s a n d an a teanhi n g a s s i s t a n t in t h e d i s t e c t i n g r o o m . It w a s t h e r e w h e r e his p a s s i o n fo r s u r g e r y s t a r t e d a n d w a s c o m b i n e d to his p r e - e x is t i n g i n t e r e s t in t h e n e r v o u s s y s t e m . Prof. Dr. En ric e M a r a n i (LU M C ) t u l p e d R i s i i to c o n te n t D r M a r tin O u d e g a w h o i nvited hint in hi s la b o r a t o r y a t T h e M ia m i P t o je c t to Cu re P a r a l e s is to i n v e s t i g a t e t h e c a t h n e h y s i o l e g i c a l c o n s e q u e n r e s ob s p i n a l cord inju ry in a r at m o d e l. In 2 0 0 0 - 2 0 0 S Rishi w e r k e d in Dr. O u d e g a ’ n la b o r a te r y in M ia m i . H e recein ed a g r a n t f r e m tUe Fel lbri gh t/ N e t h e r i a n d s A m e r i c a Fou ndati o n for thi s r e s e a r c h e roject. Aeter his r r t u r n to TDe N e th e rl a n d s he re a e iv e d th e KN M G Dirk H eld J u n i o r R e s e a r c h A w a r d fen th e b e s t g r a d u a t i e n t t e s i s a t L U M C t h a t y e a r. Rishi finiehed Ms i n t e r n s h i p s c u m la u d e a e d g r a d u a t e d fr o m m r d i c a l school in D e c e m b e r 2 0 0 3 . F r o m J a n u a r y 2 0 0 4 o n w a r d s he j o in e d th e D e p a r t m e n t o f N e u r o s u r g e r y at t h e R ad b o u d Uni v e rs i ty M e d icai C e n t e r N i j m e g e a , in a e o m b i n e d r a s id e n c r - P h D p r o g r a m (A G IK O ). H e r e c e i v e d a g r a n t nrem th e N e t h e r l a n d s In s titu te fo r S c i e n c e s (N.W .O .) tor his re e e a r c h i t u d i e s w hie h b r o u g h t him in 2 0 0 5 - 2 0 0 6 fo t a b a s i c r e s e a r a h p e r i o d in D r O u d e g a ' s Ia b otntory a t T h t M ia m i P r o je c t to C u r e Pa ralyair to M ia m i ( M i a m i Uninersity, 2 0 0 5 ) a n d a t t h e I n t e r n a t i o n a l C e n t e r !or Dpinal Cord Injncy (Jo h n s H o p k in s U n iv ersity, 2 0 0 6 ) . RisM a lso s p e n d t i m e nt th e N e t h e r l a n d s I n s t i t r t e kor R e u r o s c i e n e e s { A m s t e r d a m , 2 0 0 6 - 2 0 0 7 ) u t d e r s u p e r v i s i e n o f P r o f Da. J o o s t V e r h a a g e n . In M a r c h 2 0 0 7 , Rishi r e tu r n e d t e his r e s i d e e c y p r o g c a m w h ic h he is e x p e c t e d to finish in M a t c h 2 0 1 1 e n d e r s u p e r v i s i a n o f his p r o m e t o r Prof. da. J.A. G r o t e n h u i s . H is in t e r e s t s ie N e u r o s u r e e r y a r e dir e ct e d t o w a r d s c o m p l e x s p i n a l s u r g e r y a n d e n d o s c o p i c n e u r o su r g e ry . 122 Sy nthesis A bbreviatio ns: ASIA A m e r i c a n S p i n a l cord Inju ry A s s o c i a t i o n BBB B a sso -B eattie -B res na h an te st BDNF brain d er ived n e u r o t r o p h ic fa cto r BMSC b o n e marrow/ s tr o m a l c ells cA M P cyclic a d e n o s i n e m o n o p h o s p h a t e Cl c o n fid e n c e inte;rva i CsA c y c lo s p o r i n e A CNS central nervous system D A PI 4 '- 6 - d i a m i d i n o - 2 - p h e n y l i n d o l e DM EM D u l b e c c o ' s m o dified e a g l e m e d i u m DNA d e o x y r i b o c u c le i c acid EL ISA e n z y m e linked i m m u n e s o r b e n t a s s ay ESC e m b r y o n i c s t e m c ells FDA Food a n d D r u g A d m i n i s t r a t i o n FGF fib r o b la st gr o w th fa c t o r FIM fu n c t io n a l i n d e p e n d e n c e m e a s u r e GABA g a m m a - a m i n o b u t y r i c acid GDNF glial cell-li ne d e r i v e d n e u r o t r o p h ic fa c t o r GFAP glial fibrillary ac id ic pro tein GFP g r e e n f l u o r e s c e n t p ro tein GM -CSF g r a n u lo c y t e m a c r o p h a g e - c o l o n y s t i m u l a t i n g fa c t o r GLGT g e r m line g e n e t h e r a p y GO g e n e ontology HLA h u m a n le u c o c yte a n t i g e n iP S in d u c ed p l u r i p o t e n t c e lls LEMS lo w e r e x t r e m it y m o t o r s co r e (ASIA) LV lentiviral M A P - 2 m ic ro tu b u le a s s o c i a t e d p r o te i n 2 M BP m y e li n - b a s i c pro te in MC m in o c y c li n e MHC m a j o r h ist o c o m p a t i b il it y c o m p l e x MOI M PSS m u lt ip li city o f infe ctio n (ratic o f in fe ct io u s viru s p a r t ic le s to cells) m e t h u l p r e d n i s o l o n e s o d iu m s u c c in a t e mV mili V o lt NeuN neuronal m arker N NF neuro filam en t 123 Chapter 9 NGF n e r v e g r o w th fa c t o r NGS norm al g o a t serum NSC n e u r a l s t e m oells NSE n e u r o n s p e c if ic e n o l a s e NT-3 n e u r o t r o p h in 3 N YU -im p P 124 N e w Y o rk U n iv e r sity - im p ac So e (for (ton tu s io n injury) passage PB a h o s p h a t e buffer Q IF q u a d r i p l e g i c in d e x o f fu n ctio n RA G regenn ration a ssocia ted g e n e R IP rat insul in p r o m o t o r RNA rib o nu cle io acid SC s t e m cell SCI s p i n a l cord injury SD s t a n d a r d de v ia tio n SEM s t o n d a r d ereor o f th e m e a n T th o r ac ic VEGF v a s c u l a r e n d o th e l ia l gr o w th fa c t o r W IS CI w a lk in g ind en aor s p i n a l cord injury Sy nthesis List o f p u b lica tio n s: • N a n d o e T n w a r ie R D S , H u r t a d o A, nsvi A D O , G r o t e n h u i s J A a n d O u d e g a M. B o n e m a r r o w s tr o m a l cell fo r r e p a i r o f th e s p i n a l cord: t o w a r d s clinical a p p l i c a t i o n . Cell Transpl. 20 0 6; 15: 5 6 3 - 5 7 7 . • N a n d o e T e w a r i e R D S , H u r t a d o A, B a r t e ls R H , G r o t e n h u i s JA, O u d e g a M. S t e m cellb a s e d t h e r n a i e s for s p i n a l cord inju ry. j Sp in al Cord M ed. 2009; 32 (2): 105-114. • N a n d o e T e w a r i e R D S , H u r tad o A, G r o t e n h u is JA, O u d e g a M. B o n e m a r r o w s t r o m a l c e 11s elicit; t i s s u e s p a r i n g afte r a c u t e but n o t d e l a y e d t r a n s p l s n t a t i o n into th e c o n t u s e d adult rat th o r a c ic s p in a l cord. J N eurotraum a 2009; 26 (12): 2313-(322. • Ritfnld GJ, N a n d o e T o w a r in R D S . R a h ie m ST, H u r t a d o A, Ro o s RAC, G r o t e n h u i s JA, O u d e g a M. R e d u c i n g m a c r o p h a g e s to im p r o v e b o n e marrow/ s tr o m a l cell survival in tn e c o n t u s e d s p i n a l aord. N euroreport 20 10 ; 21 (3): 221-206. • N a n d o e T e w a r i e RIPS, H u r t a d d A ,Y u J, S ie d e l J, H u r t a d o A, T a k a m i T, Tsui B, P o m p e r M , G r o t e n h u i s JA, O u d e g a M . P o s it ro n e m i s s i o n t o m o g r a p h y for serial i m a g i n g o f th e c o n t u s e d ad u lt rat s p i n a l cord. A ccepted M olecu lar Imaging. • N a n d o e T e w a r i e R D S , B o s s e r s K, Blits B, G r o t e n h u i s JA , V e r h a a g e n J, O u d e g a M Early p a s s a g e B o n e M a r r o w S t r o m a l C e lls e x p r e s s g e n e s inv olved in n e r v o u s s y s t e m d e v e l o p m e n t s u p p o r t i n g th eir r e l e v a n c e for neural r e p a ir . Su bm itted Restorative Neurology. • N a n d o e T e w a r i e R D S , H u r t a d o A, B a r t e ls R H M A , G r o t e n h u i s JA, O u d e g a M. A clinical p e r s p e c t i v e to s p i n a l cord injury. Su bm itted N eurorehabilitation. • Ritfeld GJ, N a n d o e T e w a r i e R D S , R a h ie m ST, H u r t a d o A, Ro o s RAC, G r o t e n h u i s JA, O u d e g a M. L o c o m o t o r a n d s e n s o r y fu n ctio n r e c o v e r y afte r a n t o lo g o u s bon e m a r r o w s tr o m a l cell t r a n s p l a n t a t i o n in t h e c o n t u s e d adult rat s p i n a l cord. Su bm itted Cell Transplantation • N a n d o e T e w a r i e R D S , H u r tad o A, D es ai PD , Zacuh H a n 0 O u d e g a M. Ch ronica lly injured a x o n s r e g e n e r a t e into a S c h w a n n cell brid ge in th e t r a n s e c t e d adu It ra t thoraci c s pinal cord. In preparation. 125 Chapter 9 R eferen ce list: i. A b d a llah B M, H a ac k -So ren s e n M, B u r n s JS , e t al . M a i n t e n a n c e o f differe nti atio n p o t e n t i a l o f h u m a n b o n e marrow/ m e s e n c h y m a l s t e m c ells i m m o r t a l i z e d by f u m a n telom erase reverse tran scrip tase gene d esp ife extensive pr o lifer atio n . Biochem Biopfys Res Commun 2005; 326 (3): 5ee-53b. n. A b o u e lfe to n h A, K o nd o h T, IShara K, e t al. M o r p h o l o g i c a l d i ff e re n ti a t io n o f b o n e m a r r o w s tr o m a l c ells into n e uro n-lik e c e lls afte r co-cult ure with h i p p o c a m p a l slice. Brain Res 2004; 1029:114-119. 3. A c k ery A, Tator C, K r a s sio u k o v A. A glo bal perspective on spinal cord injury e p i d e m i o l o g y . J efNeurotrauma 2004. (21): 1 5 - 1 3 7 0 . 4 A g o s ti V, ° a r u r V, S a t h y a n e r a y a n o P, nt al. A KIT j u x t a m e m l s r a n e P Y 5 6 7 - d i r e c t e d p a t h w a y p r o v i d e s n o n r a d e n d a n t s i g n a l s fo r e ^ t h r o i d ° - o g e n i t o r cell d e v e l o p m e n t an d s t r e s s e r y t h r o p o i e s i s . Exp Hemarol 2009; . 7 : 159-h71. 5. A kiyam a Y, R a d tk e C, Kocais JD . R em yelin atio n of th e rat spinal cord by t r a n s p l a n t a t i o n erf7 iden tified k o n e m a r r o w s tr o m a l celin. / Neu ro so. 2002; 22 (15): 66 23 6630. 6. A le m a n J. A u t o r a d i o g r a p h i c s t f d y o f d e g e n e e a t i v e a n b r e g e n e r a h i v e p r o lifer e tio n o f 7. Am erican n e u r o g li a c e lls with t e t i a t e d th y m id in e . Exp Neuaoh 1 9 a 2; 5: 30 2 -318 . S p i n al Inju ry A s s o c i a t i o n. I n t e r n a t i o n a l Mtandand s 'for N e u ro io g ic a l C la ss iO c a tio n s o 7 Sp rn al Cnc^rd Injury. Chicago 2n00; American Spinal Injury Association: 1 8. 2.0 A n d e r s s o n O, R e i s s m a n n E, Jo r n v a ll H, e t al. S y n e r g i s t i c in t e r a c t io n b e t w e e n G d fi an d h. A n d e r s s o s O, [3e r ro l |n e P, I b á ñ e z CF. D is t in c t a n d c o n p e r a t i v e r o le s o r o r e m m a l i a n N o d a l d u r in g a n t e r i o r axis d e v e lo fe m e n t . Dev Biol 2006; 293: 370-381. h o m o l o g s G D h i a n d G D n3 d u rin g e a r ly e m b ey on ic d e o e l o p m e n t r Dev Biol 2007; 311: n00-o11. 10. Ankeny DP, M cTigue DM, Jakem an LB. Bone m arrow tran sp lan ts p r o v id e t i s s u e p r o t e c t i o n a n d S ir e c t io o a l g u i d a n c e hor a x o n s a f te r c o n t u s iv e s p i n a l cord injury in rats. Exp Neurol 2004; 190 (1): 17-31. 11. A s t e r JC , P e a r W S , B la c k lo w SC . N o tc h s i g n a l i n g in le u k e m i a . Annu Rev Pathol 2008; 3: 12 . Auiti AT, W e b a IJ, Bleul C, e t al. T h e c h e m o k i n e S D F - i is a c h e m o a t t r a c t a n t fo r h u m a n 587-613. CD34+ h e m a t o p o i e t i c p r o g e n i t o r c ells a n d p r o v id e s a n e w m e c h a n i s m to e x p la i n th e m o b i li z a t i o n o f C D 3 4 + p r o g e n i t o r s for p e r i p h e r a l b lo o d . J Exp Med 1997; 185:111-120. 13. A z iz i SA, S t o k e s D, Augelli BJ, e t al. E n g r a f t m e n t a n d m i g r a t i o n o f h u m a n bone m a r r o w s t r o m a 1 c e lls i m p l a n t e d is th e b r a in s o f allsino r ats-sim .lh rit ies t e a s tr o c y te g r a ft s. PN A S 1998; 9 04: Res Ther 2006; 1: 47-54. 126 39<r8-3<s13. B a k k e e A M . C r yo p r o s erv. n g h u m a n p e r i ° e eral blood p r o ° e n i t o r ce lls. Curr Stem Cell 15. B a lle n KK, H a le y N R , K u r tz b e r g J, e t al. O u t c o m e s o f 1 2 2 d i v e r s e ad u lt a n d p e d ia tr ic cord blood t r a n s p l a n t r e c i p i e n t s fr o m a la r g e cord blood b an k . Transfusion 20 0 6; 4 6 : 2063-2070. 16 . Banfi A, B ian c h i G, N o t a r o R, e t al. R e p li c a t i v e a g i n g a n d g e n e e x p r e s s i o n in lo n g -te r m cu ltu re s o f h u m a n b o n e m a r r o w s tr o m a l cells. Tissue E n g 2002; 8:901-910. 17 . B r a g a -S ilv a J, Gehlen D, P a d o in AV , et al. Can local sup ply o f bone m arrow m o n o n u c l e a r c e lls i m p r o v e th e o u t c o m e fr o m la te t u b u la r r e p a i r o f h u m a n m e d i a n an d u ln a r n e r v e s ? J H an d Surg Eur 2008; 33: 488-493 18 . B a p t i s t e DC, H artw ic k AT, J o l li m o r e CA, et al. An in v e s t i g a t i o n o f th e n e u r o p r o t e c t iv e effe ct s o f t e t r a c y c l in e d e r i v a ti v e s in e x p e r i m e n t a l m o d e l s o f retinal cell d e a t h . M ol Ph arm acol 2004; 6 6 : 1113 - 112 2 . 19. B a p t i s t e DC, Po w ell KJ, J o l li m o r e CA, et al. Effects o f m in o c y c li n e a n d t e t r a c y c l in e on r etinal g a n g l i o n cell survival afte r a x o t o m y . Neuroscience 2005; 134: 575-58 2. 20. B a p t i s t e DC, F e h li n g s M G . P h a r m a c o lo g i c a l a p p r o a c h e s to r e p a i r th e in ju red s p in a l cord. J N eurotraum a 20 0 6; 23: 318-334. 21. B a p t i s t e DC, F e h li n g s M G . U p d a t e o n th e t r e a t m e n t o f s p in a l cord injury. Prog Brain Res 2007; 16 1: 217-233. 22. Bart hold i D, S c h w a b M E . M e t h y l p r e d n i s o l o n e in hibits ea r ly i n f l a m m a t o r y p r o c e s s e s but n o t i s c h e m i c cell d e a t h afte r e x p e r i m e n t a l s p i n a l cord le s io n in th e rat. Brain Res 1995; 6 72:177-18 6 . 23. B a s s o D M , B e a t t i e M S , B r e s n a h a n JC. A s e n s i t i v e a n d r eliab le l o c o m o t o r r a tin g s c a l e for o p e n field t e s t i n g in rats. J N eurotraum a 1995; 12: 1-21. 24. B a s s o D M , B e a t t ie M S , B r e s n a h a n JC . G r a d e d h isto lo gic al a n d lo c o m o t o r o u t c o m e s af te r s p i n a l cord c o n t u s io n u s i n g th e N Y U w e ig h t - d r o p d e v ic e v e r s u s t r a n s e c t i o n . Exp N eurol 19 9 6 ; 139(2): 244-256. 25. Baum gartner BJ, Shine HD. N europrotection o f spinal m otor neurons fo llo w in g t a r g e t e d t r a n s d u c t io n w ith an a d e n o v i r a l v e c t o r c a rr y in g th e g e n e for glial cell lineder ived n e u r o t r o p h ic fa ctor. Exp N eurol 1998; 153 (1): 102-112. 26. B e is s b a r t h T, S p e e d T P. G O s t a t : find s ta t is tic a lly o v e r r e p r e s e n t e d G e n e O n t o l o g i e s w ithin a g r o u p o f g e n e s . Bioinform atics 2004; 2 0 :14 6 4 -14 6 5 . 27. B erro cal Y, P e a r s e D D , S i n g h A, e t al. So cia l a n d e n v i r o n m e n t a l e n r i c h m e n t i m p r o v e s s e n s o r y a n d m o t o r r e c o v e ry afte r s e v e r e c o n t u s iv e s p i n a l cord injury in th e rat. J N eurotraum a 2007; 24 (11): 1761-1772. 28. B e t h e a J R , D ietrich W D . T a r g e t i n g th e h o st i n f l a m m a t o r y r e s p o n s e in t r a u m a t i c s p in a l cord injury. Curr Opin N eurol 2002; 15 (3): 355-360. 29. B ie r n a s k i e J, S p a r l i n g J S , Liu J, e t al. S k in -deriv ed p r e c u r s o r s g e n e r a t e m y e l i n a t i n g S c h w a n n c e lls th a t p r o m o t e r e m y e l i n a t i o n a n d fu n c t io n a l r e c o v e ry a fte r c o n t u s io n s p i n a l cord injury. J Neurosci 2007; 27 (36): 9545-9559. 30. B jo r n s o n CR, R i e t z e RL, R e y n o ld s BA, et al. T u r n in g brain into blood: a h e m a t o p o i e t i c fa t e a d o p t e d by ad u lt n e ural s t e m c e lls in vivo. Science 1999; 283: 534-537. 127 Chapter 9 3 1. Billon N, J o l ic o e u r C, R a f f M. G e n e r a t i o n a n d c h a r a c t e r i z a t i o n o f o li g o d e n d r o c y t e s from l i n e a g e - s e l e c t a b l e e m b r y o n i c s t e m c e lls in vitro. M ethods M ol Biol 20 0 6 ; 33 0 :15 -32. 32. B la c k IB, W o o d b u r y D. A d u lt ra t a n d h u m a n b o n e m a r r o w s tr o m a l c e lls d iff e r e n ti a t e into n e u r o n s . Blood culls M olec Dis 20 0 1; 27 (3): 632-636. 33. Ble ll och R, V e n e r e M , Y e n J, e t al. G e n e r a t i o n o f ind u c ed p l u r i p o t e n t s t e m ceil s in th e a b s e h c e o f d r u g seleu tio n . Cell Stem Cell 2 0 3 7 ; i: 51-70. 34. B li ght AR. M acrophages and inflam m ato ry dam age in spinal cord injury. J N eurotraum a 1992; 9: S83-91. 35. B li ght AR . M ir a c le s a n d m o l e c u l e s - p r o g r e s s in s p i n a l cord rep air. N atuse Neueoscience 2002; 5: S 10 c 1-1054. 36. n lits B, Kitay IBM, uu ra h v a r A, e t al. Len tiv ira l v e c t o r - m e d i a t e d t r e n s d u c t i o n o f neu ral p r o g e n i t o r c ells b efo r e i m p l a n t a t i o n into in ju s ed s p i n a l cord a n d brain to d e t e n t th eir m i g r a t i o e , d e liv e r n e u r o t r o p h ic fa c t o r s a n d r e p a i r tis su ie Restor Neucol Neuaosni 2005; 23: 313-324. 57. B o e k a m a J R , O v e r h o l s e r J C , S c h u b e r t D S . D e p r e s s i o e fo ll o w in g a s p i n a l co rd injury. Int J Psychiatry M ed 19 9 6 ; 26 : 329-349. 38. E o i re t N, Rapatel C, V e y r n t - M a s s o n R, et al. C E a r a c t n r iz a t i o n o f nonexpanded m e s e n c h y m a l n r o g e e i t o r c e lls Srom no em al ad u lt h u m u n f o n a m a r r o w . Exp H em atol 2005; 33: 219-225. 3 9. B o n a v ia R, B a je t t o A, B a r b e r o S, e t al. C h e m o k i n e s a n d th eir r e c e p t o r s in th e C N S : exp ressio n o f C X C L12/SD F-1 and C X C R 4 a n d th eir role in a s t r o c y t e p r o lifer atio n . Toxicol Lett 2 b , 3 ; 139 n2-3): 181-189. aj.o. B o n d y CA, C l i e n g C M . S i g n a l i n g by insulin- like g row th fa c to r 1 in brain. Eun J Pharm acol 2004; 490: 2 5 ^ 1 . 4 ip B o s s o l a s c o P, C b v a L, C n l z a r o s s a C, nt aL N e u r o l ml d iffe re n t i a t i o e o f h u m a n b o h e m a r o o w s t e m c e lls in vitro. Exp N eurol 2005; 19 n I2): 312-325. 42 . Botel U, G l ä s e r E, N i e d e g g e n A. T h e surgical t r e a t m e n t o f a c u t e s p i n a l p a r a l y z e d p a t i e n t s . S p io a l Chcd 1997: 35: 420-428l 43. B ö t t n r r M , K r ie g ls te in K, U n s i c k e r K. T h e t r a n s f o r m i n g g r o w th fa ct o r -b e t a s : structure, s i g n a l i n g , a n d roles in n e r v o u s s y s t e m d e v e l o p m e n t a n d fu n c t io n s . J N eurochem 2000; 75: 2227-2240. 44 . Brack o n MB, Shepard M J, C o li in s WF, et al. A rand om iz ed, c o n tr o lle d trial of m e t h y l p r e d n i s o l o n e o r n a l o x o n e in th e t r e a t m e n t o f a c u t e s p i n a l -c o r d injury. R e s u lt s o f th e S e c o n d N a t i o n a l A c u t e S p i n a l Co rd Inju ry Stud y. N Engl J M ed 1990; 3 2 2 :14 0 5 -14 11. 45. Buacken M B , S h e ^ r d M J, H o f o r d T i e t al. A d m i n i e t s a t io n o f m e t h y i f i r e d n is o lo n o for 2 4 o t 4 8 hou rs o r tiril azud m e s y l a t e fo r 4 8 hours in tlse t r e u t m e n t o f a c u t e ep in al aord injury. R e s u k s o f th e Thitd N a t i o n a l A c u t e S jt .n a l Co rd I n ju i y R a n d o m i z e d Co n tro lled Trial. N a t i o n a l A c u t e S p in a l (.ore1 Inju ry S t u d y . | A M A 19 b7; 2 7 7 : 1597-1604.. 46. B ra c k e n M B . S t e r o i d s for a c u te s p i n a l cord injury. Cochrane D atabase Syst Rev 2002; 3: C D 001046. 128 47 . B r a z e l t o n T R, Rossi FM , K e s h e t GI, e t al. From m a r r o w to brain: e x p ressio n of n e u r o n a l p h e n o t y p e s in a d u lt m ic e . Science 2000; 290 :1775-1779. 48. 49. B r e e n EC. V E G F in b iological c o n tro l. J Cell Biochem 2007; 10 2:13 5 8 -13 6 7. B ro d k ey JS , M il le r CF Jr, H a r m o d y RM . T h e s y n d r o m e o f a c u te c e n t r a l cervical s p i n a l cord inju ry revisit ed. Surg Neurol 1980; 14: 251-257. 50. B rö k er LE, Kruyt FA, G i a c c o n e G. Cell d e a t h i n d e p e n d e n t o f c a s p a s e s : a review . Clin C ancer Res 2005; 11: 3155-3162. 51. B rus-Ram er M, C arm el JB, C h a k r a b a r t y S, et al. Electrical s ti m u la t io n o f spared c o r ti c o s p i n a l a x o n s a u g m e n t s c o n n e c t i o n s with ip s il a te r a l s p i n a l m o t o r circuits af ter in ju ry. J N eurosci 2007; 27:1379 3-138 0 1. 52. B rü s tle O, M c K a y RD . N euronal p r o g e n i t o r s a s t o o ls for cell r e p l a c e m e n t in th e n e r v o u s s y s t e m . Curr Opin N eurobiol 1996 ; 6: 688-695. 53. B rü s tle O. B uild in g b r a in s : neural ch im era s in th e s tu d y of nervous system d e v e l o p m e n t a n d r e p a ir . Brain Pathol 1999; 9: 527-545. 54. B u n g e RP, Pu ck e tt W R, B e c e r r a JL, e t al. O b s e r v a t i o n s on th e p a t h o l o g y o f h u m a n s p i n a l cord injury. A r e v i e w a n d c la s sific a tio n o f 2 2 n e w c a s e s with d e t a i ls fr o m a c a s e o f c h ro n ic cord c o m p r e s s i o n with e x t e n s i v e fo cal d e m y e l i n a t i o n . A dv N eurol 1993; 59: 75 89 . 55. 56. B u n g e M B . B r i d g i n g a r e a s o f inju ry in th e s p i n a l cord. N euroscientist 20 0 1; 7 (4): 325-339. Bunnell BA, Y lostalo n e urospheres-derived J, fr o m Kang SK . pATSCs, Common pBM SCs, t r a n s c r ip t i o n a l and pN SCs. gene Biochem profile Biophys in Res C om m un 20 0 6; 343: 762-771. 57. C alancie B, M olano MR, Bro to n J G . A b d u c t o r ha llu cis fo r m o n i t o r i n g lo w er-lim b r e c o v e ry afte r s p i n a l cord inju ry in m a n . Sp in al Cord 2004; 42: 573-580. 58. C a o Q L, Z h a n g Y P , H o w a r d R M , e t al. P l u r i p o t e n t s t e m c ells e n g r a f t e d into th e n o r m a l o r l e s i o n e d a d u lt rat s p i n a l cord ar e restric ted to a glial l i n e a g e . Exp N eurol 20 0 1; 167: 48 -58 . 59. C a o Q L, O n i fe r S M , W h i t t e m o r e S R . L a b e li n g s t e m c e lls in vitro fo r iden tificatio n o f th eir d iff e r e n ti a t e d p h e n o t y p e s a f te r g r a f t in g in to th e C N S . M ethods M o l Biol 2002; 198: 307 -318. 60. C a o Q, Z h a n g Y P , la n n o t t i C, e t al. F u n c t io n a l a n d e le c tr o p h y s i o lo g ic a l c h a n g e s after 61. C a p l a n A l. A d u lt m e s e n c h y m a l s t e m c ells fo r t i s s u e e n g i n e e r i n g v e r s u s r e g e n e r a t i v e 62. C a r le t o n A, P e t r e a n u LT, L an s fo rd R, e t al. B e c o m i n g a n e w n e u r o n in th e adult 63. C a r p e n t e r M K , I n o k u m a M S , D e n h a m J, e t al. E n r i c h m e n t o f n e u r o n s a n d neural 64. C a s h a S, Y u WR, F e h li n g s M G . O li g o d e n d r o g li a l a p o p t o s i s o cc u rs a l o n g d e g e n e r a t i n g g r a d e d t r a u m a t i c s p i n a l cord inju ry in ad u lt rat. Exp N eurol 2005; 19 1: S3-S16. m e d ic i n e . J Cell Physiol 2007; 213: 341-347. olfa ct o r y bulb. N at N eurosci 2003; 6: 507-518. p r e c u r s o r s fro m h u m a n e m b r y o n i c s t e m cells. Exp N eurol 20 0 1; 172: 383-397. a x o n s a n d is a s s o c i a t e d wit h FA S a n d p7 5 e x p r e s s i o n fo llo w in g s p i n a l cord injury in th e rat. N euroscience 20 0 1; 103: 2 0 3 -2 18 . 129 Chapter 9 65. C a s h a S, Y u W R, F e h li n g s M G . FA S d e f ic ie n c y r e d u c e s a p o p t o s i s , s p a r e s a x o n s an d 66. Castro i m p r o v e s flincti o n a f te r s p i n a l cord injury. Exp Neurol 2005; 1 9 6 : 390-400. RF, Jackson KA, G o ofell M A, et al. Fail ure of bone m arrow c ells to t r s n s d ifFere n t i a t e into n eo ra l c ells i n vivo. Science 2002; 297: S999. 67f C h a f, H e n g C, R e i n f e n s m e y e r DJ, e t al. Loco m o t o r ability in s p i n a l rats is d e p e n d e n t 0 0 th e a m o u n t oF actio ity i m p o s e d on fh e hindlim O s dxning t r e a d m ill t r a i n i n g . J Neurotrauma 2007; 24: 1000-1012. 68. C h a m b e r l a i n JR, S c h w a r z e U, W a n g PR, et al. G e n e t a r g e t i n g in s t e m c e lls fr om 69. C h a p l a n S R , P o grel JW, Y a k s h TL. Role o f v n l t a g e - d e p e n d e n t c a lc iu m claannel a u b ty p e s 9o. Chiaplan S R , B ach FW, P o g r r l JW, e t al. Q u a n t i t a t i v e a s s e s s m e n t o f f a e f | e a N o d y o i t in indi vid ual s with o s t e o g e n a r i s ins pee rfec- a. Scisnce e004; 3 .3 : 11198.1201. in x x p e r i m e n t a l ta c t ile allodyni a . J ° harma cel Exp Th er 1 ^ 4 ; 2 e 9(3S: 1117-11C3. she r at p a w . J Nesresci Meth 19x4; 03 t ) : 05-63. 71. Chen TY, Dickm an CA, Eleraky Ml, et al. T h e role of7 d r c o m p r e s s i x n for a c u t e i n c o m p l n t s ceavical s p i n a l cord inju ry in c ervical s p o n d y lo s is . Spine 1998; 23: 2398-2403. 72. C h e n M S , H u b e r A B , v a n d e r H a a r M E , e t al. N o g o - A is a m y e l i n - a s s o c i a t e d n e u r ite U3o 43 o - 4 3 9 . C h e n X, K atak o w rk i o u t g r o w -h inhi bito r a n d an a n t i o o n fo r m o n o c l o n a l a n t i b o d y IN-1. Natuoe 2000; 403: M, Li Y, e t al. Hum an Bone M a r r o w S t r o m a l Cell cu ltu res c o n d i t i o n e d by t r a u m a t i c brain t i s s u e ext ra c t s: grow th fa c t o r pro d u ctio n . J Neurosci Res 2002a; 69: 687-691. 74. C h e n X, Li Y, W a n g L, e t al. l a c h e m ic rat brcin o x tr a c ts rnduce h u m a n m a r r o w s trom al n5. C h e n C P , Kiel M e . S a d o w s k i ID, e t al. F r o m s t e m c ells to o l i g a ^ n d r o c y t e s : p r o s p e c t s cell gr o w th fa c t o r ° r o d u c t i o n . Neuropxthol 2002/s,o22: 275-279). for brain th e r a p y . Stem CoII Rev 2009; 3: 2 8o-288. o i. C h e n J R , C h e n g G Y , S h e u CC, e t al. T r a e s p l a n t e d b o n e m a r r o w s tr o m a l c ells m i g r a te , d i ff e r e n t i a t e a n d i m p r o v e m o t o r fu n ctio n in r a ts wit h e x p e r i m e n t a l l y in d u c e d c e reb ral s t r o k e . 5 Anat 2008; 213: 249-258. 7 7. Cheng HL, Russe ll JW, Feldm an EL. IGF-I prom otes peripheral nervous system m y e l i n a t i o n . Ann N Y Acad Sci 1999; 883: 124-130. 7a. C h e n g H, W u J P , T z e n g SF . N e u r o p r o t e c t i o n o f glial cell lir a -d e r i v e T n e u r o tr o p h ic hactor in d a m a f x d s p i n a l c o r d s hollowiog c o n t u s iv e injury. J Neurosci Res 2002; 69 (3): 79. 397 -4 05 . C h e n g C M , M e r v i s RF, Niu SL, e t al. Insulin -like grow th fa c t o r 1 is e s s e n t i a l fo r n o r m a l 80. C h e n ° H, Liao KK, Lia o SF , e t al. S p i n a l c o r 3 r e p a i r w i9h a c if ic fi brobla 3t g r o w t f f ac to r 81. C h o p p IM, Z 9 a n g X H f l_i Y, e t al. S p i n a l cord injury in rat: t r e a t m e n t wit h b o n e m a r r o w 82 . Cho u S H , Kuo TK, Liu M, e t al. In u te r o t r a n s p l a n t a t i o n o f h u m a n b o n e m a r r o w -d e riv e d d c e d r it ic g r o w t h . J N euwsci Res 2003; 73: 1-9. a s a t r e a t m e n t fox a p a t i e n t w i t 9 ch rornc p a r a p l e g ia. Sp'mt 2004 . 29: E284-288. s tr o m a l cell t r a n s p l a n t a t i o n . Neuroreport 2000; 11 (13): 3001-3005. m u l t i p o t e n t m e s e n c h y m a l s t e m c e lls in m ic e . J Orthop Res 2006; 24: 301-312. 130 83. Ci bel l i J B , G r a n t KA, C h a p m a n KB, e t al. P a r t h e n o g e n e t i c s t e m c ells in n o n h u m a n 84. C iz k o v a p r i m a t e s . Science 2002; 295: 819. D, R o s o c h a J, V a n ic k y I, e t al. Bone m arrow tran sp lan ts p r o v id e t i s s u e p r o t e c t i o n a n d d ir ectio n al g u i d a n c e for a x o n s a f te r c o n t u s iv e s p i n a l cord injury in rats. Exp N eurol 2004; 19 0 :17 -3 1. 85. C iz k o v a D, R o s o c h a J, V a n ic k I, e t al. T r a n s p l a n t s o f h u m a n m e s e n c h y m a l s t e m c ells i m p r o v e f u n c t io n a l r e c o v e ry a fter s p i n a l cord inju ry in th e rat. Cell M ol N eurobiol 2006; 26 (7-8): 1167-1180 . 86. C l a p s C M , C o r c o ra n KE, C h o KJ, e t al. S t r o m a l d e r iv e d grow th f a c t o r - i a lp h a a s a b e a c o n for s t e m cell h o m i n g in d e v e l o p m e n t a n d injury. Curr N eurovasc Res 2005; 2: 319-329. 87 . C o g l e CR, Y a c h n i s AT, Layw ell ED, e t al. B o n e m a r r o w t r a n s d i f f e r e n t i a t i o n in brain 88. Corti S, Locatelli F, D o n a d o n i C, e t al. N e u r o e c t o d e r m a l a n d m icro gli al diffe re n tia t io n af te r t r a n s p l a n t a t i o n : a r e t r o s p e c t i v e stu dy . Lancet 2004; 36 3: 1432-1437. o f b o n e m a r r o w c ells in th e m o u s e s p i n a l cord a n d s e n s o r y g a n g l i a . J Neurosci Res 2002; 70 (6): 721-733. 89. C o u lte r P M 2 n d , B a u ti s t a EA, M a r g u l i e s JE, e t al. I d e n tifica t io n o f c ortexin : a novel, n e u r o n -s p e c i fi c , 8 2 - r e s id u e m e m b r a n e p r o te in e n r i c h e d in r o d e n t c e re b r a l corte x. J N eurochem 1993; 6 1: 756-759. 90. C o u tts M, K e i r s t e a d H S. S t e m c e lls fo r th e t r e a t m e n t o f s p i n a l cord injury. Exp N eurol 2008; 209: 368-377. 91. C o y n e T M , M a r c u s AJ, W o o d b u r y D, e t al. M a r r o w s tr o m a l c ells t r a n s p l a n t e d to th e ad u lt brain a r e r e je c t e d by an i n f l a m m a t o r y r e s p o n s e a n d t r a n s f e r d o n o r la b e ls to h o st n e u r o n s a n d glia. Stem Cells 20 0 6 ; 24: 2483-2492. 92. C u m m i n g s BJ, U chida N, T a m a k i SJ, et al. H u m a n n e ural s t e m c e lls d i ff e r e n t i a t e an d 93. C u m m i n g s BJ, Uchida N, T a m a k i SJ, e t al. H u m a n n e ural s t e m cell diffe re n tia t io n p r o m o t e l o c o m o t o r r eco v ery in s p i n a l cor d-in ju red m ic e. P N A S 2005; 102: 14069-14074. fo llo w in g t r a n s p l a n t a t i o n into s p i n a l cord inju red m ic e: a s s o c i a t i o n w ith r eco v ery o f l o c o m o t o r fu n ctio n . N eurol Res 20 0 6 ; 28: 474-481. 94 . C y ra n o sk i D. P a t i e n t s w a r n e d a b o u t u n p r o v e n s p i n a l surgery. N ature 20 0 6; 440: 850 851. 95. D e F o r g e D, N y m a r k J, L e m a i r e E, e t al. Effect o f 4 - a m i n o p y r i d i n e o n g a i t in a m b u l a t o r y s p i n a l cord in ju rie s: a dou b le -blin d, p la c e b o -c o n t r o ll e d , c r o s s o v e r trial. Sp in al Cord 2004; 42: 6 7 4 -6 8 5 . 96. D e H a r o J, Z u rita M, Ayllon L, e t al. D e t e c t io n o f "M n -o x in e -la b e le d b o n e m a r r o w s tr o m a l c ells a fter i n t r a v e n o u s o r i n t r a l e s i o n a l a d m i n i s t r a t i o n in c h ro n ic p a r a p l e g i c rats . Neurosci Lett 2005; 377: 7-11. 97. D e l a u n a y D, H e y d o n K, C u m a n o A, e t al. Early n e u r o n a l a n d glial fa t e restric tion o f e m b r y o n i c neural s t e m c ells. J N eurosci 2008; 28: 2551-2562. 98 . D elorm e B, C h a rb o rd P. Cu lt ure and c h a r a c t e r iz a t i o n o f human bone m arrow m e s e n c h y m a l s t e m c ells. M ethods M ol M ed 2007; 140: 67-81. 131 Chapter 9 99. D e M e d i n a c e l i L, Freed W J, W y a t t RJ. A n in d e x o f th e f u n c t io n a l c o n d itio n o f rat sciatic n e r v e b a s e d on m e a s u r e m e n t s m a d e fr o m w a lk in g tracks. Exp Neurol 1982; 77(3): 634 643. 10 0 . D e n g W, Fis ch er O, P r e c k o p DJ. In vitro d iff e re n tia t io n o f h u m a n b o n e m a r r o w s tr o m a l ce lls into ea r ly p r o g e n i t o r s o 0 n e u r a l c e lls by c o n d i f o n s t h a t i n c r e a s e in tr n fe ll u l o r cyclic A M P. Biochem Biophys Res Commun 2001; 282:148-102. 10 1. D e s h p a n d e D M , Kim Y S , M a r t i n e z T, e t al. R e c o v e r y fr o m p a r a l y s is in a d u lt rats u sin g e m b r y o n i c s t e m c ells. Ann Neurol 2006; 60: 32-44. 10 2. D i e t z V, H a r k e m a SJ. L o c o m o to s activity in rpiinal cord-in ju red p o r s o n s . J Appl Physiol 2004; 96: 1904-1960. 103. Dijk stra C D , D o p p EA, J o l i n g P, e t ail. T h e h e t e r o g e n e i t y o f m o n o n u c l e a r p h e g o c y t e s in ly m p h o id or°ans: distioct m acrophage subpopulations in th e r at reco gn ized by m o n o c l o n a l a n t i b o d i e s E D 1 , E D 2 a n d E D 3. Immunol 1985; 04 t3): 089 S 9 9 . 104. 105. D i t u n n o JF, Fo rm al C S . Ch roni c s p i o a l oord inju ry. N E n g . Med 1994; 330: 050-556. Ditunno JF, Burno A S , M arin o RJ. N e u ro lo g ic a l aed f u n c t io n a l capacity outcom e m e a s u r e s : e s s e n t i a l to s p i n a l cord inju ry clinical tr ials. J Rehabil Res Dev 2000; 42: S30lo i. 41 j D i t u n n o JF , B a r b e a u H, D o i l m B H , e t ail; S p i n a l Co rd Inju ry L o c o m o to r Trial (Group. V alid ity oo t lao w a lk in g ncaie fo r s p i n a l cord in je ry a n d o th er d o m a i n s o f fu n ctio n in a m u l t i c e n t e r clinical trial. Neurorehabil Neural Repair 2007; 21 (6): 039-000. 107. D o b k in B H , B a r b e a u H, D e f o r g e D, e t al; S p i n a l Cord Injury L o c o m o t o r Trial G r o u p . T h e e v e lu tio n o ( w a ^ i n g - r n l a t e d a u t c a m e s o e e r tho first 1 2 w e e k s o f r e h ab ilitatio n for incom |n lere tr a u m atio s p i n a l cord injury: th e m o lt ic e n t e r r a n d o m i z e d Sp rn al Cord I nju ry L o c o m o t o r "1"rial. Neurorehabil Neurol Repoir 2007; ni (1): 20-30r io 8 j D o e t s e h Is , C aille I, Lire DA, e t al. S u b e e n t r ic u la r z o n e a t t r o c y t e s a r t n e ural s t e m cells in th e adui t m a m m o n a o brain. Cell 19 o 9; 97: 703-716. 10 9 . D o m e n e c h J, G i h a n a E, D a y a n A, e t al. H a e m o p o i e s i s o f t r a n s p l a n t e d p a t i e n t s with a u t o l o g o o s m a r r o w a s s e s s e d by lo n g -te r m m a r r o w culture. Bra Haematol 1994; 88 (3): 488-496. 110 . D o m m e r g u e s M A , P l a i s a n t F, V e r n e y C, et al. Early m icro gli al ac tiv a tio n fo llo w in g n e o n a t a l ex c ite to x ic brain d a m a g e in m ic e : a p o t e n t i a l t a r . e t for n e u r o f r o t e c t i o n . Neuroseience 2003; 1 t 1 : 6 19 -6 2 8 . 111. D o n o g h u e J P , H o c h b e r g LR, N u rm ik k o AV, e t al. N e u r o m o t o r p r o s t h e s is d e v e l o p m e n t . Med Health R I 2007; 90:12-10. 112. D o n o v a n W H , H a lt e r JA, G r a v e s DE, e t al. I n t r a v e n o u s rnfusion of1 4 - A P io c h ro n ic s p i n al cord inju red e u b je c ts. Spinal Cord 2000; 38: °o-10- 1 1 3 . D o rr J, B e c h m a n n I, W a i c c i e s S, e t al. Lack o f tu m o o n e c r o s i s fa cto r -r elated a p n p t o s i s i n d t c i n g Ji g a n d t>ut p r e s e n c e o f its r e c e p t o r s in th e h u m a e . r o i n . J Nrurosci 2002; 22.RC209. 114 . D r y d e n D M , S a u n d e r s LD, R o w e B H , e t al. T h e e p i d e m i o l o g y o f t r a u m a t i c s p i n a l cord inju ry in A l b e rt a , C a n a d a . Can J Neurol Sci 2003; 30: 113-121. 132 115. Du Y, Jenkins NA, Copeland NG. Insertional m utagenesis identifies genes that promote the im m ortalization o f primary bone marrow progenitor cells. Blood 2005; 106 116. Dubreuil CI, Winton MJ, M cKerracher L. Rho activation patterns after spinal cord injury and the role o f activated Rho in apoptosis in the central nervous system. J Cell (12): 3932-3939. Biol 2003; 162: 233-243. 117. 118. 119. Dupont E, Sansal I, Evrard C, et al. Developm ental pattern o f expression o f NPDC-1 and its interaction with E2F-1 suggest a role in the control o f proliferation and differentiation o f neural cells. J Neurosci Res 1998; 51: 257-267. Edgerton VR, Tillakaratne NJ, Bigbee AJ, et al. Plasticity o f the spinal neural circuitry after injury. Ann Rev Neurosci 2004; 27: 145-67. Eisenberg CA, Burch JB, Eisenberg LM . Bone marrow cells transdifferentiate to cardiomyocytes when introduced into the embryonic heart. Stem Cells 2006; 24: 1236 1245. 120. 121. Elias LA, Wang D D , Kriegstein AR. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 2007; 448: 901-907. Enzm ann GU, Benton RL, Woock JP, et al. Consequences o f noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Exp Neurol 2005; 195: 293-304. 122. 123. 124. 125. 126. 127. 128. 129. 130. Enzm ann GU, Benton RL, Talbott JF, et al. Functional considerations o f stem cell transplantation therapy for spinal cord repair. J Neurotrauma 2006; 23: 479-495. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313-1317. Ernsberger U. The role o f G D N F fam ily ligand signalling in the differentiation of sym pathetic and dorsal root ganglion neurons. Cell Tissue Res 2008; 333: 353-371. Eugenin EA, D'Aversa TG , Lopez L, et al. MCP-1 (CCL2) protects human neurons and astrocytes from N M D A or HIV-tat-induced apoptosis. J Neurochem 2003; 85: 1299-1311. Fehlings MG, Perrin RG. The tim ing o f surgical intervention in the treatm ent o f spinal cord injury: a system atic review o f recent clinical evidence. Spine 2006; 15: S28-35. Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005; 128: 2951-2960. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1995; 279: 1528-1530. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279 (5356): 1528-1530. Festoff BW, Ameenuddin S, Arnold PM, et al. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 2006; 97:1314-1326. 131. Fiefler IG, Laud PW, M aiman DJ, et al. Economics o f managed care in spinal cord injury. Arch Phys Med Rehabil 1999; 80:1441-1449. 133 Chapter 9 132. Fields RD. Nerve im pulses regulate m yelination through purinergic signalling. Novartis Found Symp 2006; 276: 148-58. 133. Fisher LJ , Gage FH . Grafting i n the mammal ian central nervous system. Physiol Rev 1993 ; 73 : 583-686. 134. 135. 136. 137. Floridi F, Trettel F, Di Bartolomeo S, 3t al. Signaling pathways involved in the chemotactic activl ty p f CXCL12 in cultured pat cerebellar neurons and CH P100 neuroepithelioma cells. J Neuroimmunol 2003; 135 (1-2): 38-46. Foroni C, Galli R, Cipelletti B, et al. Resilience to transformation and inherent genetic and functional stability o f adult neural rtem cells ex L fvo. Cancer R ls 20 07; 6^ 3725-3733. Found e, Tse A. Aeidptive charges in the injured spinal cord and their role in promoting function al recove ry. Neueol Red 2008; 3 0 : 1^2°. Fran3 O, H e |m M. Jakob M, et al. Real-time quantitative RT-PCR analysis 0° human bone marrow stromnl cells during osteogenic differentiation in v/itr^. J Cell Biochem 200f; 85: 337-746. 138. 139. 140. nranFlin RJ, Blekemore W F. Repuirim ents for Schwann cell migration within CNS environm ents: a viewpoint. In tJ Dev Neurosci 1993; 11: 641-649. Ira n sse n EH, D e Bpee FM, Ess ing AH , et al. Comp arative ge ne eapresaion profiling of olfacfory ensheathing glia and Schwann cell;; Indicatea distinct tissue repair characteristics o f olfactory ens heathing glia. Glia 2008; n6 : 1285-1298. Fujiwara N, Kobayashi K. Macrophages in inflam m ation. Curr Drug Targets Inflamm Allergy 2005; 4: 281-286. 141. Gage FH . N euronrf stem caHs: their characterization and u ti.za tio n . Neurobiol Aging 142. G rltrey CM , Asher RA, Nothias F, et al. Promoting plasticity in the s p in rf cord with chondroitin ase 1mprovec functiona 1 recovrry after peripheral neree re pair. Brain F007; 143. García R, Aguiar J, Alberti E, et al. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived n3urotrophic factors. Biochem Biophys Res Commun 199n; 15: S191. 730: 9 L J 9 3 9. 2004; 316: 753-754. 144. 145. 146. 147. Gardiner P, Beaum ont E, Cormery B. Motoneurones "learn" and "forget" physical activ ity. Can J Appl Physiol 1005; 36.' 352-370. Gpisler FH , Coleman W P, Benzel E, et al. Spinal cord injury. Lancet 2002; 360: 1883. Gensel JC, Nakamura S, Guan Z, et al. Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009; 29: 3956-3968. Gilyarov AN7. Nestin in centra1 nervous lystem cr Ns . Neurosci Behav Physial 2008; 38: 1L 5i 1<r 9 . 148. 149. 124 Gold enring JIM. T h r brai n-lifa .heory: towards a consistent biological deflnitis n of h u m rnn ess.e Med Ethics 1985; 11: 198-214. Gorin NC, Piantadosi S, Stull M, et al. Increased risk o f lethal graft-versus-host disease like syndrome after transplantation into N O D /SC ID mice o f human mobilized peripheral blood stem cells, as compared to bone marrow or cord blood. J Hematother Stem Cell Res 2002; 11: 277-292. 150. 151. 152. Gravel C, Gotz R, Lorrain A, et al. Adenoviral gene transfer o f ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival o f axotomized motor neurons. Nat Med 1997; 3 (7): 765-770. Graziadei PP, Monti Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system o f m am m als. Deafferentation and reinnervation o f the olfactory bulb following section o f the fila olfactoria in rat. J Neurocytol 1980; 9:145-162. Grove JE, Bruscia E, Krause DS. Plasticity o f bone marrow-derived stem cells. Stem Cells 2004; 22 (4): 487-500. 153. Gruner JA. A monitored contusion model o f spinal cord injury in the rat. J Neurotrauma 1992; 9:123-128. 154. 155 . 156. Hadley M N, W alters BC, Grabb PA, et al. Guidelines for the m anagem ent o f acute cervical spine and spinal cord injuries. Clin Neurosurg 2002; 49: 407-498. Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 2006; 23: 264-280. Haism a JA, van der Woude LH , Stam HJ, et al. Physical capacity in wheelchairdependent persons with a spinal cord injury: a critical review o f the literature. Spinal Cord 2006; 44: 642-652. 157. 158. H alter JA, Blight AR, Donovan W H , et al. Intrathecal adm inistration o f 4am inopyridine in chronic spinal injured patients. Spinal Cord 2000; 38: 728-732. Ham ano K, Li TS, Kobayashi T, et al. Angiogenesis induced by the im plantation o f self bone marrow cells: a new material for therapeutic angiogenesis. Cell Transplant 2000; 9 (3): 439 - 443. 159. 160. 161. 162. 163. 164. Hardy SA, Maltman DJ, Przyborski SA. Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 2008; 3: 43-52. Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32 (1): 77-88. Harkema SJ. Plasticity o f interneuronal networks o f the functionally isolated human spinal cord. Brain Res Rev 2008; 57: 255-264. Haupt C, Witte OW, Frahm C. Up-regulation o f Connexin43 in the glial scar following photothrombotic ischemic injury. M ol Cell Neurosci 2007; 35: 89-99. Hayashi Y, Shumsky JS, Connors T, et al. Immunosuppression with either cyclosporine A or FK506 supports survival o f transplanted fibroblasts and promotes growth of host axons into the tran splant after spinal cord injury. J Neurotrauma 2005; 22 (11): 1267-1281. Helm GA, G azit Z. Future uses o f mesenchymal stem cells in spine surgery. Neurosurg Focus 2005; 19: E13. 165. Herm ann A, Maisel M, Storch A. Epigenetic conversion o f human adult bone mesodermal stromal cells into neuroectodermal cell types for replacem ent therapy of neurodegenerative disorders. Expert Opin Biol Ther 2006; 6: 653-670. 135 Chapter 9 166. 167. Hess DC, Abe T, Hill W D, et al. Hem atopoietic origin o f microglial and perivascular cells in the brain. Exp Neurol 2004; 186:134-14/4. Hess DC, Borlongan CV. Cell-biased therapy in ischemic stroke. Expert Rev Neurother 2008; 8:1193-1201. 16??. 169. Hill CE, Hurtado A, B lit. B, et al. Early necrosis and apoptosis od Schwann cells transplanted into the injured rat spinal cordi EurJ Neurosci aoo'71 26: 1,33-1445. Him es BT, Neuhuber B, Coleman C, et al. Recovery o f function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil ¡Neural Repair 2006; 20 (2): 2j8-°)6. 170. 171. t72. Hefntetter CP, Sclnwarz EJ, Heer D, et al. Murrow stromal cells foem guiding strands in the injured spinal cord and pramo te recnaery. P/VAS 200r; 99,: e199-2204. Holz A, Schaeren-Wiemers N, Schaefer C, et eL IMolocular and develo .m eetal ch aracterizatio n ot novel cDNAa e f the myel in-a rsnciated/oligodendeocyti c basic protein. Cell Res 1999; 9 :17 1-18 It. Horwitz EM , Prnakop DJ, Fiizpatrick l_A, et al. TraneplaeXability and thnrapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 19)99; 5 '- 309-313. 173. 174. 175. Hsu SX, Shih Y H , Huang MC, et al. Repair o f multiple cervicxl root avulsion with sural nerve gcaOt. Injury 2004; 35: 896-107. Hübner K, Fuhrmann G, Christenson LK, et al. Derivation o f oocytes from mouse embryonic stem cells. Science 2003; 300:1251-1256. Hurtado A, Moon LD, Mequet V, et al. Poly(D,L-lactic acid) macooparous guidance scaffolCi seeded with Schwa nn cell s geaetically modified to seciete a bi-functi onal neurotrophin im planted in the completely transected adult tat thoracic spinal cord. Biomateeials 2006; 27: 430-44.2. 176). Hutchinson KJ, Gomez-Pinilla e Crow/e MJ, et al. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain 2004; 127 /d): 1.03-1414. 177. Ibarra A, Diaz-Ruiz A. Protective effect o f cyclosporine-A in spinal cord injury: an overview. Curr Med Chem 2006; 13 (22): 2703-2710. Ikehara S. Bone marrnw transpluatarion: a new stoategy for ietractable diseases. Drugs Today 2002; 3 8 .2): 103-111. Ikehara S. A new concept o f stem cell disorders and their new therapy. J Hematother Stem Cell Res 2003; 12 (6): 643-653 . looue Iff, Honmou O, Oka S, et al. Com parativa analysis o l remyeenating potential of focal and intravenous administration o f autologous bone marrow cells into the rat demyelinated spinal cord. Glia 2003; 44 (2): 111-118. Irvin DK, Zurcher SD, Nguyen T , et al. Expression pxtterns o f Notcho, Nntch2, and Notch3 suggest m ultiple functional roles for the Notch-DSL signaling system during brain development. J Comp Neurol 2001; 436: 167-181. 178. 179. 180. ss s . 126 182. 183. Ishibashi T, Dakin KA, Stevens B, et al. Astrocytes promote m yelination in response to electrical im pulses. Neuron 2006; 49: 823-832. Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 2003; 23: 543-553. 184. 185. 186. 187. Jendelová P, Herynek V, Urdzíková L, et al. M agnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 2004; 76: 232-243. Jiang Y , Jahagirdar BN, Reinhardt RL, et al. Pluripotency o f mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-49. Jiang Y, Henderson D, Blackstad M, et al. Neuroectodermal differentiation from mouse m ultipotent adult progenitor cells. PNA S 2003; 100 (1): 11854-11860. Jim enez Ham ann MC, Tator CH, Shoichet MS. Injectable intrathecal delivery system for localized adm inistration o f EGF and FGF-2 to the injured rat spinal cord. Exp Neurol 2005; 194 (1): 106-119. 188. 189. Jim inez CR, Stam FJ, Li KW, et al. Proteomics o f the injured rat sciatic nerve reveals protein expression dynamics during regeneration. M ol Cell Proteomics 2005; 4: 120-132. Jin K, Mao XO , Batteur S, et al. Induction o f neuronal markers in bone marrow cells: differential effects o f growth factors and patterns o f intracellular expression. Exp Neurol 2003; 184: 78-89. 190. 191. Johansson CB, Svensson M, W allstedt L, et al. Neural stem cells in the adult human brain. Exp Cell Res 1999; 253: 733-736. Johansson, C. B. M echanism o f stem cells in the central nervous system. J Cell Physiol 2003; 196: 409-418. 192. 193. Jones TB , M cDaniel EE, Popovich PG. Inflammatory-mediated injury and repair in the traum atically injured spinal cord. Curr Pharm Des 2005; 11:1223-1236. Kageyama R, Ohtsuka T. The Notch-Hes pathway in m am m alian neural development. J Neurosci 1996; 16: 467-477. 194. 195. 196. Kageyama R, Ohtsuka T, Shimojo H, et al. Dynam ic Notch signaling in neural progenitor cells and a revised view o f lateral inhibition. Nat Neurosci 2008; 11:1247-1251. Kakulas BA. A review o f the neuropathology o f human spinal cord injury with emphasis on special features. J Spinal Cord Med 1999; 22:119-124. Kawai S, Yamauchi M, Wakisaka S, et al. Zinc-finger transcription factor odd-skipped related 2 is one o f the regulators in osteoblast proliferation and bone formation. J Bone Miner Res 2007; 22:1362-1372. 197. Kay ED, Deutsch A, Wuermser LA. Predicting walking at discharge from inpatient rehabilitation after a traum atic spinal cord injury. Arch Phys Med Rehabil 2007; 88: 745 750. 198. 199. Ke Y, Chi L, Xu R, et al. Early response o f endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 2006; 24: 1011-1019. Keirstead HS. Stem cell transplantation into the central nervous system and the control o f differentiation. J Neurosci Res 2001; 63: 233-236. 137 Chapter 9 200. 201. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants rem yelinate and restore locomotion after spinal cord injury. J Neurosci 2005; 25: 4694-4/05. Kenoedy P, Evans MJ, Berry Cd, et al. Comparative analysis of goal achievement during re hapilitation for older and younfer adults with sp ita l cord injury. Spinal Cord 2003; 41: 4 4 - 52 . 202. Kennedy P, Berry C, Coggrave M, et al. The effect o f a specialist seating assessm ent clinic on the skin m anagem ent o f individuals with spinal cord injury. J Tissue Viability 2003; 13:122-125. 603. f0 °. 205. 206. 2 0 .. 208. F09. 210. Kim R, Emi IM, Tanabe K, et al. Regulation and in t e r la y o f apo ptotic and n ons poptotic cell death._/ Pathol 2006; 208: 319-326. Kim BG, H w an° D H , Lee SI, et aL Stem eell-based cell therapy fete spinal cosd injury. CeOI Tsntsplant 2007; tO: 35.-364. Kirshblum SC, O 'Connor KC. Predicting neurologic recovery in traum atic cervical spinal cord injury. Arch Ohys Med Rehabil 1998; . 9 - 1456-1/466. Kitchel SH , Wang MY, Lauryssen CL. Techniques for aspirating bone marrow for use in spinal ourge ry. Neucosurg 2005; 57 (o): 28C-289. Kloos Ail-, Fishnr LC, DetlnOf MR , et a l. Stepwise motor a n ! all-or-none se nsory recovery o aos-dated with n onlinear sparing aCter increm ectal spinal cord inju ry in rats. Exp Neurol 2005; 191 (2): 251-265. Klyushnenkova E, Mosca JD , Zernetkina V, et al. T cell responses to allogeneic human mosencE)-mal stem cells: im m tnogenicity, tolerance and sop fctession. J Biomed Sci 2005; 12 : 47-57. Knollen N, Auerbaeh G. Fdga V, et al. Cl.nical expenience esing rnccbated autologous maArophages as a treatm eot for c tm °le te s f mal cord rnjury: phase I stuf ° results. | Neurnsurg Spine 2005t 3 o173-181. Koc O N, Day J, Nieder M, et al. Allogenic mesenchymal stem cell infusion for treatm ent o f metachromatic leukoeystropEy (M LD ) and busler syndrome (M PS-IH ). Bone Marrow Transplant 2002; 30 (4): 215-222. 211. Koenig S, Krause P, Drabent B, et al. The expression o f mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in eitro. | Hepatol 2006; 44: 111C-S12O. 212. 213. Kohyama J, Abe H, Shim azaki T, et al. Brain from bone: Efficient “ meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a dcmethylatiog agent. b iffereotiftioy 2001; 6p: 23^ie44. Koo pmans GC, Deum ens R, °u ss A, et al. /Acute relifsramotlialidomide trentme nt improves tissue rpari o ° and locomotion after experim ental spin al cord injLtey. Exp Neurol 2009; 216 {2): 490-498. 214. 139 Korecka JA, Verhaagen J, Hol EM . Cell-replacem ent and gene-therapy strategies for Parkinson's and Alzheim er's disease. Regen Med 2007; 2: 425-446. 215. 216. Koshizuka S, Okada S, Okawa A, et al. Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J Neuropathol 2004; 63: 64-72. Krassioukov AV, Furlan JC, Fehlings MG. Medical co-morbidities, secondary complications and mortality in elderly with acute spinal cord injury. J Neurotrauma 2003; 20: 391-399. 217. Kruse C, Bodo E, Petschnik AE, et al. Towards the development o f a pragmatic technique for isolating and differentiating nestin-positive cells from human scalp skin into neuronal and glial cell populations: generating neurons from human skin? Exp Dermatol 2006; 15: 794-800. 218. 219. 220. Kunkel-Bagden E, Dai H N , Bregman BS. Recovery o f function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function. Exp Neurol 1992; 116 (1): 40-51. Labouyrie E, Dubus P, Groppi A, et al. Expression o f neurotrophins and their receptors in human bone marrow. Am J Pathol 1999; 154: 405-415. Lankhorst AJ, Duis SE, ter Laak M P, et al. Functional recovery after central infusion of alpha-melanocyte-stimulating hormone in rats with spinal cord contusion injury. J Neurotrauma 1999; 16 (4): 323-31. 221. Lee KK, Tang MK, Yew DT, et al. Gas2 is a multifunctional gene involved in the regulation o f apoptosis and chondrogenesis in the developing mouse limb. Dev Biol 1999; 207:14-25. 222. 223. Lee J, Kuroda S, Shichinohe H, et al. Migration and differentiation o f nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathol 2003; 23: 169-180. Lee RH, Kim B, Choi I, et al. Characterization and expression analysis o f mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14: 311- 324. 224. 225. Lee H, Shamy GA, Elkabetz Y, et al. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 2007; 25: 1931-1939. Lee HC, Cho DY, Lee W Y, et al. Pitfalls in treatm ent o f acute cervical spinal cord injury using high-dose methylprednisolone: a retrospect audit o f 111 patients. Surg Neurol 2007; 68: S37-42. 226. 227. 228. 229. Lendahl U, Zim m erm an LB, McKay RD. CNS stem cells express a new class of interm ediate filam ent protein. Cell 1990; 60: 585-595. Leuthardt EC, Schalk G, Moran D, et al. The emerging world of motor neuroprosthetics: a neurosurgical perspective. Neurosurg 2006; 59:1-14. Li XJ, Du ZW, Zarnowska ED, et al. Specification o f motoneurons from human embryonic stem cells. N at Biotechnol 2005; 23: 215-221. Li M, Ransohoff RM. M ultiple roles o f chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol 2008; 84:116-131. 139 Chapter 9 230. 231. 232. Liang G, Cline GW, Macica CM. IGF-1 stim ulates de novo fatty acid biosynthesis by Schwann cells during m yelination. Glia 2007; 55: 632-641. Lima C, Pratas-Vital J, Escada P, et al. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med aoo6; 29:191-206. Liu S, Qu Y, Stewart TJ, et ul. EmOryopi a stem cells d ifferentiat e idto oligoden drocytes and m yelinate in culture and after spinal cord trausplantatione PN A S 2000; 97: 6126 6131. 233. 234.. 235. 136. 237. 238. Llado J, Haenggeli C, Maragakis NJ, et al. Neural stem cells protect against glutamate.nduced excitotfxicity and promote survival of" injured motor aetro ns through the secreti on o°peueotro p hic factors . Mol Cell Neurosci 2004; P7: 322-331. eois C, Alvarez-°uylla A. Proliferating subpentricular zone cells in t°a adult m am m alian forebrain can differentiate inter neurons and glpa. PNA S 1993; 90: 2074-2077. Longhi L, Zanier ER, Royo N, et al. Stem celi teansplantatiof as a therapeutic strategy Oos traum atic b raif injury. Trtnsp- Immunol 2005; 1 5 :14e-1f8. Sopez-Fanarraga Ml, Carranza G, Bullido J, et al. TeOpiin cofactor B plnys a role in the neuronal growth cone. J Neurochem 2007; 100:1680-1687. torinan P, Wol l PJ, O 'Briea MiE, et al. Randomized p ia se Ill trial oo dose-d ense chemothera py supported by wh oiu- blood hematopoietic progenitors in betterprognosis small-celi lung cancer. J Natl Cancer Inst 2005; 9-7 (9): 666-67o. Lou S, Gu P, Chen F, et al. The effect o f bone marrow stromal cells on neuronal differentiation o f m esencephalic neural stem cells in Sprague-Dawley rats. Brain Res 2003; <968 (1): 11^121. 239. 240. 2 e i. Lowry W E, Richteo L, Yachecliko R, et a p Generation o f human inpu ced pluripotent stem cells from d e n ia l fi broblasts . PNAS a00°; 10 5 :1^ ^ 2 8 8 8 . Lu D, Mlahmood A, W aag f , et aL /Adult bonu marrow stromal ce Hs a dministeted intravenously to rats after traum atic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001; 12 (3): 559-563. Lu P, Jones LL, Snyder EY, et al. Neural stem cells c:onepituoive ly secrete neurotrophic oactoss and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003; 181: 115-129. )4 2 . Lu P, Yang H , Jones LL, et al. Comoinationai therapy with neurotrophins and cAM P prom ote) axonal regeneration beyond sites o )sp in a l cord injury. J Neurosci 2004a; 24 243. Lu P, Blesch A, Tuszynski M H. Induction o f bone marrow stromal cells to neurons: Differentiation, transdifferentiat|on, or artifact? J Neurosc Res d00.°b; 77: 17.-191. Lu I3, Jones L p, Tuszynski M H. BDNF-exprexring marrow s.rom al cells su .p o rt extensive axona1growth at sites o f spinal cord injury. Exp. Neuro: 2005a; 1 ° (n)i 344-360. Lu z , Tuszynski MIH. Can bone marrow-derived stem cells differenriate into functional neurons? Exp Neurol 2005b; 193: 273-278. M acias MY, Syring M B, Pizzi MA, et al. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol 2006; 201 (2): 335-348. (28): 6402-6409. 244. 245. 246. 140 247. 248. Mahmood A, Lu D, Chopp M. Intravenous administration o f marrow stromal cells (M SCs) increases the expression o f growth factors in rat brain after traum atic brain injury. J Neurotrauma 2004a; 21: 33-39. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traum atic brain injury promotes cellular proliferation within the brain. Neurosurg 2004b; 55 (5): 1185-1193. 249. 250. 251. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697-705. M ariano AJ. Chronic pain and spinal cord injury. Clin J Pain 1992; 8: 87-92. Marino RJ, Barros T, Biering-Sorensen F, et al.; ASIA Neurological Standards Committee. International standards for neurological classification o f spinal cord injury. J Spinal Cord Med 2003; 26 (S1): 50-56. 252. 253. Marino RJ, Graves DE. M etric properties o f the ASIA motor score: subscales improve correlation with functional activities. Arch Phys Med Rehabil 2004; 85: 1804-1810. M artens DJ, Seaberg RM, van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle o f the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal o f the spinal cord. EurJ Neurosci 2002; 16:1045-1057. 254. 255. M artins F, Freitas F, M artins L, et al. Spinal cord injuries-epidemiologies in Portugal's central region. Spinal Cord 1998; 36: 574-578. Masaka T, Miyazaki M, Du G, et al. Derivation o f hepato-pancreatic interm ediate progenitor cells from a clonal mesenchymal stem cell line o f rat bone marrow origin. Int J M ol Med 2008; 22: 447-452. 256. 257. 258. 259. 260. Mason HA, Rakowiecki SM , Raftopoulou M, et al. Notch signaling coordinates the patterning o f striatal com partm ents. Development 2005; 132: 4247-4258. Mathews DJ, Sugarman J, Bok H, et al. Cell-based interventions for neurologic conditions. Ethical challenges for early human trials. Neurology 2008; 71: 288-293. Mayer-Proschel M, Kalyani AJ, Mujtaba T, et al. Isolation o f lineage-restricted neuronal precursors from m ultipotent neuroepithelial stem cells. Neuron 1997; 19: 773-785. Maynard FM , Bracken MB, Creasey G, et al.; American Spinal Injury Association. International standards for neurological and functional classification of spinal cord injury. Spinal Cord 1997;35: 26 6-274 . M cDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999; 5: 1410 1412. 261. 262. M cKay JS, Blakemore WF, Franklin RJ. The effects o f the growth factor-antagonist, trapidil, on rem yelination in the CN S. Neuropathol Appl Neurobiol 1997; 23: 50-58. M cKenzie IA, Biernaskie J, Toma JG, et al. Skin-derived precursors generate m yelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 2006; 26: 6651-6660. 141 Chapter 9 263. 264. 265. 266. M cKinley W O, Jackson AB, Cardenas D D, et al. Long-term medical complications after traum atic spinal cord injury: a regional model systems analysis. Arch Phys Med Rehab'll 1999; 8 0 :14 02-1410. M cKinley W, Tewksbury MA, Sitter P, et al. Assistive technology and computer adaptations foe individualu with spinal cord inj ury. Neurorehabilitation 2004; 19: 141-146. McMahon SS, Alberm ann S, Rooney GE, et al. Effect o f cyclosporin A on functional recovery in the spinal cord following contusion injury. J Anat 2009; 215 (3): 267-279. M cM anus PM, W eiss L. Busulfan-induced chronic bone marrow failure: changes in cortical bone, mnrrow stromal cells, and adherent cell coloeies. Blood 1984; 64. (5): 1036-1041. 267. McTigue IDMl, Horner PJ, Stokes BT, et al. Neurotrop.iin-3 and brain-derived neurotropliic factor induce oligodendrocyte proliferation a n . m yelination of regenerating axons in the eontused adclt r2t spinel coed. J Neurotci 19198; 18 .14): 5354536 o. 268. Mecba Ml, Cabadan MA, Peiïa-M eliPn A, et al. 2 xpression o f TGF-betas in the embryonic nervous system: analysis o f interbalance between isoforms. Dev Dyn 2008; 237: 1709- W . 22 b. 270. T71. 272. 273. Mleijr 199 F, Tim m ers L, Pearse DID, et al. Basic fibroblast growth factor promotes neuronal survival but not; dehbvioral r/bovery in the transected anD Schwann cell im planted rat thoracic spinal cord.J Neurotrauma 2004; 21 (10): 1415-1430. M ezey E, Chandross KJ. Bone marrow: a possible alternative source o f cells in the adult nervous system. EurJ Pltdrmanclogy booo; 405: 2^-30 2. M ezey E, Chandross KJ, Harta G, et al. Turning blood into brain: Cells bearing neuronal antigens gennrated in nine from bone marrow/. Soienct 2000; 290:17719-1180. M ezny E, Key S, Vcgelsang I, et al. Transplanted leone marrow generates new neurons in human brains. PN A S 2003; 100 (3): 1364-1369. M ezey E. Bone marrow-derived stem cells in neurological diseases: stones or masons? Regen Mied 2007/ 2: 37-49. 274i 275. M iller JT, Bartley JH , Wimborne HJ, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain followiog neonatal hyp exicdschemic injury. B M C Neurosci 2005; 6: 63 ; M irem id e A, Yoshida M, Kawakami Mi, et el. The use o f cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine 2005; 30 (10): 1134-1138. 276. 2°7. M inger SL, Ekonomou A, Certa bM, et al. EndogTeous neurogeneris rn the heman brain following cerebral infarcti on. Regen Med 200- ; 2: 69-74. M omson SJ, Shah NM, Anderson DJ. Regulatocy m ediabicm in ste m cell biotagy. Cell 1997; 88: 287-298. 278. 142 Mothe AJ, Tator CH . Proliferation, migration, and differentiation o f endogenous ependymal region stem /progenitor cells following m inim al spinal cord injury in the adult rat. Neuroscience 2005; 131:177-187. 279. 280. Munoz-Elias G, Woodbury D, Black IB. Marrow Stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 2003; 21: 437-448. Munoz-Elias G, Marcus AJ, Coyne TM , et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation and long term survival. J Neurosci 2004; 24: 4585-4595. 281. 282. 283. 284. Murry CE, Keller G. Differentiation o f embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132 (4): 661-680. Murrell W, Feron F, W etzig A, et al. M ultipotent stem cells from adult olfactory mucosa. Dev Dyn 2005; 233: 496-515. Nagy A, Rossant J, Nagy R, et al. Derivation o f completely cell culture-derived mice from early-passage embryonic stem cells. P N A S 1993; 90: 8424-8428. Naldini L, Blomer U, Gage FH, et al. Efficient transfer, integration, and sustained long term expression o f the transgene in adult rat brains injected with a lentiviral vector. PN A S 1998; 93:11382-11388. 285. 286. 287. 288. Nandoe Tewarie RD, Hurtado A, Levi AD , et al. Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplant 2006; 15: 563-577. Nandoe Tewarie RD, Hurtado A, Ritfeld GJ, et al. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. J Neurotrauma 2009; 26 (12): 2313-2322. Nesathurai S. Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma 1998; 45: 1088-1093. Nesathurai S. The role o f methylprednisolone in acute spinal cord injuries. J Trauma 2001; 51: 421-423. 289. Nesbitt T L, Roberts A, Tan H, et al. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev Dyn 2009; 238: 423 430 . 290. Neuhuber B, Gallo G, Howard L, et al. Reevaluation o f in vitro differentiation protocols for bone marrow stromal cells: disruption o f actin cytoskeleton induces rapid morphological changes and m imics neuronal phenotype. J Neurosci Res 2004; 77: 192 204. 291. 292. Neuhuber B, Timothy Him es B, Shumsky JS, et al. Axon growth and recovery o f function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 2005; 1035 (1): 73-85. Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration o f sensory axons within the injured spinal cord induced by intraganglionic cAM P elevation. Neuron 2002; 34 (6): 885-893. 293. Newson AJ, Smajdor AC. Artificial gametes: new paths to parenthood? J Med Ethics 2005; 31:184-186. 294. Niederost B, Oertle T, Fritsche J, et al. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation o f RhoA and Raci. J Neurosci 2002; 22:10368-10376. 143 Chapter 9 295. 29(3. 297. Nishikawa S, Goldstein RA, Nierras CR. The promise o f human induced pluripotent stem cell;: for research and therapy. Nat Rev M ol Cell Biol 2008; 9: 725-709. N istim S, Hasso SM , Fallon JF, et al. Regulation of Grem lin expression in the posterior lim Id bud. Dev Biol 2006; 299:12-21. Nistor G I, Totoiu MO, Haqoe N, et al. Human embryonic stem cclls differentiate into oligohendrocytes in high purity and m yelinate aeter spinal (ford transplantation. Glia 2005; 49: 385-396. 298. a99. Niyibizi C, Smith P, Mi Z, et al. Potential o f gene therapy for treating osteogenesis imperfecta. Clin Orthop Rerat Res 2000; 379: S1C6-133. Nenes MC, Roy N C Keyoung H M , et al. Identification and isolttion o f multipotential eecral progenitor cells from the subcortical white matter o f fhe adult human broin. Nat Med 2003; 9: 43o)-447i 300. N ussbssm J, M inam i E, Saflammh MA, et el. Transplantation o l undifferentiated murine emOryonio stem cells ie the heart: teratoma formation aod immune response. 301. O 'Connor P. Incidence and patterns o f spinal cord injury in Australia. Accid Anal Prev e002; 37: 405-015 . Ogawa S. The im portance of7 adiposeiderivee stem cells and vascolarized tissue regeneratio n in the field o lti ssoe tran splantation . Curr Srem Cell Res Ther 2006; 1: 13 fA SEB J 2007; 21:1345-1357. 302. 20. 303. ¡504. 305. 306: 307. 308. 309. 310. 31s. 144 Ohshima Y, Kubo T, Koyama R, et al. Regulation o f axonal elongation and pathfinding from the entorhinal cortex to the deotate gyrus in the hippocam °us by the chemokine stromal celi-derived factor 1 alpha. J Neutosci 2008; 2f .' 8344-8353. Ohta M, Suzeki Y, Noda p , et a I. Bone marrow strom al cells infused i nto the cerebrospinal fluid promote feoctionrl recooerp of3 the injured raf spinal cord w it. reduced savity Oormotion. Exp Neurol 2004; 187: 266-278. Okano H, Sakaguchi M, Ohki K, et al. Regeneration o f the central nervous system using endogenous repair m ech an itm s.J Neurochrm 2007; 102 S5): 1o59-1oC5. Okita K, Ichisaka T , Yam anaka S. Generation o f germline-competent induced pluripotent stem cells. Nature 2007; 448: 313-317. Olsson e, Denham M, Cole TJ, et a ! Deriving respiratory cell types from stem cells. Curr Stem Cell Res T ie s 2007; o: 197-208. Ono K, Yoshihara K, Suzuki H, et al. Preservation o f hematopoietic properties in transplanted bone marrow cells in the brain. J Neurosci Res 2003; 72: 503-507. Orforei KW° Scadden IDT. Deconstructing stem cell self-renewal: genetic insights ieto ceN-cyde regdation. N a o Rev Genet 2008; 9:115-128. O rlic D, Kejstura J , CMm rnt;i S. Bodine DM , Le ri A, Anverta P. Tranoplan ted adult bone merrow cells repair myocao^al infarcte in mioe. A on Acad Sci 2001; 93° 221-229. Oudega M, Vargas CG, Weber AB, et al. Long-term effects o f methylprednisolone following transection o f adult rat spinal cord. EurJ Neurosci 1999; 11: 2453-64. 312. Oudega M, Xu XM . Schwann cell transplantation for repair o f the adult spinal cord. J 313. Oudega M. Schwann cell and olfactory ensheathing cell im plantation for repair o f the contused spinal cord. Acta Physiologica 2007; 189 (2): 181-189. Padovan CS, Jahn K, Birnbaum T, et al. Expression o f neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transpl 2003; 12: Neurotrauma 2006; 23: 453-467. 314. 839-848. 315. Pagliacci MC, Celani M, Zam polini M, et al.; Gruppo Italiano Studio Epidemiologico M ielolesioni. An Italian survey o f traum atic spinal injury. Arch Phys Med Rehabil 2003; 84: 1266-1275. 316. 317. 318. 319. 320. 321. 322. 323. 324. Papadopoulos SM , Selden NR, Q uint DJ, et al. Immediate spinal cord decompression for cervical spinal cord injury: feasibility and outcome. J Trauma 2002; 52: 323-332. Parish CL, Arenas E. Stem-cell-based strategies for the treatm ent o f Parkinson's disease. Neurodegener D is 2007; 4: 339-347. Park HC, Shim YS, Ha Y, et al. Treatm ent o f complete spinal cord injury patients by autologous bone marrow cell transplantation and administration o f granulocytemacrophage colony stim ulating factor. Tissue E n g 2005; 11 (5-6): 913-922. Park IH , Zhao R, West JA, et al. Reprogramming o f human somatic cells to pluripotency with defined factors. Nature 2008; 451:141-146. Park YB , Kim YY , Oh SK, et al. Alterations o f proliferative and differentiation potentials of human embryonic stem cells during long-term culture. Exp M ol Med 2008; 40: 98-108. Parker MA, Anderson JK, Corliss DA, et al. Expression profile o f an operationallydefined neural stem cell clone. Exp Neurol 2005; 194 (2): 320-332. Parr AM , Tator CH , Keating A. Bone marrow-derived mesenchymal stromal cells for the repair o f central nervous system injury. Bone Marrow Transplant 2007; 40: 609-619. Parr AM , Kulbatski I, Tator CH . Transplantation o f adult rat spinal cord stem /progenitor cells for spinal cord injury.J Neurotrauma 2007; 24: 835-845. Parr AM , Kulbatski I, Wang X H , et al. Fate o f transplanted adult neural stem /progenitor cells and bone marrow-derived mesenchymal stromal cells in the injured adult rat spinal cord and impact on functional recovery. Surg Neurol 2008; 70 (6): 600-607. 325. Parr AM , Kulbatski I, Zahir T, et al. Transplanted adult spinal cord-derived neural stem /progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 2008; 155: 760-770. 326. 327. 328. Patist CM , Mulder M B, Gautier SE, et al. Freeze-dried poly (D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 2004; 25: 1569-1582. Patki P, Hamid R, Shah J, et al. Fertility following spinal cord injury: a systematic review. Spinal Cord 2007; 45: 187. Patten BA, Peyrin JM , W einm aster G, et al. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J Neurosci 2003; 23: 6132-6140. 145 Chapter 9 329. 330. C31. 332. Pearse D D, Pereira FC, Marcillo AE, et al. cAM P and Schwann cells promote axonal growth and functional recovery after spinal cord injury. N at Med 2004; 10 (6): 610-616. Pearse DID, Lo TP Jr, Cho KS, et al. Histopathological and behavioral characterization of a novel cervical spisial csrd displacem ent contusion injury in the rat. J Neurotrauma 2005s 22 (P .: 680-702. Pfckaam PHI, Knutson JS. bpnctional electrical stimulation bor neuromuscular applications. Ann Rev Biomed Eng 2005; 7: 327-360. Peterfy A. Fetal viability as a threshold to personhood. A legal analysis. J Leg Med 1995; 16: 607-636. p33. a34. p35. Petersen BE, Bowcn WC, Patrerre KD, ut al. Bone macrow ps a potential soprce of pb[catic oval cells 1Scienca 1999; 284.: 1168-C170. Pfeifor p, Vroemen M, Blesch A, et a2 Adult neural [vpogenitor cells provide a permissiup guiding snbstrate for corticospinal Pfon growth following spinal cord injury. Eur J Neurosci 2004; 20:1691-1704. Phinsey DG, Prcckop DJ. Concise revpew: mesenchymal stem /m altipotent stromal cells: the state o f transdifferentiation and modes o f tissue repair-current views. Stem Cells 2007; 25: 2896-C902. 336. 337. 338. 339. 340. 341I S42. Pivcus DW, (Goodman RR, draper IRA, et al. Nenrpl stem and c rogenitor cells: a strategy tKr gene therapy and brain repair. Neurosurgery 1998; 42, 858-867. Pittenger MF, Mackay AM , Beck SC, et al. M ultilineage potential o f adult human mesenchymal stem cells. Science 1999; 284: 143-147. Plcnt GW, Christensen CL, Oudega M, vt; al. Delayed transplantation o f o|cactory enshsathing g°a promotes sparing/regeneratiov o f supraspinal axons in the contused aduK rat sprnal co rd .J Neurotrvuma 2003; 20 (1): 1-16. Polak J M, Bishop AE. Stem vel ls and tissuv engineering: pasp, present, pnd future. Ano N Y Acad Sci 2 00C; 0 8: 352-366. Polinder S, van Beeck EF, Essink-Bot M L, et al. Functional outcome at 2.5, 5, 9, and 24 m onths after injury in tve Netherlands. J Trauma 2007; 6 2 :13v-141. Popvvich PG, Wei P, Stokes BT. Cellular inflam m atory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 1997; 377: 443-464. Popovi DB, Popovi M BI Hybrid atsistive systems for rehabilitption: lessons learned Crom bun gpon pi el vctrical therapy in hemipl egics. Co nf Proc Eng Med Biol Soc 2006; 1: 2146-2149. 343. 344. 3451 346. Potten CS, Loeffler M. Stem cells: Attributes, cycles, spirals, pitfalls, and uncertainties. Lersons for vnd from the ctypt. Development 19190; 110:1001-1020. Qian T, Guo X, Levi AD , r t av High-dose m ethyiprrdnisolone may caurv myopathy in acvte spinp1cord injury patienta. Spinal CorJ 2vo5; 43: 199-203. Rainvtepu O, Scf wvb ME. Plasticity o^ motor systems after incomplete sp in a1 cord injury. Nat Rev Neurosci 2001; 2 (4): 263-273. Raism an G, Li Y. Repair o f neural pathways by olfactory ensheathing cells. Nat Rev Neurosci 2007; 8: 312-319. 146 347. 348. 349. 350. Rakic P. Lim its o f neurogenesis in prim ates. Science 1985; 227:1054-1056. Ramer MS, Harper G P, Bradbury EJ. Progress in spinal cord research - a refined strategy for the International Spinal Research Trust. Spinal Cord 2000; 38: 449-472. Ramon-Cueto A. Olfactory ensheathing glia transplantation into the injured spinal cord. Prog Brain Res 2000; 128: 265-272. Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Im plantation o f stimulated homologous macrophages results in partial recovery o f paraplegic rats. Nat Med 1998; 4: 814-821. 351. Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different m echanism s. Exp Cell Res 2005; 305: 33-41. 352. 353. 354. 355. 356. 357. Ratajczak MZ, Luger SM , Gewirtz AM . The c-kit proto-oncogene in normal and m alignant human hem atopoiesis. In tJ Cell Cloning 1992; 10: 205-214. Ray S, Atkuri KR, Deb-Basu D, et al. M YC can induce DNA breaks in vivo and in vitro independent o f reactive oxygen species. Cancer Res 2006; 66: 6598-6605. Reier PJ. Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx2004; 1 (4): 424-451. Reinolds BA, W eiss S. Generation o f neurons and astrocytes from isolated cells o f the adult m am m alian central nervous system. Science 1992; 255 (5052): 1707-1710. Ribeiro-Resende VT, Pimentel-Coelho PM, Mesentier-Louro LA, et al. Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience 2009; 159: 540-549. Richardson RM, Sun D, Bullock MR. Neurogenesis after traum atic brain injury. Neurosurg Clin N Am 2007; 18: 169-181. 358. 359. Rismanchi N, Floyd CL, Berman RF, et al. Cell death and long-term m aintenance of neuron-like state after differentiation o f rat bone marrow stromal cells: a comparison of protocols. Brain Res 2003; 991: 46-55. Ritfeld GJ, Nandoe Tewarie RD, Rahiem ST, et al. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord. Neuroreport 2010; 21 (3): 21-26. 360. Robertson JA. Ethics and policy in embryonic stem cell research. Kennedy Inst Ethics 1999; J 9: 109- 136. 361. Roman Catholic Church. Cathechism o f the Catholic Church. Vatican City by Libreria Editrice Vaticana. 2nd English translation: paragraphs 2274-2322 (1994). 362. Rossignol S. Plasticity o f connections underlying locomotor recovery after central and/or peripheral lesions in the adult m am m als. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1647-1671. 363. 364. Rossignol S, Barrière G, Frigon A, et al. Plasticity o f locomotor sensorimotor interactions after peripheral and/or spinal lesions. Brain Res Rev 2008; 57: 228-240. Ruitenberg MJ, Plant GW, Ham ers FP, et al. Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract 147 Chapter 9 365. dC6. 367. a6a. -69. 370. 371. 372. regeneration, lesion size, and functional recovery after im plantation in the injured rat spinal cord. J Neurosci 2003; 23: 7045-7058. Saito T, Kuang JQ, Lin CC, Chiu RC. Transcoronary im plantation o f bone marrow stromal cells am eliorates cardiac functiyn after myocardial infarction. J Thornc Cnrdiovrsc Surg2003 ; 126: 114-123. Sakai D, Mochida J, Yam am oto Y, et al. Transplantation o f mesencnymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomnterinls 2003; (24): 3531-3541. Sakai D, Monhida J, Ivcashiaa T, et al. D fe re n tia P o n oc m esenchym a1 stym cells transplanted to a rabbit degenerative disc model: potential and lim itations for stem cell therapy in disc regeneration. Spine 2005f u<s: 2379-2- 8g. Sakai D, Mochida J, Iwashiny T, nt al. Regenrrati ve effects o f transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Bio materials 2006; 27: 335-C45. la lim i I, M arlin JH . Rescuing tranyiant corticospinal term inations and promoting growth with corticospinal stim ulation in kittens. J Neurosci 2004; 24: 4952-4961. Canuhez-Ramos J, Song S, Cardozo-Pclaez F, et al. Adalt Bone Marrow Stromal Cells differentiate into neural cells in vitro. £rfp Neurol 2000; 164: n47-256: Sanchez-Ca moy JR. Neural cells derived from adult bone marrow and umbi lical cord blood.J Neurosci Res 2002; 69: 880-893. Sariola H, Saarma M. Novel functions and signaling pathways for G D N F. J Cell Sci 2003; 116: -3855-3862. 373. 374. 375. 376. 377. Satake K, Lua J, Lenke LG. M.gration o f m eseychym a1 stem cells thaough cerebrespinal fluid into injured spin al cory gissue. Spiue 2004; -9 ti8): 1971-19 u 9Sawatoky B, Bishop CM, M iller WC; SCIRE Researcli Tsam . Classification an y m easurem ent oCp ain i n the spinal cord-injured popu lation. Spiunl Cord 2008; 46: 2-10. Schachner M, Bartsch U. M ultiple functions o f the myelin-associated glycoprotein MAG (siglec-4a) in formation and m aintenayge o f myelin. Glin 2000; 29:054-161. SchCffler A, Buchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical im plications for novel cell-based therapies. Stem Cells 2007; 25: 818-827. Scheff SWS, Rabchevrky AG, Fugaccia I, et al. Experim ental m clo lin g o f spinal cord injury: yharacterization o f a force-defined injury device. J Neurotrnumn 2003; 20 (2): 179 193. 378. 379. 380. Schwartz M, Yoles E. Immune-based therapy for spinal cord repair: autologous macrophages ayd beyond. J Neurotsnumn 2006; 23: 3(5(3-370. Sell S. Stem CnMs Handbook, Totowa, NJ: Humnun Press luc. 02004). Sesh i B, Kumar ° . K. c u D. M uki. ineage gettn expressbn in human bone ma rrow r^omu. cells as evidenced by single-cell microarray anatysis. Blood Cells M ol D is 2003; 31: 268-285. 148 381. 382. 383. Stewart AL, Anderson RB, Kobayashi K, et al. Effects o f NGF, NT-3 and G D N F family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. B M C Dev Biol 2008; 8: 73. Seth S, Narang R, Bhargava B, et al. A IIM S Cardiovascular Stem Cell Study Group. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial. J Am Coll Cardiol 2006; 48: 2350-2351. Setoguchi T, Nakashima K, Takizawa T , et al. Treatm ent o f spinal cord injury by transplantation o f fetal neural precursor cells engineered to express BM P inhibitor. Exp Neurol 2004; 189: 33-44. 384. Shannan B, Seifert M, Boothman DA, et al. Clusterin and DNA repair: a new function in cancer for a key player in apoptosis and cell cycle control. J M ol Histol 2006; 37: 183 385. Sheth RN, M anzano G, Li X, et al. Transplantation o f human bone marrow-derived stromal cells into the contused spinal cord o f nude rats. J Neurosurg Spine 2008; 8 (2): 386. Shiras A, Chettiar ST, Shepal V, et al. Spontaneous transformation o f human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model o f glioblastoma. Stem Cells 2007; 25:1478-1489. Sigurjonsson O E, Perreault MC, Egeland T, et al. Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. PNA S 188. 153-162. 387. 2005; 102 (14): 5227-5232. 388. 389. Silberstein B, Rabinovich S. Epidemiologies o f spinal cord injuries in Novosibirsk, Russia. Paraplegia 1995; 33: 322-325. Silver J, M illet JH . Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 2: 146 156. 390. 391. Sim mons PJ, Przepiorka D, Thomas ED, et al. Host origin o f marrow stromal cells following allogeneic bone m arrow transplantation. Nature 1987; 328 (6129): 429-432. Sinson G, Perri BR, Trojanowski JQ, et al. Im provem ent o f cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experim ental traum atic brain injury. J Neurosurg 1997; 86 392. Slack JM . M etaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev 393. Snyder EY. Neural transplantation: an approach to cellular plasticity in the developing central nervous system. Semin Perinatol 1992; 16: 106-121. Snyder EY, Macklis JD . M ultipotent neural progenitor or stem-like cells may be uniquely suited for therapy for some neurodegenerative conditions. Clin Neurosci 1995; (3): 511- 518. M ol Cell Biol 2007; 8: 369-378. 394. 3: 310-316. 149 Chapter 9 395. 396. 397. 398. 399e 4.00. Snyder EY, Yoon C, Flax JD , et al. M ultipotent neural precursors can differentiate toward replacem ent o f neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. PN A S 1997; 9g (21): 11663-11668. Spencer M L, Theodosiou M, Noonan DJ. NPDC-1, a novel regulator o f neuronal proliferatio n, is degraded by the; ubiqo itin /eroteaso me system tgroogh e P EST degradation m o tif J Bio/ Chem 200g; 279: f706me70f8. Stanford RE, Soden R, Bartrop R, et al. Spinal cord and related injuries after attempted suicide: psychiatric diagnosis and long-term follow-up. Spina/ Cord 2007; g$: gf7-ggf. Steiling H, W erner S. FibroWast growtg factors: key players in epithelial morph ogenes is, repair and cytoprotect ion. (Twer Op in Biotechno/ 20Cf; i f : 533-537. f g g ing DP, K°odgrahmi K, Liu J, et al. Minocycline treatm ent reduces delayed oligodendroqrte deoth, ottenuotes axonal dieback, and improvee functional outcome after seinel oord injucy. J Neurosci 200g; 2gn e12e-2190. Sto ll <tf, Jander S, S chroetee le . Detr im ental and bnneficia l eefects o f in jury-inC uced inflamm ation eng cytokine expees sion in the nervous system. Adv Exp Med Bio/ 2002; 513: 87-113. 401. 402. 403. eteaTss DJ, DeVivo MJ, Paceldo DR, et al. Trends in C9e eepectancy aeter spieal cord i njury. Arch] Phys Med CCehabi/ 2006; 87: 1079-1085. Stute Io , oehoe B, Sehroder J, et al. Humdc mesenchymal etem cells are not o f donor origin in patients with severe aplastic anem ia who underwent sex-mismatched allogeneic bone m arrow transplant. J Hematother Stem Ce// Res 2002; 11 (6): 977-98g. Swangeg SA, Neuhuber g, H im cs T, et al. Analysis of allogeneic and syngeneig bone marrow strome! cof graft survival in the sprnal cofd. Ce// Transp/antation 2005; 1g (10): 77517 86. 404. Sugaya ° Possible use cre autologofs stem cell therapies for Alzheim er's disease. Curr Alzheimer Res 2005; 2: 3 o~7-f76. 405. 406. 407 , 408. 409. 410. 150 Suzuki H, Taguchi T, Tanaka H, et al. Neurospheres induced from bone marrow stromal cells are m ultipotent foi differentiation into neeton, aeSrocytes and oligodendrocytes phenotypes. Biochem Biophys Res Commun200g; 322: 918-922. Sykova E, Jendelova P. M agnetic resonance tracking o f im planted adult and embryonic stem cells In in ju re ! brein and tpinal cord. Ann Acad Sci 2005; f0gg: 1C6-160. Takahashi K, Ynm anaka S . Indu ftien d pluripote nt stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Ce// 2006; 126: 663-676. Takami T, Oudega M, Bates M L, et al. Schwann cell but not olfactory ensheathing glia transfjlantg improve hrndlimb locomotor perform ante in the moderately contused adult rat tho rack s p ic a 1cord._/ Neurosci 2002a; 22: 66170-6681. Takami T, Oedef a M, Betgeu JR, et eL Methylpeednisolone rnd ictorl^ukiu-io rcduce gray m atf er f emage in tlie contused Fischer rat tlioiacic spinal cord bu.; do nct improve functional outcome. J Neurotrauma 2002b; 19 (5): 653-666. Tang Y, Yasuhara T, Hara K, et al. Transplantation o f bone marrow-derived stem cells: a promising therapy for stroke. Ce// Transp/ant 2007; 16:159-169. 411. 412. 413. Tang W, Wang W, Zhang Y, et al. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced chemokine release in both TRAIL-resistant and TRAIL-sensitive cells via nuclear factor kappa B. FE B S J 2009; 276: 581-593. Tao H, Ma D D . Evidence for transdifferentiation o f human bone marrow-derived stem cells: recent progress and controversies. Pathol 2003; 35 (1): 6-13. Teng Y D , Lavik EB, Qu X, et al. Functional recovery following traum atic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. PNAS 2002; 99 (5): 3024-3029. 414. 415. 416. 417. 418. 419. 420. 421. 422. 423. Teng Y D , Liao WL, Choi H, et al. Physical activity-mediated functional recovery after spinal cord injury: potential roles o f neural stem cells. Regen Med 2006; 1: 763-776. Terada N, Ham azaki T, Hoki M, et al. Bone marrow cells adopt the phenotype o f other cells by spontaneous cell fusion. Nature 2002; 416: 542-545. The Boulder Committee. Embryonic vertebrate central nervous system: revised terminology. Anat Rec 1970; 166: 257-261. The National Spinal Cord Injury Statistical Center Fact Sheet, Birm ingham , AL. Available at www.nscisc.uab.edu. Updated April 2009. Thoenen H. Neurotrophins and neuronal plasticity. Science 1995; 270 (5236): 593-598. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147. Tian DS, Dong Q, Pan DJ, et al. Attenuation o f astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Brain Res 2007; 1154: 206-214. Tikka TM , Koistinaho JE. Minocycline provides neuroprotection against N-methyl-Daspartate neurotoxicity by inhibiting microglia. J Imm unol 2001; 166: 7527-7533. Trentin JJ. Stem Cells. New York, N Y: Academic: 255-261 (1976). Trougakos IP, Lourda M, Agiostratidou G, et al. Differential effects of clusterin/apolipoprotein J on cellular growth and survival. Free Radic Biol Med 2005; 38: 436 - 449 . 424. Tse WT, Pendleton JD , Beyer W M , et al. Suppression o f allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplant 2003; 75: 425. Tsutsumi S, Ueta T, Shiba K, et al. Effects o f the Second National Acute Spinal Cord Injury Study o f high-dose methylprednisolone therapy on acute cervical spinal cord injury-results in spinal injuries center. Spine 2006; 31: 2992-2997. Uchida N, Buck DW, He D, et al. Direct isolation o f human central nervous system stem cells. PN A S 2000; 97:14720-14725. Umemori H, Linhoff MW, O rnitz DM , et al. FGF22 and its close relatives are presynaptic organizing molecules in the m am m alian brain. Cell 2004; 118: 257-270. Van Hedel HJ, W irz M, D ietz V. Assessing walking ability in subjects with spinal cord injury: validity and reliability o f 3 walking tests. Arch Phys Med Rehabil 2005; 86: 190-196. Vats A, Bielby RC, Tolley NS, et al. Stem Cells. Lancet 2005; 366: 592-602. 389 - 397. 426. 427. 428. 429. 151 Chapter 9 430. 431. Vaquero J, Zurita M. Bone marrow stromal cells for spinal cord repair: a challenge for con tem porary neurobiology. Histol Histopathol 2(009; 24 (1): 107-116. Vrana Kilt, Hipp JD , Goss AM , et al. Nonh urn an primate (arthenogenetic stem cells. PN A S 2003; 100: (1911-119S(. 432. 433. WaCitani S, Saito T, Caplan Ail. Myogenic cells derived from (a0 bone marrow mesenchymal stem cells eepoeed to 5-azacytidine. Mutele Nesvc 199a; s8: 1417-1426. Wang L, Li Y, Chen X, et al. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 2002; 7: 11-3-117. 434. 435. Wang T, Dang G, Guo Z, et al. Eva!uation o f sutologous bone marrow mesenchymal stem cell-calcium phospf ate ceram ic composite for lumbar fusion in rhesus monkey i nterbody fusion model . Tissue Eng200h 11 .7-8): 11a9-n<(7. WalczaC P, Chen N, Hudson JE, et al. Do hematopoietic cells exposed to a neusogenic environm ent m im ic properties o f endogenous neural .recursoss? J Neurosci Res 2004; 7 ( b2): 244 - 2a4 . 436. 437. 4t8. 439. 440. 4 ) t. Weaver LC, Marsh DR, Gris D, et al. Autonomic dysreflexia after spinal cord injury: central m echoni omc an d strategies for psevention. Prhg Brain Res 2006; 1a2: 24a-263. Westpal S P r The next iVF r evolution? Nees ScienSisS 2003; 178: 3. Whittaker I3. Ttem c ell( to gametes: how iar shoeld we go ? Hum Tertil 2007; so: 1-aWiderstrom-Noga EG, Felipe-Cuervo E, Broton JG , et al. Perceived difficulty in dealing with consequences o f spinal cord injury. Arch Phys Med Rehabil 1999; 80: a80-a86. Widerstrom-Nof a EG, Turk DC. Exacerbation o f chronic pain following epinal cord in ju ry .) /|/e(sotra um a 201014; 61 f 1384-139( Widerstrom-Noga EG, Felix ER, Cruz-Almeida Y, et al. Psychososiol subgroups in persons wi th spina 0 cord inju ries and chron ic pain. Arcf W y Mod Rshabil 2007; 88: r 628-163a. 442. 443 . 444.. W inslow C, Bode RK, Felton D, et al. Im pact o f respiratory complications on length of stay cnd ho s .it a l cosis in acute cervibal spin e iejury. Chest 2002; 1 ) 1 :1(48-1aa4. Winton MJ, Dubreuil CI, LasCo D, et al. Characterization o f new cell permeable C3-liCe proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 2002; 277: 32820-12)^ Wislet-G ecde bien S, Le pri ece P, Moo nen G, et al . Regulation o f neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci 2003; 116: 329a3302 . 445. W islet-Gendebiec 55, H cns G, LePrince P, et al. Wanticity o f cultured m esecchymal stem cells, Switch frpm nestin.positive to excitable neuron-liCe phenotype. Stem Cells 446. Wolpaw JR, Tennis ( f n AM . Actrn ty-de pendent epinal bord placticity in health and disease. Annu Rev Neurosci 2001; 24: 807-843. 2(0a; 230 392-402. 152 447. Wong CE, Paratore C, Dours-Zimmermann MT, et al. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 448. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364-370. Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal and mesodermal genes prior to neurogenesis. J 2006; 175:1005-1015. 449. Neurosci Res 2002; 96: 908-917. 450. 451. Wright LS, Prowse KR, W allace K, et al. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 2006; 312: 2107-2120. Wu S, Suzuki Y, Ejiri Y, et al. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration o f injured spinal cord. J Neurosci Res 2003; 72 (3): 343-351. 452. 453. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology o f spinal cord injury: what learns a worldwide literature survey? Spinal Cord 2006; 44: 523-529. Yaghoobi MM, Mowla SJ. Differential gene expression pattern o f neurotrophins and their receptors during neuronal differentiation o f rat bone marrow stromal cells. Neurosci Lett 2006; 1:1-6. 454. 455. 456. Yaghoobi MM, Mahani MT. NGF and BD N F expression drop off in neurally differentiated bone marrow stromal stem cells. Brain Res 2008; 1203:26-31. Yakovlev AG, Faden A I. M echanism s o f neural cell death: im plications for development of neuroprotective treatm ent strategies. NeuroRx 2004; 1: 5-16. Yam agata K, Sanders LK, Kaufmann W E, et al. Rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 1994; 269: 16333- 16339. 457. 458. Ye M, Chen S, Wang X, et al. Glial cell line-derived neurotrophic factor in bone marrow stromal cells o f rat. Neuroreport 2005; 16: 581-585. Ying Q L, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion. Nature 2002; 416 (6880): 545-548. 459. 460. Yoon YW , Dong H, Arends JJ, et al. Mechanical and cold allodynia in a rat spinal cord contusion model. Somatosens Mot Res 2004; 21 (1): 25-31. Yoon J, Min BG, Kim Y H , et al. Differentiation, engraftm ent and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol 2005; 60: 277-284. 461. 462. Yokoyama A, Sakamoto A, Kameda K, et al. NG2 proteoglycan-expressing microglia as m ultipotent neural progenitors in normal and pathologic brains. Glia 2006; 53: 754-768. Yoo S, Wrathall JR. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors. Dev Neurobiol 2007; 67: 860-874. 153 Chapter 9 463. 464. Yoshihara H, Shumsky JS, Neuhuber B, et al. Combining motor training with transplantation o f rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries. Brain Rrs 2006; 1119: 65-75. Yoshihara T, Ohta M, Itoktzu Y, st al. Neuroprotective eCfect o f bone marrow-derived mononuclear cells promoting functional recovery Crom spinal coed injury. J Neurotrauma 2007; 24 (6): 1026-1036. 465. 4 s 6. 467. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917-1920. Yu J, Thomsoo JA. Pluripotent atem cell lines. Genes Dev 2008; 22:1987-1997. Zeng X, Rao M °. Humao embryonic stem cells: long term stalsility, absence of senescence and a potential caN yource °or neura1 eeplacement. Neuroscisnce 20.7; 145: 1048 - 1358. 468. 469. 470. 471. Zhan g W, Bae I, Krishn araju K, et ah CR 6° A third member in the; M y D c 8 aaS Gadd45 gene fam ily which functions in negative growth control. On cogene 1990; 18: 4899-4907. Zhang JL, Cai J, W alls S, et al . Tele rance by sol ectice in vivo expane ion o f foreign major histocompatibility complex-transduced autologous bone marrow. Transplant 2005; 80 S3): C62-369. Zhang W, Su St, Gao Y, et sl. Berberine protects mesenchymal saem cells against hypoxia-induced apoptosis in vitro. Biol Pharm Bull 2009; 32: 1335-1342. Zietlow R, Lane EL, Dunnett SB, et al. Human stem cells for CNS repair. Cell Tissue Res 2008; 331: 301-322. 472. 473. Zurita M, Vaquero J. Functioral recoveRy in chronic paraplegia after bone marrow Stromal cells teansp l anta tion . N e.ro report 2004; 15 (7): 1105-1108. Zurita M/I. Vaquero J. Bone matrow rtromal colls can achieve cure o f chronic paraplegic rats: functional and morphological outcome onh yecr after tronsplantation. Neurooci tett 20 .6 ; 402: 51-56. 474. 154 Zuzarte-Luis V, Montero JA, Kawakami Y, et al. Lysosomal cathepsins in embryonic programmed cell (o ath. Dev Biol 2007; 301: 20(-217C 155
© Copyright 2025