Three-node zero-thickness hydro-mechanical interface finite element for geotechnical applications Benjamin Cerfontaine University of Liege 30th of January, 2015 B. Cerfontaine Groupe de contact FNRS 15/09/14 0 / 16 Outline 1 Context 2 Modelling interfaces 3 Application 4 Conclusions B. Cerfontaine Groupe de contact FNRS 15/09/14 1 / 16 Context Table of contents 1 Context 2 Modelling interfaces 3 Application 4 Conclusions B. Cerfontaine Groupe de contact FNRS 15/09/14 2 / 16 Context Suction caisson Outer pressure Sea level Pumping Reduced soil effective stress Inner pressure Sand heave Seabed Seepage flow Sand Foundation for offshore structures Installed by suction Hollow cylinder open towards the bottom Made of steel B. Cerfontaine Increased transient resistance to pull and push loads Crucial role of interfaces Groupe de contact FNRS 15/09/14 3 / 16 Context Interface in geomechanics Interface Contact Surface between two media (=discontinuity) Caisson Shearing Sliding Interface Unsticking Flow B. Cerfontaine Soil Groupe de contact FNRS 15/09/14 4 / 16 Context Interface in geomechanics Interface Surface between two media (=discontinuity) Contact Push load Shearing Contact pressure Sliding Unsticking Flow B. Cerfontaine Soil Groupe de contact FNRS 15/09/14 4 / 16 Context Interface in geomechanics Interface Surface between two media (=discontinuity) Contact Pull load Shearing Sliding Shear stresses Unsticking Flow B. Cerfontaine Soil Groupe de contact FNRS 15/09/14 4 / 16 Context Interface in geomechanics Interface Surface between two media (=discontinuity) Pull load Contact Shearing Sliding Sliding Unsticking Flow B. Cerfontaine Soil Groupe de contact FNRS 15/09/14 4 / 16 Context Interface in geomechanics Interface Contact Surface between two media (=discontinuity) Unsticking Pull load Shearing Sliding Sliding Unsticking Flow B. Cerfontaine Soil Groupe de contact FNRS 15/09/14 4 / 16 Context Interface in geomechanics Interface Contact Surface between two media (=discontinuity) Unsticking Pull load Shearing Fluid flow Sliding Sliding Unsticking Flow B. Cerfontaine Soil Groupe de contact FNRS 15/09/14 4 / 16 Modelling interfaces Table of contents 1 Context 2 Modelling interfaces Mechanical problem Hydraulic problem Coupled problem 3 Application 4 Conclusions B. Cerfontaine Groupe de contact FNRS 15/09/14 5 / 16 Modelling interfaces Mechanical problem Normal behaviour Contact pN ≥ 0 gN ≥ 0 pN gN = 0 Approaches Regularisation gN e11 e12 pN = f (gN ) E2 Discretisation E1 No contact B. Cerfontaine Groupe de contact FNRS pN Contact 15/09/14 6 / 16 Modelling interfaces Mechanical problem Normal behaviour Contact pN ≥ 0 gN ≥ 0 pN gN = 0 Thin layer Approaches Medium 1 Thin layer elements Medium 3 Medium 2 Regularisation pN = f (gN ) Zero-thickness Medium 1 Boundary elements Medium 2 Discretisation No contact B. Cerfontaine Groupe de contact FNRS Contact 15/09/14 6 / 16 Modelling interfaces Mechanical problem Normal behaviour Contact pN ≥ 0 gN ≥ 0 pN gN = 0 Lagrange multiplier method Approaches Pressure distribution Regularisation pN = f (gN ) Penalty method No penetration Zoom Penetration Discretisation B. Cerfontaine Groupe de contact FNRS 15/09/14 6 / 16 Modelling interfaces Mechanical problem Normal behaviour Contact pN ≥ 0 gN ≥ 0 pN gN = 0 Intricate asperities Approaches First contact point pN = f (gN ) Discretisation pN Regularisation Compression Asperities deformation gN pN gN B. Cerfontaine Groupe de contact FNRS 15/09/14 6 / 16 Modelling interfaces Mechanical problem Normal behaviour Contact pN ≥ 0 gN ≥ 0 Node to node Approaches pN gN = 0 Node to segment Gap Gap Regularisation Segment to segment Penetration pN = f (gN ) Contact domain Gap interpolation Gap Discretisation B. Cerfontaine Groupe de contact FNRS 15/09/14 6 / 16 Modelling interfaces Mechanical problem Tangential behaviour Shearing τ ≥0 g˙ T ≥ 0 τ g˙ T = 0 Criterion gT τ=τmax τ E2 Sticking B. Cerfontaine Groupe de contact FNRS E1 Sliding 15/09/14 7 / 16 Modelling interfaces Mechanical problem Tangential behaviour Shearing Criterion τ ≥0 g˙ T ≥ 0 τ g˙ T = 0 ||τ|| f>0 f=0 f<0 Sliding state No contact Sticking state µ f = kτ k − µ pN B. Cerfontaine Groupe de contact FNRS pN 15/09/14 7 / 16 Modelling interfaces Hydraulic problem Fluid flows Interface Longitudinal and transversal flows q Discontinuity Discretisation Fluid flow Fluid flow Fluid flow Fluid flow pw E2 E1 Diconstinuity = porous medium B. Cerfontaine Groupe de contact FNRS 15/09/14 8 / 16 Modelling interfaces Hydraulic problem Fluid flows Interface Longitudinal and transversal flows Single node gN Discretisation Finite element mesh Porous medium Discontinuity Double node Triple node gN gN B. Cerfontaine Groupe de contact FNRS 15/09/14 8 / 16 Modelling interfaces Coupled problem Couplings Hydro-mechanical couplings Effective pressure Terzaghi’s principle Permeability Storage pN = p0N + pw p0N , effective pressure (mechanical behaviour) pw , fluid pressure inside the interface B. Cerfontaine Groupe de contact FNRS 15/09/14 9 / 16 Modelling interfaces Coupled problem Couplings Hydro-mechanical couplings Effective pressure Permeability Storage Cubic law (D0 )2 12 2 kl = (D0 + gN ) 12 gN ≤ 0 otherwise. kl , longitudinal permeability D0 , residual hydraulic opening B. Cerfontaine Groupe de contact FNRS 15/09/14 9 / 16 Modelling interfaces Coupled problem Couplings Hydro-mechanical couplings Effective pressure Stored water within discontinuity Permeability Storage M˙ f = L˙ ρ˙ w gN + ρw g˙ N + ρw gN L ! L L, length of the discontinuity ρw , density of water B. Cerfontaine Groupe de contact FNRS 15/09/14 9 / 16 Modelling interfaces Coupled problem Summary Mechanical problem Zero-thickness Segment to segment discretisation Penalty method to enforce normal and tangential constraints Coulomb criterion Hydraulic problem Three-node discretisation Longitudinal flow Transversal flows Coupled problem Effective pressure Permeability Storage (transient component) B. Cerfontaine Groupe de contact FNRS 15/09/14 10 / 16 Application Table of contents 1 Context 2 Modelling interfaces 3 Application 4 Conclusions B. Cerfontaine Groupe de contact FNRS 15/09/14 11 / 16 Application Statement of the problem Inner interface (lid) Drained Boundary Un Bo dra un ine da d ry Caisson Inner interface (skirt) d ine dra ry Un unda Bo Elastic soil and caisson Outer interface (skirt) Friction coefficient 0.57 Diameter 7.8m Water depth 10m Residual hydraulic aperture 1.E-5m Soil permeability 1.E-11m2 Penalty coefficient 1.E10 N/m3 K0 = 1 Conductivity 1.E-8m/Pa/s B. Cerfontaine Groupe de contact FNRS 15/09/14 12 / 16 Application Drained simulation (mechanical behaviour) ΔFtot Shearing of the interface 900 Δy>0 800 ΔFext ∆ F [kN] ΔFint 700 ∆ Ftot 600 ∆ Fext 500 ∆ Fint A 400 B 300 200 100 0 0 B. Cerfontaine 0.5 Groupe de contact FNRS 1 1.5 Displ. [mm] 2 2.5 15/09/14 3 13 / 16 Application Drained simulation (mechanical behaviour) Shearing of the interface 0 Gapgopening 0.5 Depthg[m] 1 1.5 Displg[mm] 900 0.02 0.43 0.63 1.17 2 2.5 3 800 3.5 0.1 0.2 0.3 0.4 η ext=||τ||/p’N [−] 0.5 0.6 0.7 ∆ F [kN] 4 0 700 ∆ Ftot 600 ∆ Fext 500 ∆ Fint A 400 B 300 Outer friction Gap opening B. Cerfontaine 200 100 0 0 0.5 Groupe de contact FNRS 1 1.5 Displ. [mm] 2 2.5 15/09/14 3 13 / 16 Application Drained simulation (mechanical behaviour) Shearing of the interface 0 0.5 Depth [m] 1 Displ [mm] 1.5 900 0.02 0.43 0.63 1.17 2 2.5 800 3 3.5 0.1 0.2 0.3 0.4 η int=||τ||/p’N [−] 0.5 0.6 0.7 ∆ F [kN] 4 0 700 ∆ Ftot 600 ∆ Fext 500 ∆ Fint A 400 B 300 Outer friction Gap opening Inner friction Failure B. Cerfontaine 200 100 0 0 0.5 Groupe de contact FNRS 1 1.5 Displ. [mm] 2 2.5 15/09/14 3 13 / 16 Application Partially drained simulation (hydraulic behaviour) Suction effect ΔFtot 900 ∆ FB[kN] ΔFuw 800 ∆ Ftot 700 ∆ Fext 600 ∆ Fint ∆ Fuw 500 A 400 300 B 200 Opening∆F of a gap Higher Opening oftota gap Transversal flow Coupling gapTransversal storage permeability Stationary phase B. Cerfontaine C 100 0 0 0.5 Groupe de contact FNRS 1 1.5 Displ.B[mm] 2 2.5 15/09/14 3 14 / 16 Application Partially drained simulation (hydraulic behaviour) Suction effect ΔFtot ΔFuw Δpw [kPa] Opening of a gap ∆F tot Opening of a gap Transversal flow Coupling Coupling 0 gapp Transversal storage w N = pN + p permeability Transient Stationary∆p phase w B. Cerfontaine 0.00 -0.84 -1.69 -2.54 -3.39 -4.24 -5.09 -5.94 -6.79 -7.64 -8.49 -9.34 E3 E2 E1 Groupe de contact FNRS 15/09/14 14 / 16 Application Partially drained simulation (hydraulic behaviour) ΔFtot Top unsticking and storage ΔyS 0.2 ΔyC 1.4 C ΔFuw 0.1 B B. Cerfontaine 0.8 A 0.6 0.4 0.05 0 0 B 1 ∆ ytop [mm] ft [kg/s] 0.15 Opening of a gap ∆F tot Opening of a gap Transversal flow Coupling Coupling 0 gapp Transversal storage w N = pN + p permeability Transient Stationary∆u phase w C 1.2 Soil Caisson 0.2 A 1 2 Displ. [mm] 3 0 0 1 2 Displ. [mm] 3 vp = 1 mm/min Groupe de contact FNRS 15/09/14 14 / 16 Application Partially drained simulation (hydraulic behaviour) Longitudinal flow fl along the skirt Depth [m] Flow Opening of a gap ∆F tot Opening of a gap Transversal flow Coupling Coupling 0 gapp Transversal storage w N = pN + p permeability Transient Stationary∆u phase w B. Cerfontaine 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 4 −8 −6 −4 −1 −2 −2 fl [kg.s .m ] Groupe de contact FNRS 0 4 −0.05 0 0.05 gN [mm] 15/09/14 0.1 14 / 16 Conclusions Table of contents 1 Context 2 Modelling interfaces 3 Application 4 Conclusions B. Cerfontaine Groupe de contact FNRS 15/09/14 15 / 16 Conclusions 1 Development of a coupled hydro-mechanical interface element Zero-thickness Three-node flow discretisation 2 Main features of mechanical behaviour Shearing Sliding 3 Main features of hydraulic behaviour Transversal flows Longitudinal flows 4 Hydro-mechanical couplings Suction effect (Terzaghi) Permeability (longitudinal flow) Storage (Unsticking) B. Cerfontaine Groupe de contact FNRS 15/09/14 16 / 16 Conclusions Related papers Cerfontaine B (2014) The cyclic behaviour of sand from the Prevost model to offshore geotechnics (2014). University of Liege. Cerfontaine B, Collin F and Charlier R (2015) Vertical transient loading of a suction caisson in dense sand. In Proceedings of the 14th International Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG2014, pp. 929-934. Cerfontaine B, Levasseur S, Collin F and Charlier R (2014). In Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE2014, 2, pp. 1243-1248. Cerfontaine, B, Dieudonn´e AC, Radu JP, Collin F and Charlier R (2015 submitted) 3D zero-thickness coupled interface finite element : formulation and application, Computers & Geotechnics. B. Cerfontaine Groupe de contact FNRS 15/09/14 16 / 16
© Copyright 2025