Congreso bienal RSME 2015 Universidad de Granada Granada, 2 al 6 Febrero Libro de resúmenes de Conferencias y Pósteres Más información en http://rsme2015.ugr.es email: [email protected] Índice de conferencias y pósteres Índice de conferencias y pósteres . . . . . . . . Conferencias plenarias . . . . . . . . . . . . . . Ángel Castro . . . . . . . . . . . . . . . . . . Fernando Codá Marques . . . . . . . . . . . Luis V. Dieulefait . . . . . . . . . . . . . . . Daniel Faraco Hurtado . . . . . . . . . . . . María Angeles Gil Alvarez . . . . . . . . . . Rafael Ortega . . . . . . . . . . . . . . . . . David Pardo . . . . . . . . . . . . . . . . . . María Pe Pereira . . . . . . . . . . . . . . . . S01. Análisis armónico . . . . . . . . . . . . . . Theresa C Anderson . . . . . . . . . . . . . Arpad Benyi . . . . . . . . . . . . . . . . . . Frédéric Bernicot . . . . . . . . . . . . . . . Oleksandra Beznosova . . . . . . . . . . . . Maria J. Carro . . . . . . . . . . . . . . . . . Lucas Chaffee . . . . . . . . . . . . . . . . . Leonardo Colzani . . . . . . . . . . . . . . . David Cruz-Uribe . . . . . . . . . . . . . . . W. Damián . . . . . . . . . . . . . . . . . . . Luigi Fontana . . . . . . . . . . . . . . . . . Jarod Hart . . . . . . . . . . . . . . . . . . . Juha Kinnunen . . . . . . . . . . . . . . . . Diego Maldonado . . . . . . . . . . . . . . . Jose Maria Martell . . . . . . . . . . . . . . . Francisco J. Martín-Reyes . . . . . . . . . . Albert Mas . . . . . . . . . . . . . . . . . . . Virginia Naibo . . . . . . . . . . . . . . . . . Ioannis Parissis . . . . . . . . . . . . . . . . Marco Peloso . . . . . . . . . . . . . . . . . Salvador Rodriguez-Lopez . . . . . . . . . . Javier Soria . . . . . . . . . . . . . . . . . . . Lesley A. Ward . . . . . . . . . . . . . . . . . Xinfeng Wu . . . . . . . . . . . . . . . . . . . Qingying Xue . . . . . . . . . . . . . . . . . S02. Análisis complejo y teoría de operadores 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 10 10 10 10 11 11 12 12 13 14 14 14 14 15 15 15 15 16 16 17 17 18 18 18 19 19 20 20 20 21 21 22 23 23 24 Índice de conferencias y pósteres Alexandru Aleman . . . . . . . . . Oscar Blasco . . . . . . . . . . . . . Aline Bonami . . . . . . . . . . . . Jose Bonet . . . . . . . . . . . . . . Carme Cascante . . . . . . . . . . . Santiago Díaz Madrigal . . . . . . María José González . . . . . . . . Håkan Hedenmalm . . . . . . . . . Yurii Lyubarskii . . . . . . . . . . . Joaquim Ortega-Cerdà . . . . . . . Jose Manuel Rodriguez . . . . . . . Oliver Roth . . . . . . . . . . . . . . Dragan Vukoti´c . . . . . . . . . . . S03. Análisis funcional . . . . . . . . . Xavier Barrachina Civera . . . . . . Chiara Boiti . . . . . . . . . . . . . Santiago Boza . . . . . . . . . . . . J. Alejandro Chávez-Domínguez . José E. Galé . . . . . . . . . . . . . . Maria Angeles Japón Pineda . . . . Vladimir Kadets . . . . . . . . . . . Fernando Lledó . . . . . . . . . . . Elisabetta Mangino . . . . . . . . . Javier Merí . . . . . . . . . . . . . . Marina Murillo Arcila . . . . . . . . Matías Raja . . . . . . . . . . . . . . Daniel Seco . . . . . . . . . . . . . Juan B. Seoane-Sepúlveda . . . . . Jesús Suárez . . . . . . . . . . . . . S04. Análisis geométrico . . . . . . . . J. Carlos Díaz-Ramos . . . . . . . . Oscar Garcia-Prada . . . . . . . . . Ana Hurtado . . . . . . . . . . . . . Antonio Martínez . . . . . . . . . . Vicente Palmer . . . . . . . . . . . Daniel Peralta-Salas . . . . . . . . David Ruiz . . . . . . . . . . . . . . Francisco Torralbo . . . . . . . . . S05. Análisis no lineal y EDP elípticas Claudio Bonanno . . . . . . . . . . Marco Ghimenti . . . . . . . . . . . Tommaso Leonori . . . . . . . . . . Ederson Moreira dos Santos . . . . Filomena Pacella . . . . . . . . . . Benedetta Pellacci . . . . . . . . . Angela Pistoia . . . . . . . . . . . . David Ruiz . . . . . . . . . . . . . . Berardino Sciunzi . . . . . . . . . . Gabriella Tarantello . . . . . . . . . Susanna Terracini . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 25 25 25 26 26 27 27 27 28 28 28 29 29 29 30 31 31 31 32 33 33 33 34 34 35 35 36 37 37 37 38 38 38 39 39 39 40 40 40 40 41 41 41 42 42 42 43 43 Índice de conferencias y pósteres Gianmaria Verzini . . . . . . . . . . . . . . . . . . . . . . . . . . . S06. Análisis numérico de EDP y modelización . . . . . . . . . . . . Marta Benítez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tomás Chacón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . María Cruz Navarro . . . . . . . . . . . . . . . . . . . . . . . . . . Rosa Donat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . José María Gallardo . . . . . . . . . . . . . . . . . . . . . . . . . . Luca Gerardo-Giorda . . . . . . . . . . . . . . . . . . . . . . . . . Heiko Gimperlein . . . . . . . . . . . . . . . . . . . . . . . . . . . María González Taboada . . . . . . . . . . . . . . . . . . . . . . . J.C. Jorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yvon Maday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Julia Novo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Francisco Pla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rodolfo Rodríguez . . . . . . . . . . . . . . . . . . . . . . . . . . S07. Análisis numérico en la resolución de ecuaciones no lineales Sergio Amat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alicia Cordero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . José Antonio Ezquerro . . . . . . . . . . . . . . . . . . . . . . . . José M. Gutiérrez . . . . . . . . . . . . . . . . . . . . . . . . . . . José Luis Hueso . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ángel Alberto Magreñán . . . . . . . . . . . . . . . . . . . . . . . Eulalia Martínez Molada . . . . . . . . . . . . . . . . . . . . . . . Rosa M. Peris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Javier Segura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Juan R. Torregrosa . . . . . . . . . . . . . . . . . . . . . . . . . . . Jean-Claude Yakoubsohn . . . . . . . . . . . . . . . . . . . . . . S08. Conocimiento profesional del profesor de matemáticas . . . Lorenzo J. Blanco Nieto . . . . . . . . . . . . . . . . . . . . . . . María Luz Callejo de la Vega . . . . . . . . . . . . . . . . . . . . . Luis Carlos Contreras González . . . . . . . . . . . . . . . . . . . Pablo Flores Martínez . . . . . . . . . . . . . . . . . . . . . . . . Antonio Moreno Verdejo . . . . . . . . . . . . . . . . . . . . . . . Gloria Sánchez-Matamoros García . . . . . . . . . . . . . . . . . S09. Ecuaciones diferenciales y sistemas dinámicos . . . . . . . . . Begoña Alarcón . . . . . . . . . . . . . . . . . . . . . . . . . . . . Juan Belmonte Beitia . . . . . . . . . . . . . . . . . . . . . . . . . José Luis Bravo Trinidad . . . . . . . . . . . . . . . . . . . . . . . Adriana Buic˘a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alberto Cabada . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jose Angel Cid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carlos Escudero . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jaykov Foukzon . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jorge Galan-Vioque . . . . . . . . . . . . . . . . . . . . . . . . . . Santiago Ibáñez . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eduardo Liz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rafael Obaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jesús Palacián . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Daniel Peralta-Salas . . . . . . . . . . . . . . . . . . . . . . . . . Patricia Yanguas Sayas . . . . . . . . . . . . . . . . . . . . . . . . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 44 44 45 46 46 46 47 48 48 48 49 50 50 51 53 53 53 54 54 55 56 56 57 57 57 58 59 59 59 60 60 60 61 62 62 62 62 63 64 64 65 65 66 67 67 68 68 69 70 Índice de conferencias y pósteres Massimo Tarallo . . . . . . . . . . . . . . . . . . . . . . . . . Joan Torregrosa . . . . . . . . . . . . . . . . . . . . . . . . . Antonio J. Ureña . . . . . . . . . . . . . . . . . . . . . . . . . S10. Espacios de aplicaciones y grupos de autoequivalencias Urtzi Buijs . . . . . . . . . . . . . . . . . . . . . . . . . . . . Federico Cantero . . . . . . . . . . . . . . . . . . . . . . . . Ramón Flores . . . . . . . . . . . . . . . . . . . . . . . . . . Juan Gonzalez-Meneses . . . . . . . . . . . . . . . . . . . . Milagros Izquierdo . . . . . . . . . . . . . . . . . . . . . . . Luis Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wolfgang Pitsch . . . . . . . . . . . . . . . . . . . . . . . . . Sebastián Reyes-Carocca . . . . . . . . . . . . . . . . . . . S11. Geometría algebraica . . . . . . . . . . . . . . . . . . . . . Maria Alberich Carramiñana . . . . . . . . . . . . . . . . . Leovigildo Alonso Tarrío . . . . . . . . . . . . . . . . . . . . José Ignacio Burgos Gil . . . . . . . . . . . . . . . . . . . . . Alberto Castaño Domínguez . . . . . . . . . . . . . . . . . Guillermo Cortiñas . . . . . . . . . . . . . . . . . . . . . . . Carlos D’Andrea . . . . . . . . . . . . . . . . . . . . . . . . . José Ignacio Farrán Martín . . . . . . . . . . . . . . . . . . . Ana Jeremías López . . . . . . . . . . . . . . . . . . . . . . . José María Muñoz Porras . . . . . . . . . . . . . . . . . . . . Fernando Pablos Romo . . . . . . . . . . . . . . . . . . . . Orlando Villamayor . . . . . . . . . . . . . . . . . . . . . . . S12. Geometría convexa e integral . . . . . . . . . . . . . . . . David Alonso-Gutiérrez . . . . . . . . . . . . . . . . . . . . Jesús Bastero . . . . . . . . . . . . . . . . . . . . . . . . . . . Andreas Bernig . . . . . . . . . . . . . . . . . . . . . . . . . Antonio Cañete . . . . . . . . . . . . . . . . . . . . . . . . . Bernardo González Merino . . . . . . . . . . . . . . . . . . Martin Henk . . . . . . . . . . . . . . . . . . . . . . . . . . . María A. Hernández Cifre . . . . . . . . . . . . . . . . . . . Carlos Hugo Jiménez G. . . . . . . . . . . . . . . . . . . . . Monika Ludwig . . . . . . . . . . . . . . . . . . . . . . . . . Antonio R. Martínez Fernández . . . . . . . . . . . . . . . . José Pedro Moreno . . . . . . . . . . . . . . . . . . . . . . . Manuel Ritoré . . . . . . . . . . . . . . . . . . . . . . . . . . Camilo Sarmiento . . . . . . . . . . . . . . . . . . . . . . . . Gil Solanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efstratios Vernadakis . . . . . . . . . . . . . . . . . . . . . . Rafael Villa . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jesús Yepes Nicolás . . . . . . . . . . . . . . . . . . . . . . . S13. Geometría diferencial y aplicaciones . . . . . . . . . . . . Alfonso Carriazo . . . . . . . . . . . . . . . . . . . . . . . . . Marco Castrillón López . . . . . . . . . . . . . . . . . . . . Miguel Domínguez Vázquez . . . . . . . . . . . . . . . . . Manuel Fernández-López . . . . . . . . . . . . . . . . . . . Angel Ferrández . . . . . . . . . . . . . . . . . . . . . . . . . Miguel Angel Javaloyes . . . . . . . . . . . . . . . . . . . . . Marc Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 71 71 73 73 73 74 74 74 75 75 75 77 77 77 78 78 79 79 79 80 80 81 81 82 82 82 82 83 83 84 84 85 85 86 86 87 87 87 88 88 89 90 90 90 91 91 91 92 93 Índice de conferencias y pósteres Marco Rigoli . . . . . . . . . . . . . . . . . . . . . . Alfonso Romero . . . . . . . . . . . . . . . . . . . . José Ignacio Royo Prieto . . . . . . . . . . . . . . . Luis Ugarte . . . . . . . . . . . . . . . . . . . . . . . Cristina Vidal Castiñeira . . . . . . . . . . . . . . . S14. Investigación operativa . . . . . . . . . . . . . . . Víctor Blanco . . . . . . . . . . . . . . . . . . . . . F. Javier Martin Campo . . . . . . . . . . . . . . . . Federico Perea . . . . . . . . . . . . . . . . . . . . . Diego Ponce . . . . . . . . . . . . . . . . . . . . . . Miguel A. Pozo . . . . . . . . . . . . . . . . . . . . . J. Tinguaro Rodríguez . . . . . . . . . . . . . . . . Gregorio Tirado . . . . . . . . . . . . . . . . . . . . S15. Matemática discreta . . . . . . . . . . . . . . . . . Miguel Ángel Fiol . . . . . . . . . . . . . . . . . . . Pedro A. García-Sánchez . . . . . . . . . . . . . . . Delia Garijo . . . . . . . . . . . . . . . . . . . . . . Justo Puerto . . . . . . . . . . . . . . . . . . . . . . Eugenia Saorín Gómez . . . . . . . . . . . . . . . . Oriol Serra . . . . . . . . . . . . . . . . . . . . . . . Lluis Vena . . . . . . . . . . . . . . . . . . . . . . . S16. Matemáticas de la teoría de la información . . . María Bras-Amoros . . . . . . . . . . . . . . . . . . Pino Caballero-Gil . . . . . . . . . . . . . . . . . . Sara D. Cardell . . . . . . . . . . . . . . . . . . . . . Joan-Josep Climent . . . . . . . . . . . . . . . . . . Cristina Fernández-Córdoba . . . . . . . . . . . . Jaime Gutierrez . . . . . . . . . . . . . . . . . . . . Fernando Hernando . . . . . . . . . . . . . . . . . F. J. Lobillo . . . . . . . . . . . . . . . . . . . . . . . Irene Márquez Corbella . . . . . . . . . . . . . . . Juan Jacobo Simón Pinero . . . . . . . . . . . . . . Adriana Suárez Corona . . . . . . . . . . . . . . . . Magda Valls . . . . . . . . . . . . . . . . . . . . . . S17. Métodos categóricos en álgebra no conmutativa Pere Ara . . . . . . . . . . . . . . . . . . . . . . . . . Alessandro Ardizzoni . . . . . . . . . . . . . . . . . V. V. Bavula . . . . . . . . . . . . . . . . . . . . . . . Gabriella Böhm . . . . . . . . . . . . . . . . . . . . Manuel Cortés Izurdiaga . . . . . . . . . . . . . . . Juan Cuadra . . . . . . . . . . . . . . . . . . . . . . Laiachi El Kaoutit . . . . . . . . . . . . . . . . . . . Sergio Estrada . . . . . . . . . . . . . . . . . . . . . Alberto Facchini . . . . . . . . . . . . . . . . . . . . Xabier Garcia Martinez . . . . . . . . . . . . . . . . Juan Ramón García Rozas . . . . . . . . . . . . . . Tatiana Gateva-Ivanova . . . . . . . . . . . . . . . Ramón González Rodríguez . . . . . . . . . . . . . José Gómez-Torrecillas . . . . . . . . . . . . . . . . Ivo Herzog . . . . . . . . . . . . . . . . . . . . . . . 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 94 94 95 95 96 96 96 97 98 99 99 100 101 101 101 102 103 104 104 105 106 106 106 107 109 109 109 110 110 111 111 112 112 113 113 113 113 114 114 115 115 116 116 117 118 118 119 119 120 Índice de conferencias y pósteres 7 Sergio R. López-Permouth . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Juan Antonio Lopez Ramos . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Manuel Saorín . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Feroz Siddique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Mercedes Siles Molina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Kornel Szlachanyi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Jan Trlifaj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Thomas Weigel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 S18. Modelización y predicción estocásticas . . . . . . . . . . . . . . . . . . 124 M. Carmen Aguilera-Morillo . . . . . . . . . . . . . . . . . . . . . . . . . 124 Antonio Jesús Barrera García . . . . . . . . . . . . . . . . . . . . . . . . . 124 Paula R. Bouzas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Victor Manuel Casero Alonso . . . . . . . . . . . . . . . . . . . . . . . . . 125 Manuel Febrero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Rosa María Fernández-Alcalá . . . . . . . . . . . . . . . . . . . . . . . . . 126 Rosa E. Lillo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Patricia Román Román . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Juan Eloy Ruiz-Castro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Javier Álvarez Liébana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 S19. Singularidades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Enrique Artal Bartolo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Antonio Campillo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Roi Docampo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Lorenzo Fantini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Carlos Galindo Pastor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Eugeny Gorsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Ignacio Luengo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Pedro Manchón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Jorge Martín Morales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Irene Márquez Corbella . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Juan José Nuño Ballesteros . . . . . . . . . . . . . . . . . . . . . . . . . . 133 S20. Soluciones matemáticas e innovación en la industria . . . . . . . . . . 134 Maria Aguareles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Antonio Alonso Ayuso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Joaquim Bruna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Bartomeu Coll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Carmen-Ana Domínguez-Bravo . . . . . . . . . . . . . . . . . . . . . . . 136 Laureano Escudero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Adrián Galdrán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Luca Gerardo-Giorda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 José Manuel González Vida . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Carlos Gorria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Gustavo Montero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Tim Myers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Carlos Parés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Lakhdar Remaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 S21. Teoría de aproximación y funciones especiales de la física matemática141 Renato Álvarez-Nodarse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Ruymán Cruz Barroso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Jaime Díaz de Bustamante . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Índice de conferencias y pósteres Manuel Mañas Baena . . . . . . Sergio Medina Peralta . . . . . . Luz Roncal Gómez . . . . . . . . Vanesa Sánchez Canales . . . . . Jesus Sánchez-Dehesa . . . . . . Germán Sierra Rodero . . . . . . Miguel Tierz Parra . . . . . . . . . S22. Teoría de números . . . . . . . . Sara Arias de Reyna Domínguez Pedro A. García-Sánchez . . . . . Enrique González Jiménez . . . . Josep González-Rovira . . . . . . Ma Ángeles Gómez Molleda . . . Alvaro Lozano-Robledo . . . . . Juan Carlos Peral Alonso . . . . . Antonio Rojas León . . . . . . . . Adrián Ubis Martínez . . . . . . . Sesión de pósteres . . . . . . . . . . . Antonio Bueno . . . . . . . . . . Damián Castaño . . . . . . . . . Óscar Ciaurri . . . . . . . . . . . . Josep Domingo-Ferrer . . . . . . Cristina Draper . . . . . . . . . . Claudia Gallego . . . . . . . . . . Juan Carlos García Ardila . . . . . Jesús A. Laliena . . . . . . . . . . Rafael López . . . . . . . . . . . . José M. Manzano . . . . . . . . . Misael E. Marriaga . . . . . . . . Alexis Molino . . . . . . . . . . . Juan José Moreno Balcázar . . . M. Luisa Márquez García . . . . M. Luisa Márquez García . . . . Juan Núñez . . . . . . . . . . . . . Juan Núñez . . . . . . . . . . . . . Irene Ortiz . . . . . . . . . . . . . Walter Andrés Ortiz Vargas . . . Jose Manuel Rodríguez . . . . . . Desirée Romero . . . . . . . . . . Josu Sangroniz . . . . . . . . . . . Changhwa Woo . . . . . . . . . . 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 142 143 144 144 144 145 146 146 146 147 147 147 148 148 149 149 150 150 151 152 152 153 154 154 155 155 156 157 157 158 158 159 159 160 160 161 161 162 162 163 Conferencias plenarias http://rsme2015.ugr.es/index.php?section=programa Some recent results on fluid interface dynamics Ángel Castro Universidad Autónoma de Madrid In this talk we will present some results concerning the evolution of an interface between two incompressible fluids with diferent characteristics. In particular we will focus on the existence of singularities, global regular solutions and the structure of weak solutions. Different mediums will be considered corresponding with different physical situations. Minimal surfaces: variational aspects and applications Fernando Codá Marques Princeton University [email protected] Minimal surfaces are among the most natural objects in Differential Geometry, and are fundamental tools in the solution of several important problems in mathematics. In this lecture we will describe the variational theory of minimal surfaces and discuss recent applications to geometry and topology, as well as mention some future directions in the field. Cambio de base para GL(2) y otros casos de funtorialidad de Langlands Luis V. Dieulefait Universidad de Barcelona [email protected] Dentro del programa de Langlands, ocupan un papel importante las conjeturas de funtorialidad, y de entre ellas, cuestiones como la siguiente: dadas formas modulares o automorfas con representaciones de Galois asociadas, ¿que operaciones “elementales” a nivel de representaciones de Grupos (efectuadas sobre estas representaciones de Galois) tienen su contrapartida en el mundo modular/automorfo? En esta charla nos centraremos en el caso de “cambio de base” (es decir, restricción de la representación de Galois a un subgrupo de índice finito) para GL(2). En este caso, he resuelto la conjetura por completo para el caso de formas modulares clásicas (y subgrupos correspondientes a cuerpos totalmente reales) y esto implica que a una forma modular clásica le podemos asociar, sobre cualquier cuerpo F totalmente real, una forma de Hilbert que es su “levantamiento”. Otros ejemplos que discutiremos brevemente son el caso de potencias simétricas y de productos tensoriales. Las técnicas utilizadas en este tipo de resultados incluyen teoremas de “levantamiento automorfo” al estilo de Taylor-Wiles y técnicas de propagación. 10 Conferencias plenarias 11 Inverse Problems: A meeting point for quasiconformal mappings, oscillatory integrals and conformally invariant tensors Daniel Faraco Hurtado Universidad Autónoma de Madrid / ICMAT [email protected] I will give an overview of the classical Calderón Problem arising in impedance tomography as well as in the classical quantum scattering theory. Calderón problem ask for the determination of the coefficient of a given P.D.E from the knowledge of its solutions at the boundary of your domain. In particular I will focus on three results. Quasiconformal machinary can be used to proved the stability of the planar problem with minimal regularity, Carleson problem on the convergence to initial data of time dependent equation can be adapted to yield an optimal reconstruction procedure por planar quantum potentials and a delicated analysis of conformally invariant tensors allows to decide in which geometries (physically which anisotropies) the problem can be solved. Una metodología para el Análisis Estadístico de datos difusos María Angeles Gil Alvarez Universidad de Oviedo [email protected] El análisis estadístico de datos supone habitualmente que tales datos pueden expresarse de forma exacta en escala numérica. Sin embargo, muchos datos del mundo real son intrínsecamente imprecisos, especialmente cuando provienen de apreciaciones o percepciones humanas. Los valores difusos suministran un modelo que se ha empleado exhaustivamente para expresar dichos datos. Al tratar de analizar los datos difusos desde una perspectiva estadística, surgen dos obstáculos importantes: - la falta de linealidad asociada a la consideración de la aritmética usual entre valores difusos (que coincide nivel-a-nivel con la aritmética de conjuntos); - la falta de modelos y de resultados límite para las distribuciones de los estadísticos basados en muestras de datos difusos. Estos inconvenientes, pueden soslayarse en buena parte mediante el uso de métricas adecuadas, el concepto de conjunto difuso aleatorio y algunos resultados conocidos para elementos aleatorios con valores en espacios de Hilbert. Sobre la base de estos se está desarrollando una metodología para el análisis de datos difusos, que va a exponerse sucintamente. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Conferencias plenarias 12 Oscilaciones periódicas de un péndulo forzado: de la existencia a la estabilidad Rafael Ortega Universidad de Granada [email protected] Se considera la ecuación diferencial x 00 + β sin x = f (t ) donde f (t ) es una función periódica. Se trata de un modelo simple que se usa con frecuencia para ilustrar diversos métodos globales en Análisis No Lineal. La existencia de soluciones periódicas se suele obtener combinando herramientas que provienen de la Topología y del Cálculo de Variaciones. El objetivo de esta charla es mostrar que esas herramientas también son útiles en el estudio de la estabilidad de las soluciones periódicas. La estabilidad se entiende en el sentido de Lyapunov. Los resultados serán del tipo "Para casi toda función f (t ) que cumple. . . , hay solución estable", por eso será importante la noción de conjunto de medida cero en espacios de dimensión infinita. Dimensionally adaptive methods for the simulation and inversión of electromagnetic geophysical measurements David Pardo Universidad del País Vasco UPV/EHU [email protected] Coautores: Shaaban Bakr, Carlos Torres-Verdín A number of three dimensional (3D) simulators of geophysical logging measurements have been developed during the last two decades for oil-industry applications. These simulators have been successfully used to study and quantify different physical effects occurring in 3D geometries. Despite such recent advances, there are still many 3D effects for which reliable simulations are not available. Furthermore, in most of the existing results, only partial validations have been reported, typically obtained by comparing solutions of simplified model problems against the corresponding solutions calculated with a lower dimensional (2D or 1D) numerical method. The lack of 3D simulation results (as opposed to 2D results) is due to major difficulties encountered when solving geometrically challenging problems. Namely, for mesh-based methods (Finite Elements, Finite Differences, Boundary Elements, etc.), the size of the system of linear equations becomes excessively large to be solved in real time. When solving inverse geophysical problems (as opposed to forward simulation problems), the cost of computations dramatically increase, making the use of 3D simulators impractical. Often, even 2D simulators cannot be afforded due to their elevated computational cost. In this presentation, we first explain how oil companies record different types of electromagnetic geophysical measurements. Then, we explain the main mathematical and computational difficulties associated to the simulation and inversion of such measurements. Subsequently, we analyze a number of mathematical features that a numerical method should possess in order to overcome the above challenges. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Conferencias plenarias 13 Finally, we present a family of dimensionally adaptive methods that we are employing for solving such simulation and inversion problems. One of the main objectives of this presentation is to raise the awareness and interest of the applied mathematics community on the topic, since its expertise is necessary in order to solve several mathematical problems that still remain open in the area. Additional info: http://sites.google.com/site/m2sigroup Arcs spaces, birational geometry and singularity theory María Pe Pereira ICMAT [email protected] Given a singularity germ (X ,O), an arc is simply a curve parametrization that passes through the origin in time 0. The space of arcs was introduced by J. Nash in the 60Šs to understand the structure of the singularity in relation with their resolutions or more generally its birational geometry. He conjectured a precise relation in the case of surfaces that was proved by myself and J. Fernandez de Bobadilla in 2011 and a more relax statement for the higher dimensional case. After counterexamples in dimension greater than 3 by Ishii and Kollar in 2005 and in dimension 3 by de Fernex in 2012, some precise positive answer was given in relation with the terminal model with the singularity by de Fernex and Docampo in 2014. Moreover arc spaces are the base for motivic integration (Kontsevich, Denef and Loeser) and are a good tool to compute birational invariants (Mustata, Ein, Lazarsfeld , Ishii , de Fernez and others). In this talk I will introduce arcs spaces, Nash problem and how they interact with birational geometry and other classical problems in singularity theory. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico http://rsme2015.ugr.es/s01.php A Framework for Calderon-Zygmund Singular Integral Operators on Spaces of Homogeneous Type Theresa C Anderson Brown University [email protected] Coautores: Armen Vagharshakyan, Wendolin Damian Weighted norm inequalities for singular integrals have received much attention in recent years. Via local mean oscillation, Andrei Lerner was able to bound CalderonZygmund operators in norm by positive dyadic operators. I will focus on how the innovative techniques of Lerner, that I have worked to extend, have led to new results in the area of sharp weighted norm inequalities for Calderon-Zygmund operators and will also introduce how a reverse Holder extrapolation technique is useful in proving two-weighted bounds. Modulation spaces, Wiener randomization and PDEs Arpad Benyi Western Washington University, USA [email protected] Coautores: Tadahiro Oh (University of Edinburgh), Oana Pocovnicu (Princeton University) We provide a brief introduction to the time-frequency analysis surrounding the so-called modulation spaces and indicate how the intrinsically related Wiener randomization plays a special role in the well-posedness of non-linear PDEs. Riesz transform and Sobolev Algebra through the heat semigroup Frédéric Bernicot CNRS - Université de Nantes [email protected] Coautores: Thierry Coulhon and Dorothee Frey On a doubling Riemannian manifold, we are interested in Sobolev spaces, given by Laplace operator. We give several new results about the L p -boundedness of the Riesz transform, as well as for the algebra property (under the pointwise product) for such Sobolev spaces. Our results aim to get around the use of any Poincaré inequality and improve some previous results. The Leibniz-type inequalities rely on abstract paraproducts defined via functional calculus. 14 S01. Análisis armónico 15 On the two weighted boundedness of the dyadic paraproduct operator. Oleksandra Beznosova University of Alabama (Tuscaloosa) [email protected] Coautores: M.C. Pereyra, D. Chung, J.C. Moraes We obtain sufficient conditions for the boundedness of the dyadic paraproduct operator from L 2 (u) into L 2 (v). We also find several necessary conditions for such boundedness and discuss connections with the bumped A 2 conjecture. A method to arrive to weak type (1,1) estimates Maria J. Carro Universidad de Barcelona [email protected] Coautores: Carlos Domingo, Loukas Grafakos and Javier Soria We shall present a variant of Rubio de FranciaŠs extrapolation theory that allows us to obtain the weak type (1,1) boundedness of several operators in Harmonic Analysis such as the Bochner-Riesz operator at the critical index among many others. Commutators of bilinear fractional integrals Lucas Chaffee University of Kansas [email protected] In this talk we will briefly discuss the history of commutators of singular integral operators with point-wise multiplication, and we will conclude by showing new results characterizing BMO and CMO in terms of boundedness and compactness of commutators with the bilinear fractional integral operator. L(p) and Weak-L(p) estimates for the number of integer points in translated domains. Leonardo Colzani Università Milano Bicocca [email protected] Coautores: Luca Brandolini, Giacomo Gigante, Giancarlo Travaglini ¡ ¢ Revisiting and extending a recent result of M.Huxley, we estimate the L p Td ¡ ¢ and W eak −L p Td norms of the discrepancy between the volume and the number of integer points in translated domains. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 16 Extrapolation in weighed variable Lebesgue spaces David Cruz-Uribe Trinity College [email protected] Coautores: Daniel Wang The weighted variable Lebesgue spaces are a generalization of the classical weighted L p spaces. Given an exponent function p(·) : Rn → [1, ∞], we define the variable A p(·) class to be all weights such that sup kwχQ kp(·) kw −1 χQ kp 0 (·) < ∞, Q where the supremum is taken over all cubes (or equivalently, all balls). Earlier it was proved that if p(·) is log-Hölder continuous and 1 < p − ≤ p + < ∞, and if w ∈ A p(·) , then the Hardy-Littlewood maximal operator is bounded on L p(·) (w). Using this fact, we extend the theory of Rubio de Francia extrapolation to these spaces. We prove weighted L p(·) estimates, off-diagonal estimates and limited range extrapolation. These last results are new in the variable exponent setting even without weights. As an application we show that a variety of classical operators from harmonic analysis are bounded on the weighted variable Lebesgue spaces. Recent advances on multilinear sharp weighted inequalities W. Damián Universidad de Sevilla [email protected] Coautores: Andrei K. Lerner (Bar-Ilan University) and Carlos Pérez (Universidad de Sevilla) In 2010, Tuomas Hytönen proved in full generality the well-known A 2 conjecture, which claimed that the sharp dependence of the L p (w) norm of a Calderón– Zygmund operator T on the A 2 constant of the weight w might be linear. Shortly after, Andrei Lerner gave a alternative, simpler and beautiful proof based on the local mean oscillation formula and the use of sparse operators. The versatility of Lerner’s techniques are reflected in the development of the extensions of those linear results to the multilinear scenario. In this talk we present a survey on the recent advances in multilinear sharp weighted inequalities, as well as a glimpse of some interesting proofs and open problems in the area. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 17 Adams-Moser-Trudinger inequalities on Rn Luigi Fontana Universita’ di Milano-Bicocca, Milano, Italy [email protected] Coautores: Carlo Morpurgo University of Missouri, Columbia MO, USA k,p By 1988, the basic facts about the critical case of Sobolev imbeddings for W0 (Ω) with Ω bounded, were essentially established. Unbounded domains and in particular R n itself pose several new problems that began to be investigated in the new century. Many papers on various aspects and special cases appeared. We will present some new results from joint work with Carlo Morpurgo that settle the matter in a fairly complete way Hardy Space Estimates for Linear and Bilinear Calderón-Zygmund Operator Jarod Hart Wayne State University [email protected] Coautores: Guozhen Lu In this joint work with Guozhen Lu, we find sufficient conditions for non-convolution type linear and bilinear Calderón-Zygmund operators to be bounded on Hardy spaces. For a linear operator T f , we show T is bounded on H p for 0 < p ≤ 1 under appropriate regularity and cancellation assumptions for T . Likewise for a bilinear operator T ( f 1 , f 2 ), we give sufficient regularity and cancellation conditions for T to be bounded from H p 1 × H p 2 into H p for 0 < p 1 , p 2 , p ≤ 1. We formulate an approach that uses Littlewood-Paley-Stein theory, without any direct use of atomic/molecular characterizations of Hardy spaces or proof techniques involving atom to molecule mapping properties. Furthermore, this approach naturally yields a pointwise estimate that is useful for analysis of singular integrals acting on distribution spaces. The linear results are applied to prove that the Bony paraproduct, which was notably used by David and Journé in the proof of their T 1 theorem, is bounded on H p for any 0 < p ≤ 1. The fundamental difficulty that arises in the bilinear Hardy spaces estimates, that is not present in the linear setting, stems from the fact that f 1 , f 2 ∈ H 1 does not imply f 1 · f 2 ∈ H 1/2 , i.e. the pointwise product operator ( f 1 , f 2 ) 7→ f 1 (x) f 2 (x) is not bounded from H 1 × H 1 into H 1/2 . The product structure of bilinear Calderón-Zygmund operators severely complicates analysis of operators on H p when 0 < p ≤ 1, which stems from difficulties in understanding the oscillatory behavior of products of functions. Some Hardy space paraproduct boundedness properties for bilinear operators will also be discussed. In particular, one paraproduct Π( f 1 , f 2 ) maps (and is bounded) from H p 1 × H p 2 into H p and resembles the product operator, Π( f 1 , f 2 )(x) ≈ f 1 (x) f 2 (x), in the appropriate sense. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 18 Parabolic weighted norm inequalities Juha Kinnunen Aalto University [email protected] Coautores: Olli Saari (Aalto University) We discuss parabolic Muckenhoupt weights and functions of bounded mean oscillation (BMO) related to a doubly nonlinear parabolic partial differential equation. In the natural geometry for the doubly nonlinear equation the time variable scales as the modulus of the space variable raised to a power. Consequently the Euclidean balls and cubes have to be replaced by parabolic rectangles respecting this scaling in all estimates. An extra challenge is given by the time lag appearing in the estimates. The main result gives a full characterization of weak and strong type weighted norm inequalities for parabolic forward in time maximal operators. In addition, we give a Jones type factorization result for the parabolic Muckenhoupt weights and a Coifman-Rochberg type characterization of the parabolic BMO through parabolic Muckenhoupt weights and maximal functions. We also discuss connections and applications of the results to regularity of nonlinear parabolic partial differential equations. This is a joint work with Olli Saari at Aalto University. Variational inequalities related to the Monge-Ampere equation Diego Maldonado Kansas State University [email protected] We will start with a description of geometric and measure-theoretic objects associated to certain convex functions in R n . These objects include a quasi-distance and a Borel measure in R n which render a space of homogeneous type (i.e. a doubling quasi-metric space) associated to such convex functions. We will illustrate how real-analysis techniques in this quasi-metric space can be applied to the regularity theory of convex solutions u to the Monge-Ampere equation detD 2 u = f as well as solutions v of the linearized Monge-Ampere equation L u (v) = g . Finally, we will discuss recent developments regarding the existence of Sobolev and Poincare inequalities on these Monge-Ampere quasi-metric spaces and mention some of their applications. Beyond the Kato conjecture for degenerate elliptic operators Jose Maria Martell ICMAT [email protected] Coautores: David Cruz-Uribe, Cristian Rios Consider the degenerate elliptic operator ¡ ¢ L γ u(x) = −|x|γ div |x|−γ A(·) ∇u(·) (x), x ∈ Rn , where A is a uniform elliptic matrix with complex bounded coefficients. In the nondegenerate or uniformly elliptic case (that is, when γ = 0) the solution to the Kato Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 19 conjecture by P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian leads to the L 2 -estimates ° 1/2 ° ° ° °L f ° 2 ≈ °∇ f ° 2 . 0 L L When −n < γ < n, the “degeneracy” of L γ (i.e., w(x) = |x|−γ ) belongs to the class of Muckenhout weights A 2 . Hence the Kato problem for degenerate operators studied by C. Rios and D. Cruz-Uribe gives the L 2 (w)-estimates ° 1/2 ° ° ° °L f ° 2 −γ ≈ °∇ f ° 2 −γ . γ L (|x| ) L (|x| ) In this talk we present a method that allows us to show that when 0 ≤ γ < 2 n/(n + 2) the degenerate elliptic operator L γ satisfies L 2 -Kato estimates. A counting problem in Ergodic Theory and Extrapolation for one-sided weights Francisco J. Martín-Reyes Universidad de Málaga [email protected] Coautores: María J. Carro (Universidad de Barcelona) and María Lorente (Universidad de Málaga) The purpose of this talk is to present the following result: given a dynamical system (X , M , µ, τ) and 0 < q < 1, the Lorentz spaces L 1,q (µ) satisfy the so-called Return Times Property for the Tail contrary to what happens in the case q = 1. In fact, we consider a more general case than in previous results since we work with a σ-finite measure µ and a transformation τ which is only Cesàro bounded. The proof uses the extrapolation theory of Rubio de Francia for one-sided weights. These results are of independent interest and can be applied to many other situations. L p and weak-L 1 estimates for the variation of singular integrals on uniformly rectifiable measures Albert Mas Universitat Politècnica de Catalunya [email protected] Coautores: Xavier Tolsa In this talk I will present a recent work in collaboration with Xavier Tolsa where we extend some previous results concerning the variation for singular integrals with odd kernel on Lipschitz graphs with small slope to the case of uniformly rectifiable measures. Given a family of truncations of a singular integral operator over a meaµ sure µ, namely T µ = {T² }²>0 , one defines the ρ-variation of T µ by µ à (Vρ ◦ T ) f (x) := sup X {²m } m∈Z µ |T²m+1 f µ (x) − T²m f (x)| ρ !1/ρ , where the supremum is taken over all decreasing sequences {²m }m∈Z ⊂ (0, ∞). We will discuss the L p estimates for 1 < p < ∞ as well as the weak-L 1 endpoint case when µ is uniformly rectifiable. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 20 On the L ∞ ×L ∞ → B MO mapping property for certain bilinear pseudodifferential operators Virginia Naibo Kansas State University [email protected] We will present boundedness results from L ∞ × L ∞ into B MO for bilinear pseudodifferential operators with symbols in a range of bilinear Hörmander classes of critical order. These results are achieved by means of new continuity properties for bilinear operators with symbols in certain classes and a new pointwise inequality relating bilinear operators and maximal functions. Weighted asymptotic estimates for maximal functions and embedding of Muckenhoupt weights Ioannis Parissis The University of the Basque Country and Ikerbasque [email protected] Coautores: Paul A. Hagelstein I will discuss some asymptotic estimates for the level sets of the Hardy-Littlewood maximal operator, applied to indicators of sets. We look at weights w such that we have the asymptotic estimate lim sup α→1− 0<w(E )<∞ w({x : M (χE )(x) > α})/w(E ) = 1. It turns out that the property above characterizes the class of Muckenhoupt weights A ∞ and this point of view provides us with a natural way to understand how A ∞ embeds into A p . These results extend to other differentiation bases such as the basis of rectangles with sides parallel to the coordinate axes, giving us characterizations of strong Muckenhoupt weights. Analysis of Rumin’s complex on the Heisenberg group Marco Peloso Università degli Studi di Milano [email protected] Coautores: Marco Marchi This work is concerned with the analysis of Rumin’s Laplacian ∆R on the Heisenberg group Hn . We obtain a decomposition of the space of Rumin’s forms with L 2 coefficients into invariant subspaces and describe the action of ∆R restricted to these subspaces up to unitary equivalence. We prove that this decomposition provides a L p decomposition of the space of Rumin’s forms. We also prove a sharp Mihilin-Hörmander multiplier theorem for ∆R . Finally, we discuss the L p -boundedness of the Riesz transforms defined by ∆R . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 21 On the regularity of certain bilinear oscillatory integral operators Salvador Rodriguez-Lopez Imperial College London [email protected] Coautores: D. Rule and W. Staubach In this talk, we will consider the regularity properties of certain bilinear oscillatory integral operators and related Fourier integral operators on (among others) products of Banach and quasi-Banach Lebesgue spaces. More specifically, we will establish the boundedness of operators of the type Z Z T ( f , g )(x) = a(x, ξ, η) fb(ξ)gb(η)e i Φ(x,ξ,η) dξdη where the amplitude a belongs to a bilinear Hörmander-type class and the phase function Φ(x, ξ, η) = φ1 (x, ξ)+φ2 (x, η), with φ j satisfying suitable regularity and nondegeneracy conditions. These operators appear, for instance, in the study of the regularity of the product of two solutions of wave-type equations. Our investigation also yields the bilinear version of the classical theorem of A. Seeger, C. Sogge and E. Stein concerning the L p boundedness of linear Fourier integral operators. This is joint work with D. Rule (Linköping University) and W. Staubach (Uppsala University). Cross-section estimates on Sobolev spaces Javier Soria Universidad de Barcelona [email protected] Coautores: Nadia Clavero, Viktor Kolyada We find the optimal domain and range spaces for Sobolev embeddings in terms of rearrangement invariant mixed norms (involving the cross-sections of the functions), which extend well-known estimates by Gagliardo, Nirenberg and Fournier. The study of these results lead us to consider further properties of iterated rearrangements, for which we establish sharp conditions in the case of classical Lebesgue spaces. Referencias 1. N. Clavero and J. Soria, Mixed norm spaces and rearrangement invariant estimates, J. Math. Anal. Appl. 419 (2014), no. 2, 878–903. 2. N. Clavero and J. Soria, Optimal rearrangement invariant Sobolev embeddings in mixed norm spaces, preprint. 3. V. Kolyada and J. Soria, Mixed norms and iterated rearrangements, preprint. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 22 Connections between continuous and dyadic function spaces on product spaces of homogeneous type Lesley A. Ward School of Information Technology and Mathematical Sciences, University of South Australia [email protected] The function spaces of harmonic analysis, such as BMO, VMO, H 1 , and the classes of A p weights and reverse-Hölder weights, come in both continuous and dyadic flavours. We know of two types of connections between the continuous and dyadic versions of such a space. First, averaging procedures take us from the dyadic to the continuous version. Second, the continuous version can be written as an intersection (for BMO, VMO, A p and R H p ), or a sum (for H 1 ), of finitely many dyadic versions. We present recent work that extends these connections from the Euclidean world to the setting of spaces of homogeneous type (X , d , µ) in the sense of Coifman and Weiss, in both the one-parameter and product situations. Our results build on earlier work by Garnett, P. Jones, Pipher, Ward, Treil, Xiao, and Li [2,3,5,6,7]. This is joint work with P. Chen, A. Kairema, J. Li, and M.C. Pereyra [1,4]. Referencias 1. P. Chen, J. Li and L.A. Ward, BMO from dyadic BMO via expectations on product spaces of homogeneous type, J. Funct. Anal. 265 (2013), 2420–2451. 2. J.B. Garnett and P.W. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), no. 2, 351–371. 3. J. Li, J. Pipher, and L.A. Ward, Dyadic structure theorems for multiparameter function spaces, Rev. Mat. Iberoamericana, to appear. 4. A. Kairema, J. Li, M.C. Pereyra and L.A. Ward, Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type, in preparation. 5. J. Pipher and L.A. Ward, BMO from dyadic BMO on the bidisc, J. London Math. Soc. 77 (2008), 524–544. 6. J. Pipher, L.A. Ward and X. Xiao, Geometric-arithmetic averaging of dyadic weights, Rev. Mat. Iberoamericana 27 (2011), no. 3, 953–976. 7. S. Treil, H 1 and dyadic H 1 , in Linear and Complex Analysis: Dedicated to V. P. Havin on the Occasion of His 75th Birthday (ed. S. Kislyakov, A. Alexandrov, A. Baranov), Advances in the Mathematical Sciences 226 (2009), AMS, 179– 194. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S01. Análisis armónico 23 Weighted Carleson Measure Spaces Associated with Different Homogeneities Xinfeng Wu University of Kansas [email protected] In this paper, we introduce the weighted Carleson measure spaces associated with different homogeneities and prove the boundedness of composition of two Calderón-Zygmund operators with different homogeneities on the weighted Carleson measure spaces. We also identify the dual spaces of the weighted Hardy spaces with the weighted Carleson measure spaces. On multilinear fractional strong maximal operator associated with rectangles and multiple weights Qingying Xue School of Mathematical Sciences, Beijing Normal University, Beijing, 100875 P.R. China [email protected] Coautores: M. Cao and K. Yabuta In this talk, the multilinear fractional strong maximal operator MR,α associated with rectangles and corresponding multiple type weights are introduced. Under the dyadic reverse doubling condition, a necessary and sufficient condition for two-weight inequalities is given. As consequences, we first obtain a necessary and sufficient condition for one-weight inequalities. Then, we give a new proof for the weighted estimates of multilinear fractional maximal operator Mα associated with cubes and multilinear fractional integral operator Iα , which is quite different and simple from the proof known before. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S02. Análisis complejo y teoría de operadores http://rsme2015.ugr.es/s02.php Residual subspaces and spectral synthesis for differentiation on C ∞ Alexandru Aleman Lund University [email protected] If I is an interval on the real line, the differentiation operator ddt restricted to its invariant subspaces of C ∞ (I ) shows a fairly intricated behavior. The spectrum of such a restriction, may be void, or equal to the whole complex plane, or consist of a countable set of eigenvalues. Arbitrary invariant subspaces may contain a nontrivial ”residual part” where the spectrum of the restriction is void. The talk is focused on two topics: 1) The structure of residual subspaces, 2) The appropriate spectral synthesis in invariant subspaces with a countable spectrum. The material is based on earlier joint work with B. Korenblum and recent results with A. Baranov and Y. Belov. Averaging operators, Berezin transforms and atomic decomposition on weighted Bergman spaces Oscar Blasco Universidad de Valencia [email protected] Coautores: Salvador Perez-Esteva We study the class of weight functions W in the unit disk for which the averaging R 1 p operators Ar φ(z) = |D(z,r )| D(z,r ) φ(w)d A(w) are bounded on L (W ), where D(z, r ) is the disk centered at z and radius r in the hyperbolic metric. We also show the atomic decompositions on the weighted Bergman spaces A p (W ) or Bergman-Herz p spaces A q (W ) for weights in the above class for which the Bergman projection is p continuous in L p (W ) or in the Herz spaces K q (W ). 24 S02. Análisis complejo y teoría de operadores 25 Bergman projection and Bloch functions on symmetric domains of tube type Aline Bonami University of Orleans, France [email protected] I will mainly consider the tubes over the forward light cones and their bounded realizations, the Lie balls. In both cases, one now knows the whole range of p for which the Bergman projection extends into a bounded operator on L p , due to recent work of Bourgain and Demeter. It also makes sense for the Lie ball to ask for estimates with loss, from L p to L q , with q < p and I will present some necessary and some sufficient conditions. This translates in particular into integrability properties for Bloch functions of the Lie balls, local integrability properties in the case of the tube domains. I will emphasize the differences with the same problems on the disc or the unit ball. This is a joint work with Gustavo Garrigós and Cyrille Nana. Volterra operators on weighted Banach spaces of entire functions Jose Bonet Universitat Politecnica de Valencia [email protected] Coautores: Jari Taskinen (Helsinki, Finland) We characterize boundedness, compactness and weak compactness of Volterra operators Vg acting between different weighted Banach spaces H v∞ (C) and H v0 (C) of entire functions with sup-norms in terms of the symbol g ; thus we complement recent work by Bassallote, Contreras, Hernández-Mancera, Martín and Paul for spaces of holomorphic functions on the disc and by Constantin and Peláez for reflexive weighted Fock spaces. Holomorphic potentials and multipliers for Hardy-Sobolev spaces Carme Cascante Universitat de Barcelona [email protected] Coautores: Joan Fabrega and Joaquin M. Ortega Our focus of interest comes out from the following fact in Rn : for a nonlinear potential of a positive measure, it is enough to impose its boundedness to assure that the potential is a pointwise multiplier of the Bessel space L s,p . We will check, using different methods, an analogous result for non isotropic holomorphic potentials on the unit ball in Cn , B, showing that the bounded holomorphic potentials are pointwise multipliers for the Hardy-Sobolev spaces. As a consequence, we construct nontrivial examples of such multipliers and we give some applications. p We recall that if 1 ≤ p < ∞ and s ∈ R, the Hardy-Sobolev space H s consists of the X holomorphic functions f on B such that if f = f k is its homogeneous polynomial k Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S02. Análisis complejo y teoría de operadores expansion, and the fractional radial derivative is defined by (1 + R)s f := 26 X (1 + k)s f k , k then || f ||H p := ||(1 + R)s f ||H p < ∞. s Referencias 1. Böe, B.: Construction of multipliers for Bessel potential spaces, unpublished. 2. Cascante, C.; Ortega, J.M.: Carleson Measures for weighted Hardy-Sobolev spaces. Nagoya Math. J., 186, (2007), 29-68. 3. W.S. Cohn, I.E. Verbitsky.: Non-linear potential theory on the ball, with applications to exceptional and boundary interpolation sets, Michigan Math. J., 42, (1995), 79-97. 4. Ortega, J.M.; Fabrega, J.: Multipliers in Hardy-Sobolev spaces. Int. Eq. Op. Th., 55, (2006), 535-560. Slopes in the theory of analytic semigroups Santiago Díaz Madrigal Universidad de Sevilla [email protected] Coautores: Manuel D. Contreras Márquez, Pavel Gumenyuk Given a semigroup (ϕt ) of analytic self-maps of the unit disc D and fixed a point z ∈ D, the function t ∈ [0, +∞) → ϕt (z) ∈ D can be seen as the trajectory of a certain vector field. Indeed, most of the times these trajectories land at concrete points in the circle. Dynamically thinking, this suggests the question of when these landings hold with a definite slope. In this paper, we give a panoramic view of this problem paying special attention to several very recent developments which tell us that some kind of wild behaviour is possible. Quasiconformal mappings and the corona problem María José González Universidad de Cádiz [email protected] Coautores: José M. Enríquez Salamanca We study the corona theorem for domains whose boundary lies in a smooth curve. The idea is to transfer the problem via a quasiconformal mapping to a Denjoy domain and use the results from Garnett and Jones. For that we will use a characterization of this type of curves that involves a Carleson condition on the dilatation coefficient of the quasiconformal mapping. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S02. Análisis complejo y teoría de operadores 27 Weighted integrability of Polyharmonic functions Håkan Hedenmalm Royal Institute of Technology, Stockholm [email protected] In joint work with A. Borichev, we study the boundary behavior of polyharmonic functions in the unit disk. We find that there exist functions that decay maximally quickly and we determine the rate - in terms of p-means along concentric circles. The results are expressed in terms of standard weighted area-L p spaces on the disk. We then continue to analyze similar flatness of polyharmonic functions on other domains. Bandlimited Lipschitz functions Yurii Lyubarskii Norwegian University of Scinces and Technology [email protected] Coautores: Joaquim Ortega-Cerdà We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolation and sampling sequences in this space. We also give a description of trace of such functions to sequences of critical density in terms of a cancellation condition. Fekete points in complex manifolds Joaquim Ortega-Cerdà University of Barcelona [email protected] Coautores: Nir Lev, Bar-Ilan University. I will present an overview of the distribution of Fekete points in several contexts. These are points that minimize a certain energy and that appear naturally in problems ranging from electrostatics to approximation theory. We will overview the results in different contexts, from the clasical weighted Fekete points in the plane to more elaborated versions in complex Riemannian manifolds. We will explore how the conection to other sets of points can be enlightening in their study and will provide some applications. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S02. Análisis complejo y teoría de operadores 28 Isoperimetric inequalities and quasi-isometries in Riemann surfaces Jose Manuel Rodriguez Universidad Carlos III de Madrid [email protected] Coautores: Alicia Cantón, Ana Granados, Ana Portilla This work studies the stability of isoperimetric inequalities under quasi-isometries between non-exceptional Riemann surfaces endowed with their Poincaré metrics. This stability was proved by Kanai in the more general setting of Riemannian manifolds under the condition of positive injectivity radius. In the present work we prove the stability of the linear isoperimetric inequality for planar surfaces (genus zero surfaces) without any condition on their injectivity radii. It is also shown the stability of any non-linear isoperimetric inequality. The Schramm-Loewner equation for multiple slits Oliver Roth University of Würzburg [email protected] Coautores: Sebastian Schleissinger We prove that any disjoint union of finitely many simple curves in the upper half-plane can be generated in a unique way by the chordal multiple-slit Loewner equation with constant weights. Hilbert matrix as an operator on spaces of analytic functions Dragan Vukoti´c Universidad Autónoma de Madrid [email protected] Coautores: Ole F. Brevig, Karl-Mikael Perfekt, Kristian Seip, Aristomenis Siskakis The Hilbert matrix is a prototype of a Hankel operator. Its norm and spectrum have been studied on the sequence spaces `p . It can also be defined in a natural way on Hardy and Bergman spaces of analytic functions in the unit disk. We briefly review various earlier results in this setting. The Hardy space of Dirichlet series has been studied extensively by a number of authors in the recent years. Continuing a line of research started by Helson in his last two papers, we produce a multiplicative version of the Hilbert matrix on a Hardy space of Dirichlet series. This operator relates in a natural way to the Riemann ζfunction and turns out to have several properties analogous to those of the classical Hilbert matrix. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S03. Análisis funcional http://rsme2015.ugr.es/s03.php Distributional chaos for the Forward and Backward Control traffic model Xavier Barrachina Civera Università degli Studi di Roma Tor Vergata [email protected] Coautores: J. Alberto Conejero, Marina Murillo-Arcila, Juan B. Seoane-Sepúlveda The interest in car-following models has increased in the last years due to its connection with vehicle-to-vehicle communications and the development of driverless cars. Some non-linear models, such as the Gazis-Herman-Rothery model, were already known to be chaotic (4). We consider the linear Forward and Backward Control traffic model for an infinite number of cars on a track. We show the existence of solutions with a chaotic behavior by using some results of linear dynamics of C 0 semigroups. In contrast, we also analyze which initial configurations lead to stable solutions. References 1. A. A. Albanese, X. Barrachina, E. M. Mangino, and A. Peris. Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal., 12(5):2069–2082, 2013. 2. X. Barrachina, J. A. Conejero, M. Murillo-Arcila, and J. B. Seoane-Sepúlveda. Distributional chaos for the Forward and Backward Control traffic model. Preprint, 2014. 3. J. A. Conejero, M. Murillo-Arcila, and J. B. Seoane-Sepúlveda. Linear chaos for the quick-thinking-driver model. Preprint, 2014. 4. D. C. Gazis, R. Herman, and R. W. Rothery. Nonlinear follow-the-leader models of traffic flow. Operations Res., 9(4):545–567, August 1961. Wave front sets with respect to the iterates of an operator Chiara Boiti University of Ferrara, Italy [email protected] Coautores: David Jornet, Jordi Juan-Huguet We characterize, in [3] and [2], the wave front set with respect to the iterates of a linear partial differential operator with constant coefficients in the setting of ultradifferentiable functions of Beurling or Roumieu type, in the sense of Braun, Meise and Taylor [4]. 29 S03. Análisis funcional 30 The properties of this new wave front set are analogous to those of the classical wave front set, but it gives more precise information about the singularities compared to those obtained by the usual wave front set in the considered class of ultradifferentiable functions (cf. [1]). Generalizing Theorems 8.1.4 and 8.4.14 of [5], we can construct a distribution with prescribed wave front set with respect to the iterates of a hypoelliptic linear p.d.o. with constant coefficients. Moreover, in [2], we give some applications to the regularity of operators with variable coefficients and constant strength. Referencias 1. A.A. Albanese, D. Jornet, A. Oliaro, Quasianalytic wave front sets for solutions of linear partial differential operators, Integr. Equ. Oper. Theory 66 (2010), 153–181. 2. C. Boiti, D. Jornet, A characterization of the wave front set defined by the iterates of an operator with constant coefficients, in preparation 3. C. Boiti, D. Jornet, J. Juan-Huguet, Wave front sets with respect to the iterates of an operator with constant coefficients, Abstr. Appl. Anal. 2014, Article ID 438716 (2014), pp. 1–17, http://dx.doi.org/10.1155/2014/438716 4. R.W. Braun, R. Meise, B.A. Taylor, Ultradifferentiable functions and Fourier analysis, Result. Math. 17 (1990), 206–237. 5. L. Hörmander, The Analysis of Linear Partial Differential Operators I, SpringerVerlag, Berlin (1990). Isometries in L 2 (X ), monotone functions and averaging operators Santiago Boza Universitat Politècnica de Catalunya [email protected] Coautores: Javier Soria (Universitat de Barcelona) In this talk, we will study necessary and sufficient conditions to ensure that a bounded operator T defined on the Hilbert space is indeed an isometry. We will show that under some hypothesis is enough to restrict the operator to a smaller class of functions, (if X = R+ , we can restrict ourselves to the cone of decreasing and positive functions). In the second part of the talk, we will study the existence of positive isometric averaging operators on `2 (Z, µ) and show that they are determined by very subtle arithmetic conditions on the measure µ (even for very simple examples), contrary to what happens in the continuous case L 2 (R+ ), where any possible average value is realized by a suitable positive isometry. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S03. Análisis funcional 31 Lipschitz tensor products and their duality J. Alejandro Chávez-Domínguez ICMAT and The University of Texas at Austin [email protected] Coautores: M. G. Cabrera-Padilla, A. Jiménez-Vargas, M. Villegas-Vallecillos Inspired by classical ideas, we introduce the notion of a Lipschitz tensor product between a metric space and a Banach space. We develop the basic theory of such tensor products, which largely parallels that of tensor norms for Banach spaces. For example, we define Lipschitz versions of the injective and projective tensor norms and relate them to their Banach-space versions via Lipschitz-free spaces. We also study the duality relationships between Lipschitz tensor products and ideals of Lipschitz maps, and in particular we obtain a Lipschitz version of the representation theorem for maximal operator ideals Geometric perspectives of reproducing kernels José E. Galé Departamento de Matemáticas, Universidad de Zaragoza [email protected] Coautores: D. Beltita, from the IMAR (Academy of Sciences), Bucharest. There are quite diverse situations where one finds simultaneously reproducing kernels of Hilbert spaces and differential geometry. On the basis of these examples, it will be shown in this talk how a differential geometry theory emerges naturally with every member of a wide class of reproducing kernels on Hermitian vector bundles. Properties of such a geometry of kernels like the existence of (Chern) covariant derivatives compatible with complex and Hermitian structures and the positivity of its curvature will be discussed. Some connections between Renorming Theory and Fixed Point Theory Maria Angeles Japón Pineda Universidad de Sevilla [email protected] A Banach space (X , k · k) is said to satisfy the fixed point property (FPP) if every nonexpansive mapping defined from a closed bounded convex subset of X into itself has a fixed point. Recall that a mapping T : C → C is said to be nonexpansive if kT x − T yk ≤ kx − yk for all x, y ∈ C . Notice that the nonexpansiveness is a metric condition which may change if we replace the norm by an equivalent one. It is well-known that every uniformly convex Banach space satisfies the FPP and that the space (`1 , k · k1 ) fails to have this property. Nowadays, it is an open problem whether every reflexive Banach space verifies the FPP and it was conjectured that every Banach space with the FPP should be reflexive for a long time. Fixed point theory for nonexpansive mappings and renorming theory definitively became connected after the publication of the following two results: Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S03. Análisis funcional 32 i) In 2009, T. Domínguez Benavides proved that every reflexive Banach X space could be equipped with an equivalent norm such that (X , | · |) satisfies the FPP. ii) In 2008, P. K. Lin proved that the Banach space `1 could be renormed to have the FPP, answering in a negative way to the above conjecture. Since then, some other authors have proved the existence of new renormings in `1 with the FPP and the existence of some other non-reflexive Banach spaces that are FPP-renormable. We will talk about the recent advances in these topics and the open problems we deal with. Referencias 1. T. Domínguez Benavides, A renorming of some nonseparable Banach spaces with the fixed point property, J. Math. Anal. Appl., 350(2) (2009), 525-530. 2. P. K. Lin, There is an equivalent norm on `1 that has the fixed point property. Nonlinear Anal., 68 (8) (2008), 2303-2308. 3. C. A. Hernández-Linares and M. A. Japón. A renorming in some Banach spaces with applications to fixed point theory. J. Funct. Anal. 258 (2010), 3452-3468. 4. C. A. Hernández-Linares, M. A. Japón, E. Llorens-Fuster. On the structure of the set of equivalent norms on `1 with the fixed point property. J. Math. Anal. App. 387 (2012), 645-54. 5. C. A. Hernández-Linares, M. A. Japón. Rays of equivalent norms with the fixed point property in some nonreflexive Banach spaces. J. Nonlinear Convex Anal. 15, n. 2, (2014), 355-377. Plasticity of the unit ball of a strictly convex Banach space Vladimir Kadets Kharkiv V.N.Karazin National University, Ukraine [email protected] Coautores: B. Cascales, J. Orihuela, E. J. Wingler Let X be a strictly convex Banach space and B X be its closed unit ball. Then every bijective non-expansive map F : B X → B X is an isometry. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S03. Análisis funcional 33 Foelner C*-algebras and applications Fernando Lledó Dept. Mathematics, Universidad Carlos III Madrid and ICMAT [email protected] In this talk I will introduce the class of Foelner C*-algebras, which are defined in terms of a net of unital completely positive maps from the algebra to matrices that are asymptotically multiplicative in a weak sense. This class of C*-algebras include the quasidiagonal ones. I will then present several characterizations of Foelner C*-algebras in terms of Foelner nets of projections or amenable traces and show some applications to spectral approximation problems. Finally, I will analyze uniform Roe algebras on discrete metric spaces with bounded geometry under this perspective. [Joint work with Pere Ara (UAB), Kang Li (U. Copenhagen) and Jianchao Wu (U. Muenster)] Frequent hypercyclic translation semigroups Elisabetta Mangino Dipartimento di Matematica e Fisica "E. De Giorgi" - Università del Salento - Lecce Italy [email protected] Coautores: Marina Murillo Frequent hypercyclicity for translation C 0 -semigroups on weighted spaces of continuous functions is investigated. The results are achieved by establishing an analogy between frequent hypercyclicity for the translation semigroup and for weighted pseudo-shifts and by characterizing frequent hypercyclic weighted pseudo-shifts in spaces of vanishing sequences. Frequent hypercylic translation semigroups in weighted L p -spaces are also characterized. The Daugavet equation for Lipschitz operators Javier Merí Universidad de Granada [email protected] Coautores: Vladimir Kadets, Miguel Martín, and Dirk Werner We show that introducing a reasonable substitute for the concept of slice for the case of non-linear Lipschitz functionals one can transfer to the non-linear case several results about the Daugavet and the alternative Daugavet equations previously known only for linear operators. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S03. Análisis funcional 34 Strong mixing measures and invariant sets in linear dynamics Marina Murillo Arcila Universitat Politècnica de València [email protected] Coautores: A. Peris In this talk, we show that the Frequent Hypercyclicity Criterion for operators and for C 0 -semigroups ensures the existence of invariant strongly mixing measures with full support. Moreover, we provide several examples which illustrate these results. We also study dynamical properties that are satisfied by autonomous and nonautonomous dynamical systems on certain invariant sets. Particular attention is given to the case of positive operators and semigroups on lattices, and the (invariant) positive cone. Bibliography: 1. M. Murillo-Arcila and A.Peris. Mixing properties for nonautonomous linear dynamics and invariant sets. Appl. Math. Lett., 26 (2013), 215–218. 2. M. Murillo-Arcila and A.Peris. Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl., 298 (2013), 462–465. 3. M. Murillo-Arcila and A.Peris. Strong mixing measures for C 0 -semigroups. DOI:10.1007/s13398-014-0169-3. To appear in RACSAM. 4. M. Murillo-Arcila and A.Peris. Chaotic behavior on invariant sets of linear operators. DOI 10.1007/s00020-014-2188-z. To appear in Integral Equations and Operator Theory. Seeking the best modulus of uniform convexity Matías Raja Universidad de Murcia [email protected] The modulus of convexity of a norm k · k (given on a linear space) is the function defined by o n x+y k : kxk = kyk = 1, kx − yk ≥ t δk·k (t ) = inf 1 − k 2 for t ∈ [0, 2]. The norm is said uniformly convex if δk·k (t ) > 0 for t > 0. It is well known that a Banach space has an equivalent uniformly convex norm if and only if it is super-reflexive (James, Enflo). The modulus of convexity δk·k (t ) of any norm (on p any Banach space) is bounded from above by 1 − 1 − t 2 /4, which is the modulus of convexity of the Hilbert space (Nörlander). This is usually interpreted as “no Banach space is more convex than the Hilbert space”. Among the different equivalent norms on a given super-reflexive space, it is natural to look for the one that makes δk·k (t ) as larger as possible. In a recent paper, we have investigated this question from an asymptotic sense: to find a equivalent norm on X such that the limit limt →0 δk·k (t ) = 0 converges in the feasible slowest Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S03. Análisis funcional 35 manner. Our results provide a quite satisfactory answer to this problem. As an application, we will deduce the classical Pisier’s renorming with power type modulus of convexity: there is an equivalent norm such that δk·k (t ) ≥ c t p for some c > 0 and p ≥ 2. Cyclic polynomials in two variables Daniel Seco University of Warwick [email protected] Coautores: C. Beneteau, G. Knese, L. Kosinski, C. Liaw and A. Sola Let f be a function in H , a Hilbert space of analytic functions over a fixed domain. The function f is called cyclic if the polynomials times f form a dense subspace of H . A classical theorem by Brown and Shields classifies cyclicity when f is a polynomial in Dirichlet-type spaces over the unit disc. In this talk, we show the corresponding classifications of polynomials for Dirichlet-type spaces over the bidisc (and depending on time, also for weighted Hardy spaces over the unit disc). Some results and open questions on spaceability in function spaces Juan B. Seoane-Sepúlveda UCM and ICMAT [email protected] Coautores: J.A. Conejero, P. Enflo, V. Gurariy, G. A. Muñoz-Fernández, and M. MurilloArcila. A subset M of a topological vector space X is called lineable (respectively, spaceable) in X if there exists an infinite dimensional linear space (respectively, infinite dimensional closed linear space) Y ⊂ M ∪ {0}. In this lecture we shall present several new advances within this theory regarding several different classes of annulling functions (functions having infinitely many zeros). We also discuss problems related to these concepts for certain subsets of some important classes of Banach spaces (such as C [0, 1] or Müntz spaces). We also propose several open questions in the field and provide new directions of research. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S03. Análisis funcional 36 A Schur space which is not a uniform retract of its bidual Jesús Suárez Universidad de Extremadura [email protected] N.J. Kalton gave the first example of a Banach space X which is not a uniformly continuous retraction of its bidual; such an X is an isometric L 1 -predual. We take the construction of X a step further and provide a new example: a non-separable L ∞ -space Z with the Schur property such that there is no uniformly continuous retraction of Z ∗∗ onto Z . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S04. Análisis geométrico http://rsme2015.ugr.es/s04.php Polar actions on symmetric spaces J. Carlos Díaz-Ramos University of Santiago de Compostela [email protected] An isometric action of a Lie group G on a Riemannian manifold M is said to be polar if there is a submanifold Σ of M that intersects all the orbits of G and the orbits of G and Σ are perpendicular at intersection points. The submanifold Σ is called a section, and it is known to be totally geodesic. Polar actions are a possible way to generalize polar, spherical or cylindrical coordinates in Euclidean spaces, and this is where its name comes from. They also generalize algebraic results such as the diagonalization of symmetric and other types of matrices. For that reason, sections are also known as sets of cannonical forms. In this talk I will review the main classification results for polar actions on symmetric spaces. Polar actions on symmetric spaces of compact type are more or less well understood. However, the classification problem in the noncompact setting is more difficult and many examples with no compact counterpart arise. Gravitating vortices and Kaehler-Yang-Mills equations Oscar Garcia-Prada Instituto de Ciencias Matematicas - CSIC [email protected] Coautores: Luis Alvarez-Consul, Mario Garcia-Fernandez After reviewing the vortex equations over a compact Riemann surface and their relation with the Hermitian-Yang-Mills equations, we go on to introduce a system of coupled equations for a Kaehler metric on a manifold and a hermitian metric on a vector bundle. This system interpolates between the Hermitian-Yang-Mills equations and the Donaldson-Tian-Yau problem for constant scalar curvature. We explain how this relates to gravitating vortices and the theory of cosmic strings in physics. 37 S04. Análisis geométrico 38 Estimates of the first Dirichlet eigenvalue from exit time moment spectra Ana Hurtado Universidad de Granada [email protected] Coautores: Steen Markvorsen and Vicente Palmer We compute the first Dirichlet eigenvalue of a geodesic ball in a rotationally symmetric model space in terms of the moment spectrum for the Brownian motion exit times from the ball. As an application of the model space theory we prove lower and upper bounds for the first Dirichlet eigenvalues of extrinsic metric balls in submanifolds of ambient Riemannian spaces which have model space controlled curvatures. Moreover, from this general setting we thereby obtain new generalizations of the classical and celebrated results due to McKean and Cheung–Leung concerning the fundamental tones of Cartan-Hadamard manifolds and the fundamental tones of submanifolds with bounded mean curvature in hyperbolic spaces, respectively. An Extension of Efimov’s Theorem Antonio Martínez Universidad de Granada [email protected] Coautores: José A. Gálvez and José L. Teruel The classical Efimov theorem states that there is no C 2 -smoothly immersed complete surface in R3 with negative Gauss curvature uniformly separated from zero. Here we analyze the case when the curvature of the complete surface is less that −c 2 in a neighborhood of infinity, and prove the surface is topologically a finitely punctured compact surface, the area is finite, and each puncture looks like cusps extending to infinity, asymptotic to rays. Curvature and tolopogy of submanifolds Vicente Palmer Universitat Jaume I, Castellón [email protected] Coautores: Vicent Gimeno T. H. Colding and W. P. Minicozzi proved in 2008 that a complete embedded minimal surface with finite topology in R3 must be proper. In this talk we consider the more general setting of a complete immersed manifold in a Cartan-Hadamard manifold and we try to elucidate if these hypotheses, (embeddedness, minimality, finiteness of the topology) can be replaced by other hypothesis related with the volume or the metric. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S04. Análisis geométrico 39 Eigenfunctions with prescribed nodal sets Daniel Peralta-Salas ICMAT [email protected] I will show that given any separating hypersurface of a closed manifold, there exists a Riemannian metric such that the nodal set of its first nontrivial LaplaceBeltrami eigenfunction is the aforementioned hypersurface. Applications to critical points of low energy eigenfunctions and nodal sets of Dirichlet eigenfunctions will be provided. This is based on joint work with A. Enciso (J. Differential Geom. in press). The Toda system on compact surfaces: a variational approach David Ruiz University of Granada [email protected] Coautores: L. Battaglia, A. Jevnikar and A. Malchiodi This talk is devoted to the so-called Toda system on a compact surface Σ, which is assumed to have total area equal to 1: ´ ´ ³ ³ u2 u −∆u 1 = 2ρ 1 R h1 eu 1 − 1 − ρ 2 R hh2eeu2 dV − 1 , 1 dV g h e 1 2 g ´ ´ ³ Σ ³ Σ (1) u u1 −∆u 2 = 2ρ 2 R h2 eu 2 R h 1 eu − 1 − ρ − 1 . 1 2 1 h e dV h e dV Σ 2 g Σ 1 g Here ∆ is the Laplace-Beltrami operator, ρ 1 , ρ 2 ∈ R and h 1 , h 2 are smooth positive functions. This system appears naturally in geometry and mathematical physics. Solutions of (1) correspond to critical points of a certain energy functional, which turns out to be unbounded from below. A minimization argument being impossible, we approach the problem via min-max arguments. Compact embedded minimal surfaces in S 2 xS 1 Francisco Torralbo KU Leuven [email protected] Coautores: José M. Manzano and Julia Plehnert We prove that closed surfaces of all topological types, except for the non-orientable odd-genus ones, can be minimally embedded in S2 ×S1 (r ), for arbitrary radius r . We illustrate it by obtaining some periodic minimal surfaces in S2 × R via conjugate constructions. The resulting surfaces can be seen as the analogy to the Schwarz Psurface in these homogeneous 3-manifolds. Referencias 1. José M. Manzano, Julia Plehnert and Francisco Torralbo. Compact embedded minimal surfaces in S2 × S1 . arXiv: 1311.2500 [math.DG]. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S05. Análisis no lineal y EDP elípticas http://rsme2015.ugr.es/s05.php Dynamics of solitons in nonlinear Schroedinger equations Claudio Bonanno Università di Pisa [email protected] We use variational and symplectic methods to study the particle-type behaviour of a soliton solution for the nonlinear Schroedinger equation in presence of a singular external potential. Sharp lower bounds for Coulomb energy Marco Ghimenti Università di Pisa [email protected] Coautores: Jacopo Bellazzini, Marco Ghimenti, Tohru Ozawa We give an estimate on L p lower bounds for Coulomb energy for radially symmetric functions in the homogeneous fractional Sobolev space H˙ s (R 3 ) with 1/2<s<3/2. In case 1/2 < s ≤ 1 we show that the lower bounds are sharp Quasilinear elliptic equations with lower order terms Tommaso Leonori University of Granada [email protected] In this talk I want to discuss some problems related to equations of the type −∆p u + H (x, u, ∇u) = 0 in Ω where Ω is a bounded smooth subset of RN , ∆p u = div(|∇u|p−2 ∇u), p ≥ 2 H (x, s, ξ) : Ω × R × RN → R is Carathéodory function on which suitable assumptions are made. I deal with existence, uniqueness and some properties of solutions to this equation. 40 S05. Análisis no lineal y EDP elípticas 41 On the symmetry of ground state and least energy nodal solutions of some problems of elliptic equations Ederson Moreira dos Santos Universidade de São Paulo - Brazil [email protected] In this talk, I will consider some problems involving elliptic equations, single equations and Hamiltonian elliptic systems, set in a radially symmetric domain in RN . I will present new results about the symmetry of least energy solutions as well as least energy nodal solutions for these problems. In particular, I will show that the approach addressed to the system case presents a unified variational treatment to deal with Hamiltonian elliptic systems, fourth-order and second-order elliptic equations. Morse index of sign changing solutions of semilinear elliptic equations Filomena Pacella Università di Roma Sapienza [email protected] We will discuss some estimates and related properties of the Morse index of sign changing solutions of semilinear elliptic problems with general type of nonlinearities in symmetric bounded domains. Then, in the case of Lane-Emden problems will present some recent results on the exact computation of the Morse index of nodal radial solutions in the ball. These results have been obtained in collaboration with F.De Marchis and I.Ianni. Singularly perturbed elliptic problems with asymptotically linear nonlinearities. Benedetta Pellacci Università Napoli "Parthenope" [email protected] Coautores: Liliane Maia and Eugenio Montefusco We consider a class of singularly perturbed elliptic problems with non-autonomous asymptotically linear nonlinearities. This kind of nonlinearities represents a saturation effect observed in nonlinear optic studies. We investigate the existence of nontrivial and nonnegative concentrating solutions. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S05. Análisis no lineal y EDP elípticas 42 Toda system: degree and blow-up Angela Pistoia La Sapienza Università di Roma [email protected] We prove existence of continua of solutions to a SU(3) Toda system which exhibite partial blow-up or asymmetric blow-up. The results have been obtained in collaboration with Teresa D’Aprile and David Ruiz. Standing waves for a Gauged Nonlinear Schrödinger Equation David Ruiz University of Granada [email protected] Coautores: Alessio Pomponio (Politecnico di Bari, Italy) This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. At low energies, the Maxwell term can be dropped, giving rise to the following problem, proposed by Jackiw & Pi in 1990. i D 0 φ + (D 1 D 1 + D 2 D 2 )φ + |φ|p−1 φ = 0, ¯ 2 φ), ∂0 A 1 − ∂1 A 0 = Im(φD ¯ 1 φ), ∂0 A 2 − ∂2 A 0 = −Im(φD 1 2 ∂1 A 2 − ∂2 A 1 = 2 |φ| . (2) Here D µ = ∂µ + i A µ denotes the covariant derivative (µ = 0, 1, 2). The study of radially symmetric standig waves leads to a nonlinear stationary Schrödinger equation involving a nonlocal term. This problem is the Euler-Lagrange equation of a certain energy functional. In this talk we will be concerned with the global behavior of such functional. This is joint work with Alessio Pomponio (Politecnico di Bari, Italy). Semilinear elliptic equations with singular nonlinearities Berardino Sciunzi UNICAL [email protected] I will start discussing some known and new results regarding existence and uniqueness to semilinear elliptic equations involving singular nonlinearities. Solutions generally are not in H 1 in this setting but it is in any case possible to adapt the moving plane method, exploiting a suitable decomposition of the solutions. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S05. Análisis no lineal y EDP elípticas 43 The role of singular Liouville systems in the study of non-abelian Chern-Simons vortices Gabriella Tarantello Università di Roma Tor Vergata [email protected] We describe recent results about the construction on non-abelian Chern-Simons vortices of non-topological type in terms of entire solutions for a class of singular Liouville systems in the plane. On the eigenvalues of Aharonov-Bohm operators with varying poles Susanna Terracini Università di Torino [email protected] We consider a magnetic operator of Aharonov-Bohm type with Dirichlet boundary conditions in a planar domain. We analyse the behavior of its eigenvalues as the singular pole moves in the domain. For any value of the circulation we prove that the k-th magnetic eigenvalue converges to the k-th eigenvalue of the Laplacian as the pole approaches the boundary. We show that the magnetic eigenvalues depend in a smooth way on the position of the pole, as long as they remain simple. In case of half-integer circulation, we show that the rate of convergence depends on the number of nodal lines of the corresponding magnetic eigenfunction. Solutions with prescribed mass for nonlinear Schrödinger systems Gianmaria Verzini Politecnico di Milano [email protected] For a class of nonlinear Schrödinger equations and systems, we investigate the existence and the orbital stability of standing waves having components with prescribed L 2 -mass. We provide a variational characterization of such solutions, which gives information on the stability through of a condition of Grillakis-Shatah-Strauss type. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización http://rsme2015.ugr.es/s06.php Métodos puramente Lagrangianos y semi-Lagrangianos para modelos de la mecánica de medios continuos Marta Benítez Universidade da Coruña [email protected] Coautores: Alfredo Bermúdez (Universidade de Santiago de Compostela) El objetivo de la comunicación es presentar nuevos métodos de características puramente Lagrangianos y semi-Lagrangianos para la resolución numérica de diferentes problemas de convección. En concreto, se consideran problemas escalares de convección-difusión, las ecuaciones de Navier-Stokes y problemas acoplados fluido-estructura. Para la discretización espacial de los diferentes problemas se utilizan métodos de elementos finitos. En primer lugar, introduciendo un cambio de variable bastante general, se obtiene una formulación unificada para un problema de convección-difusión escalar, con la que es posible obtener a la vez métodos de características puramente Lagrangianos y semi-Lagrangianos (ver [1]). En particular, se presentan diferentes métodos de características totalmente Lagrangianos y semi-Lagrangianos obtenidos a partir de dicha formulación general. Uno de estos métodos es puramente Lagrangiano y de segundo orden en tiempo y ha sido analizado matemáticamente y numéricamente en [2], [3] y [1]. Además, se muestran los resultados numéricos obtenidos con diferentes métodos de características. Aplicando estas ideas a las ecuaciones de Navier-Stokes, se obtiene una formulación general de dichas ecuaciones en función del desplazamiento, con la que es posible obtener a la vez métodos de características puramente Lagrangianos y semiLagrangianos (ver [4]). Concretamente, se presentan dos métodos de características de segundo orden, uno Lagrangiano y otro semi-Lagrangiano, y un método semi-Lagrangiano de primer orden. Además, se muestran los resultados numéricos obtenidos para ejemplos test académicos y para problemas muy extendidos en la bibliografía. En particular, se consideran problemas de frontera libre. Los métodos puramente Lagrangianos son adecuados para la resolución numérica de estos problemas, puesto que permiten resolver el problema sin necesidad de calcular y mallar el dominio en cada paso de tiempo. Únicamente es necesario reinicializar la transformación cuando el dominio de referencia presenta grandes deformaciones. Finalmente, se utilizan estas ideas para resolver numéricamente un problema acoplado fluido-estructura. Concretamente, se obtiene una formulación del problema acoplado en función del desplazamiento y se propone un método de características de segundo orden en tiempo totalmente Lagrangiano combinado con un método de elementos finitos para su resolución numérica. Además, se presentan los resultados numéricos obtenidos para ejemplos test académicos y problemas de la bibliografía. Estos nuevos métodos totalmente Lagrangianos en función del desplazamiento son convenientes para resolver problemas fluido-estructura, puesto que no requieren el cálculo y el mallado del dominio en cada paso de tiempo y además el acoplamiento en la frontera común resulta sencillo. 44 S06. Análisis numérico de EDP y modelización 45 Referencias 1. M. Benítez and A. Bermúdez, Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of convection-diffusion problems, Int. J. Numer. Anal. Mod., vol. 11, (2014), 271–287. 2. M. Benítez and A. Bermúdez, Numerical Analysis of a second-order pure Lagrange-Galerkin method for convection-diffusion problems. Part I: time discretization, SIAM J. Numer. Anal., vol. 50, (2012), 858–882. 3. M. Benítez and A. Bermúdez, Numerical Analysis of a second-order pure Lagrange-Galerkin method for convection-diffusion problems. Part II: fully discretized scheme and numerical results, SIAM J. Numer. Anal., vol. 50, (2012), 2824–2844. 4. M. Benítez and A. Bermúdez, Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of Navier-Stokes equations (to appear in Appl. Numer. Math.). Modelado de la turbulencia mediante métodos de Multiescala Variacional por Proyección Tomás Chacón Universidad de Sevilla [email protected] En los últimos años se ha desarrollado una nueva clase de modelos de turbulencia, llamados de Multiescala Variacional (VMS). Se trata de modelos intrínsecamente discretos, construidos directamente a partir de la formulación variacional de las Ecuaciones de Navier-Stokes, con ecuaciones para grandes y pequeñas escalas. Esta estructura permite que el modelado de las escalas de sub-malla aparece únicamente en las ecuaciones de las pequeñas escalas, reduciendo el amortiguamiento de las grandes escalas. En esta comunicación presentamos una clase especial de métodos VMS en que la acción de las escalas de sub-malla sobre las pequeñas escalas resueltas se tiene en cuenta a través de operadores de proyección sobre una malla más groser, con lo que en la práctica se puede hacer todo el cálculo con una sola malla. Este modelo calcula con alta precisión flujos laminares regulares, e igualmente flujos turbulentos con precisión aceptable de los estadísticos de primer y segundo orden. Supone un buen compromiso entre economía de cálculo y precisión. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización 46 Thermoconvection to explain the formation and tilting of a dust devil eye María Cruz Navarro Universidad de Castilla-La Mancha [email protected] Coautores: Damián Castaño and Henar Herrero Dust devils are columnar, ground-based whirlwinds, common in dry regions and made by the dust picked up from the ground. Most authors emphasized the importance to dust devil formation of intense surface heating, which leads to high surface air temperatures and superadiabatic lapse rates, but a crucial question remaining is how they acquire rotation, how the eye is created and why dust devils tilt towards the direction of motion. Convective cell circulations are the accepted theory to explain the source of angular momentum in dust devils. But the way these convective cells generate vorticity is not understood. Here we show that vorticity in dust devils is generated by a thermoconvective instability, we give a thermal explanation for the morphology of the dust devil and demonstrate that tilting appears after a secondary thermoconvective instability. The model consists of incomprensible Navier-Stokes coupled to a heat equation under the Boussinesq approximation. The numerical method is Chebyshev collocation. Mathematical models for multiphase flow in vertical equilibrium and their numerical simulation Rosa Donat Universidad de Valencia [email protected] We will review certain models for two-phase and three-phase flow under vertical equilibrium, and propose a general framework for multiphase flow that includes them as particular cases. Sharp gradients are to be expected in the solutions to these models, so that WENO schemes for the convective terms lead to robust codes. A combination with IMEX-ODE solvers leads to reliable and cost-effective schemes for the numerical simulation of these problems. Efficient Osher-Solomon schemes for hyperbolic Systems José María Gallardo Universidad de Málaga [email protected] Coautores: M. J. Castro and A. Marquina The Osher-Solomon scheme is a classical Riemann solver which enjoys a number of interesting features: it is nonlinear, complete, robust, entropy-satisfying, smooth, etc. However, its practical implementation is rather cumbersome, computationally expensive, and applicable only to certain systems (compressible Euler equations for ideal gases or shallow water equations, for example). In this work, a new class of approximate Osher-Solomon schemes for the numerical approximation of general conservative and nonconservative hyperbolic systems is proposed. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización 47 They are based on viscosity matrices obtained by polynomial or rational approximations to the Jacobian of the flux evaluated at some average states, and only require a bound on the maximal characteristic speeds. These methods are easy to implement and applicable to general hyperbolic systems, while at the same time they maintain the good properties of the original Osher-Solomon solver. The numerical tests indicate that the schemes are robust, running stable and accurate with a satisfactory time step restriction, and the computational cost is very advantageous with respect to schemes using a complete spectral decomposition of the Jacobians. Optimized partitioned procedures for the Stokes-Darcy coupled problem Luca Gerardo-Giorda BCAM – Basque Center for Applied Mathematics, Bilbao, Spain [email protected] Coautores: Marco Discacciati (Universitat Politècnica de Catalunya) We consider a coupled Stokes-Darcy system for the filtration of an incompressible fluid through a porous medium. The model couples the solution of the Stokes equation in the fluid region, with the solution of the Darcy equation in the porous medium region through the surface separating the two physical domains. Partitioned procedures are modular algorithms commonly used for the solution of coupled multiphysics problems. They involve separate solvers for the different subproblems, that interact in an iterative framework through the exchange of suitable transmission conditions at the multiphysics interface. In the framework of domain decomposition methods, the Robin-type interface conditions introduced in [1] guarantee convergence in the absence of overlap between the different subregions. Following the ideas developed in [2] for Fluid-Structure Interaction problems, we optimize the performance of the corresponding algorithm, both in term of an iterative solver and as a preconditioner for the fully coupled problem [3]. Referencias 1. M. Discacciati, A. Quarteroni and A. Valli 2007 Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal., Vol. 45 (3), pp. 2193-2213. 2. L. Gerardo-Giorda, F. Nobile, and C. Vergara 2010. Analysis and optimization of Robin-Robin partitioned procedures in Fluid-Structure Interaction problems. SIAM J. on Num. Anal., Vol. 48 (6), pp. 2091-2116. 3. M. Discacciati, L. Gerardo-Giorda 2014 Optimized Schwarz Methods for the Stokes-Darcy coupling. In preparation. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización 48 Time-Domain BEM for Acoustic Problems Heiko Gimperlein Heriot Watt University, Edinburgh, UK [email protected] We consider the time-domain boundary element method for exterior Robin type bvp’s for the wave equation. We apply a space-time Galerkin method, present a priori and a posteriori error estimates, and derive an h-adaptive algorithm in space and time with mesh refinement driven by residual type error indicators. Numerical experiments are also given which underline our theoretical results. Special emphasis is given to numerical simulations of the sound radiation of car tyres. Stabilization and a posteriori error analysis of a mixed convection-diffusion problem María González Taboada Universidade da Coruña [email protected] Coautores: Johan Jansson (BCAM) and Sergey Korotov (BCAM) Convection-diffusion problems appear in a large number of applications, including the numerical simulation of incompressible fluid flows. As it is well-known, the numerical solution of this type of problems is difficult when transport processes are dominant. In this talk we will address the numerical approximation of convectiondiffusion problems in mixed form using an augmented mixed finite element method. We will present a priori and a posteriori error estimates, paying special attention to the role of the parameters of the problem. We will show numerical experiments that support the theoretical results. Métodos Runge-Kutta-Nyström de Pasos Fraccionarios: Evitando la reducción de orden J.C. Jorge Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra (Spain) [email protected] En esta ponencia se presentan nuevos integradores temporales diseñados para resolver eficientemente Problemas de Valor Inicial y de Contorno en los que la Ecuación o el sistema de Ecuaciones en Derivadas Parciales es de la forma ∂2 u + Au = f ; ∂t 2 (3) donde A es un operador diferencial, típicamente de segundo o de cuarto orden, que contiene las derivadas espaciales de la ecuación, y f es una función dato: dos ejem∂4 plos clásicos son la ecuación de Euler-Bernouilli (A = ) y la ecuación de ondas ∂x 4 (A = −∆). Veremos cómo tales integradores, combinados con una discretización Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización 49 espacial estándar y una partición del operador A adecuada, aportan ventajas computacionales importantes similares a las de los métodos clásicos de direcciones alternadas. Otros tipos de particiones llevan a métodos de tipo descomposición de dominios muy eficientes. Prestaremos especial atención al fenómeno de la reducción de orden, típico de todos los métodos de un paso cuando se aplican a estos problemas, que es especialmente importante cuando las condiciones de contorno varían en el tiempo. Daremos una técnica sencilla de implementar, basada en modificar las condiciones de contorno asociadas a las etapas internas y analizaremos la mejora de la consistencia proporcionada por dichas modificaciones. Finalmente mostraremos algunos ensayos numéricos que ilustren el buen comportamiento de los métodos propuestos. New developments for the parareal in time algorithm Yvon Maday Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France [email protected] The need for faster numerical simulations of complex phenomena, and the definition in this context of what a complex phenomenon is, is evolving in line with the improvement of the platforms that are available for High Performance Computing. Indeed, what used to require hours or days of numerical simulations on large computers can now be run in fractions of seconds on laptops. Nevertheless the understanding of real phenomena, the control and optimization of processes and the monitoring of industrial problems propose new challenges where i) better accuracy, ii) use of more involved mathematical models, iii) simulations on bigger object or iv) on longer period of time for unsteady phenomena are required. The evolution of the computing platforms helps in addressing bigger problems but is not sufficient. Exascale systems which are achievable in the next 5-10 years will contain millions of cores. In order to make efficient use of these systems, high-performance applications must have sufficient parallelism to support parallel execution across millions of threads of execution. The development of more efficient and more highly parallel scalable solvers is therefore at the forefront of Exascale applications research and development, in particular, the domain decomposition methods or task partitioning approaches reach their limits in their ability to use the entire computational resource with the same efficiency as currently achieved on existing smaller systems. Most simulations which are expected to deliver economic, societal and scientific impact from Exascale systems contain time-stepping in some form and present-day codes make little or no use of parallelism in the time domain; time stepping is currently treated as a serial process. For time dependent problems, either pure differential systems or coupled with partial differential equations, the time direction leads to new families of algorithms that might allow to provide full efficiencies and speed ups. The parareal (parallel in time) algorithm and the waveform relaxation methods have been introduced to fill this gap and have the potential to extract very large additional parallelism from a wide range of time-stepping application codes. This is a disruptive technology which will deliver performance speed-ups of between 10 and 100. By comparison, optimisations of current algorithms typically yield benefits in the range of tens of percent, or at most a factor of 2-3 improvement. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización 50 In this talk, we shall introduce the basics of the approach, taking care of the only time direction. We shall present the efficiency that can be expected, the drawbacks of the original approach and the way these can be circumvented. We shall then present the way to combine this algorithm with other iterative procedures such as algebraic linear or nonlinear solvers, domain decomposition methods or as control problems. A current state of the art including the numerical analysis of these combined schemes will also be presented so as the challenges that need to be addressed now. Stabilization of finite element approximations to the Stokes and Oseen equations Julia Novo Universidad Autónoma de Madrid [email protected] When considering the numerical approximation of the Navier-Stokes equations by means of mixed finite elements one can found two types on instabilities. On the one hand, it is well known that the standard Galerkin finite element method suffers from instabilities caused by the dominance of convection. On the other hand, stable mixed finite element approximations to the Stokes and Navier-Stokes equations are required to satisfy a discrete inf-sup condition. In this talk we study both kinds of instabilities. In the first part of the talk, we consider the stabilization in the convection dominated regime by means of SUPG/grad-div stabilized methods using LBB stable elements. We revise the existing literature pointing out some open questions. In the second part of the talk, we consider non LBB stable elements and analyze the so called pressure stabilized Petrov-Galerkin method for the continuous in time discretization of the evolutionary Stokes equations. We show some recent advances that avoid the so called instability of the discrete pressure for small time steps that has been reported in the literature. A POD reduced order model to calculate bifurcations in a Rayleigh-Bénard convection problem Francisco Pla Universidad de Castilla-La Mancha [email protected] Coautores: Henar Herrero, José Manuel Vega In this work, a flexible Galerkin method based on proper orthogonal decomposition (POD) is applied to a Rayleigh-Bénard convection problem in the limit of infinite Prandtl number using the Rayleigh number as a bifurcation parameter. The fluid is confined between a lower solid plate and an upper non-deformable free surface, and the patterns are assumed to be periodic in the horizontal direction. Restricting to a half of a period, imposing symmetry conditions at the lateral boundaries (which breaks invariance under translations in the laterally infinite layer), and using the Boussinesq approximation, the nondimensional continuity, momentum, and energy conservation equations are considered. This problem exhibits a horizontal reflection symmetry which is exact and also an approximate vertical reflection symmetry, which is due to the large values of the Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización 51 Rayleigh number in the physically relevant regime. A reduced order model will be presented with two main ingredients, namely (i) the symmetries are accounted for in the calculation of the POD modes and (ii) advantage is taken of the property (already tested in related bifurcation problems) that POD manifold resulting from snapshots calculated in either Newton iterations or time-dependent runs for a particular value of the Rayleigh number also contain good approximations of the steady states other values of R. Using these and a basic continuation method on the reduced order model, the bifurcation diagram is calculated at a fairly low computational cost. Numerical approximation of Beltrami fields in a topologically non trivial domain Rodolfo Rodríguez Universidad de Concepción [email protected] Coautores: Eduardo Lara y Pablo Venegas Vector fields H satisfying curl H = λ H with λ being a scalar field are called forcefree fields. This name arises from magnetohydrodynamics, since a magnetic field of this kind induces a vanishing Lorentz force: F := J × B = curl H × (µH ). In 1958 Woltjer [4] showed that the lowest state of magnetic energy density within a closed system is attained when λ is spatially constant. In such a case H is called a linear force-free field and its determination is naturally related with the spectral problem for the curl operator. This problem has a longstanding tradition in mathematical physics. A large measure of the credit goes to Beltrami [1], who seems to be the first who considered it in the context of fluid dynamics and electromagnetism. This is the reason why the corresponding eigenfunctions are also called Beltrami fields. A couple of numerical methods based on edge finite elements have been introduced and analyzed in a recent paper [3] on simply connected domains. This topological assumption is not just a technicality, since the eigenvalue problem for the curl operator is ill-posed on multiply connected domains, in the sense that its spectrum is the whole complex plane as is shown in [5]. However, additional constraints can be added to recover a well posed problem with a discrete spectrum [5,2]. We choose as additional constraint a zero-flux condition of the curl on all the cutting surfaces. We introduce a weak form of the corresponding problem, which is a convenient variation of one of the formulations studied in [3]. We prove well posedness, spectral convergence and a priori error estimates and show how to modify the finite element discretization from [3] to take care of the additional constraint. We also introduce a convenient variation of the other formulation from [3], which allows us to compute more efficiently the eigenvalues. Finally, we report a numerical test which allows us to assess the performance of the proposed methods. Referencias 1. E. B ELTRAMI, Considerazioni idrodinamiche. Rend. Inst. Lombardo Acad. Sci. Let., 22 (1889) 122–131. (English translation: Considerations on hydrodynamics, Int. J. Fusion Energy, 3 (1985) 53–57.) 2. R. H IPTMAIR , P.R. KOTIUGA AND S. T ORDEUX, Self-adjoint curl operators, Ann. Mat. Pura Appl., 191 (2012) 431–457. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S06. Análisis numérico de EDP y modelización 52 3. R. R ODRÍGUEZ AND P. V ENEGAS, Numerical approximation of the spectrum of the curl operator, Math. Comp., 83 (2014) 553–577. 4. L. W OLTJER, A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. USA, 44 (1958) 489–491. 5. Z. Y OSHIDA AND Y. G IGA, Remarks on spectra of operator rot, Math. Z., 204 (1990) 235–245. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S07. Análisis numérico en la resolución de ecuaciones no lineales http://rsme2015.ugr.es/s07.php A modified secant-type method for systems of nonlinear equations improving the numerical stability Sergio Amat U.P. Cartagena [email protected] Coautores: M.A. Hernández-Verón, M.J. Rubio A modification of the secant method for the approximation of nonlinear system of equations is considered to improve the applicability of the secant method. This modification changes the resolution of a linear system in each step, necessary to apply the secant method, for several matrix multiplications. In this way, the numerical stability of the secant method can be improved. In addition, in this paper, we prove that the modification considered keeps two important properties of the secant method, such as: does p not use derivatives in its algorithm and has R-order of convergence at least (1 + 5)/2. On the weight function procedure for designing multidimensional iterative schemes Alicia Cordero Universitat Politècnica de València [email protected] Coautores: Santiago Artidiello (Instituto Tecnológico de Santo Domingo) Juan R. Torregrosa (Universitat Politècnica de València) María P. Vassileva (Instituto Tecnológico de Santo Domingo) We present two classes of iterative methods whose order of convergence are four and five, respectively, for solving systems of nonlinear equations, by using the technique of weight functions in each step (see [1] and the references therein). Moreover, we show an extension to higher order, adding only one functional evaluation of the vectorial nonlinear function. We perform some numerical tests to compare the proposed methods with other schemes in the literature (see [2-4])and check their effectiveness on specific nonlinear problems. Moreover, some real basins of attraction are analyzed by using the software designed in [5] in order to check the relation between the order of convergence and the set of convergent starting points. References 1. M.S. Petkovic, B. Neta, L.D. Petkovic, J. Dzunic, Multipoint methods for solving nonlinear equations, Academic Press, 2013. 2. P. Jarratt, Some fourth order multipoint iterative methods for solving equations, Mathematics of Computation, 20 (1966) 434–437. 53 S07. Análisis numérico en la resolución de ecuaciones no lineales 54 3. J. R. Sharma, R. K. Guna, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations, Numerical Algorithms, 62 (2013) 307–323. 4. M.P. Vassileva, Métodos iterativos eficientes para la resolución de sistemas no lineales, Tesis Doctoral, Universidad Politécnica de Valencia, 2011. 5. F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods, The Scientific World Journal Volume 2013, Article ID 780153, 11 pages. A variation of the Lipschitz condition for the semilocal convergence of Newton’s method Miguel Ángel Hernández-Verón University of La Rioja [email protected] Coautores: José Antonio Ezquerro Newton’s method is the most used iterative method to solve nonlinear operator equations F (x) = 0 in a Banach space. In this work, we focus our attention of the analysis of the semilocal convergence of Newton’s method. Two types of conditions are then needed: conditions on the operator involved F and conditions on the starting point. The usual usual condition required to the operator F is that F 0 is Lipschitz continuous in the domain where F is defined, what affects significantly the value of the Lipschitz constant. Our main aim is then to relax this dependence, so that we can improve the domain of starting points for Newton’s method. For this, we introduce a variation of the Lipschitz condition for the operator F 0 . Multidimensional generalization of iterative methods and applications José M. Gutiérrez Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, España [email protected] Coautores: Miquel Grau-Sánchez, Miquel Noguera (Universidad Politécnica de Catalunya) In this work we we extend to the multidimensional case some iterative methods that are known in their scalar version. We have considered here methods with fourth-order local convergence, some of them containing derivatives and other without derivatives. We analyze the efficiency of these four new algorithms and conclude which ones are the most efficient. We illustrate these results with some numerical examples and applications. In particular, we have used these methods in the resolution of the systems arising from a Hammerstein’s integral equation. Finally, we compare the methods introduced here with other known fourth-order methods for solving nonlinear systems of equations. The numerical examples considered in this paper allow us to introduce some new numerical tools, such as a modified stopping Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S07. Análisis numérico en la resolución de ecuaciones no lineales 55 criterium, a computational order of convergence and an adaptive arithmetic that minimizes the elapsed time in comparison with the use of a fixed arithmetic. Dynamical Study while Searching Equilibrium Solutions in N-body Problem José Luis Hueso Universidaad Politécnica de Valencia [email protected] Coautores: D. A. Budzko E. Martínez C. Teruel The dynamics of different iterative methods for the solution of nonlinear equations has been widely studied (see, for example [1] and the references therein) by analyzing the properties of the rational functions in the complex plane that arise when applying the method to polynomials of certain degree. Here we deal with an interesting real application of celestial mechanics that produces a 2 ×2 system of algebraic equations in the real 2-dimensional plane. Our idea is to apply the tools of the theory of complex dynamics to this case. In the classical N-body problem, the search of equilibrium solutions is a very intricate problem itself, because the number of real solutions increases very fast while the number of interacting bodies N grows and at present nobody knows even how to find the number of all equilibrium solutions (or central configurations) for arbitrary N. The equations that determine equilibrium solutions in N-body problem are nonlinear algebraic equations and usually contain some geometric or dynamic parameters. In this paper we study the equilibrium solutions in the restricted four-body problem [2]. The corresponding system ³ ´ ´ p ¢³ ¡p ( 3x − y) 1 − (x 2 +y1 2 )3/2 + µ1 3(x − 1) + y 1 − ((x−1)21+y 2 )3/2 = 0 ´ ´ ³ ¢³ ¡p 1 p 2y 1 − (x 2 +y1 2 )3/2 + µ2 3(x − 1) + y 1 − 2 2 3/2 = 0 ((x−1/2) +(y− 3/2) ) has from 8 to 10 solutions, depending on two mass parameters µ1 and µ2 [2]. By applying Newton’s method to the solution of this system, we find that the attraction basins of the roots are very irregular, chaotic and full of noise, especially if parameters µ1 and µ2 are close to zero (the most interesting case). This means that the problem of choosing initial estimations for the iterative method is very sensitive and needs careful consideration, because the next step is the stability analysis of every solutions under any values of parameters. We have confronted the numerical solutions with the solutions obtained in the form of power series in order to determine if the last ones are suitable as starting points for the Newton’s iterations. Referencias 1. J. L. Varona, Graphic and numerical comparison between iterative methods, Math. Intelligencer, 24, pp. 37–46 (2002). 2. Budzko, D.A. and Prokopenya, A.N. Symbolic-numerical analysis of equilibrium solutions in a restricted four-body problem. Programming and Computer Software, Vol. 36:2, pp. 68–74 (2010). Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S07. Análisis numérico en la resolución de ecuaciones no lineales 56 Purely iterative algorithms for Newton’s maps Ángel Alberto Magreñán Universidad Internacional de La Rioja [email protected] Coautores: Sergio Amat Plata, Sonia Busquier, Gerardo Honorato In this talk, the behavior of a family of purely iterative algorithms for Newton’s map is studied. Some anomalies, such us convergence to extraneous fixed points or different cycles, are found by means of studying the dynamical behavior of the family applied to quadratic polynomials. Parameter spaces using the Convergence Plane are shown and the study of the stability of the fixed points is presented. Dynamical planes for members with good and bad dynamical behavior are also provided. Applying iterative methods in the Splitting technique for solving partial differential equations Eulalia Martínez Molada Universitat Politècnica de València [email protected] Coautores: Jurgen Geiser, José L. Hueso In this paper we propose to use Newton’s method and higher order iterative methods to the splitting technique to solve nonlinear differential equations and time-dependent partial differential equations. We deal with two splitting schemes: Non-iterative splitting schemes and iterative ones, whose convergence study can be found in [1]. Finally, we present some numerical results. In the first example we apply the results to the Bernoulli’s ordinary differential equation and the second example is a mixture of a convection-diffusion and Burger’s equation. [2] Referencias 1. J. Kanney, C. Miller, and C.T. Kelley, Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems, Advances in Water Resources 26 (2003) 247-261. 2. J. Geiser, Discretisation Methods with embedded analytical solutions for convection dominated transport in porous media, Proc. NA&A ’04, Lecture Notes in Computer Science, Vol.3401, Springer, Berlin, 2005, pp. 288-295. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S07. Análisis numérico en la resolución de ecuaciones no lineales 57 Métodos iterativos de alto orden tipo Kurchatov Rosa M. Peris Universitat de València [email protected] Coautores: Vicente F. Candela Presentaremos una familia de métodos iterativos de tercer orden para resolver ecuaciones no-lineales libre de derivadas. Estos métodos están basados en los métodos clásicos tipo Halley-Chebyshev de tercer orden, aproximando las derivadas de la función mediante diferencias tipo Kurchatov. Cada método de la familia necesita tres evaluaciones de la función en cada iteración y demostraremos su convergencia cúbica. Para finalizar mostraremos algunos ejemplos numéricos de resolución de ecuaciones con raíces simples donde estos métodos funcionan y los compararemos con los métodos clásicos de tercer orden que usan primera y segunda derivada y con los métodos de tercer orden tipo Steffensen libres de derivadas. On the numerical inversion of cumulative distribution functions Javier Segura Universidad de Cantabria [email protected] Rx The inversion of cumulative distribution functions F (x) = x0 f (t )d t (x ∈ [x 0 , x 1 ], F (x 1 ) = 1), where f (x) is the probability density function, is an important problem with many applications. The inversion of the equation F (x) = p usually requires accurate starting values in order to ensure fast convergence for standard iterative methods; this is particularly true at the tails of the distribution (p close to 0 or 1). The reason is that these cumulative distributions F (x) have a sigmoidal shape sometimes with very flat tails. We chose the particular examples of the gamma distribution ( f (t ) = t a−1 e −t /Γ(a), x 0 = 0, x 1 = +∞) and the beta distribution ( f (t ) = t a−1 (1 − t )b−1 /B (a, b), B (a, b) = Γ(a)Γ(b)/Γ(a + b), x 0 = 0, x 1 = 1) in order to illustrate two different but complementary approaches to the problem: the derivation of accurate starting values by analytical methods and the construction of methods specially tailored for this type of sigmoid functions. In particular we obtain a fourth order method with good global convergence properties. A biparametric family for solving nonlinear problems Juan R. Torregrosa Universitat Politècnica de València [email protected] Coautores: Alicia Cordero (Universitat Politècnica de València) Javier G. Maimó (Instituto Tecnológico de Santo Domingo) María P. Vassileva (Instituto Tecnológico de Santo Domingo) In this paper, by using a generalization of Ostrowski’ and Chun’s methods two optimal bi-parametric families of predictor-corrector iterative schemes, with order of convergence 4 for solving nonlinear equations, are presented. The predictor of Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S07. Análisis numérico en la resolución de ecuaciones no lineales 58 the first family is Newton’s method, and the first step of the second class is Steffensen’s scheme. This second family is derivative-free and is designed by using the idea described in [1]. One of them is extended to the multidimensional case. Some numerical tests are performed to compare the proposed methods with the original Ostrowski’ [2] and Chun’s [3] methods and also with Jarratt’s scheme [4], to confirm the theoretical results. References 1. A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence, Journal of Comp. and Appl. ˝ Mathematics, 275 (2015) 502U515. 2. R. King, A family of fourth order methods for nonlinear equations, SIAM Journal Numer. Anal, 10 (1973) 876–879. 3. C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations, Numerical Mathematics, 104 (2006) 297–315. 4. P. Jarratt, Some fourth order multipoint methods for solving equations, Mathematics and Computation, 20 (1966) 434–437. The Newton’s method in the singular case Jean-Claude Yakoubsohn Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France [email protected] Coautores: Gregorio Malajovich Instituto de Matemática, Universidade Federal do Rio de Janeiro Brasil We define a such type Newton method named "lower rank approximation" (lra) Newton method for polynomial systems in the singular case, i.e., when the jacobian matrix of the system has not a constant rank in a ball containing the solution set. We give two kinds of results concerning the numerical analysis of the lra Newton method. We first prove a γ-theorem which explain the quadratic at the neighborhood of a singular variety. We next state an α-theorem which prove the existence of singular solution from a punctual criterion and its fast approximation by the lra Newton sequence. These two results complete in a certain sense the numerical analysis of Newton’s method where γ-theorem and α-theorem are known in the various cases where the Jacobian matrix of the polynomial system of constant rank : for example, in the regular case, in the overdetermined case and underdetermined case. Referencias 1. Jean-Pierre Dedieu, Points Fixes, Zéros et la Méthode de Newton, Springer Verlag, Mathématiques et Applications 54, 2006. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S08. Conocimiento profesional del profesor de matemáticas http://rsme2015.ugr.es/s08.php La evaluación en Matemáticas: una necesidad y un problema Lorenzo J. Blanco Nieto Universidad de Extremadura [email protected] Coautores: Janeth A. Cárdenas Lizarazo Asumimos tres premisas: i. la evaluación es uno de los organizadores del currículo y como tal debe estar integrada en el proceso de enseñanza y aprendizaje, ii. La Resolución de Problemas es un contenido específico que los estudiantes deben aprender, iii. La resolución de problemas debe ser objeto de evaluación. En nuestra investigación nos hemos planteado: Caracterizar las concepciones y prácticas de evaluación de los profesores de secundaria y bachillerato al evaluar la resolución de problemas en matemáticas. Para ello hemos aplicado dos cuestionarios que nos permiten describir sus concepciones, hemos analizado los instrumentos de evaluación que nos han facilitado y que desarrollan en sus prácticas en el aula y, finalmente, hemos mantenido entrevistas que nos han permitido profundizar sobre los resultados obtenidos. Los resultados obtenidos y las contradicciones que aparecen al considerar conjuntamente todos los instrumentos de investigación nos indican la necesidad de profundizar acerca de la evaluación en matemáticas y la inclusión en los programas de formación inicial y permanente del profesorado la evaluación en matemáticas como uno de los contenidos específicos. El problema de identificar y caracterizar el conocimiento del profesor de matemáticas María Luz Callejo de la Vega Universidad de Alicante [email protected] Una competencia del profesor de matemáticas es analizar, interpretar y valorar las respuestas de los estudiantes para tomar decisiones sobre el proceso de enseñanza-aprendizaje. Algunas investigaciones sobre el desarrollo profesional se han centrado en identificar el conocimiento necesario para desarrollar esta competencia en dominios matemáticos específicos. En esta comunicación caracterizamos el conocimiento del profesor en el dominio del pensamiento algebraico. 59 S08. Conocimiento profesional del profesor de matemáticas 60 MTSK: un modelo analítico para el estudio del conocimiento del profesor de matemáticas. Luis Carlos Contreras González Universidad de Huelva [email protected] Coautores: María Cinta Muñoz-Catalán Nuestro trabajo parte de distintos marcos teóricos que han intentado caracterizar el conocimiento del profesor de matemáticas. Asi, se describen aquellos modelos de conocimiento del profesor que han sido fundamentales para la elaboración de nuestro modelo y se detallan los aspectos que lo han originado. Luego se presenta este modelo (Mathematics Teacher’s Specialised Knowledge -MTSK) y se muestran ejemplos de elementos de los diferentes subdominios del MTSK referidos a un núcleo conceptual concreto. Finalmente, se presentan algunas reflexiones. El conocimiento profesional del profesor de matemáticas Pablo Flores Martínez Universidad de Granada [email protected] La necesaria profesionalización de los docentes de matemáticas tiene que basarse en identificar y caracterizar un cuerpo específico de conocimiento del profesor de matemáticas. En esta sesión especial se dan a conocer algunas líneas de investigación en torno a este tema, distinguiendo dos problemas, la identificación del conocimiento y su caracterización. Se abordan desde la perspectiva investigadora (primeras sesiones), y desde la práctica (quinta sesión). Finalmente se abre un debate sobre estas dos cuestiones generales, empleando como puntos de apoyo los aportes realizados en cada sesión. Práctica del profesor de matemáticas Antonio Moreno Verdejo Departamento de Didáctica de la Matemática [email protected] El conocimiento profesional forma de una conciencia y cultura profesional del profesor de matemáticas que resulta difícil hacer explícita. Los profesores expertos disponen de conocimientos distintos a los que poseen los profesores noveles. Estos conocimientos distintos están estructurados de modo adecuado a las exigencias del entorno y se muestran en parte a través del dominio de procedimientos y en parte a través de rutinas pero no habitualmente en conocimientos reproducibles. Esta dificultad provoca a veces un distanciamiento entre las herramientas facilitadas en la formación inicial del profesorado de matemáticas y los requerimientos de la propia práctica docente. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S08. Conocimiento profesional del profesor de matemáticas 61 Del análisis de la comprensión de los estudiantes a la formación de profesores Gloria Sánchez-Matamoros García Departamento Didáctica de las matemáticas Facultad Ciencias de la Educación, Universidad de Sevilla [email protected] La formación de profesores de matemáticas en la actualidad debe apoyarse en un cuerpo de conocimientos generando a partir de investigaciones realizadas en el campo de Didáctica de las Matemáticas. Las investigaciones sobre la comprensión y el desarrollo de dicha comprensión de un determinado concepto matemático aportan conocimiento científico. Trasladar este conocimiento científico a los programas de formación de profesores conllevan cierta transferencia del conocimiento. Esta transferencia del conocimiento hay que entenderla en el sentido de que dichas investigaciones aportan información para el diseño de módulos de formación de estudiantes para profesor. En este trabajo se presentarán algunos ejemplos de este proceso de transferencia usando el concepto de derivada como ejemplo. Palabras claves: desarrollo de la comprensión, formación de profesores, competencia docente, mirar profesionalmente, derivada. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos http://rsme2015.ugr.es/s09.php Rotation Numbers for Planar Attractors of Equivariant Homeomorphisms Begoña Alarcón Universidade Federal Fluminense [email protected] Given an integer n > 1, we consider Zn -equivariant and orientation preserving homeomorphisms of the plane with an asymptotically stable fixed point at the origin. We present examples without periodic points and having some complicated dynamical features. The key is a preliminary construction of Zn -equivariant Denjoy maps of the circle. References 1. B. Alarcón. Rotation numbers for planar attractors of equivariant homeomorphisms. Topological Methods in Nonlinear Analysis, 42 n.2, 327-343, 2013. Dynamics and optimal control of chemotherapy for low grade gliomas Juan Belmonte Beitia UCLM [email protected] Coautores: Clara Rojas, Victor M. Pérez-García We discuss the optimization of chemotherapy treatment for low-grade gliomas using a mathematical model. We analyze the dynamics of the model, study the stability of the solutions and characterize the optimal controls on drug distribution, using different strategies, including quadratic and linear controls. We establish the existence of the optimal control, and solve for the control in both the quadratic and linear case Centros y cíclos límite para familis de ecuaciones de Abel José Luis Bravo Trinidad Universidad de Extremadura [email protected] Coautores: M.J. Álvarez, M. Fernández, R. Prohens Consideremos la familia de ecuaciones de abel à ! à ! n m X X x0 = a i A i (t ) x 2 + b i B i (t ) x 3 , i =1 i =1 donde A i , B i son monomios trigonométricos fijados y (a 1 , . . . , a n , b 1 , . . . , b m ) ∈ Rn+m parámetros. Para un valor concreto de los parámetros, decimos que la ecuación 62 S09. Ecuaciones diferenciales y sistemas dinámicos 63 tiene un centro si toda solución acotada es periódica y, si no es un centro, denominamos ciclo límite a una solución periódica aislada en el conjunto de las soluciones periódicas En este contexto, planteamos dos problemas: 1. Caracterizar los A i , B i tales que la ecuación tenga un centro para todo valor de los parámetros 2. Caracterizar los A i , B i tales que exista un ciclo límite para algún valor de los parámetros Mostraremos algunos resultados parciales a estos problemas. Referencias 1. M.J. Álvarez, J.L. Bravo, M. Fernández, R. Prohens, Centers and limit cycles for a family of Abel equations, in preparation. 2. M.J. Álvarez, J.L. Bravo, M. Fernández, R. Prohens, Existence of non-trivial limit cycles in Abel equations with symmetries, Nonlinear Anal. TMA. 84 (2013) 18–28. 3. M.A.M. Alwash, N.G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems, Proc. Roy. Soc.Edinburgh, 105A (1987) 129–152. 4. A. Cima, A. Gasull, F. Maosas, A simple solution of some composition conjectures for Abel equations, J. Math. Anal. Appl. 398 (2013), 477–486. La persistencia de un punto de equilibrio como solución periódica en sistemas forzados Adriana Buic˘a Universitatea Babes-Bolyai, Cluj-Napoca, Romania [email protected] Coautores: Rafael Ortega, Universidad de Granada En dimensión dos, obtenemos una caracterización del hecho de que un punto de equilibrio aislado de un sistema autónomo persiste como solución T-periódica en sistemas forzados T-periódicos. Además, presentamos resultados en dimensión arbitraria. Referencias 1. A. Buic˘a, R. Ortega, Persistence of equilibria as periodic solutions of forced systems, J. Differential Equations 252 (2012), 2210–2221. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 64 Problemas con reflexión y oscilación de soluciones de ecuaciones phi-laplacianas Alberto Cabada Departamento de Análisis Matemático, Universidad de Santiago de Compostela. [email protected] Coautores: Adrián Tojo, Departamento de Análisis Matemático, Universidad de Santiago de Compostela. En un resultado reciente los autores han probado la equivalencia de un problema de primer orden con argumento reflejado y una determinada ecuación diferencial phi-laplaciana de segundo orden. Con este fin, estudiamos en este trabajo, la existencia y oscilación de las soluciones de ecuaciones diferenciales phi-laplacianas, prestando especial atención al cálculo explícito del período. Los resultados obtenidos nos permiten obtener condiciones suficientes que garantizan la existencia de solución periódica del problema con reflexión. Soluciones positivas para un problema de frontera periódico relacionado con el fenómeno de Liebau Jose Angel Cid Universidad de Vigo [email protected] Coautores: G. Infante, M. Tvrdy y M. Zima En esta charla presentaremos condiciones suficientes para la existencia y no existencia de soluciones positivas del problema de frontera periódico x 00 (t ) + ax 0 (t ) = r (t )x α (t ) − s(t )x β (t ), x(0) = x(T ), t ∈ [0, T ], x 0 (0) = x 0 (T ), siendo a > 0, r, s ∈ C [0, T ] y 0 < α < β < 1. Nuestros resultados generalizan algunos de los obtenidos en [3], donde se estudió un problema singular relacionado con el fenómeno de Liebau [1,2,5]. Este trabajo ha sido realizado en colaboración con G. Infante, M. Tvrdý y M. Zima, [4]. Referencias 1. G. Liebau, Über ein ventilloses Pumpprinzip, Naturwissenschaften 41 (1954), 327. 2. G. Propst, Pumping effects in models of periodically forced flow configurations, Physica D 217 (2006), 193-201. 3. J. A. Cid, G. Propst y M. Tvrdý, On the pumping effect in a pipe/tank flow configuration with friction, Physica D 273-274 (2014), 28-33. 4. J. A. Cid, G. Infante, M. Tvrdý y M. Zima, A topological approach to periodic oscillations related to the Liebau phenomenon, J. Math. Anal. Appl. 423 (2015), 1546-1556. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 65 5. P. J. Torres, Mathematical models with singularities, aparecerá en Atlantis Briefs, Springer. Dynamics of an infinite dimensional gradient flow of fourth order Carlos Escudero Universidad Autónoma de Madrid [email protected] This talk will review a series of recent results obtained for a parabolic fourth order partial differential equation with a second order quadratic nonlinearity. We will summarize the existence and multiplicity of stationary solutions as well as the existence and uniqueness of solutions for the full evolution problem. Moreover we study the evolution problem as an infinite dimensional dynamical system and partially establish the different dynamical outputs. This talk is based on several joint works with R. Hakl, F. Gazzola, I. Peral and P. J. Torres. Large deviations principles of Non-Freidlin-Wentzell type Jaykov Foukzon Israel Institute of Technology <[email protected]> Generalized Large deviation principles (SLDP) was developed for ColombeauIto SDE with a random coefficients. We is significantly expand the classical theory of large deviations for randomly perturbed dynamical systems developed by Freidlin and Wentzell.Using SLDP approach, jumps phenomena, in financial markets, also is considered. Jumps phenomena, in financial markets is explained from the first principles, without any reference to Poisson jump process. In contrast with a phenomenological approach we explain such jumps phenomena from the first principles, without any reference to Poisson jump process. http://arxiv.org/abs/0803.2072 Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 66 Global Continuation of symmetric periodic orbits in the Sitnikov Problem. Jorge Galan-Vioque Universidad de Sevilla [email protected] Coautores: D. Nuñez and A. Rivera The Sitnikov problem is a special case of restricted 3-body problems where the two primaries with equal masses are moving in a circular or an elliptic orbit of the 2body problem, and the infinitesimal mass is moving on the straight line orthogonal to the plane of motion of the primaries which passes through their center of mass. In [1] Llibre and Ortega studied analytically making use of the global continuation theorem the families of symmetric periodic orbits of the elliptic Sitnikov problem for non necessarily small values of the eccentricity e, and showed that some periodic orbits for e = 0 can be continued to all values of e in [0, 1). In [2] Ortega and Rivera analyzed the bifurcation of solution from the center of mass which is an equilibrium of the problem. There are also numerical studies by Belbruno et al [3] a nd Jiménez-Lara and Escalona Buendía [4] describing the families of periodic orbits for almost all values of the eccentricity. In this work we concentrate on the stability and bifurcation behavior of the families of symmetric periodic orbits that are born at the circular problem or emanate form the equilibrium solution and provide complementary information to the existing results. We present a combination of analytical estimates of the eccentricity intervals of ellipticity and numerical results based on a continuation technique developed for conservative and symmetric systems [5,6]. Referencias 1. J. Llibre and R. Ortega, On the families of periodic orbits of the Sitnikov problem, SIAM J. Applied Dynamical Systems., 7 (2008), 561-576 2. R. Ortega and A. Rivera, Global bifurcations from the center of mass in the Sitnikov problem. Discrete and Continuous Dynamical Systems, Series B 14, 719-732 (2010). 3. E. Belbruno, J. Llibre, and M. Ollé, On the families of periodic orbits which bifurcate from the circular Sitnikov motions, Celestial Mech. Dynam. Astronom., 60 (1994), 99-129. 4. L. Jiménez-Lara and A. Escalona-Buendía Symmetries and bifurcations in the Sitnikov problem. Celestial Mech. Dynam. Astronom., 79 (2001), 97-117. 5. Muñoz-Almaraz, F.-J., E. Freire, J. Galaán, E. Doedel and A. Vanderbauwhede (2003) Continuation of periodic orbits in conservative and Hamiltonian systems. Physica D 181, 138. 6. Galán, J., Munñoz-Almaraz, F. J., Freire, E., Doedel, E. and Vanderbauwhede, A.: 2002, Stability and bifurcations of the figure-8 solution of the three-body problem, Physical Review Letters 88, 241101-4. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 67 Caos en cadenas alimenticias de tres especies Santiago Ibáñez Universidad de Oviedo [email protected] Coautores: Pawel Pilarczyk Los mecanismos subyacentes a la génesis de oscilaciones en interacciones depredador-presa fueron explicados por Lotka y Volterra y, a partir de sus trabajos, el estudio de cadenas alimenticias con dos especies se convirtió en uno de los principales intereses de la Ecología Teórica. Hace dos décadas Hastings y Powel [3] observaron que las cadenas tróficas de tres especies podían exhibir comportamientos caóticos. Desde entonces numerosos estudios han tenido como objetivo comprender el origen de tales comportamientos. Nosotros proponemos el uso de una herramienta novedosa, basada en resultados de teoría de bifurcación local, para probar la existencia de dinámicas caóticas. Siendo más precisos, explicaremos como cierto tipo de singularidades pueden jugar el papel de centros organizadores de tales procesos y aplicaremos el método a algunos modelos bien conocidos de cadenas tróficas de tres especies (ver [1,5). Los resultados que se presentan están recogidos en [4]. El método ya ha sido aplicado con éxito a un modelo de reacciones químicas acopladas (ver [2]) y con este trabajo queremos ilustrar el amplio rango de situaciones en las que es susceptible de ser utilizado. Referencias 1. B. Blassius, A. Huppert, L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature 399 (1999) 354–359. 2. F. Drubi, S. Ibáñez, J. A. Rodríguez, Coupling leads to chaos, J. Differential Equations 239 (2) (2007) 371–385. 3. A. Hastings, T. Powell, Chaos in a three-species food chain, Ecology 72 (1991) 896–903. 4. S. Ibáñez, P. Pilarczyk, Nilpotent equilibria and chaos in tri-trophic food chains (preprint). 5. L. Stone and D. He, Chaotic oscillations and cycles in multi-trophic ecological systems, J. Theor. Biol. 248 (2007) 383–390. Dinámica de modelos de población con efecto Allee Eduardo Liz Universidad de Vigo [email protected] El efecto Allee fue descrito en los años 30 para indicar que en algunas especies las densidades de población demasiado bajas reducen la aptitud de los individuos para sobrevivir. En el caso de un efecto Allee fuerte, hay un umbral para la densidad de población por debajo del cual hay un gran riesgo de extinción. El efecto Allee ha sido objeto de extensivo estudio en los últimos años por su importancia en la gestión Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 68 de recursos naturales. En este trabajo consideramos una población cuya dinámica está gobernada por una ecuación diferencial con retardo y analizamos la influencia del efecto Allee en conexión con otros parámetros del modelo, como el tamaño del retardo y la intensidad de la mortalidad (generalmente debida a la presencia de depredadores o a la acción humana en forma de caza, pesca o control de plagas). Basados en un modelo discreto asociado, en nuestros principales resultados aportamos condiciones suficientes para la persistencia de la especie y la región de atracción de un equilibrio positivo. Además, analizamos los cambios en la dinámica cuando se escoge la intensidad de mortalidad como parámetro de bifurcación y mostramos que la consideración de un retardo no sólo da lugar a oscilaciones en el tamaño de la población, sino que puede interactuar con el efecto Allee para provocar la extinción o la permanencia de la especie, dependiendo de las condiciones iniciales. La charla está basada en un artículo conjunto con Alfonso Ruiz Herrera. Referencias 1. E. Liz, A. Ruiz-Herrera, Delayed population models with Allee effects and exploitation, Math. Biosci. Eng. 12 (2015), in press. Sistemas hamiltonianos débilmente disconjugados. Aplicaciones en teoría de control. Rafael Obaya Universidad de Valladolid [email protected] Introducimos los sistemas hamiltonianos débilmente disconjugados y analizamos sus propiedades cualitativas más importantes. Utilizamos técnicas de dinámica noautónoma para probar que dichos sistemas son fundamentales para resolver problemas de control cuadráticos no autónomos con horizonte infinito. KAM Tori for Near-Rectilinear Motions in the Spatial Three-Body Problem Jesús Palacián Departamento de Ingeniería Matemática e Informática [email protected] Coautores: Flora Sayas y Patricia Yanguas We deal with the spatial three-body problem in the various regimes where the Hamiltonian is split as the sum of two Keplerian systems plus a small perturbation. This is a region of the phase space T ∗ R6 where the perturbation is small [2], the so called perturbing region (Qε,n ). In particular we prove the existence of quasiperiodic motions where the inner particles describe bounded near-rectilinear trajectories whereas the outer particle follows an orbit lying near the invariable plane. These motions fill in five-dimensional invariant tori. Moreover, the inner particles move in orbits either near an axis perpendicular to the invariable plane or near the invariable plane. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 69 By averaging over the mean anomalies, truncating higher-order terms and using singular reduction theory we get a one-degree-of-freedom Hamiltonian system defined in a singular reduced space, the so called orbit space. In [2] we analyse the relative equilibria and bifurcations and in [3] we reconstruct the invariant tori corresponding to motions of non-rectilinear type. Three of the relative equilibria of the reduced Hamiltonian in the orbit space are elliptic points that correspond to near-rectilinear motions of the inner bodies and these are the ones we study in the present paper. We carry out the reconstruction of the KAM 5-tori surrounding the three equilibria. By means of our reduction process we regularise the double inner collisions and this allows us to build sets of action-angle coordinates needed to apply KAM theory. The motions we deal with admit different combinations, for instance, the outer particle may move in a near-circular orbit or the invariable plane may coincide with the horizontal plane. This leads to various situations that have to be analysed in different intermediate reduced spaces. We achieve our study by considering all possible cases, constructing an adequate set of coordinates and computing the corresponding torsion in each case. Hence, our analysis is global and we characterise properly all type of bounded motions of the three particles (excluding triple collisions). In order to achieve the existence of the quasi-periodic motions we use a theorem by Han, Li and Yi [1] that allows us to handle the high-order degeneracy of the Hamiltonians involved in the process. The application of this theorem is not straightforward as one needs to bring the Hamiltonian to normal form through successive changes of symplectic coordinates and these transformations are rather cumbersome. This work is part of the second author’s PhD thesis. Referencias (1) Y. H AN , Y. L I , AND Y. Y I, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincaré, 10 (2010), pp. 1419–1436. (2) J. F. PALACIÁN , F. S AYAS , AND P. YANGUAS, Regular and singular reductions in the spatial three-body problem, Qual. Theory Dyn. Syst., 12 (2013), pp. 143– 182. (3) J. F. PALACIÁN , F. S AYAS , AND P. YANGUAS, Flow reconstruction and invariant tori in the spatial three-body problem, submitted. Existence of stationary knotted vortex tubes Daniel Peralta-Salas ICMAT [email protected] I will show the existence of knotted and linked invariant tori of arbitrary topology for steady solutions to the incompressible Euler equation in R3 . The problem of the existence of steady knotted vortex tubes can be traced back to Lord Kelvin. This is based on joint work with A. Enciso (Acta Math. in press). Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 70 Singular reduction for resonant Hamiltonian systems Patricia Yanguas Sayas Departamento de Ingeniería Matemática e Informática, Edificio Encinas, Campus de Arrosadía, 31006 Pamplona, Navarra, Spain [email protected] Coautores: Ken R. Meyer, Jesús F. Palacián Subiela The problem we discuss in this presentation has been a testing ground of many different methods for analysing Hamiltonian systems and in particular finding periodic solutions and their stability. Here we illustrate the use of singular reduction on this classic problem. Singular reduction lowers the dimension of the problem under study; so, given that our first test problem is a two degrees of freedom Hamiltonian system in R4 , it will be reduced to a Hamiltonian system of one degree of freedom on a two-dimensional real algebraic surface called an orbifold. The two-dimensionality leads itself to a graphical representation with a better geometric insight on the flow of the system. The planar restricted three body problem is considered as a benchmark for the last 85 years, and in particular there has been a bunch of works, mainly of numerical type, to obtain the periodic solutions and related invariant manifolds around the equilibrium points L 4 and L 5 . We shall illustrate how reduction theory is used to establish rigorously the existence and stability of these solutions, as well as the different types of bifurcations. We shall also mention how our theoretical approach can be combined with normal forms in order to obtain good initial conditions to approximate the periodic solutions and their associated manifolds. Finally we shall jump to n degrees of freedom, and in particular to the three degrees of freedom case where the polynomial invariants needed in the singular reduction theory are computed using an algorithm based on integer programming. After computing these invariants we use Gröbner bases theory and the division algorithm for multivariate polynomials to deal with the equations of motion in terms of the invariants. We shall apply the theory with the aim of finding some periodic solutions in resonant Hamiltonian systems of three degrees of freedom with semisimple linear part. Favard condition and recurrent solutions of almost periodic equations Massimo Tarallo Universita’ degli Studi di Milano - Italia [email protected] Coautores: Juan Campos It is well known that linear almost periodic equations may not have almost periodic solutions, even when bounded solutions are known to exist. This pathology is related to the failure of the so–called Favard separation condition which, to some extent, is a kind of natural divide between nice and ugly equations. On the other hand, all the known examples of pathological equations admit solutions with a recurrence property weaker than almost periodicity: the so–called almost automorphy. During the talk, I will introduce the notion of almost automorphy and present a joint work with J. Campos, showing that such solutions exist in every almost periodic linear equations with bounded solutions. The result depends on a careful analysis of the way Favard separation condition breaks down. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 71 Center, weak-focus and ciclicity problems for planar systems with few monomials Joan Torregrosa Universitat Autònoma de Barcelona [email protected] The center-focus problem consists in distinguishing whether a monodromic singular point is a center or a focus. For singular points with imaginary eigenvalues, usually called nondegenerate singular points, this problem was already solved by Poincaré and Lyapunov, see [1]. The solution consists in computing several quantities called commonly the Poincaré–Lyapunov constants, and study whether they are zero or not. Despite the existence of many methods, the solution of the center-focus problem for simple families, like for instance the complete cubic systems or the quartic systems with homogeneous nonlinearities, has resisted all the attempts. For this reason, we propose to push on this question in another direction. We study this problem for a natural family of differential systems with few free parameters but arbitrary degree. We consider planar systems with a linear center at the origin that in complex coordinates the nonlinearity terms are formed by the sum of few monomials. For some families in this class, we study the center problem, the maximum order of a weak-focus and the ciclicity problem. Several centers inside this family are done. The list includes a new class of Darboux centers that are also persistent centers. We study if the given list is exhaustive or not. We show that for each natural number p there are differential equations of this type having at least p limit cycles. Moreover, for a particular case which has homogeneous nonlinearities, we show examples with several limit cycles and give a condition that ensures uniqueness and hyperbolicity of the limit cycle. The talk will be a review of the results [2,3]. Referencias 1. A. Gasull, J. Giné, J. Torregrosa. Center problem for systems with two monomial nonlinearities. Preprint. 2014. 2. A. Gasull, C. Li, J. Torregrosa. Limit cycles for 3-monomial differential equations. Preprint. 2014. 3. A. M. Lyapunov. The general problem of the stability of motion. Taylor & Francis, Ltd., London, 1992. Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian original and edited by A. T. Fuller. Reprint of Internat. J. Control 55 (1992), no. 3. The higher-dimensional Poincaré-Birkhoff theorem for Hamiltonial systems Antonio J. Ureña Universidad de Granada [email protected] Coautores: Alessandro Fonda (Università degli Studi di Trieste) Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S09. Ecuaciones diferenciales y sistemas dinámicos 72 We propose a higher dimensional generalization of the Poincaré-Birkhoff Theorem which applies to Poincaré time maps of Hamiltonian systems. The maps under consideration are neither required to be close to the identity nor to have a monotone twist. The annulus is replaced by the product of an N-dimensional torus and the interior of an embedded sphere in the N -dimensional euclidean space; on the other hand, the classical boundary twist condition is replaced by an avoiding rays condition. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S10. Espacios de aplicaciones y grupos de autoequivalencias http://rsme2015.ugr.es/s10.php Espacios de aplicaciones y teoría de homotopía racional de Quillen generalizada de la deformación desde un punto de vista homotópico Urtzi Buijs Universidad de Málaga [email protected] Coautores: Aniceto Murillo Comenzaremos presentando el principio de Deligne según el cual cada funtor de deformación está gobernado por un álgebra de Lie graduada diferencial (LDG). Por otra parte, describiremos cómo estas estructuras algebraicas modelan el tipo de homotopía racional de los espacios de aplicaciones continuas. Uniendo ambos enfoques bajo el nexo común de las LDG’s, detallaremos cómo cada funtor de deformación puede ser “realizado geométricamente” como el tipo de homotopía de un cierto espacio. On homological stability for configuration spaces on closed manifolds Federico Cantero WWU Münster [email protected] Coautores: Martin Palmer We introduce a new map between configuration spaces of points in a background manifold —the replication map— and prove that it is a homology isomorphism in a range with certain coefficients. This is particularly of interest when the background manifold is closed, in which case the classical stabilisation map does not exist. We then establish conditions on the manifold and on the coefficients under which homological stability holds for configuration spaces on closed manifolds. These conditions are sharp when the background manifold is a two-dimensional sphere, the classical counterexample in the field. For field coefficients this extends results of Church (2012) and Randal-Williams (2013) to the case of odd characteristic, and for p-local coefficients it improves results of Bendersky and Miller (2014). Referencias 1. Church (2012), Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2): 465–504. 2. Randal-Williams (2013), Homological stability for unordered configuration spaces, Q. J. Math 64(1): 303-326. 3. Bendersky and Miller (2014), Localisation and homological stability for configuration spaces, Q. J. Math 65(3): 807–815 73 S10. Espacios de aplicaciones y grupos de autoequivalencias 74 Colímites homotópicos de espacios nilpotentes Ramón Flores Departamento de Matemáticas, Universidad Autónoma de Madrid [email protected] Coautores: Wojciech Chacholski, Emmanuel Farjoun, Jerome Scherer. En esta charla describiremos una versión modificada de la clásica torre de Bousfield-Kan, y la utilizaremos para estudiar la A-homotopía de espacios nilpotentes. En particular, probamos que las aproximaciones celulares de secciones de Postnikov nilpotentes producen de nuevo secciones de Postnikov, y que un resultado análogo puede obtenerse para espacios clasificadores de grupos nilpotentes, y de p-grupos finitos en particular. Concluiremos con algunas consecuencias sobre aciclidad y asfericidad de espacios nilpotentes. Inyecciones geométricas de grupos de trenzas Juan Gonzalez-Meneses Universidad de Sevilla [email protected] Los grupos de trenzas pueden verse como grupos de automorfismos de superficies, salvo isotopía. Una inyección de una superficie en otra induce, en la mayoría de los casos, una inyección de sus grupos de trenzas, que se conoce como inyección geométrica. En esta charla describiremos las inyecciones geométricas de los grupos de trenzas, demostrando que estas inyecciones no fusionan clases de conjugación. Veremos además que este resultado, válido para discos punteados, no se puede generalizar a otro tipo de superficies. On the Connectivity of Branch Loci in Spaces of Fuchsian, NEC and Schottky Groups Milagros Izquierdo Linköping University, Linköping, Sweden [email protected] Coautores: Antonio, F. Costa, Rubén A. Hidalgo and Ana M. Porto Moduli spaces of Riemann surfaces of genus g , Klein surfaces of genus g and k boundary components and handlebodies of genus g har orbifold structure where the branch loci consist of such surfaces or handlebodies admitting automorphisms, other than the identity. We will see that while the branch locus in the moduli space of Riemann surfaces of genus g is disconnected with many connected components, with a few exceptions for low genera, the branch locus in the moduli space of orientable Klein surfaces with boundary is connected. The branch locus of Schottky space is connected for odd genera, it consist of two connected components for genus two and it consist of at most two connected components for even genera greater or equal to four. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S10. Espacios de aplicaciones y grupos de autoequivalencias 75 Subgrupos parabólicos en los grupos Artin y geodésicas Luis Paris Université de Bourgogne, France [email protected] Esta presentación se basa en una mezcla de dos trabajos, el primero en colaboración con Eddy Godelle, y el segundo en colaboración con Ruth Charney. Un grupo de Artin A es un grupo abstracto que se define por una presentación con un conjunto de generadores S y un conjunto de relaciones de la forma st s · · · = t st · · · , donde la palabra de la izquierda y la de la derecha tienen la misma longitud. Los grupos de trenzas son ejemplos relevantes de tales grupos. El subgrupo A T de A generado por un subconjunto T de S se llama subgrupo parabólico de A. Es un hecho no trivial que un tal subgrupo es a su vez un grupo de Artin. Un ejemplo de subgrupo parabólico es el grupo trenzas B m inmerso en forma estándar en B n , donde m ≤ n. No hay en general ninguna retracción A → A T a la inmersión A T ,→ A que sea un homomorfismo, pero se puede describir un retracción conjuntista “natural” similar a un homomorfismo. Por ejemplo, la retracción de B n en B m se define borrando las n − m ultimas cuerdas de una trenza con los puntos de salida y llegada que ya no esten conectados. En esta presentación, describiremos esta retracción, daremos una interpretación en términos de espacios celulares, y mostraremos una aplicación a la convexidad de los subgrupos parabólicos. Dupont-Guichardet-Wigner quasi-morphisms on mapping class groups Wolfgang Pitsch Universidad Autónoma de Barcelona [email protected] Coautores: Luis Funar (CNRS-Université Joseph Fourier) In this talk we will present the construction of Dupont-Guichardet-Wigner quasimorphisms on the universal central extension of the mapping class groups. They araise as pull-backs of the quasi-morphisms on pseudo-unitary groups via the quantum representations of mapping class groups. Their interest lies in the fact that on the one hand, by deep results of Burger and Iozzi, they classify Zariski dense representations on pseudo-unitary groups and on the other hand they allow to control the kernel of the quantum representations of mapping class groups. On the Arithmeticity of Kodaira Fibrations Sebastián Reyes-Carocca Universidad Autónoma de Madrid [email protected] Coautores: Gabino González-Diez A Kodaira fibration consists of a non-singular compact complex surface S, a compact Riemann surface C and a surjective holomorphic map f : S → C everywhere of maximal rank such that the fibers are connected and not mutually isomorphic Riemann surfaces. In this talk, we study this kind of fibrations and we show that whether or not the algebraic surface S is arithmetic (i.e. it is defined over a number Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S10. Espacios de aplicaciones y grupos de autoequivalencias 76 field) depends only on the biholomorphic class of its universal cover. This in turn speaks of the diversity of universal covers in the world of complex surfaces in contrast with the uniformity of the one-dimensional case. In fact, we construct a very explicit collection of Kodaira fibrations that gives rise to uncountably many mutually non-biholomorphic universal covers. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S11. Geometría algebraica http://rsme2015.ugr.es/s11.php Jumping numbers on rational surface singularities Maria Alberich Carramiñana Universitat Politècnica de Catalunya [email protected] Coautores: J. Álvarez Montaner, F. Dachs-Cadefau and V. González Alonso We will present some new results on the computation of jumping numbers with their multiplicities of any ideal sheaf around a rational surface singularity. In the case of m-primary ideals (where m is the maximal ideal of the local ring of the surface at the rational point singularity), when these invariants are encoded all together in a Poincaré series form, we will give a sort of rational expression for it. Homología de Hochschild bivariante en esquemas Leovigildo Alonso Tarrío Departamento de Álxebra, Facultade de Matemáticas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain [email protected] Coautores: Ana Jeremías López, Joseph Lipman La homología de Hochschild en geometría algebraica se ha estudiado en el caso especial de variedades lisas sobre un cuerpo de característica 0. La consideración de las transformaciones de Fourier-Mukai por Caldararu, en conexión con esta teoría cohomológica y su relación con el formalismo de Hodge-De Rham (a través del isomorfismo HKR) muestra el interés de una exploración general sobre bases arbitrarias. En la charla mostraremos cómo construir una teoría bivariante en el sentido de Fulton y McPherson cuya homología coincide con la homología de Hochschild usual en esquemas. Asimismo definiremos y expondremos las propiedades de la clase fundamental en este contexto. La clase fundamental generaliza construcciones clásicas como la relación entre n-formas diferenciales y el haz dualizante y está relacionada con invariantes clásicos en cohomología. Veremos cómo es compatible con cambio de base étale y posee la propiedad de transitividad que hace de la teoría bivariante de Hochschild una teoría orientada. Además, existe una segunda teoría dual que coincide con la anterior cuando ambos esquemas son lisos. 77 S11. Geometría algebraica 78 Essential minimum and equidistribution of small points on toric varieties José Ignacio Burgos Gil ICMAT (CSIC) [email protected] Coautores: Patrice Philippon, Martín Sombra The toric dictionary between geometric properties of polarized toric varieties and combinatorial properties of lattice polytopes can be extended to arithmetic properties by the introduction of the roof function. In this talk we will show how the roof function determines two arithmetic properties: the essential and absolute minima of a toric variety and the equidistribution property of Galois orbits of small points. Cohomología de Gauss-Manin de familias de Dwork Alberto Castaño Domínguez Departamento de Álgebra e Instituto de Matemáticas (IMUS), Universidad de Sevilla [email protected] Una familia de Dwork es una deformación uniparamétrica monomial de una hipersuperficie de Fermat (cf. [1, s. 2]). Fueron introducidas por Bernard Dwork en los sesenta para comprender el efecto de una deformación en la función zeta de una hipersuperficie sobre un cuerpo finito. En los últimos años ha aumentado el interés en ellas gracias al descubrimiento de sus conexiones con otros problemas provenientes de la geometría algebraica, la teoría de números o la física teórica. La parte invariante de la cohomología de Gauss-Manin de dichas familias bajo cierta acción de un grupo como en [1, s. 3] se ha estudiado en detalle por su conexión con las sumas de Kloosterman. Siguiendo el desarrollo de las cohomologías de Weil, estos trabajos usan técnicas de cohomología `-ádica, análisis p-ádico o geometría diferencial compleja. En esta charla presentaré el resultado análogo en el caso complejo algebraico, conseguido gracias a la teoría de D-módulos, mencionando sus diferencias (y virtudes) con respecto a los anteriores y, si el tiempo lo permite, su posible extensión a otras familias o al resto de autoespacios de la cohomología. Referencias 1. N. M. Katz, Another look at the Dwork family, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol II, 89-126, Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA (2009). Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S11. Geometría algebraica 79 Cohomología de Monsky-Washnitzer y homología cíclica. Guillermo Cortiñas Universidad de Buenos Aires [email protected] Coautores: Joachim Cuntz La cohomología de Monsky-Washnitzer es una variante de la cohomología de de Rham para variedades suaves sobre un cuerpo finito. En la charla mostraremos que esta cohomología puede interpretarse en términos de homología cíclica periódica. Este resultado es parte de un proyecto conjunto con Joachim Cuntz, actualmente en desarrollo, en el que nos proponemos encontrar la “buena definición" de la homología cíclica periódica para álgebras sobre un cuerpo característica positiva. Quantitative equidistribution of algebraic points in the N-dimensional torus Carlos D’Andrea Universitat de Barcelona [email protected] Coautores: Marta Narvaez Clauss, Martin Sombra Bilu’s classical equidistribution theorem establishes that, given a generic sequence of points in the algebraic torus {αn }n∈N ⊂ (˘aQ× )N of small height, the sequence of their Galois orbits equidistributes uniformly around the compact torus (S 1 )N . We present a quantitative version of this result, obtained by reducing the problem via projections to the one-dimensional case and reconstruction using techniques of Fourier analysis. Geometría Algebraica y códigos de evaluación José Ignacio Farrán Martín Universidad de Valladolid [email protected] Los códigos correctores de errores están presentes en múltiples aplicaciones de la vida real, como los códigos de barras o los dispositivos ópticos de almacenamiento de datos (CD/DVD). En las últimas décadas han surgido diversas construcciones de códigos a partir de objetos de la Geometría Algebraica, como los códigos AG (a partir de curvas algebraicas), los códigos tóricos (a partir de variedades tóricas), o los códigos diferenciales (a partir de formas diferenciales algebraicas), entre otras. En el primer caso, los códigos AG han conseguido sobrepasar, desde el punto de vista asintótico, la llamada cota de Gilbert-Varshamov. Todas estas construcciones tienen un punto en común: la idea de evaluar funciones, extraídas de cierto espacio vectorial de dimensión finita, en un conjunto finito de puntos de un determinado objeto geométrico. Eligiendo estos objetos de manera apropiada, pueden estimarse los parámetros de los códigos obtenidos, utilizando técnicas y resultados más o menos clásicos de la Geometría Algebraica. Asimismo, el problema práctico de su construcción efectiva e implementación (codificación y decodificación) se relacionan con interesantes problemas de Geometría Algebraica Computacional. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S11. Geometría algebraica 80 En esta conferencia se presentarán diversas construcciones de códigos de evaluación, analizando los puntos clave de cada construcción, tanto desde el punto de vista teórico como computacional, poniendo de manifiesto en cada caso las técnicas geométricas subyacentes. Haces cuasi coherentes sobre pilas geométricas Ana Jeremías López Departamento de Álxebra, Facultade de Matemáticas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain [email protected] Coautores: L. Alonso Tarrío, M. Pérez Rodríguez y M. J. Vale El concepto de pila algebraica (algebraic stack) generaliza el de esquema y tiene una gran relevancia en problemas de moduli, donde los objetos que se pretenden clasificar pueden presentar automorfismos, lo que prohibe la existencia de un espacio fino de parámetros. De modo análogo al diccionario Álgebra — Geometría que relaciona los esquemas afines y los anillos conmutativos, se tiene un diccionario similar que relaciona algebroides de Hopf con pilas algebraicas cuasi-compactas y semiseparadas (es decir, pilas geométricas) dotadas de una presentación fielmente plana por un esquema afín. De hecho, un algebroide de Hopf es precisamente el dual de un grupoide interno en la categoría de esquemas afines. Discutiremos cómo describir haces cuasi coherentes sobre este tipo de pilas algebraicas en términos de comódulos y veremos que la categoría de tales haces es abeliana y tiene buenas propiedades. La categoría derivada de haces cuasi coherentes sobre una pila geométrica es monoidal cerrada. Además, bajo la condición de existencia de resoluciones globales esta categoría satisface los axiomas de categoría de homotopía estable en el sentido de Hovey, Palmieri y Strickland. Ecuaciones KP, conexiones con Física, Aritmética y Geometría José María Muñoz Porras Universidad de Salamanca [email protected] La charla está basada en resultados de varios trabajos conjuntos con E. Gómez González, F. Pablos Romo y F. Plaza Martín. El principal objetivo de estos trabajos es ofrecer una formulación algebraica de la teoría de solitones y aplicar sus resultados al estudio de problemas clásicos de moduli de curvas y fibrados vectoriales. Asimismo se ofrece una nueva interpretación de las leyes de reciprocidad para curvas algebraicas. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S11. Geometría algebraica 81 Conmensurabilidad y Ley General de Reciprocidad en Geometría Algebraica Fernando Pablos Romo Dpto. de Matemáticas, Universidad de Salamanca, Plaza de la Merced, 1-4, 37008, Salamanca [email protected] El objetivo de la charla es ofrecer una teoría general de leyes de reciprocidad para símbolos en espacios vectoriales arbitrarios (a partir de la noción de conmensurabilidad introducida por J. Tate en [1]), y mostrar que leyes de reciprocidad clásicas en Geometría Algebraica son casos particulares de esta teoría (suma de valoraciones en una curva completa, Teorema de los Residuos, Ley de Reciprocidad de Weil o Ley de Reciprocidad para el Residuo Normado de Hilbert). Además, varias leyes de reciprocidad introducidas en los últimos años por D. V. Osipov, A. N. Parshin, I. Horozov, I. Horozov - M. Kerr o D. Hernández Serrano - F. Pablos Romo, también pueden ser deducidas de la expresión general. Referencias 1. Tate, J., Residues of Differentials on Curves, Ann. Scient. Éc. Norm. Sup., 4a série 1, (1968) 149-159. On the blow up at equimultiple centers, and simplification of singularities. Orlando Villamayor Universidad Autónoma de Madrid [email protected] Fix a perfect field k and a variety X , or, more generally, a pure dimensional scheme of finite type over k. Let d be the dimension of X , and fix a singular point x ∈ X of multiplicity e. A local simplification of x ∈ X is a proper birational map, X ← X 1 so that x 1 ∈ X 1 has multiplicity < e at any x 1 mapping to x. We don’t know of the existence of simplifications but we show that one con construct inclusions in a complete intersection, say X ⊂ X 0 , so that any local simplification of x ∈ X induces one of x ∈ X 0 and vice versa. We use this to prove our main result: The existence of a local simplification of x ∈ X is guaranteed by induction on the dimension d , unless (C X ,x )r ed is regular. Here C X ,x denotes the tangent cone of x ∈ X , and (C X ,x )r ed the underlying reduced scheme. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S12. Geometría convexa e integral http://rsme2015.ugr.es/s12.php Desigualdades de Rogers-Shephard y cuerpos de convolución David Alonso-Gutiérrez Universitat Jaume I [email protected] Coautores: Bernardo González, C. Hugo Jiménez, Rafael Villa We prove different functional inequalities extending the classical Rogers-Shephard inequalities for convex bodies. The original inequalities provide an optimal relation between the volume of a convex body and the volume of several symmetrizations of the body, such as, its difference body. We characterize the equality cases in all these inequalities. Our method is based on the extension of the notion of a convolution body of two convex sets to any pair of log-concave functions and the study of some geometrical properties of these new sets. Three related conjectures for log-concave probabilities: KLS, thin shell width and the slicing problem Jesús Bastero Universidad de Zaragoza [email protected] In this lecture the main known results on the Kannan-Lovász-Simonovits spectral gap, the thin shell width conjectures and their relations with the slicing problem will be surveyed. Also the contributions of the author with David Alonso on the hyperplane projections of the `np balls will be presented. Integral geometry of transitive group actions Andreas Bernig Goethe-Universität Frankfurt [email protected] I will give an overview over recent results on kinematic formulas for groups that act transitively on the sphere bundle of an affine space. The most interesting case is that of hermitian integral geometry, where a complete set of kinematic formulas was recently worked out in collaboration with Joseph Fu (University of Georgia) using Alesker’s theory of valuations, representation theory and geometric measure theory. Some other cases (quaternionic integral geometry and some exceptional groups like G 2 ) will be briefly mentioned. 82 S12. Geometría convexa e integral 83 Divisions of rotationally symmetric planar convex bodies minimizing the maximum relative diameter Antonio Cañete Universidad de Sevilla [email protected] In this talk we shall study an optimization problem involving the diameter functional. More precisely, fix k ∈ N, k ≥ 3, and consider a k-rotationally symmetric planar convex body C . The question we shall focus on is: which is the division of C into k connected subsets minimizing the maximum relative diameter? We recall that the maximum relative diameter is the maximum of the diameters of the k subsets determined by the division. We shall see that the so-called standard k-partition, consisting of k inradius segments symmetrically placed, is a minimizing division for k ≤ 6, but not when k ≥ 7. Moreover, for each k ∈ N, k ≥ 3, we shall characterize the optimal body for this problem (that is, the set with the division attaining the lowest value for the maximum relative diameter functional). We will finish our talk making some comments for the case k = ∞. This is part of a joint work with Uwe Schnell (University of Applied Sciences Zittau/Görlitz) and Salvador Segura (Universidad de Alicante). Referencias 1. A. Cañete, C. Miori, S. Segura, Trisections of a 3-rotationally symmetric planar convex body minimizing the maximum relative diameter, Journal of Mathematical Analysis and Applications, 418 (2014), 1030–1046. 2. A. Cañete, U. Schnell, S. Segura, Subdivisions of k-rotationally symmetric planar convex bodies minimizing the maximum relative diameter, preprint 2014. On complete systems of inequalities Bernardo González Merino C/Madrid, no 1, 2o A, 30003, Murcia [email protected] Coautores: René Brandenberg For many years mathematicians have studied the behavior of two or more geometric functionals by means of inequalities relating them as well as extremal sets satisfying their equality conditions. Each new inequality obtained is interesting on its own, but it is also possible to ask if a finite collection of inequalities concerning several geometric magnitudes is large enough to determine the existence of the convex set. Such a collection is called a complete system of inequalities: a system of inequalities relating all the geometric functionals such that for any set of numbers satisfying those conditions, a convex set with these values of the characteristics exists. Historically Blaschke (1) and Santaló (4) were the first mathematicians studying these problems. In the last years Hernández Cifre and Segura Gomis (see, for instance, (2,3)) showed new insights to some of the classical problems. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S12. Geometría convexa e integral 84 In the talk we will discuss these results and recent development in the topic. In particular, we will discuss a complete system of inequalities for n-dimensional convex sets. Referencias (1) W. Blaschke, Eine Frage Über Konvexe Körper, Jahresber. Deutsch. Math. Ver., 25 (1916), 121–125. (2) M. A. Hernández Cifre, Is there a planar convex set with given width, diameter and inradius?, Amer. Math. Monthly, 107 (2000), 893– 900. (3) M. A. Hernández Cifre, S. Segura Gomis, The missing boundaries of the Santaló diagrams for the cases (d , w, R) and (w, R, r ), Discrete Comp. Geom., 23 (2000), 381–388. (4) L. Santaló, Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa planas, Math. Notae, 17 (1961), 82–104. Cone-volume measure of convex bodies Martin Henk Technische Universität Berlin [email protected] Coautores: Károly J. Böröczky We show that the cone-volume measure of a convex body with centroid at the origin satisfies the subspace concentration condition. This implies, among others, a conjectured best possible inequality for the U-functional of a convex body. For both results we provide stronger versions in the sense of stability inequalities. Extensions of Minkowski’s theorem on successive minima María A. Hernández Cifre Universidad de Murcia [email protected] Coautores: Martin Henk and Matthias Henze Let K be a 0-symmetric convex body, i.e., a compact and convex set satisfying that K = −K , in the n-dimensional Euclidean space Rn , and let Zn denote the integer lattice. The well-known Minkowski 2nd theorem in the Geometry of Numbers provides optimal upper and lower bounds for the volume of K in terms of its successive minima: n n Y 2 2 1 Y ≤ vol(K ) ≤ ; n n n! i =1 λi (K , Z ) i =1 λi (K , Z ) © ª here, λi (K , Zn ) = min λ > 0 : dim(λK ∩ Zn ) ≥ i is the i -th successive minimum of K with respect to the integer lattice, 1 ≤ i ≤ n, and vol(K ) denotes the volume (Lebesgue measure) of K . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S12. Geometría convexa e integral 85 In this talk we will make a brief historical tour on this inequality and its generalizations, and then we will show new analogs of the theorem from two different points of view: either relaxing the symmetry condition, assuming for instance that the centroid of the body lies at the origin, or replacing the volume functional by the surface area. Characterization of dual mixed volumes via polymeasures Carlos Hugo Jiménez G. Universidad Federal de Minas Gerais [email protected] Coautores: Ignacio Villanueva We present a proof of a characterization of the dual mixed volume in terms of functional properties of the polynomial associated to it. To do this, we use tools from the theory of multilinear operators on spaces of continuos functions. Along the way we reprove, with these same techniques, a recently found characterization of the dual mixed volume. Valuations on lattice polytopes Monika Ludwig TU Wien [email protected] Coautores: Károly J. Böröczky (Central European University, Budapest, and Alfréd Rényi Institute of Mathematics) Lattice polytopes are convex hulls of finitely many points with integer coordinates in Rn . The classification of real-valued invariant valuations on lattice polytopes by Betke & Kneser is classical (and will be discussed during the talk). Building on this, a complete classification is established of Minkowski valuations on lattice polytopes that intertwine the special linear group over the integers and are translation invariant. In the contravariant case, the only such valuations are multiples of projection bodies. In the equivariant case, the only such valuations are generalized difference bodies combined with multiples of the newly defined discrete Steiner point. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S12. Geometría convexa e integral 86 The isodiametric problem and other inequalities in the constant curvature 2-spaces Antonio R. Martínez Fernández Universidad de Murcia [email protected] Coautores: María Ángeles Hernández Cifre If K is a planar convex body, i.e., a compact convex set in the plane, with area A(K ), perimeter p(K ) and diameter D(K ), the well-known isodiametric inequality states that πD(K )2 ≥ 4A(K ), with equality if and only if K is a circle. The isodiametric inequality can be obtained as a consequence of the famous isoperimetric inequality, p(K )2 ≥ 4πA(K ), and the classical Rosenthal-Szasz’s theorem p(K ) ≤ πD(K ). The isoperimetric problem has its analog on the sphere S2κ and the hyperbolic plane H2κ with curvature κ ≷ 0: if K is the region bounded by a convex curve on the sphere (respectively, the hyperbolic plane), then p(K )2 ≥ 4πA(K ) − κA(K )2 , with equality only for the geodesic discs. In this talk we will recall the few classical inequalities of the Euclidean plane which have been translated into the sphere and the hyperbolic space (for instance, Jung’s inequality or Bonnesen’s inequality), showing next several new inequalities for centrally symmetric convex bodies in the 2-dimensional spaces of constant curvature κ (which have their analog in the plane). For instance, we show the relation between the perimeter and the diameter of a symmetric convex body (RosenthalSzasz inequality) which, together with the well-known spherical/hyperbolic isoperimetric inequality, allows to solve the corresponding isodiametric problem. Some geometry of convex bodies in C(K) José Pedro Moreno Departamento de Matemáticas, UAM [email protected] Coautores: R. Schneider In this talk we are concerned with some problems related to vector addition and diametric completion procedures of convex bodies in C (K ) spaces. The results follow from a systematic investigation of generalized order intervals and intersections of balls. We will present some characterization of the underlying compact Hausdorff space as a Stonean space in terms of some properties of convex bodies. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S12. Geometría convexa e integral 87 Isoperimetric inequalities in unbounded convex bodies Manuel Ritoré Universidad de Granada [email protected] Coautores: Gian Paolo Leonardi, Efstratios Vernadakis We consider the relative isoperimetric problem in unbounded convex domains in Euclidean space and extend some of the results already proven in the Ph. D. Thesis of E. Vernadakis, such as the (strict) convexity of the isoperimetric profile. This is joint work in progress with Gian Paolo Leonardi and Efstratios Vernadakis. Dyck path triangulations and extendability Camilo Sarmiento Otto-von-Guericke-Universität Magdeburg [email protected] Coautores: Cesar Ceballos y Arnau Padrol In this talk, we introduce the Dyck path triangulation of the cartesian product of two simplices: its maximal simplices are given by Dyck paths along with their orbit under a cyclic action. The construction also naturally produces triangulations of the product of two simplices consisting of rational Dyck paths. Our study of the Dyck path triangulation is motivated by an extendability problem for certain kinds of partial triangulations of the product of two simplices. We present a complete solution to this extendability problem and, with an explicit construction of non-extendable partial triangulations, we prove that our characterization of extendability is optimal. Time permitting, we will briefly mention interesting interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory. The content of the talk is based on joint work with C. Ceballos and A. Padrol. Integral Geometry of Curved Spaces Gil Solanes Universitat Autònoma de Barcelona [email protected] The kinematic formulas of Blaschke, Santaló, Federer and Chern are fundamental results in the Integral Geometry of Euclidean space. The generalization of these formulas to the sphere is also classical and has important applications. It is known since the 90’s that similar formulas exist in other ambient spaces, but only recently they could be found explicitly in some cases. In the talk I will present both the classical and the new results and also the algebraic approach that made the latter possible. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S12. Geometría convexa e integral 88 The isoperimetric profile of a bounded convex body Efstratios Vernadakis Universidad de Granada [email protected] Coautores: Manuel Ritoré In this talk we shall consider the problem of minimizing the relative perimeter under a volume constraint in the interior of a bounded convex body, i.e., a compact convex set in Euclidean space with interior points. We shall not impose any regularity assumption on the boundary of the convex set. Amongst other results, we shall prove the equivalence between Hausdorff and Lipschitz convergence, the continuity of the isoperimetric profile with respect to the Hausdorff distance and the convergence in Hausdorff distance of sequences of isoperimetric regions and their free boundaries. We shall also describe the behavior of the isoperimetric profile for small volume, and the behavior of isoperimetric regions for small volume. Convolution bodies and volume inequalities Rafael Villa Universidad de Sevilla [email protected] Coautores: David Alonso-Gutiérrez, Bernardo González-Merino, C. Hugo Jiménez. A quantitative version of Minkowski sum, involving the proportional measure of the intersections, gives the following subset of A + B A +θ B = {x ∈ A + B : |A ∩ (x − B )| ≤ θM (A, B )} for θ ∈ [0, 1], whenever M (A, B ) := sup x∈A+B |A∩(x −B )| is finite. This set is called the θ-convolution set of A and B. This set has been widely studied for symmetric convex bodies in the literature; the term convolution body was first introduced by Tsolomitis. However, our notation differs from the one used there, in order to emphasize the connection with the standard Minkowski sum. Our purpose is to find volume estimates, from above and below, of the θ-convolution of two sets, finding a quantitative version of the classical Brunn-Minkowski inequality. This study leads us to get some classical geometric inequalities, such as Rogers-Shephard or Zhang, as well as other interesting properties on Convex Geometry involving convolution bodies or polar projection bodies. The extension of θ-convolution to more than two sets is also given. References 1. D. Alonso-Gutiérrez, C. H. Jiménez, R. Villa, Brunn-Minkowski and Zhang inequalities for convolution bodies, Adv. in Math., 238 (2013), 50–69. 2. D. Alonso-Gutiérrez, B. González Merino, C. H. Jiménez, Volume inequalities for the i-th-convolution bodies, to appear in J. Math. Anal. Appl. (arXiv:1312.6005) 3. D. Alonso-Gutiérrez, B. González Merino, C. H. Jiménez, R. Villa, Rogers-Shephard inequality for log-concave functions, Preprint. (arXiv:1410.2556) Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S12. Geometría convexa e integral 89 On Brunn-Minkowski type inequalities Jesús Yepes Nicolás Universidad de Murcia [email protected] Coautores: María A. Hernández Cifre, Eugenia Saorín Gómez. Brunn-Minkowski’s inequality establishes that the n-th root of the volume of two convex bodies K , E ⊂ Rn is a concave function, and assuming that both sets have a projection onto a hyperplane with the same measure (or a common maximal volume section through parallel hyperplanes to a given one), it was proved that the volume itself is concave, namely, vol(λK + (1 − λ)E ) > λvol(K ) + (1 − λ)vol(E ), for all λ ∈ [0, 1]. (4) In this talk we will show, on the one hand, that under the above-mentioned projection/section assumption, if (4) holds with equality for some λ ∈ (0, 1), then (up to degenerated convex bodies) K may be specifically recovered via K = L + E , with L being a segment. We will also discuss that this extra assumption is needed in order to obtain such a characterization, even in the more general case in which (4) holds with equality for all λ ∈ [0, 1]. This problem is connected with a conjecture relating the roots of the Steiner polynomial of a pair of convex bodies to their relative inradius. We will show some counterexamples for the general case as well as a counterexample to a conjecture by Matheron on inner parallel bodies. On the other hand, we will show that the expected result of concavity for the kth root of the volume (cf. (4)), when a common projection onto an (n − k)-plane (or a common maximal volume (n − k)-section) is assumed, is not true, by explicitly giving (a family of ) convex bodies providing a counterexample for this statement. Nevertheless, other Brunn-Minkowski type inequalities can be derived under these hypotheses. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S13. Geometría diferencial y aplicaciones http://rsme2015.ugr.es/s13.php Normal approximations of regular curves and surfaces Alfonso Carriazo Universidad de Sevilla [email protected] Coautores: M. Carmen Márquez and Hassan Ugail Bézier curves and surfaces are very useful tools in Geometric Modeling, with many applications to fields such as computer graphics. In this talk, we will offer a new method to provide approximations of regular plane and spatial curves by Bézier curves. As an application, we will also develop a method to approximate regular surfaces by Bézier ones. We will illustrate our methods by showing many examples and some animations. Referencias 1. A. Carriazo, M. C. Márquez and H. Ugail. Normal approximations of regular curves and surfaces. Submitted. Pseudo-Riemannian Homogeneous Manifolds Marco Castrillón López ICMAT - UCM [email protected] Undoubtedly, isometries play an essential role in pseudo-riemannian geometry. This fact makes homogenous spaces be a specially interesting instance in the realm of smooth manifolds.One of the most succesfull toos to tackle the study of homogeneity is the so-called homogeneous structure tensors. The goal of this talk is to present the applications of these tensors for Lorentzian manifolds by giving a review of some main results obtained by them. In particular, the connection of these tensors with the notion of plane waves will be explored, in the real, complex and quaternionic cases. 90 S13. Geometría diferencial y aplicaciones 91 Two construction methods of isoparametric hypersurfaces in noncompact symmetric spaces Miguel Domínguez Vázquez Instituto de Matematica Pura e Aplicada (IMPA), Brasil [email protected] A hypersurface in a Riemannian manifold is isoparametric if it and its nearby equidistant hypersurfaces have constant mean curvature. The study of these objects goes back to Levi-Civita, Segre and Cartan in the thirties. It turns out that most of the known examples are homogeneous, that is, orbits of isometric actions on the ambient manifold. In this talk I will explain two methods to construct isoparametric hypersurfaces in symmetric spaces of noncompact type. Both techniques rely on the algebraic structure that underlies symmetric space of noncompact type. The first method, proposed in joint work with J. Carlos Díaz-Ramos, allows to construct many inhomogeneous examples in the rank one symmetric spaces of nonconstant curvature. The second one, which is based on the so-called horospherical decomposition of the symmetric space, allows to enlarge examples from a rank one symmetric space to a higher rank symmetric space. On gradient Ricci solitons with constant scalar curvature Manuel Fernández-López IES María Sarmiento, Viveiro, Lugo [email protected] Coautores: Eduardo García-Río Ricci solitons are fixed points of the Ricci flow on the space of Riemannian metrics modulo diffeomorphims and scalings. Also, they often arise as limits of dilations of singularities in the Ricci flow. Moreover, they constitute a natural generalization of Einstein manifolds. The talk will be divided into two parts. In the first one we introduce the concept of Ricci soliton and present some known results. In particular, we will give several classification results under adequate geometric hypothesis (locally conformal flatness, harmonic Weyl tensor, ...). In the second part our recent results on gradient Ricci solitons with constant scalar curvature will be presented. Extremal curves of the total curvature in homogeneous 3-spaces Angel Ferrández Universidad de Murcia [email protected] Coautores: Manuel Barros, Universidad de Granada, and Oscar J. Garay, Universidad del País Vasco We obtain the space of extremals in homogeneous 3-spaces whose isometry group has dimension four, also known as rotationally symmetric homogeneous 3spaces. Most of the geometry in these spaces is governed by the existence of a unit Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S13. Geometría diferencial y aplicaciones 92 Killing vector field, ξ, sometimes called the Reeb vector field, which turns the homogeneous 3-space into the source of a Riemannian submersion whose target space is a surface with constant curvature. We will show that a curve is an extremal of the total curvature energy if and only if ξ lies into either the rectifying plane or the osculating plane along that curve. Then, we prove that every rotationally symmetric homogeneous 3-space, except H2 × R, admits a real one-parameter class of extremals with horizontal normal (Lancret helices). The whole family of extremals is completed with a second class made up of those curves with horizontal binormal. In contrast with the first class, it appears in any rotationally symmetric space, with no exception, and it can be modulated in the space of real valued functions. We also work out geometric algorithms to solve the so called solving natural equations for extremals, allowing us to determine them explicitly in many cases. Furthermore, we solve the closed curve problem by showing the existence of two families of closed extremals. Spacetimes and Finsler metrics Miguel Angel Javaloyes Universidad de Murcia [email protected] Let us recall that a pseudo-Finsler metric in a manifold M is a smooth function L : A ⊂ T M \ {0} → R, such that A is a conic subset, L is positive homogeneous of degree 2, namely, L(λv) = λ2 L(v) for every λ > 0 and v ∈ A, and its fundamental tensor defined as 1 ∂2 L(v + su + t w)|t =s=0 g v (u, w) = 2 ∂t ∂s is non-degenerate at every v ∈ A. In our talk, we will review the relation between spacetimes and Finsler metrics. This relation can happen in several ways. We will focus on two cases: (i) the Fermat metric associated to a stationary spacetime [1] or more generally the wind Finsler metric associated to a standard spacetime endowed with a Killing vector field not necessarily timelike [2]. We will describe how this metric controls the causality of the spacetime. Observe that the Fermat metric has positive definite fundamental tensor. (ii) we will discuss the definition of Finsler spacetime, namely, a manifod endowed with a pseudo-Finsler metric L : A ⊂ T M \ {0} → (0, +∞), which extends as zero to the boundary of A [3]. We will review some causality notions and results for Finsler spacetimes. In particular, we will explain how Penrose singularity theorem can be extended to Finsler spacetimes [4]. References 1. E. C APONIO, M. A. J AVALOYES , AND M. S ÁNCHEZ, On the interplay between Lorentzian causality and Finsler metrics of Randers type, Rev. Mat. Iberoamericana, 27 (2011), pp. 919–952. 2. E. C APONIO, M. A. J AVALOYES , AND M. S ÁNCHEZ, Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes, arXiv:1407.5494 [math.DG] Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S13. Geometría diferencial y aplicaciones 93 3. M. A. J AVALOYES AND M. S ÁNCHEZ, Finsler metrics and relativistic spacetimes, Int. J. Geom. Methods Mod. Phys., 11 (2014), p. 1460032 (15 pages). 4. A. A AZAMI , M. A. J AVALOYES, Penrose’s singularity theorem in Finsler spacetimes, arXiv:1410.7595 [math.DG] Hypersurface data in pseudo-riemannian manifolds, constraint equations, energy-momentum map and applications to shells Marc Mars Instituto de Física Fundamental y Matemáticas, Universidad de Salamanca [email protected] The notions of metric hypersurface data and hypersurface data are introduced and their basic properties, such as the relationship with the geometry of hypersurfaces embedded in pseudo-riemannian manifolds, are described. These concepts allow for a unified description of hypersurfaces of arbitrary causal character and generalizes the standard hypersurface data for non-degenerate hypersurfaces, in particular concerning the notion of constraint equations. The concept of energymomentum map for hypersurface data is introduced and its connection to the Israel equations for shells of constant causal character in General Relativity is presented. Some geometric applications of two new forms of the weak maximum principle Marco Rigoli Universita degli Studi di Milano [email protected] Coautores: Luis J. Alias and Juliana F.R. Miranda In this talk we introduce two equivalent new forms of the weak maximum principle and we show how they can be used to obtain information on some geometric problems, for instance, related to the geometry of hypersurfaces in a product manifold. Other applications can be given to Yamabe type PDS’s and to "a priori" estimates. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S13. Geometría diferencial y aplicaciones 94 Complete maximal hypersurfaces in spatially parabolic Generalized RobertsonWalker spacetimes Alfonso Romero Departamento de Geometria y Topologia, Universidad de Granada [email protected] A Generalized Robertson-Walker (GRW) spacetime such that the universal Riemannian covering of the fiber is parabolic (thus so is the fiber) is said to be spatially parabolic. Spatially parabolic GRW spacetimes extend to spatially closed GRW spacetimes from the point of view of the geometric-analysis of the fiber. On the contrary to spatially closed GRW spacetimes, these spacetimes could be compatible with certain cosmological principle, and they can be used for modeling open relativistic universes. A complete spacelike hypersurface in a spatially parabolic GRW spacetime inherits the parabol- icity, whenever some boundedness assumptions on the restriction of the warping function to the spacelike hypersurface and on the hyperbolic angle between the unit normal vector field and a certain timelike vector field are assumed. Conversely, the existence of a simply connected parabolic spacelike hypersurface, under the previous assumptions, in a GRW spacetime also leads to its spatial parabolicity. All the complete maximal hypersurfaces in a spatially parabolic GRW spacetime are determined in several cases. As an application, all the entire solutions of the maximal hypersurface equation on a parabolic Riemannian manifold are found, solving new Calabi-Bernstein problems. Flujos Riemannianos Tensos José Ignacio Royo Prieto Universidad del País Vasco UPV/EHU [email protected] Coautores: Hiraku Nozawa, Ritsumeikan University (Japón) En este trabajo, demostramos que toda foliación de dimensión 1 sobre una variedad diferenciable, no necesariamente compacta, es fuertemente tensa; es decir, que admite una métrica para la cual la forma de curvatura media es básica y cerrada. Este resultado (cf. 3.) es una generalización parcial de un conocido teorema de D. Domínguez (cf. 1.) para variedades compactas . Como aplicación, obtenemos, para el caso de variedades no compactas, varios resultados ya conocidos para el caso de flujos riemannianos sobre variedades compactas, como sucesiones de tipo Gysin (cf. 4.) y la caracterización de la minimalidad de las hojas en términos de la cohomología básica (cf. 2.). Referencias 1. Domínguez D., Finiteness and tenseness theorems for Riemannian foliations, ˝ Amer. J. Math. 120 (1998) 1237-U1276. 2. X. Masa, Duality and minimality in Riemannian Foliations, Comment. Math. Helv. 67 (1992), 17–27. 3. H. Nozawa, J.I.Royo Prieto, Tenseness of Riemannian flows, aparecerá en Annales de l’Institut Fourier, 64 (2014) Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S13. Geometría diferencial y aplicaciones 95 4. J.I.Royo Prieto, The Euler Class for Riemannian Flows, C.R.Acad. Sci. Paris 332, Série I (2001) 45–50. Hermitian geometry on solvmanifolds Luis Ugarte Universidad de Zaragoza [email protected] Coautores: Anna Fino, Antonio Otal In this talk we consider solvmanifolds endowed with invariant complex structures for which their canonical bundle is holomorphically trivial. This class is a natural extension of the class of complex nilmanifolds. In dimension 6, the moduli space of such complex structures can be obtained for each solvmanifold. This allows to study the existence of important classes of Hermitian metrics, and we will focus on strong Kähler with torsion, balanced and generalized Gauduchon metrics. The behaviour of some properties under holomorphic deformations of the complex structure can also be studied on this class of solvmanifolds. Hipersuperficies con dos curvaturas principales en CP 2 y CH 2 Cristina Vidal Castiñeira Universidad de Santiago de Compostela [email protected] El siguiente problema fue propuesto por Niebergall y Ryan [1] en los 90: “Hay hipersuperficies en CP 2 o CH 2 que tengan ≤ 2 curvaturas principales además de los ejemplos estándar?” En esta charla mostraré que existen ejemplos no estándar y presentaré la clasificación de hipersuperficies reales con dos curvaturas principales no constantes en los planos proyectivo e hiperbólico complejo [2]. Resulta que cada hipersuperficie de ese tipo es foliada por superficies Lagrangianas llanas equidistantes con curvatura media paralela, o lo que es equivalente, por órbitas principales de una acción polar de comohogeneidad dos. Referencias 1. R. Niebergall, P. J. Ryan: Real Hypersurfaces in Complex Space Forms, Tight and Taut Submanifolds, MSRI Publications, Volume 32, 1997. 2. J. C. Díaz-Ramos, M. Domínguez-Vázquez, C. Vidal-Castiñeira: Real hypersurfaces with two principal curvatures in complex projective and hyperbolic planes. arXiv:1310.0357v1 [Math.DG] Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S14. Investigación operativa http://rsme2015.ugr.es/s14.php Localización Continua: Momentos, Sumas de Cuadrados y Programación Semidefinida Víctor Blanco Universidad de Granada [email protected] La localización continua nace con el problema de Fermat (siglo XVII) que consiste encontrar las coordenadas del plano cuya suma de las distancias (euclídeas) a tres puntos dados fuera lo más pequeña posible. Weber (1909) generaliza este problema a la localización de fábricas que deben servir a un conjunto de clientes, y cuya minimización de las distancias de servicio (ponderadas) a estas representa un objetivo económico. El problema de Fermat-Weber es complejo de resolver en general (para cualquier número de clientes o puntos de demanda, para cualquier tipo de distancia y en cualquier dimensión). Aún más si en vez de localizar un sólo servicio queremos localizar un conjunto de éstos o utilizamos objetivos tipo mediana ordenada, cuyo uso ha sido extendido en los últimos años. En esta charla presentaré algunos resultados recientes en los que transformaciones adecuadas de distintos problemas de localización contínua permiten reformular éstos como problemas de optimización sobre el cono de segundo orden (SOCP), que son resolubles en tiempo polinomial. Además, en el caso en el que el/los servicio/s a localizar esté/n restingido/s a pertenecer a regiones semialgebraicas compactas, el problema de los momentos (Lasserre, 2006) permite resolver hasta el grado de aproximación deseado el problema de localización resolviendo problemas de programación semidefinida (SDP). Resolución de conflictos aéreos vía optimización multiobjetivo entera mixta no lineal F. Javier Martin Campo Universidad Complutense de Madrid [email protected] Coautores: Antonio Alonso Ayuso, Laureano F. Escudero Debido al incremento de la demanda de transporte aéreo, cada vez son más las técnicas usadas para la mejora de la gestión de tráfico aéreo. Un problema abierto es la detección y resolución de conflictos aéreos, cuyo objetivo es proporcionar un plan de vuelo para cada aeronave considerada, de tal modo que no se violen las distancias mínimas establecidas de separación entre aeronaves. Para la consecución de tal fin, se puede modificar el plan de vuelo inicial de un avión mediante tres maniobras: cambios de velocidad, giro y altura. Sin embargo, existen relaciones de preferencia entre ellas. En términos generales de costes, las preferencias vienen dadas en el siguiente orden: cambios de altura, giro y velocidad. Sin embargo, en términos de confort de los pasajeros, el orden de preferencia es precisamente el opuesto. En este trabajo proponemos tres métodos multiobjetivo para comparar estas 96 S14. Investigación operativa 97 dos situaciones: optimización por metas, compromiso en un paso con norma l −1 y compromiso en dos pasos con normas l − ∞ y l − 1. En cualquier caso, dado el tipo de construcción geométrica de las condiciones a satisfacer en cualquier solución factible, el problema se aborda mediante un modelo de optimización entera mixta no lineal. En esta ponencia, después de presentar una panorámica general de la optimización multiobjetivo, proponemos una metodología para resolver el problema en cuestión y los principales resultados numéricos obtenidos en una extensa experiencia computacional realizada para estimar el tiempo de respuesta y la calidad de la solución a ofrecer para resolver el problema. Exact and Heuristic Approaches for The Unrelated Parallel Machine Scheduling problem with additional Resources Federico Perea Instituto Tecnológico de Informática, Universitat Politècnica de València [email protected] Coautores: Rubén Ruiz The unrelated parallel machine scheduling problem (UPMS) consists of processing a set of jobs in a set of available machines. A typical objective in these problems is the minimization of the largest job completion time, also known as makespan. In other words, the objective is to find the assignment of jobs to machines so that the latest job being processed finishes as soon as possible. The machines are parallel because they can process jobs simultaneously, and unrelated because job processing times need not be the same for all machines. Examples of real situations in which the UPMS arises are production systems in which two or more tasks need to be done and we do not have to wait for the end of the processing of one task to start the processing of another one. Ever since the first papers related to this topic, in the 1950’s, the interest of the scientific community on the UPMS has not stopped increasing. In this word we assume that the during the length of time in which a job is processed, besides one of the available machines, a discrete amount of a scarce renewable processing resource which depends on the job and the machine are needed, for instance operators. Resources are: • renewable because after the processing of the job is finished, the needed resources are again available for other jobs. • discrete because a discrete amount of them need to be assigned to job-machine pairs. • processing because they are needed while the job is processed. The resulting problem is called the Unspecified Unrelated Parallel Machine Scheduling problem with additional Resources (UUPMSR). The problem is unspecified because there is no pre-fixed job-machine assignment. We study the dynamic version of the problem, meaning that the allocation of resources to machines need not be fixed for the whole processing time. The static version has been already proposed and studied in the literature. In this research, an integer linear programming (ILP) program is introduced, as well as three iterative processes based on such ILP program. Because the ILP based approaches cannot handle real-size problems, the constructive phase of a GRASP Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S14. Investigación operativa 98 algorithm is proposed. All these approaches are tested and compared over a large set of randomly generated instances. Nuevos enfoques del problema discreto de la mediana ordenada Diego Ponce Universidad de Sevilla [email protected] Coautores: Martine Labbé (Université Libre de Bruxelles) Justo Puerto (Universidad de Sevilla) El problema discreto de la mediana ordenada, conocido por su acrónimo en inglés DOMP, permite estudiar los problemas de localización discreta a través de una única formulación. En esta charla vamos a ver las nuevas formulaciones que han surgido basándose en similitudes con algunos de los conocidos como scheduling problems, las cuales nos han reportado grandes avances en el estudio poliédrico del problema. También introduciremos una formulación cuyas variables están basadas en un número exponencial de conjuntos, lo que nos llevará a aplicar la técnicas de generación de columnas y Branch & Price en nuestro problema, explicando en detalle este proceso. Referencias 1. Boland N., Domínguez-Marín P., Nickel S. and Puerto J. (2006). Exact procedures for solving the discrete ordered median problem, Computers & Operations Research, 33:3270-3300. 2. Gamrath G. (2010). Generic Branch-Cut-and-Price, PhD thesis, Technischen Universität Berlin. 3. Marín A., Nickel S., Puerto J. and Velten S. (2009). A flexible model and efficient solution strategies for discrete location problems, Discrete Applied Mathematics, 157:1128-1145. 4. Nickel S. (2000). Discrete ordered weber problems, In Operations Research Proceedings, 71-76. 5. Puerto J. (2007). A new formulation of the capacitated discrete ordered median problems with {0,1}-Assignment, Operations Research Proceedings, 165170. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S14. Investigación operativa 99 Multiobjective combinatorial optimization with ordering. Applications to spanning trees, perfect matchings and shortest paths. Miguel A. Pozo Universidad de Sevilla [email protected] Coautores: Elena Fernández, Miguel A. Pozo, Justo Puerto Multiobjective combinatorial optimization deals with problems considering more than one viewpoint or scenario. The problem of aggregating multiple criteria to obtain a globalizing objective function is of special interest when the number of Pareto solutions becomes considerably large or when a single, meaningful solution is required. Ordered Weighted Average or Ordered Median operators are very useful when preferential information is available and objectives are comparable since they assign importance weights not to specific objectives but to their sorted values. In this paper, Ordered Weighted Average optimization problems are studied from a modeling point of view. Alternative integer programming formulations for such problems are presented and their respective domains studied and compared. In addition, their associated polyhedra are studied and some families of facets and new families of valid inequalities presented. The proposed formulations are particularized for two well-known combinatorial optimization problems, namely, minimum spanning trees, shortest path and minimum cost perfect matching, and the results of computational experiments presented and analyzed. These results indicate that the new formulations reinforced with appropriate constraints can be effective for efficiently solving medium to large size instances. SEDD: Sistema para la Evaluación y el Diagnóstico de Desastres J. Tinguaro Rodríguez Universidad Complutense de Madrid [email protected] Coautores: Grupo de Investigación “DEC-HUMLOG: Decision Aid Models and Humanitarian Logistics”, Instituto de Matemática Interdisciplinar En la gestión de desastres y emergencias, es crucial una correcta valoración inicial de las posibles consecuencias de los fenómenos adversos. Esta permite entonces tomar decisiones estratégicas adecuadas de cara al diseño de operaciones de respuesta y ayuda a la población afectada. No obstante, para elaborar esa valoración es preciso confrontar diversos tipos de incertidumbre, que surgen en un contexto en el que la información suele ser incompleta, imprecisa y poco fiable, y en el que es además necesario tomar decisiones con urgencia. En este trabajo, estos factores son tratados mediante una combinación de herramientas de lógica borrosa, estadística e inteligencia artificial que posibilitan el desarrollo de un sistema de ayuda a la decisión, SEDD (Sistema para la Evaluación y el Diagnóstico de Desastres), particularmente diseñado para adaptarse a los requisitos y las posibilidades de los países en desarrollo y las organizaciones no gubernamentales habitualmente implicadas en la confección y la implementación de operaciones de respuesta a desastres. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S14. Investigación operativa 100 Modelos multicriterio de ayuda a la decisión para problemas de reparto de ayuda humanitaria Gregorio Tirado Universidad Complutense de Madrid [email protected] Coautores: Grupo de Investigación “DEC-HUMLOG: Decision Aid Models and Humanitarian Logistics”, Instituto de Matemática Interdisciplinar Tras el estallido de un desastre, natural o provocado por el hombre, el uso eficiente de la ayuda disponible y la atención urgente de las necesidades principales de la población afectada requieren una planificación logística adecuada y adaptada a las condiciones de la situación de emergencia existente. En este contexto surge la denominada “logística humanitaria”, que se caracteriza principalmente por la poca disponibilidad de información fiable y precisa, la necesidad de una respuesta urgente y la existencia de recursos muy escasos. En este trabajo se presentan varios modelos de decisión multicriterio para planificar operaciones de distribución de ayuda humanitaria, considerando factores como la equidad en el reparto, la atención prioritaria a poblaciones especialmente vulnerables, la fiabilidad del itinerario o su seguridad, que en este contexto tienen una especial relevancia, junto a otros atributos como el coste y el tiempo, habituales en la logística empresarial. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S15. Matemática discreta http://rsme2015.ugr.es/s15.php El Teorema del Exceso Espectral: Variaciones y Aplicaciones Miguel Ángel Fiol Universitat Politècnica de Catalunya [email protected] Los grafos distancia-regulares aparecen a menudo en el estudio de estructuras matemáticas con un alto grado de simetría y/o regularidad. Un ejemplo bien conocido de tales grafos son los esqueletos de los sólidos platónicos. Desde que fueron propuestos por N. Biggs a principios de los 70, los grafos distancia-regulares han sido objeto de un intenso estudio que incluye numerosas caracterizaciones, tanto de carácter combinatorio como algebraico. Como ejemplo del primer caso, P. Rowlinson demostró que un grafo es distancia-regular si, y sólo si, el número de caminos de una longitud dada entre dos vértices sólo depende de la distancia entre dichos vértices. Esta charla versa sobre una caracterización casi-espectral de dichos grafos, debida al conferenciante y E. Garriga, conocida en la literatura como el ‘teorema del exceso espectral’. Este resultado afirma que un grafo es distancia-regular si, y sólo si, su exceso espectral (una cantidad calculable a partir de su matriz de adyacencia) es igual a su exceso medio (el número medio de vértices a distancia máxima de cada vértice). Desde su aparición, este teorema ha dado lugar a diversas variaciones, concernientes tanto a familias concretas de grafos distancia-regulares, como a otras estructuras combinatorias más generales, como son los códigos completamente regulares y los esquemas de asociación p-polinomiales. Asimismo, el teorema del exceso espectral ha sido clave en la demostración de otros resultados importantes como, por ejemplo, la obtención por E.R van Dam y J. Koolen de la primera familia infinita de grafos distancia-regulares que no son vértice transitivos. Hiper Lformas Pedro A. García-Sánchez Universidad de Granada [email protected] Coautores: Francisco Aguiló-Gost, David Llena Dado un semigrupo numérico de dimensión de inmersión tres, podemos asociar al conjunto de Apéry del generador más grande un diagrama de distancias mínimas. Éstos tienen forma de L y teselan el plano. Es por ello que se han venido llamando Lformas en la literatura, siendo utilizados para el estudio tanto de semigrupos como de factorizaciones en éstos. En el caso de dimensión de inmersión tres, sólo hay como mucho dos posibles Lformas asociadas a un semigrupo numérico. De igual forma podemos definir, asociado al conjunto de Apéry del mayor generador minimal de un semigrupo de dimensión de inmersión cuatro, un diagrama de distancias mínimas. En este caso es una figura tridimensional, y es por eso que les llamamos hyper Lformas. A diferencia del caso de dimensión de inmersión tres, existen familias que tienen un número arbitrario de hyper Lformas asociadas. 101 S15. Matemática discreta 102 Generating strongly polynomial sequences of graphs Delia Garijo Universidad de Sevilla [email protected] Coautores: Andrew Goodall and Jaroslav Nešetˇril De la Harpe and Jaeger [3] provided a method of generating strongly polynomial graph sequences, which were defined as sequences of graphs (Hk ) with k ∈ N such that the number of homomorphisms of every graph G to Hk , denoted by hom(G, Hk ), is polynomial in k for every k ∈ N. A well-known example is the sequence of cliques (K k ), where hom(G, K k ) is the value of the chromatic polynomial of G at k for each k ∈ N. On the other hand, we established [2] for which edgeweighted graphs H homomorphism functions from multigraphs G to H are specializations of the Tutte polynomial T (G; x, y), the Averbouch-Godlin-Makowsky polynomial ξG (x, y, z) [1], and the Tittmann-Averbouch-Makowsky polynomial QG (x, y) [4]. The edge-weighted graphs H obtained for the three polynomials take the form of a sequence of graphs indexed by a multivariate parameter. This motivates determining in general which sequences of graphs (Hk ) indexed by a multivariate parameter k = (k 1 , . . . , k h ), h ≥ 1, have the property that for all graphs G, hom(G, Hk ) is the value of a multivariate graph polynomial p(G; x 1 , . . . , x h ) at k. In this talk, we will describe a new method to generate strongly polynomial sequences of graphs (Hk ) determining a polynomial p(G; x 1 , . . . , x h ). Whilst the chromatic polynomial, the Tutte polynomial and the Averbouch–Godlin–Makowsky polynomial can be obtained from strongly polynomial sequences of graphs by adaptation of the techniques used in [3], the Tittmann–Averbouch–Makowsky polynomial cannot be thus obtained. Our construction includes this polynomial and, in fact, we formulate our results in a more general context, using tree models for graphs, so that the above-mentioned polynomials are obtained from strongly polynomial sequences generated from cotrees for cographs. (1) I. Averbouch, B. Godlin, J.A. Makowsky, A most general edge elimination polynomial, in: H. Broersma, T. Erlebach, T. Friedetzky, D. Paulusma (eds.), GraphTheoretic Concepts in Computer Science, 34th International Workshop, WG2008, Durham, UK, June/July 2008, Lect. Notes Comput. Sci. 5344 (2008), 31–42 (2) D. Garijo, A.J. Goodall, J. Nešetˇril, Distinguishing graphs by left and right homomorphism profiles, European J. Combin. 32 (2011), 1025–1053 (3) P. de la Harpe, F. Jaeger, Chromatic invariants for finite graphs: theme and polynomial variations, Lin. Algebra Appl. 226–228 (1995), 687–722 (4) P. Tittmann, I. Averbouch, J.A. Makowsky, The enumeration of vertex-induced subgraphs with respect to the number of components, European J. Combin. 32:7 (2011), 954–974 Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S15. Matemática discreta 103 Political districting, clustering and partitioning graphs into centered connected components in a nutshell Justo Puerto Instituto de Matemáticas de la Universidad de Sevilla [email protected] Partitioning a graph into connected components is a typical problem arising in different areas, such as clustering, image processing, parallel computing, pattern recognition, territorial districting and others. Many optimization problems can be defined in these contexts, with different constraints and objectives. Several applications require a fixed number of components in the partition and/or capacity constraints on the components. In some cases there is a subset of vertices corresponding to centers and the problem requires that each component of the partition contains exactly one center. In cluster analysis and classification a dissimilarity criterion is defined for each pair of units and in an optimal partition the units belonging to the same cluster must be as similar as possible, or, equivalently, the units belonging to different clusters must be as dissimilar as possible. In a large number of applications a weight is associated to each subset of vertices and an objective function based on these weights must be maximized or minimized according to the specific meaning of the weights. The objective function may represent, for example, a cost for the assignment of the vertices to the components of the partition, or it can be formulated in order to balance the weights of the components as much as possible (equipartition problems). The most studied graph partitioning problems are those with a cardinality constraint on the number of components. These problems are NP-hard on arbitrary graphs, but in many cases they can be solved in polynomial time on trees (see, e.g., [1]). Polynomial time algorithms are also known for the max-split clustering problem on ladder graphs [4], and, more generally, on outerplanar graphs [5], as well as, for equipartition problems on ladder graphs [2]. For some equipartition problems pseudo-polynomial algorithms on series parallel graphs and an FPTAS on interval graphs were presented in [3] and [6], respectively. In this talk, we consider a connected graph G = (V, E ), and distinguish a subset S of vertices in V that are assumed to be centers, while the vertices in U = V \ S are units. Under this framework we address different problems related to the partition of the graph, analyze their complexity, provide polynomial algorithms whenever possible and relate those problems to different applications in clustering and political districting. Referencias 1. Apollonio, N., Lari, I., Puerto, J., Ricca, F., and Simeone, B. (2008). Polynomial algorithms for partitioning a tree into single-center subtrees to minimize flat service costs. Networks, 51, 78–89. 2. Becker, R.I., Lari, I., Lucertini, M., and Simeone, B. (2001). A Polynomial-Time Algorithm for Max-Min Partitioning of Ladders. Theory of Computing Systems, 34, 353–374. 3. Ito, T., Zhou, X., and Nishizeki, T. (2006). Partitioning a graph of bounded treewidth to connected subgraphs of almost uniform size. Journal of Discrete Algorithms, 4, 142–154. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S15. Matemática discreta 104 4. Lari, I. (2002). Connected Maximum Split Clustering of Ladder Graphs, in W. Gaul, G. Ritter eds, Proc. of the 24th Annual Conference of the Gesellschaft für Klassifikation, Studies in Classification, Data Analysis, and Knowledge Organization 2002, 107–114. 5. Lari, I., Ricca, F., and Scozzari, A. (2002). The forest wrapping problem on outerplanar graphs. Lecture Notes in Computer Science, 2573, 345–354. 6. Wu, B.Y. (2012). Fully Polynomial-Time Approximation Schemes for the MaxMin Connected Partition Problem on Interval Graphs. Discrete Mathematics, Algorithms and Applications, 4, doi: 10.1142/S179383091250005X. Some geometrical aspects of difference bodies Eugenia Saorín Gómez Otto-von-Guericke Universität Magdeburg [email protected] Coautores: Judit Abardia For n even, P ⊆ Rn a polytope and C ⊆ R2 a convex polygon with edge lengths l i and unit normals to the edges αi ∈ S 1 ⊂ C, i = 1, · · · , N , the polytope D C P := N X l i αi P 1 is called the complex difference body of P , with respect to C . For a general planar convex body C and an arbitrary convex body K in an even dimensional vector space, the complex difference body D C K was introduced by J. Abardia in 2012 in the framework of the theory of valuations. In this talk we will introduce this construction and study geometrical properties and inequalities satisfied by the complex difference body. In particular, we will prove that D C K is a polytope if and only if both C ⊆ R2 and K ⊆ Rn are polytopes. We prove further, that its dimension depends on the position of K and characterize the bodies for which the complex difference body is a Euclidean ball. Dimensional versions of sumset inequalities Oriol Serra Universitat Politècnica de Catalunya [email protected] The small sumset problem asks for upper bounds on the cardinalities of sumsets in terms of the cardinality of the summands in an abelian group. These inequalities play a central role in additive combinatorics. One of the classical inequalities of this kind is given by the theorem of Kneser. Hou, Leng and Xian gave an analog of Kneser’s theorem in separable extensions of fields, where dimensions of subspaces play the role of cardinalities. One of the nice features of this dimension version is that it gives the classical one as a Corollary. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S15. Matemática discreta 105 We will discuss a dimension version of the simplest inverse theorem in additive combinatorics, the theorem of Vosper. In contrast with Kneser’s theorem, this version can be essentially proved by extending the so–called isoperimetric method to the dimension setting, opening the way to other dimension analogues of results in additive combinatorics. Moreover it can be seen as a genuine generalization of the theorem of Vosper. The proof includes the nonexistence of maximum distance separating codes in a space of bilinear forms with respect to a natural metric, a result which has interest of itself. A removal lemma for linear configurations and its applications Lluis Vena University of Toronto [email protected] Szemrédi’s Theorem from 1975 states that any set of integers, with positive upper density, contains a non-trivial, arbitrarily long arithmetic progression. In 1978 Furstenberg and Katznelson showed a multidimensional version of it; any set X of positive upper density in the t -dimensional integer lattice contains t +1 points forming a simplex. One of the results that can be used to prove the above existential theorems is the so-called removal lemma for hypergraphs. This result roughly says that, if a large (hyper)graph K does not have many copies of a given (hyper)graph H , then K can be made free of copies of H by deleting a small number of edges. In this talk we present a translation of the removal lemma to the arithmetic setting. This removal lemma states that, given a group G and some subset X of G, if a linear configuration system Ax = 0 does not have many solutions with x i in X , then we can obtain a new set X 0 where the system Ax = 0 has no solution if the variables x i take values in X 0 . The set X 0 has been obtained from X by removing a few of its elements. Such an arithmetic removal lemma gives a unified approach to finding linear configurations in dense sets of finitely generated abelian groups, thus showing Szemerédi’s theorem and its multidimensional version. Moreover, it can be used to provide results for counting sets in finitely generated abelian groups free of linear configurations. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S16. Matemáticas de la teoría de la información http://rsme2015.ugr.es/s16.php Semigroup ideals and generalized Hamming weights María Bras-Amoros Universitat Rovira i Virgili [email protected] A sharp upper bound for the maximum integer not belonging to an ideal of a numerical semigroup is given and the ideals attaining this bound are characterized. Then, the result is used, through the so-called Feng-Rao numbers, to bound the generalized Hamming weights of algebraic-geometry codes. Árboles, Hash y Revocación Pino Caballero-Gil Universidad de La Laguna [email protected] Coautores: Francisco Martín-Fernández, Cándido Caballero-Gil Los árboles constituyen uno de los tipos de grafos con mayor número de aplicaciones prácticas, y con mayor variedad ya que los hay binarios, k-arios, balanceados, completos, perfectos, etc. Por otra parte, las funciones hash son también utilizadas en distintos campos, entre los que destaca la protección de la integridad, donde se requiere en particular el uso de funciones hash criptográficas. Una de las funciones hash criptográficas más interesantes actualmente es la escogida en como estándar en 2012, bautizada como SHA-3. Por último, la revocación de claves es uno de los problemas más difíciles de resolver en criptografía, principalmente debido al problema de escalabilidad que implica y sobre todo cuando se utilizan infraestructuras de clave pública o PKI (Public Key Infrastructure). Este trabajo analiza las relaciones entre los conceptos de árboles y funciones hash en la búsqueda de soluciones eficientes y seguras al problema de la revocación. Los sistemas de revocación tradicionales, como las listas de revocación de certificados o CRLs (Certificate Revocation Lists) y el protocolo OCSP (Online Certificate Status Protocol) requieren, respectivamente, un gran ancho de banda y una alta carga computacional. Existe una propuesta diferentes para la mejora de dichos sistemas, basada en una estructura de datos autenticada o ADS (Authenticated Data Structure), similar a una CRL, pero que permite que los usuarios puedan hacer consultas sobre posibles revocaciones a servidores inseguros. En particular, la estructura de datos utilizada [1] es un árbol hash basado en los árboles hash de Merkle [2], llamado árbol de revocación de certificados o CRT (Certificate Revocation Tree), en el que la raíz está firmada por la Autoridad de Certificación o CA (Certificate Authority), y las hojas son los certificados revocados ordenados por número de serie. Así, cuando un usuario desea validar un certificado, envía una consulta a un servidor representante de la CA, de forma que cualquiera de estos servidores inseguros puede proporcionar una prueba convincente de que el certificado está (o no) en el CRT. 106 S16. Matemáticas de la teoría de la información 107 Además, el problema de la revocación no solo se presenta en PKIs basadas en certificados, sino que también se da por ejemplo cuando se utiliza criptografía basada en identidad. En estos casos, de nuevo la combinación de árboles y funciones hash permite afrontar el problema mediante árboles de revocación. La mecánica de uso de árboles de revocación requiere un análisis específico en cada uno de los casos, para intentar optimizar todas las operaciones implicadas: consulta, inserción y borrado de nodos, actualización, almacenamiento, envío, etc. En esta charla se presenta un estudio de distintos sistemas de revocación basados en árboles hash para diferentes circunstancias y utilizando diferentes herramientas. Referencias 1. P. Kocher, On Certificate Revocation and Validation, Financial Cryptography (FC98), Lecture Notes in Computer Science 1465, Springer-Verlag, pp. 172177, 1998. 2. R. Merkle, A certified digital signature, Advances in Cryptology (CRYPTO89). Lecture Notes in Computer Science 435, Springer-Verlag, pp. 234-246, 1989. Linealización del generador auto-shrinking a través de autómatas celulares Sara D. Cardell Universidad de Alicante [email protected] Coautores: Amparo Fúster-Sabater (Consejo Superior de Investigaciones Científicas) Algunos autómatas celulares de una dimensión generan exactamente las mismas PN-secuencias que un LFSR de longitud máxima. Por lo tanto, un autómata celular puede ser considerado como un generador alternativo a estos LFSR [1]. Además, algunos generadores de secuencias cifrantes pueden ser modelizados como estructuras lineales basadas en autómatas celulares lineales [1,2]. En este trabajo, intentamos modelizar el generador auto-shrinking usando la regla 102. El generador auto-shrinking fue diseñado por Meier y Staffelbach [3]. Es muy fácil de implementar dado que usa un solo LFSR cuya PN-secuencia {a i } es decimada por sí misma. La regla de decimación es bastante simple; dados dos bits consecutivos de la PN-secuencia (a 2i , a 2i +1 ), con i = 0, 1, 2, . . ., un bit s j de la secuencia auto-shrinking {s j } será igual a a 2i +1 si a 2i es uno. A su vez, a 2i +1 es descartado si a 2i es cero. Un autómata celular (CA) es un modelo compuesto por n celdas cuyo contenido (binario en nuestro caso) se actualiza siguiendo una ley de transición de estados que determina el estado de cada celda en función del estado actual de esa celda y de las celdas adyacentes [4]. Los autómatas celulares considerados en este trabajo son lineales (sólo se consideran operaciones XOR), regulares (todas las celdas siguen la misma ley) y nulos (se consideran celdas con contenido nulo adyacentes a las celdas de los extremos). En nuestro caso, sólo consideramos la ley 102. Cuando k es 3, esta ley viene dada por la expresión: x it +1 = x it + x it+1 . Dado un LFSR de longitud máxima, existe un CA lineal que genera la secuencia auto-shrinking obtenida a través de este registro, utilizando la ley 102. La longitud de dicho CA es igual a la complejidad lineal de esta secuencia. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S16. Matemáticas de la teoría de la información 108 Por ejemplo, dado el polinomio primitivo p(x) = 1+x 3 +x 4 y el estado inicial 1000 la secuencia auto-shrinking sería 01101001 . . .. El polinomio característico de esta secuencia es p 5 (x) = (1 + x)5 y, así, la complejidad lineal es 5. En la siguiente tabla se ofrece un ejemplo de CA de una dimensión y longitud 5 que genera la secuencia auto-shrinking: 102 102 102 102 102 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 El esfuerzo realizado por parte de los criptógrafos por introducir decimación para romper la linealidad de las secuencias generadas por los LFSR ha sido inútil, ya que la secuencia auto-shrinking puede ser modelizada como una secuencia de salida de una estructura lineal basada en autómatas celulares que usan, en este caso, la ley 102. Esto implica que estas secuencias son sensibles de sufrir una criptoanálisis que se aproveche de esta linealidad. Nuestro trabajo se basa en analizar la familia de autómatas celulares lineales, regulares, nulos, de una dimensión que describen el comportamiento del generador auto-shrinking, diseñado como no lineal en su origen. Además, en [2] los autores modelizaron este generador usando una familia de autómatas celulares híbridos basados las leyes 150 y 90. Por lo tanto, podemos realizar un estudio de las ventajas y desventajas de una familia sobre otra y utilizar ambas familias para llevar a cabo un criptoanálisis sobre la secuencia auto-shrinking. Agradecimientos: Este trabajo ha sido financiado parcialmente por los proyectos MTM2011-24858 y TIN2011-25452 del Ministerio de Ciencia e Innovación del Gobierno de España. El trabajo de la primera autora ha sido financiado por una beca postdoctoral de la Generalitat Valenciana con referencia APOSTD/2013/081. Referencias 1. Fúster-Sabater, A., Caballero-Gil, P.: Linear solutions for cryptographic nonlinear sequence generators. Physics Letters A. 369, 432–437 (2007). 2. Fúster-Sabater, A., Pazo-Robles, M. E., Caballero-Gil, P.: A simple linearization of the self-shrinking generator by means of cellular automata. Neural Networks. 23(3), 461–464 (2010). 3. Meier, W., Staffelbach, O.:The self-shrinking generator. In: Advances in Cryptology, EUROCRYPT 1994. LNCS. 950, 205–214. Springer-Verlag (1994). 4. Das, A. K., Ganguly, A, Dasgupta, A, Bhawmik, S., Chaudhuri, P. P.: Efficient characterisation of cellular automata. IEE Proceedings E: Computers and Digital Techniques. 137(1), 81–87 (1990). Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S16. Matemáticas de la teoría de la información 109 Representación entrada-estado-salida de códigos convolucionales concatenados Joan-Josep Climent Universitat d’Alacant [email protected] Coautores: Victoria Herranz (Universidad Miguel Hernández de Elche), Carmen Perea (Universidad Miguel Hernández de Elche) En este trabajo caracterizamos dos modelos de códigos convolucionales desde la perspectiva de la teoría de sistemas lineales. Concretamente, introducimos una representación entrada-estado-salida de dichos modelos y estudiamos las condiciones para obtener una representación minimal del código convolucional concatenado. También introducimos condiciones para que el código convolucional concatenado sea observable y presentamos una cota inferior de su distancia libre en función de las distancias libres de los códigos convolucionales constituyentes. β β α Double cyclic codes over the rings Zα 2 × Z2 and Z2 × Z4 Cristina Fernández-Córdoba Universitat autònoma de Barcelona [email protected] Coautores: Joaquim Borges Ayats, Roger Ten-Valls β Consider the rings R 1 and R 2 , such that R 1 is an R 2 -module, and C ⊂ R 1α × R 2 an additive code. The code C is a double cyclic code if the set of coordinates can be partitioned into two subsets, the set of coordinates in R 1 and the set of coordinates in R 2 , such that any cyclic shift of the coordinates of both subsets leaves invariant the code. The code can be identified as submodules of the R 2 [x]-module R 1 [x]/(x α − 1) × R 2 [x]/(x β − 1). We define two cases. First, when the code C is binary, that is R 1 = R 2 = Z2 , which is called Z2 -double cyclic. The second case is when R 1 = Z2 and R 2 = Z4 , that is the code is a Z2 Z4 -additive code, and it is called Z2 Z4 -cyclic. In both cases, we determine the structure of these double cyclic codes giving their generator polynomials. We also determine the related polynomial representation of its duals in terms of the generator polynomials. HIMMO: A Lightweight, Fully Collusion Resistant Key Pre-Distribution Scheme Jaime Gutierrez Universidad de Cantabria [email protected] Coautores: Oscar Garcia-Morchon; Domingo Gomez; Ronald Rietman; Ludo Tolhuizen Public-key cryptography addresses key distribution and agreement in a very elegant way by allowing any pair of nodes to generate a common secret without sharing any information beforehand. In the alternative approach of key pre-distribution schemes (KPS), a trusted-third party (TTP) securely provides each node with a (nodedependent) secret function allowing pairs of nodes to agree on a common key in a Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S16. Matemáticas de la teoría de la información 110 non-interactive way, which is a big advantage in delay critical applications. However, no known key KPS is simultaneously secure and efficient. This paper proposes HIMMO, a KPS which relies on the recently introduced Hiding Information (HI) and Mixing Modular Operations (MMO) problems. Our security analysis shows that HIMMO is fully collusion resistant for appropriate parameter choices. HIMMO is also lightweight for these parameters and thus makes non-interactive key establishment feasible even in very large networks. Additionally, the identity-based nature of HIMMO enables implicit certification and verification of credentials, as well as secure broadcast by the TTP. HIMMO can a also accommodate multiple TTPs so that no single TTP knows the keys shared between nodes. All these features make HIMMO a very promising candidate to enable more efficient security protocols. Quantum codes from evaluation Fernando Hernando Universidad Jaume I [email protected] Coautores: Carlos Galindo and Diego Ruano Stabilizer codes obtained via the CSS code construction and the Steane’s enlargement of subfield-subcodes and matrix-product codes coming from generalized Reed-Muller, hyperbolic and affine variety codes are studied. Stabilizer codes with good quantum parameters are supplied, in particular, some binary codes of lengths 127 and 128 improve the parameters of the codes in http://www.codetables.de. Cyclic convolutional codes over separable extensions. F. J. Lobillo Departamento de Algebra, Universidad de Granada [email protected] Coautores: J. Gómez-Torrecillas, G. Navarro We show that, under mild conditions of separability, an ideal code is a direct summand of an Ore extension and, consequently, it is generated by an idempotent element. We also design an algorithm for computing one of these idempotents. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S16. Matemáticas de la teoría de la información 111 Nuevo enfoque del problema de la equivalencia de códigos lineales Irene Márquez Corbella INRIA Rocquencourt - Equipe SECRET - (France) [email protected] Coautores: Natalia Dück, Edgar Martínez Moro En [3] se muestra cómo se puede asociar a cualquier código lineal un ideal binomial que contiene toda la información del código en los exponentes de cada binomio. Esta correspondencia se ha demostrado que es interesante para resolver varios problemas considerados difíciles en teoría de códigos, como por ejemplo la descodificación completa, la búsqueda del conjunto de palabras de soporte minimal o el cálculo de la capacidad de corrección. Todas estas aplicaciones requieren el cálculo de bases de Gröbner respecto de un orden graduado. En esta charla introduciremos una nueva invariante de un código lineal, que hemos llamado el Gröbner Fan graduado. Esta estructura se define como la colección geométrica del conjunto de Bases de Gröbner graduadas del ideal asociado al código. Veremos cómo calcular de forma eficiente esta estructura, y para ello mostraremos cómo adaptar el software TIGERS (Toric Gröbner bases Enumeration by Reverse Search) desarrollado por R. R. Thomas [1]. Además descubriremos la aplicación de esta estructura al problema de equivalencia de códigos, tal como hemos planteado en [2]. Referencias 1. B. Huber and R. R. Thomas. Computing Gröbner fans of toric ideals. Experimental Mathematics, 9(3):321-331, 2000. linear code. In 4th International Castle Meeting on Coding Theory and and Applications (4ICMCTA). CIM-MS Series by Springer-Verlag, 2014. 2. I. Márquez-Corbella, E. Martínez-Moro and E. Suárez-Canedo. On the ideal associated to a linear code. arXiv: 1206.5124, 2014. Cyclic and BCH Codes whose Minimum Distance Equals their Maximum BCH bound Juan Jacobo Simón Pinero Universidad de Murcia [email protected] Coautores: José Joaquín Bernal Buitrago and Diana H. Bueno Carreño We study the family of cyclic codes such that its minimum distance reaches the maximum of its BCH bounds. We also study a way to construct cyclic codes with that property by means of computations of some divisors of a polynomial of the form x n − 1. We apply our results to the study of those BCH codes C , with designed distance δ that have minimum distance d (C ) = δ. Finally, we present some examples of new binary BCH satisfying that condition. To do this, we make use of two related tools: the discrete Fourier transform and the notion of apparent distance of a code, originally defined for multivariate abelian codes. Note:Partially supported by MINECO (Ministerio de Economía y Competitividad), (Fondo Europeo de Desarrollo Regional) project MTM2012-35240, Programa Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S16. Matemáticas de la teoría de la información 112 Hispano Brasileño de Cooperación Universitaria PHB2012-0135, and Fundación Séneca of Murcia. Cifrado Inverso Adriana Suárez Corona Universidad de León [email protected] Coautores: David Naccache, Rainer Steinwandt y Moti Yung El cifrado de clave pública inverso (Reverse Public-Key Encryption (RPKE)) es un modo de operación que utiliza un esquema de cifrado de clave pública en el que no se puede distinguir qué clave ha sido utilizada para cifrar el mensaje. El mensaje a cifrar en modo inverso determina la clave a usar. RPKE permite una forma alternativa de enviar información, en el caso de que se rompa el esquema de cifrado, pero se siga manteniendo la privacidad de la clave. Las construcciones propuestas anteriormente [NSY09] son poco eficientes para enviar mensajes de más de un bit de longitud en el modo inverso. En esta charla, veremos cómo se pueden construir esquemas que permitan el envío de mensajes de mayor tamaño de forma más eficiente, utilizando esquemas de Anomymous Broadcast Encryption (ANOBE). Un uso simultáneo de los modos de operación tradicional e inverso permite enviar dos mensajes independientes en un mismo texto cifrado, o de forma alternativa, proporciona un canal esteganográfico dentro del criptosistema. NSY09 David Naccache, Rainer Steinwandt, and Moti Yung. Reverse Public Key Encryption. In BIOSIG 2009 Proceedings, Lecture Notes in Informatics, pages 155–169. GI, Springer, 2009. Constructing credential-based E-voting systems from offline E-coin protocols Magda Valls Universitat de Lleida [email protected] Coautores: Víctor Mateu, Francesc Sebé Mu and Varadharajan proposed a remote voting paradigm in which participants receive a blindly signed voting credential that permits them to cast a vote anonymously. If some participant tries to cheat by submitting more than one vote, her anonymity will be lifted. In the last years, several proposals following this paradigm, including Mu and Varadharajan, have been shown to be cryptographically weak. In this paper we first show that a recent proposal by Baseri et al. is also weak. After that, we give a general construction that, employing an offline e-coin protocol as a building block, provides an anonymous voting system following the aforementioned paradigm. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa http://rsme2015.ugr.es/s17.php Isomorphisms of graph algebras and groupoids Pere Ara Departament de Matemàtiques, Universitat Autònoma de Barcelona [email protected] Abrams and Tomforde have shown that any ∗-algebra isomorphism L C (E ) → L C (F ) between complex Leavitt path algebras can be extended to a ∗-isomorphism C ∗ (E ) → C ∗ (F ) between the corresponding graph C*-algebras. Not all the ∗-isomorphisms between graph C*-algebras restrict to the corresponding Leavitt path algebras, but it is an open question whether the existence of a ∗-isomorphism between C ∗ (E ) and C ∗ (F ) implies the existence of a ∗-isomorphism between L C (E ) and L C (F ). Using the theory of groupoids, we are able to show that the answer is positive, even for the Leavitt path algebras over an arbitrary field, if the ∗-isomorphism from C ∗ (E ) to C ∗ (F ) respects a certain natural commutative C ∗ -subalgebra. A functorial approach to Lie Theory Alessandro Ardizzoni University of Torino [email protected] Coautores: C. Menini (University of Ferrara) Hom-Lie algebras, Lie color algebras, Lie superalgebras and other type of generalized Lie algebras are recovered by means of an iterated construction, known as monadic decomposition of functors, which is based on Eilenberg-Moore categories. This talk is mainly based on the work [A. Ardizzoni and C. Menini, Milnor-Moore Categories and Monadic Decomposition, preprint. (arXiv:1401.2037)] Weakly left localizable rings and their characterizations V. V. Bavula University of Sheffield [email protected] We introduce a new class of rings - the class of weakly left localizable rings - and give its characterization. 113 S17. Métodos categóricos en álgebra no conmutativa 114 Multiplier bialgebras in braided monoidal categories Gabriella Böhm Wigner RCP, Budapest [email protected] Coautores: Stephen Lack (Macquarie University, Sydney) A bialgebra A — over a field or, more generally, in any braided monoidal category — can equivalently be described without referring separately to the multiplication µ : A ⊗ A → A and the comultiplication ∆ : A → A ⊗ A; just in terms of the unit, the counit and the so-called fusion morphism [1] ∆⊗id id⊗µ A ⊗ A −→ A ⊗ A ⊗ A −→ A ⊗ A. This treatment has the advantage of applicability also in the absence of a unit and a proper comultiplication; as Van Daele’s approach to multiplier Hopf algebras [2] shows. Based on the use of counital (but no longer unital) fusion morphisms, we propose a definition of multiplier bialgebras in arbitrary braided monoidal categories. The categories of appropriately defined modules and comodules are shown to possess monoidal structures admitting strict monoidal forgetful functors to the base category. These features are explained by the structures carried by the functor induced by tensoring with a multiplier bialgebra. The talk is based on [3]. Referencias 1. S. Lack and R. Street, Skew monoidales, skew warpings and quantum cate˝ gories, Theory Appl. Categ. 26 (2012), 385U402. 2. A. Van Daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 (1994), ˝ no. 2, 917U932. 3. G. Böhm and S. Lack, Multiplier bialgebras in braided monoidal categories, J. Algebra, in press. arXiv:1405.4668 Rooted rings with several objects Manuel Cortés Izurdiaga Departamento de Matemáticas, Universidad de Almería [email protected] Coautores: Blas Torrecillas Jover A ring with several objects is a functor category (C, Ab) where C is a small preadditive category and Ab is the category of abelian groups. The objective of the talk is to introduce the notion of rooted ring with several objects and to characterize, over such rings, some classes of modules. Since each ring with enough idempotents is equivalent to the functor category over a small preadditive category, our results allow us to characterize these classes of modules over rings with enough idempotents. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 115 Semisimple Hopf actions on Weyl algebras Juan Cuadra University of Almería, Dpt. Mathematics, 04120 Almería, Spain [email protected] In this talk we will discuss the following problem: under which conditions the action of a finite-dimensional Hopf algebra on an algebra factors through that of a group algebra? This question was studied for the first time by Chan et al. in [1] and [2]. Several positive results were obtained there for semisimple Hopf algebras acting faithfully (plus some other hypotheses) on various particular algebras, including the Weyl algebra. Etingof and Walton proved in [4] the following general theorem. Let H be a semisimple and cosemisimple Hopf algebra over an algebraically closed field k. If H acts faithfully on a commutative domain over k, then H is a group algebra. As an application, they established a similar result for the Weyl algebra by using the associated graded algebra, whenever the H -action preserves the standard filtration. The aim of this talk is to show a different strategy for the proof of this result, which allow us to remove the condition on the H -action. The techniques used include reduction modulo a prime number and an extension of Etingof-Walton’s Theorem to division algebras. The results that will be presented appear in the joint work [3] with Pavel Etingof and Chelsea Walton (Massachusetts Institute of Technology). References 1. K. Chan, C. Walton, Y.H. Wang and J.J. Zhang, Hopf actions on filtered regular algebras. J. Algebra 397 (2014), 68-90. 2. K. Chan, C. Walton and J.J. Zhang, Hopf actions and Nakayama automorphisms. J. Algebra 409 (2014), 26-53. 3. J. Cuadra, P. Etingof and C. Walton, Semisimple Hopf actions on Weyl algebras. ArXiv:1409.1644. 4. P. Etingof and C. Walton, Semisimple Hopf actions on commutative domains. Adv. Math. 251 (2014), 47–61. Morita Theory for Commutative Hopf Algebroids, and Hovey-Strickland conjecture. Laiachi El Kaoutit Universidad de Granada [email protected] Coautores: Niels Kowalzig A commutative Hopf algebroid is a presheaf of groupoids on affine schemes (a pre-stack or préchamp for the fpqc topology). Its category of (right) comodules is monoidally equivalent to the category of equivariant quasi-coherent sheaves, that is, the category of representations of the associated prestack. Two (flat) commutative Hopf algebroids are said to be Morita equivalent, if their categories of (right) comodules are equivalent as symmetric monoidal categories. A Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 116 morphism between two Hopf algebroids is a weak equivalence when the associated induction functor (which is by definition a symmetric monoidal functor) induces an equivalence of categories of comodules. Thus, two weakly equivalent Hopf algebroids are evidently Morita equivalent. The converse was conjectured by Hovey and Strickland in 2005. Precisely, they conjectured that two Morita equivalent Hopf algebroids are connected by a chain (of zig-zag type) of weak equivalences. The main motivation of this research is two folds: First is to answer positively to the above conjecture. Second to give a parallel theory (the algebraic counterpart) to the Lie groupoid Morita theory developed by Moerdijk-Mrˇcun, for (flat) commutative Hopf algebroids. In this talk and if time allows, we will expose all the machinery of Morita theory for (flat) commutative Hopf algebroids. Explicitly, we introduce the notion of principal bi-bundle in the Hopf algebroids context, and show that two Hopf algebroids are Morita equivalent if and only if they are weakly equivalent and if and only if there exists a principal bi-bundle connecting them. This will give a positive answer to the above conjecture by explicitly constructing a two stage zig-zag of weak equivalences. Next, we gather (flat) Hopf algebroids and principal bundles along with their morphisms in a bicategory. We show that the 2-functor assigning to each morphism of Hopf algebroids its associated trivial bundle, transforms weak equivalences into invertible 1-cells. Finally, we exhibit this 2-functor as a universal solution for 2-functors which send weak equivalences to invertible 1-cells; establishing by this a kind of calculus of fractions in the 2-category of (flat) Hopf algebroids with respect to weak equivalences in the sense of Pronk. This is a joint work with Niels Kowalzig, based on arXiv.math:1407.7461v1. On pure exact structures Sergio Estrada Universidad de Murcia [email protected] Coautores: James Gillespie and Sinem Odabasi Let A be closed symmetric monoidal Grothendieck category. We define the pure derived category with respect to the monoidal structure via a relative injective model category structure on the category C(A ) of unbounded chain complexes in A . Then we will focus on applications of this general setting in concrete categories. Direct products of modules whose endomorphism rings have at most two maximal ideals Alberto Facchini Università di Padova [email protected] Coautores: Adel Alahmadi Let R be a ring, Mod-R the category of all right R-modules and C a full subcategory of Mod-R whose class of objects Ob(C ) consists of indecomposable right R-modules. A completely prime ideal P of C consists of a subgroup P (A, B ) of the additive abelian group HomR (A, B ) for every pair of objects A, B ∈ Ob(C ) such that: Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 117 (1) for every A, B,C ∈ Ob(C ), every f : A → B and every g : B → C , one has that g f ∈ P (A,C ) if and only if either f ∈ P (A, B ) or g ∈ P (B,C ); and (2) P (A, A) is a proper subgroup of HomR (A, A) for every object A ∈ Ob(C ). If A, B are objects of C , we will say that A and B belong to the same P class, and write [A]P = [B ]P , if there exist right R-module morphisms f : A → B and g : B → A with f ∉ P (A, B ) or g ∉ P (B, A). The full subcategory C of Mod-R is said to satisfy (DSP) if whenever A, B,C , D are right R-modules with A ⊕ B ∼ = C ⊕ D and A, B,C ∈ Ob(C ), then also D ∈ Ob(C ). Sample result: Theorem. Let C be a full subcategory of Mod-R in which all objects are indecomposable right R-modules and let P , Q be two completely prime ideals of C with the property that, for every A ∈ Ob(C ), f : A → A is an automorphism if and only if f ∉ P (A, A) ∪ Q(A, A). Assume that C satisfies Condition (DSP). Let { A i | i ∈ I } and { B j | j ∈ J } be two families of objects of C . Assume that there exist two bijections σ, τ : I → J such that [A i ]P = [B σ(i ) ]P and [A i ]Q = [B τ(i ) ]Q for every i ∈ I . Then the Q Q R-modules i ∈I A i and j ∈J B j are isomorphic. Referencias 1. A. Alahmadi and A. Facchini, Direct Products of Modules Whose Endomorphism Rings have at Most Two Maximal Ideals, to appear 2015. Universal central extensions of Lie–Rinehart algebras Xabier Garcia Martinez University of Santiago de Compostela [email protected] Coautores: Jose Luis Castiglioni, Manuel Ladra In this work we study central extensions of Lie–Rinehart algebras. They do an algebraic codification of Lie algebroids. The concept of Lie–Rinehart A-algebra generalizes the concept of Lie A-algebra and A-module and the main example of Lie– Rinehart algebra is the set DerK (A) of all K -derivations of A. We study central extensions of Lie–Rinehart algebras an we prove that if L is A2 projective then the second cohomology group HRin (L, I ) classifies central extensions of L by I . Then we build a non-abelian tensor product of Lie–Rinehart algebras extending the non-abelian tensor product of Lie algebras and we obtain the existence of the universal central extension when the Lie–Rinehart algebra is perfect and we characterize it with the non-abelian tensor product. Referencias 1. G. J. Ellis. A nonabelian tensor product of Lie algebras. Glasgow Math. J., 33(1):101–120, 1991. 2. J. Huebschmann. Poisson cohomology and quantization. J. Reine Angew. Math., 408:57–113, 1990. 3. G. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108:195–222, 1963. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 118 Connections between relative Gorenstein dimensions and Auslander and Bass classes Juan Ramón García Rozas Catedrático de Álgebra. Departamento de Matemáticas. Universidad de Almería [email protected] Coautores: Driss Bennis, Luis Oyonarte It is well known the relation between the class of modules with finite Gorenstein projective (resp. injective) dimension and the Auslander (resp. Bass) class when these mentioned classes are built with a dualizing module over noetherian n-perfect rings. Basically, the results are necessary conditions to ensure that both classes coincide. In this note we try to extend, and sometimes improve, some of these results by weakening the condition of being dualizing. As an application, we are able to study when the Auslander (Bass) class is covering (resp. enveloping). Associative algebras and Lie algebras defined by Lyndon words Tatiana Gateva-Ivanova American University in Bulgaria and IMI BAS [email protected] We study the class C(X ,W ) of associative graded k-algebras A generated by X and with a fixed obstructions set W consisting of Lyndon words in the alphabet X . Important examples are the monomial algebras A = k〈X 〉/(W ), where W is an antichain of Lyndon words of arbitrary cardinality and the enveloping algebra U g of any X -generated Lie k-algebra g. We prove that all algebras A in C(X ,W ) share the same Poincaré-Birkhoff-Witt type k-basis built out of the so called Lyndon atoms N (determined uniquely by W ) but, in general, N may be infinite. We prove that A has polynomial growth if and only if the set of Lyndon atoms N is finite. In this case α α α A has a k-basis N = {l 1 1 l 2 2 · · · l d d | αi ≥ 0, 1 ≤ i ≤ d }, where N = {l 1 , · · · , l d }. Surprisingly, in the case when A has polynomial growth its global dimension does not depend on the shape of its defining relations but only on the set of obstructions W . We prove that if A has polynomial growth of degree d then A has global dimension d and is standard finitely presented, with d − 1 ≤ |W | ≤ d (d − 1)/2. We study when the set of standard bracketings [W ] = {[w] | w ∈ W } is a Groebner-Shirshov Lie basis. We use our general results to classify the Artin-Schelter regular algebras A generated by two elements, with defining relations [W ] and global dimension ≤ 7. We give an extremal class of monomial algebras, the Fibonacci-Lyndon algebras, F n , with global dimension n and polynomial growth, and show that the algebra F 6 of global dimension 6 cannot be deformed, keeping the multigrading, to an Artin-Schelter regular algebra. Referencias 1. T. G ATEVA -I VANOVA , G. F LOYSTAD, Monomial algebras defined by Lyndon words, J. Algebra 403 (2014), 470–496. 2. T. G ATEVA -I VANOVA, Quadratic algebras, Yang-Baxter equation, and Artin- Schelter regularity, Adv. in Math. 230 (2012), 2152-2175. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 119 Cleft and Galois extensions for weak Hopf quasigroups Ramón González Rodríguez Universidade de Vigo. Departamento de Matemática Aplicada II [email protected] The aim of this talk is to present the notions of cleft and Galois (with normal basis) extension associated to a weak Hopf quasigroup. We show that, under suitable conditions, both notions are equivalent. As a particular instance we recover the results for (weak) Hopf algebras proved in [1] and [4]. Moreover, taking into account that weak Hopf quasigroups generalize the notion of Hopf quasigroup, we obtain the definitions of cleft and Galois (with normal basis) extension associated to a Hopf quasigroup and we get the equivalence betwen these extensions in this setting. The results that will be presented are part of a joint work with J.N. Alonso and J.M. Fernández (see [2] and [3]). Referencias 1. J.N. Alonso Álvarez, J.M. Fernández Vilaboa, R. González Rodríguez, A. B. Rodríguez Raposo, Weak C-cleft extensions and weak Galois extensions, J. Algebra 299 (2006), 276-293. 2. J.N. Alonso Álvarez, J.M. Fernández Vilaboa y R. González Rodríguez, R., Weak Hopf quasigroups. math.QA, arXiv:1410.2180 (2014) 3. J.N. Alonso Álvarez, J.M. Fernández Vilaboa y R. González Rodríguez, R., Cleft and Galois extensions associated to a weak Hopf quasigroup (2014). math.QA, arXiv:1412.1622 4. H. F. Kreimer, M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), 675-691. Weak Multiplier Bialgebras José Gómez-Torrecillas Universidad de Granada [email protected] Coautores: Gabriella Böhm and Esperanza López-Centella A non-unital generalization of weak bialgebra is proposed with a multiplier-valued comultiplication. Certain canonical subalgebras of the multiplier algebra (named the ‘base algebras’) are shown to carry coseparable co-Frobenius coalgebra structures. Appropriate modules over a weak multiplier bialgebra are shown to constitute a monoidal category via the (co)module tensor product over the base algebra. The relation to Van Daele and Wang’s (regular and arbitrary) weak multiplier Hopf algebra is discussed. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 120 Some Examples of Tilting and Cotilting Modules Ivo Herzog The Ohio State University at Lima [email protected] Coautores: Silvana Bazzoni, Jan Šaroch, and Jan Trlifaj Let (T , F ) be a torsion pair in a Grothendieck category G . This torsion pair induces a t -structure in the derived category D(G ), whose heart H t is an abelian category. The question of whether the abelian category H t is itself a Grothendieck category has been considered by Parra and Saorin [2], who found necessary and sufficient conditions. If R denotes an associative ring, we show that a necessary condition for a torsion pair in the Grothendieck category R-Mod of left R-modules to satisfy these conditions is that both classes T and F be (finitely) axiomatizable in the language of left R-modules. Using this characterization, we verify that for some classes of rings, every torsion pair in R-Mod induces a t -structure with a Grothendieck heart. To find a counterexample, we consider the representation theory of the ring R considered by Dubrovin and Puninski in [2]. We show that R has a 1-tilting module and a 2-tilting module, neither of which are equivalent to finitely generated modules. Referencias 1. Parra, C., and Saorin, M., Direct limits in the heart of a t -structure, arXiv:1311.6166v2. 2. Dubrovin, N., and Puninski, G., Classifying projective modules over some semilocal rings, J of Alg and Its Appl 6(5), Oct 2007. Rings whose cyclic modules have minimal injectivity domain: preliminary report. Sergio R. López-Permouth Ohio University [email protected] Coautores: Noyan Er and Nguyen Khanh Tung A module M is said to be poor if it is injective relative to only semisimple modules. We consider rings for which every non-zero cyclic right R-module is poor. A non-semisimple ring R with that property is shown to be an indecomposable ring satisfying the following properties: the singular submodule Z (R R ) is essential in R R , every noetherian right R-module is artinian, and every ideal of R is either below the prime radical or above the Jacobson radical of R. We also show that a right noetherian ring R whose non-zero cyclics are poor is isomorphic to a matrix ring over a non-uniserial local right artinian ring. Thus, in particular, if a commutative noetherian ring R satisfies that property then R is isomorphic to a direct product of fields. We point out relations between these notions and other families of rings characterized in similar ways; in particular, we study connections between this problem and rings without a middle class (those rings for which every module is either injective or poor.) Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 121 Monoid actions providing public key cryptosystems Juan Antonio Lopez Ramos Department of Mathematics, University of Almeria, 04120 Almeria, Spain [email protected] Coautores: Joan-Josep Climent, Leandro Tortosa The aim of this work is to introduce a framework to get new public key cryptosystems in non-commutative settings. Inspired by the cryptographical applications of the group over an elliptic curve and the necessity of enlarging the keylength of the traditional methods used for public key cryptography due to recent advances in cryptanalysis techniques and computations capabilities, there has been an increasing interest on finding new public key cryptosystems based on different problems to those on classical Number Theory. We define a general protocol for key exchange based on the so-called Decomposition Problem, i.e., given a monoid G and x, y ∈ G, find g , h ∈ G such that x = g yh, extending a recently cryptanalyzed protocol on a commutative ring of matrices and providing alternatives on non-commutative rings. We give an example where most of its elements are non-invertible. Then we define an ElGamal type public key cryptosystem whose cryptanalysis shows to be equivalent to break the precedent key exchange protocol and thus its fortress is based on the difficulty to solve the Decomposition Problem. Locally coherent categories as hearts of t-structures Manuel Saorín Universidad de Murcia [email protected] We will show that if R is a commutative Noetherian ring and t is any t-structure in its unbounded derived category D(R) which restricts to the bounded derived category (of finitely generated R-modules) D b (R), then the heart H of the t-structure is a locally coherent Grothendieck category. On endomorphism rings of Σ-injective modules Feroz Siddique Saint Louis University [email protected] Coautores: Ashish K Srivastava Wolfson [1] and Zelinsky [2] showed that every linear transformation of a vector space V over a division ring D is the sum of two invertible linear transformations except when V is one-dimensional over Z2 . Khurana and Srivastava [3] extended this by proving that that every element of a right self-injective ring R is the sum of two units if and only if R has no factor ring isomorphic to Z2 . We study a variation of this problem and show that if M is a Σ-injective module such that each homomorphism of M is a sum of two commutating automorphisms then M is directly finite. Further more, in a joint work with A.K. Srivastava [4], we show that if R is a right self-injective ring then for each element a ∈ R there exists a unit u ∈ R such that both a + u and a − u are units if and only if R has no factor ring isomorphic to Z2 or Z3 . Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 122 Morita equivalences from a ring-theoretical point of view Mercedes Siles Molina Universidad de Málaga [email protected] Coautores: José Félix Solanilla Hernández One of the aims of this talk will be to show that if two idempotent rings R and S are Morita equivalent then for every von Neumann regular element a ∈ R the local algebra of R at a, R a , is isomorphic to Mn (S)u for some natural n and some idempotent u in Mn (S). The converse of this result is not true in general, as we will see, although it will be valid for σ-unital rings having a σ-unit consisting of von Neumann regular elements. A consequence is that, for idempotent rings, a property is Morita invariant if it is invariant under taking local algebras at von Neumann regular elements and under taking matrices. We will use our results to check the Morita invariance of certain ring properties: locally left/right artinian/noetherian, categorically left/right artinian, being an I 0 ring and being properly purely infinite), and of certain graph properties for Leavitt path algebras as Condition (L), Condition (K) and cofinality. And also to provide another proof of the fact that a graph with an uncountable emitter does not admit a desingularization. Skew monoidal categories and monoids Kornel Szlachanyi Wigner Research Centre for Physics, Budapest [email protected] The recently introduced skew monoidal categories offer a new approach to bialgebroids and Hopf algebroids. After reviewing the motivating example of skew monoidal structures on the category of one-sided modules over a ring we discuss the one object case, i.e., skew monoidal monoids. We give several equivalent descriptions of skew monoidal monoids as monoids with extra structure. The symmetry of (co)module categories of skew monoidal monoids is a dual pair of source-regular bialgebroids. These bialgebroids have the salient feature of being submonoids of their own base. Referencias 1. K. Szlachanyi, Skew-monoidal categories and bialgebroids, Advances in Mathematics 231, 1694-1730 (2012) 2. K. Szlachanyi, Skew monoidal categories beyond bialgebroids, http://maths-temp.swan.ac.uk/staff/tb/LMS-Workshop, slides of a talk at the LMS workshop "Categorical and Homological Methods in Hopf Algebras", Swansea, UK (2013) Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S17. Métodos categóricos en álgebra no conmutativa 123 Very flat and locally very flat modules Jan Trlifaj Univerzita Karlova, MFF, Praha [email protected] Coautores: Alexander Slavik In [1], L. Positselski introduced very flat and contraadjusted modules in his investigation of contraherent cosheaves over schemes. Here, we concentrate on the ‘affine case’, that is, we describe the structure of very flat modules over certain classes of commutative noetherian rings. We then use it to study approximation properties of locally very flat modules. Our guiding principle is the analogy between projective and flat Mittag-Leffler modules on one hand, and very flat and locally very flat modules on the other (based on joint work with A. Slavik, [2]). Referencias 1. L. Positselski, Contraherent cosheaves, preprint, arXiv:1209.2995v4. 2. A. Slavik and J. Trlifaj, Very flat and locally very flat modules, preprint. Cohomology of cohomological Mackey functors Thomas Weigel Universita’ di Milano-Bicocca [email protected] Coautores: Blas Torrecillas, Claudio Quadrelli Mackey functors have been introduced by A. Dress around 40 years ago. The category of cohomological Mackey functors of a finite group G coincides with the category of contravariant additive functors of the category of finitely generated Z[G]permutation modules. In this short talk I would like to present several old and new results concerning the structure and cohomology theory of cohomological Mackey functors for a finite group G. The first classical theorem which should be mentioned in this context is Hilbert’s theorem 94. It states that for a finite cyclic Galois extension of number fields L/K the order of the capitulation kernel is divisible by |L : K |. We will see that this statement is an easy consequence of the general features of cohomological Mackey functors for cyclic groups. Indeed, it also provides an interpretation if the multiplication arising in this context. This short talk is based on joint work with B. Torrecillas and C. Quadrelli. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S18. Modelización y predicción estocásticas http://rsme2015.ugr.es/s18.php Clasificación multinomial de datos funcionales mediante regresión penalizada de mínimos cuadrados parciales M. Carmen Aguilera-Morillo Dpto. de Estadística. Universidad Carlos III de Madrid [email protected] Coautores: Ana M. Aguilera (Universidad de Granada) y Mariano J. Valderrama (Universidad de Granada) El objetivo de este trabajo es clasificar un conjunto de datos funcionales de acuerdo a una variable de respuesta multinomial. Para conseguirlo se propone una metodología basada en análisis siscriminante lineal (LDA) de la variable de respuesta multinomial sobre un conjunto óptimo de componentes de mínimos cuadrados parciales funcionales (FPLS). Con objeto de mejorar la estimación de las componentes PLS y la capacidad de clasificación del modelo, se introducirán además, distintas formas de estimación penalizada del modelo de regresión FPLS. La precisión de las estimaciones obtenidas será evaluada son datos simulados y datos espectrales del campo de la quimiometría. Procesos de difusión hiperbolásticos. Estimación mediante nuevos algoritmos metaheurísticos Antonio Jesús Barrera García Universidad de Granada [email protected] Coautores: Patricia Román Román (Universidad de Granada) y Francisco Torres Ruiz (Universidad de Granada) Las curvas hiperbolásticas representan un avance importante en el estudio matemático de fenómenos dinámicos, en particular fenómenos de crecimiento, en los últimos años. Su flexibilidad y versatilidad las sitúan por delante de curvas clásicas ampliamente usadas como las curvas Gompertz o Weibull, permitiéndoles además abarcar un amplio espectro de campos de investigación, siendo la Biomedicina su principal marco de aplicación. Sin embargo, su uso original queda restringido al ámbito determinista. Por esto se hace necesaria una extensión al plano estocástico, considerando para ello la evolución hacia un proceso de difusión hiperbolástico que pretenda abarcar en su desarrollo aquellos elementos aleatorios presentes en cada fenómeno y cuya influencia no puede ser ignorada. En este proceso de extensión al campo estocástico, se introducen nuevos elementos matemáticos que incrementan la complejidad a la hora de poder estimar los modelos considerados. Para considerar estos problemas se emplean nuevos algoritmos metaheurísticos, como el algoritmo Firefly, capaces de obtener soluciones con un bajo coste computacional y que, junto al desarrollo teórico en el campo de los procesos estocásticos, configuran una solución completa ante los nuevos enfoques que demandan los problemas actuales. 124 S18. Modelización y predicción estocásticas 125 Inferencia en procesos de Cox mediante Análisis de Datos Funcionales Paula R. Bouzas Dpto. de Estadística e I.O. Universidad de Granada [email protected] Coautores: Nuria Ruiz-Fuentes (Universidad de Jaén) La literatura ofrece diferentes métodos de inferencia para procesos de recuento y en particular para procesos de Cox. La mayoría de esos métodos se centran en la estimación más que en la predicción, y a su vez, asumen una cierta estructura estocástica de la intensidad del proceso. En este trabajo se revisa una alternativa hasta los resultados más recientes. El proceso de Cox tiene como intensidad un proceso estocástico en si mismo y caracteriza al primero; de ahí la importancia de su estudio. El Análisis de Datos Funcionales permite modelizar un proceso estocástico a partir de sus observaciones. Por lo tanto, la intensidad es subceptible de ser abordada mediante esta técnica modelizándose sin más asunciones y, por consiguiente, el propio proceso de Cox. Desde esta perspectiva, es posible hacer inferencia a partir solamente de funciones muestrales. Además de estimar y predecir los procesos intensidad y media del de Cox, tambén se hace con otros estadísticos de recuento o tiempo. Este método de inferencia se amplía incluso a generalizaciones del proceso de Cox como el compuesto, el multicanal o en el tiempo-espacio. Aún más, permite construir tests de bondad de ajuste para contrastar la intensidad de éstos. Los procesos de Cox modelizan gran cantidad de fenómenos reales (recuento de operaciones financieras, emisiones de isótopos, puntos de cambio de una magnitud, etc.) por lo que su aplicación es muy extensa. Optimal designs subject to cost constraints in simultaneous equations models Victor Manuel Casero Alonso Departamento de Matemáticas. Universidad de Castilla-La Mancha [email protected] Coautores: Jesús López Fidalgo (Universidad de Castilla-La Mancha) A procedure based on a multiplicative algorithm for computing optimal experimental designs subject to cost constraints in SE models is presented. A convex criterion function based on a usual criterion function and an appropriate cost function is considered. A specific L-optimal design problem and a numerical example are taken from Conlisk (1979) to compare the procedure. The problem would need integer non-linear programming to obtain exact designs. To avoid this he solves a continuous non-linear programming problem and then he rounds-off the number of replicates of each experiment. The procedure provided here reduces dramatically the computational efforts computing optimal approximate designs. It is based on a specific formulation of the asymptotic covariance matrix of the full-information maximum likelihood estimators, which simplifies the calculations. The design obtained for estimating the structural parameters of the numerical example by this procedure is not only easier to compute, but also more efficient than the design provided by Conlisk. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S18. Modelización y predicción estocásticas 126 Extendiendo el clasificador-DD en el contexto funcional Manuel Febrero Dpto. Estadística e I.O. Universidad de Santiago de Compostela [email protected] Coautores: Juan Cuesta (Universidad de Cantabria) y Manuel Oviedo (Universidad de Santiago de Compostela) El gráfico- DD es una herramienta basada en profundidad que fue introducida por Liu et al. (1999) para la comparación gráfica de dos grupos o distribuciones multivariantes. Un gráfico-DD es un gráfico bidimensional donde se dibuja el par (D1(x);D2(x)),siendo Di(x), la profundidad del elemento x respecto al grupo i-ésimo. Usando este gráfico, Li et al. (2012) desarrollaron un clasificador no paramétrico mejor que el principio de máxima profundidad pero con algunas limitaciones. Este trabajo tiene dos objetivos: primero extender el clasificador-DD para más de dos grupos, segundo, aplicar métodos de clasificación multivariante de fácil interpretación a los gráficos-DD para obtener diagnósticos útiles para el proceso de clasificación. A lo largo de este trabajo se revisarán varias nociones de profundidad para datos funcionales al mismo tiempo que se aplica a la nueva propuesta llamada clasificador-DDh. El trabajo se completa con un estudio de simulación y la aplicación a varios conjuntos clásicos de la literatura de clasificación con datos funcionales. Estimación Gaussiana basada en un procesamiento cuaternión ampliamente lineal Rosa María Fernández-Alcalá Dpto. de Estadística e I.O. Universidad de Jaén [email protected] Coautores: Jesús Navarro-Moreno (Universidad de Jaén) y Juan Carlos Ruiz-Molina (Universidad de Jaén) Se presenta una solución al problema clásico de estimación Gaussiana bajo una formulación continuo-discreta, que se basa en un modelo cuaternión que incorpora tanto la información proporcionada por la señal como la correspondiente a la señal cuadrada. Específicamente, dado un proceso observación complejo observado en presencia de ruido propio blanco Gaussiano aditivo, se define un nuevo proceso observación cuaternión formado por las partes real e imaginaria del proceso observación original y de su cuadrado. Entonces, aplicando un procesamiento cuaternión ampliamente lineal (CAL) y la teoría de los desarrollos en serie de procesos estocásticos, se obtiene un estimador subóptimo expresado como la suma del estimador complejo ampliamente lineal y una función compleja, que mejora a la solución basada en el procesamiento complejo ampliamente lineal. Finalmente, se propone un algoritmo recursivo para el cálculo del estimador CAL propuesto y su error asociado. A modo de aplicación, se incluye un ejemplo de simulación. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S18. Modelización y predicción estocásticas 127 Modelización de fallos mediante el proceso MAP no estacionario Rosa E. Lillo Dpto. de Estadística. Universidad Carlos III de Madrid [email protected] Coautores: Joanna Rodríguez (Universidad Carlos III de Madrid) y Pepa RamírezCobo (Universidad de Cádiz) El proceso de llegadas estacionario Markovian Arrival Processes (MAP) ha sido utilizado en la literatura en la modelización de tiempos de llegadas que no se pueden asumir ni independientes, ni exponenciales, lo cual ocurre con bastante frecuencia en la sucesión de fallos de componentes de sistemas de diferente índole. Sin embargo, cuando se analizan datos en el contexto de fallos se puede observar que asumir que los tiempos entre-fallos son idénticamente distribuidos no es correcto en todas las situaciones. En este sentido, el trabajo que se presenta analiza las propiedades del proceso MAP no estacionario que permite tiempos entre-llegadas no igualmente distribuidos. En concreto, se obtiene su forma canónica y sus bondades en la modelización de fallos cuando se observan varias muestras independientes, pues permite obtener de forma matricial las cantidades de interés asociadas a la fiabilidad del sistema. La inferencia del proceso también se ha estudiado y se ilustra con un conjunto de datos reales que recoge fallos de componentes eléctricas. Modelización estocástica del crecimiento tumoral en presencia de terapias. Problemas de tiempos de primer paso Patricia Román Román Dpto. de Estadística e I.O. Universidad de Granada [email protected] Coautores: Francisco Torres Ruiz (Universidad de Granada) Se aborda el problema de la modelización del crecimiento de tumores mediante procesos de difusión. A partir de procesos de difusión conocidos que modelizan el crecimiento tumoral, se consideran procesos modificados mediante funciones temporales afectando a su tendencia que describen el efecto de terapias. Dichas terapias pueden afectar tanto al crecimiento como a la muerte celular por lo que las funciones temporales introducidas pueden afectar a los distintos parámetros del proceso. Se plantean procedimientos para el ajuste de tales funciones temporales y se proponen metodologías que permiten deducir la naturaleza (o, al menos, el efecto prevalente) de una terapia en estudios experimentales. El estudio de problemas de tiempo de primer paso permitirá comparar la efectividad de diversos tratamientos a través del estudio de índices estocásticos alternativos al TGI (Tumor Growth Inhibition) y TGD (Tumor Growth Delay). Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S18. Modelización y predicción estocásticas 128 D-MAPs en la modelización de un sistema multi-estados de fiabilidad con mantenimiento preventivo Juan Eloy Ruiz-Castro Dpto. de Estadística e I.O. Universidad de Granada [email protected] El mantenimiento preventivo juega un papel muy importante en el campo de la fiabilidad. Uno de los objetivos en la modelización de sistemas de fiabilidad es el de evitar los fallos del mismo o retrasar su aparición. En muchas ocasiones el fallo de un sistema puede ocasionar daños materiales y personales que pueden ser evitados mediante mantenimiento preventivo. Por otro lado, para aumentar la fiabilidad de un sistema se consideran unidades dispuestas en redundancia. En este trabajo se analiza un sistema multi-estados complejo de fiabilidad con componentes en redundancia activa que evoluciona en tiempo discreto. El sistema está compuesto por la unidad principal (online) y resto en redundancia activa. En cualquier tiempo las unidades pueden sufrir fallos reparables debido al desgaste de las mismas. Además, el desgaste de la unidad principal puede sufrir fallos no reparables que pueden ocurrir desde cualquier estado. Cuando ocurre un fallo reparable la unidad va al canal de reparación donde hay un reparador para realizar un mantenimiento correctivo. El tiempo de reparación correctivo depende de si la unidad falló siendo la principal o una en reserva. En el caso de que el fallo sea no reparable dicha unidad es reemplazada inmediatamente por otra igual y nueva. De forma aleatoria se realizan inspecciones sobre la unidad principal, de tal manera que si se observan daños considerables, susceptibles a fallo, entonces la unidad pasa a canal de reparación para que se le realice mantenimiento preventivo. Se ha modelizado el sistema mediante procesos markovianos y procesos de llegadas markovianas en tiempo discreto (DMAP), obteniendo las medidas y resultados asociados de forma algorítmica a través de expresiones algebraico matriciales. Multivariate autoregressive Hilbertian prediction Javier Álvarez Liébana Dpto. de Estadística e I.O. Universidad de Granada [email protected] Coautores: M. Dolores Ruiz-Medina (Universidad de Granada) This paper deals with the problem of functional prediction in the framework of multivariate autoregressive Hilbertian processes. The asymptotic properties of the formulated plug-in predictor in a multivariate infinite dimensional framework are analyzed. Specically, well-known results from the operator algebra and, in particular, noncommutative algebra theory are applied in the derivation of these asymptotic properties, considering a multivariate spectral functional decomposition of the covariance and autocorrelation operator matrices. A simulation is carried out to illustrate the results obtained in the context of Gaussian surfaces with temporal autoregressive interaction. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S19. Singularidades http://rsme2015.ugr.es/s19.php Monodromy theorem for Artin kernels. Enrique Artal Bartolo Universidad de Zaragoza [email protected] Given a simplicial graph, its associated right-angled Artin group is a group generated by the vertices and such that two vertices commute if they are joined by an edge; the kernel of an epimorphism onto the infinite cyclic group (non vanishing on the vertices) is called an Artin kernel and its homology is in a natural way a module over a ring of Laurent polynomials. We study the module structure of this homology which can be interpreted as the homology of the Milnor fiber of a monomial function on a highly singular space for which a version of the Monodromy Theorem can be stated. It is joint work in progress with J.I. Cogolludo and D. Matei. Teoremas de Cayley-Bacharach para ecuaciones diferenciales algebraicas Antonio Campillo Universidad de Valladolid [email protected] El teorema de Cayley-Bacharach, en su versión más clásica, garantiza que si una cúbica plana pasa por ocho de los puntos base de un haz de cúbicas entonces pasa también por el noveno. Para foliaciones por curvas algebraicas sobre espacios proyectivos, también se tiene que si una foliación de grado dado tiene entre sus puntos singulares un cierto conjunto finito de puntos, entonces tiene que tener también otros relacionados con los de dicho conjunto como puntos singulares. Este tipo de resultados, obtenidos en colaboración con Jorge Olivares, pueden entenderse como versiones del teorema de Cayley-Bacharach para ecuaciones diferenciales algebraicas. Valoraciones terminales y el problema de Nash Roi Docampo IMPA, Rio de Janeiro [email protected] El espacio de arcos de una variedad parametriza gérmenes de curvas formales dentro de la variedad. En un preprint muy influyente que comenzó a circular en los años 60, Nash propone estudiar singularidades mirando al subconjunto del espacio de arcos correspondiente a los arcos que tocan el lugar singular. Este subconjunto se descompone en un número finito de componentes (las familias de Nash), y el problema de Nash consiste en encontrar una interpretación geométrica para estas familias. 129 S19. Singularidades 130 Se puede asociar a cada familia de Nash una valoración esencial. Esto es lo que se conoce como la aplicación de Nash, y es natural preguntar si es una biyección. Este acabó por ser el caso en dimensión dos (por un teorema de Fernández de Bobadilla y Pe Pereira), pero existen contraejemplos en dimensión superior. En esta charla presentaré progresos recientes en el estudio del problema de Nash en dimensión superior. En colaboración con Tommaso de Fernex, demostramos que toda valoración terminal pertenece a la imagen de la aplicación de Nash. Las valoraciones terminales se definen en el sentido del programa Mori, como aquellas valoraciones dadas por los divisores excepcionales en un modelo minimal sobre la singularidad. En dimensión dos obtenemos una nueva prueba del teorema de Fernández de Bobadilla y Pe Pereira. Links of surface singularities: a valuative approach Lorenzo Fantini Ecole Polytechnique (Paris) [email protected] After discussing some examples of Berkovich spaces, we construct a non-archimedan model for the link of the singularities of an algebraic variety. We study the structure of those spaces in the case of surfaces, deducing a characterization of log essential valuations, i.e. those valuations whose center on every log resolution of a given surface is a divisor. Families of Plane Valuations at Infinity having good algebraic and geometric properties. Carlos Galindo Pastor Universitat Jaume I [email protected] I will introduce the concept of plane valuation at infinity. On the one hand, I will give families of plane valuations at infinity of each of the types of the classification of plane valuations. I will prove that these families satisfy an analogous to the Abhyankar-Moh semigroup theorem. On the other hand, I will explain the good behavior that present global objects as the Cox ring and the cone of curves of surfaces defined by certain divisorial plane valuations at infinity. These valuations are defined on the fraction field of the polynomial ring in two variables k[x, y] and have either positive or nonnegative sign on k[x, y]. I will characterize these valuations and I will show that they need not to be related with curves with one place at infinity. Results in this talk have been obtained in collaboration with F. Monserrat. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S19. Singularidades 131 Singular curves and knot invariants Eugeny Gorsky Columbia University [email protected] The intersection of an algebraic plane curve singularity with a small 3-sphere is an algebraic link. It turns out that the topological invariants of this link (such as Alexander or HOMFLY polynomials) can be expressed in terms of the geometry of some natural moduli spaces associated with a curve. I will review these relations (due to Campillo, Delgado, Gusein-Zade, Oblomkov, Shende and others) and explain the recent computation of the Heegaard-Floer link homology, "categorifying" the Alexander polynomial. The talk is based on joint work with Andras Nemethi. Pares jacobianos Ignacio Luengo Universidad Complutense [email protected] Un par jacobiano en el plano es un par de polinomios f , g tal que su jacobiano Jac( f , g ) = 1 y φ = ( f , g ) no es un automorfismo. Describiremos como calcular el arbol de divisores comunes de f y g en el infinito y Z χ( f −1 (t ))d χ K a partir de dicho arbol. Este cálculo da una condicion fuerte que permite demostrar en ciertos casos que no exiten pares jacobianos. Una introducción a las homologías de nudos Pedro Manchón Universidad Politécnica de Madrid [email protected] En esta charla haré un pequeño recorrido por las homologías de Floer y Khovanov para nudos, presentando algunos aspectos e ideas combinatoriales. No está previsto presentar resultados nuevos. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S19. Singularidades 132 Bloques de Jordan de singularidades de Yomdin-Lê de superficie. Jorge Martín Morales Centro Universitario de la Defensa, Zaragoza [email protected] El objetivo de la charla es describir los bloques de Jordan de singularidades de Yomdin de superficie en función de su cono tangente. Las principales herramientas e ingredientes son una generalización de la fórmula de A’Campo y la sucesión espectral de Steenbrink en el contexto de las Q-resoluciones, es decir, el espacio ambiente, en lugar de ser liso, puede contiene singularidades cocientes abelianas. Utilización de códigos geométricos en Criptografía Irene Márquez Corbella École Polytechnique, Palaiseau, France [email protected] En esta charla se presenta un ataque polinomial contra el criptosistema de McEliece basado en códigos geométricos o bien en subcódigos de un código geométrico [2,3]. Este ataque permite recuperar un algoritmo de decodificación para las claves propuestas en menos de O (n 4 ) operaciones sobre Fq . En 1978 McEliece [6] introduce el primer criptosistema de clave pública basado en la teoría de códigos. La seguridad de este esquema se basa en la complejidad del problema de decodificación de un código aleatorio. Es, por tanto, un candidato interesante para la criptografía post-cuántica o, dicho de otra forma, para los criptosistemas que resisten ataques frente un hipotético ordenador cuántico. Además, la rapidez de cifrado y descifrado es mayor que la que presentan los esquemas basados en el problema de la factorización o en el problema del logaritmo discreto. Su principal inconveniente es, sin embargo, que requiere la utilización de claves de gran tamaño. En su artículo original, McEliece propone utilizar códigos Goppa binarios, esta familia sigue siendo segura. En los años posteriores, otras familias de códigos han sido propuestas para este esquema buscando reducir el tamaño de las claves. La principal exigencia es que la familia tenga un algoritmo de decodificación rápido y que permita corregir un gran número de errores. Por ejemplo (y esta lista está lejos de ser exhaustiva), los códigos Reed-Solomon Generalizados fueron sugeridos en [8], sus subcódigos en [1] y los códigos Reed-Muller binarios en [9]. Todos estos sistemas han sido atacados en tiempo polinomial o sub-exponencial [10, 7 11]. Los códigos geométricos son códigos de evaluación de funciones racionales sobre curvas algebraicas. Se trata de códigos casi-optimales (tienen una gran capacidad de corrección) y, además, se conocen algoritmos de decodificación eficaces. Estas propiedades convierten a estos códigos en una alternativa interesante para el esquema de McEliece, Janwa y Moreno los introducen con fines criptográficos en [5]. En 2008, Faure y Minder [4] plantean un ataque estructural de este criptosistema si los códigos se construyen utilizando curvas de género g ≤ 2. Sin embargo su aproximación no es generalizable a curvas de género superior. Referencias Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S19. Singularidades 133 1. T. Berger and P. Loidreau. How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr., 35:63–79, 2005. 2. A. Couvreur, I. Márquez-Corbella, and R. Pellikaan. Cryptanalysis of PublicKey cryptosystems that use Subcoces of Aalgebraic Geometry Codes. In 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), CIM-MS Series by Springer-Verlag. 2014. 3. A. Couvreur, I. Márquez-Corbella, and R. Pellikaan. A polynomial time attack against algebraic geometry code based public key cryptosystems. In ISIT 2014, IEEE Information Theory Society. 2014. 4. C. Faure and L. Minder. Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes. In ACCT 2008, pages 99–107, 2008. 5. H. Janwa and O. Moreno. McEliece public cryptosystem using algebraicgeometric codes. Des. Codes Cryptogr., 8:293–307, 1996. 6. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, 42–44:114–116, 1978. 7. L. Minder and A. Shokrollahi. Cryptanalysis of the Sidelnikov cryptosystem. In EUROCRYPT 2007, volume 4515 of Lecture Notes in Comput. Sci., pages 347–360. Springer-Verlag Berlin Heidelberg, 2007. 8. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, 15(2):159–166, 1986. 9. V. Sidelnikov. A public-key cryptosytem based on Reed-Muller codes. Discrete Math. Appl., 4(3):191–207, 1994. 10. V. M. Sidelnikov and S. O. Shestakov. On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl., 2:439–444, 1992. 11. C. Wieschebrink. Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In Post-Quantum Cryptography, volume 6061 of Lecture Notes in Comput. Sci., pages 61–72. Springer-Verlag Berlin Heidelberg, 2010. Equisingularity of families of isolated determinantal singularities. Juan José Nuño Ballesteros Universitat de València [email protected] We study the topological triviality and the Whitney equisingularity of a family of isolated determinantal singularities. On one hand, we give a Lê-Ramanujam type theorem for this kind of singularities by using the vanishing Euler characteristic. On the other hand, we extend the results of Teissier and Gaffney about the Whitney equisingularity of hypersurfaces and complete intersections, respectively, in terms of the constancy of the polar multiplicities. (Joint work with B. Oréfice-Okamoto and J.N. Tomazella) Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S20. Soluciones matemáticas e innovación en la industria http://rsme2015.ugr.es/s20.php Computation of asymptotic formulas for the maximum voltage drop in on-chip power distribution networks Maria Aguareles Departament d’Informàtica, Matemàtica Aplicada i Estadística. Universitat de Girona. [email protected] Integrated circuits have nowadays a very high density of semiconductor devices and this requires a good supply voltage across the whole chip. This is a very challenging problem from both the theoretical and technological point of view. The chip designers must control from the very preliminary stages of the design that the voltage drop in the power distribution network does not exceed the maximum allowed by the chip components. The chip design process is very tedious and long and at the very late stages of it the designers use software tools that provide precise estimations of such voltage drop throughout the chip. However, these simulations should be just a mere check that the chip specifications are met since failing to pass this check would imply an unaffordable waste of time and resources. In this talk we shall present a model, in terms of a partial differential equation, for the most used power distribution network of microchips that enables the computation of a closed formula for the maximum voltage drop which could be used by the designers to guarantee, from the very beginning the correctness of their design. We shall also comment on other possible configurations for the power network which would lead to lower power losses. Optimization applied to the management of air traffic Antonio Alonso Ayuso Risk, Time & Optimization (RiTo) and Dpto. Estadística e Investigación Operativa, Universidad Rey Juan Carlos. [email protected] Coautores: Laureano F. escudero, Javier Martín-Campo En este trabajo se presentarán dos modelos para la gestión del tráfico aéreo. El problema consiste en encontrar una planificación para los vuelos de una red de aeropuertos de forma que no se supere la capacidad de los distintos elementos del sistema (aeropuertos y sectores aéreos). Para ello, el modelo pude asignar retrasos en tierra y/o aire a parte de los vuelos, uso de rutas alternativas e, incluso, cancelación de alguno de los vuelos. A partir del modelo de optimización combinatoria propuesto por Bertsimas y Stock en 1998, son varias las extensiones que se han ido presentando en la literatura, con modelos de optimización combinatoria muy feries que permiten obtener soluciones a problemas reales en tiempos computacionales razonables. En este trabajo presentaremos un modelo matemático basado en problemas de flujos compatibles a coste mínimo que permite relajar algunas de 134 S20. Soluciones matemáticas e innovación en la industria 135 las hipótesis más restrictivas que se imponían en los modelos anteriores, con lo que mejora su aplicabilidad. Pseudocodes for optical encoders Joaquim Bruna Centre de Recerca Matemática (CRM) y Servicio de Consultoría y Transferencia (SCT), Universitat Autònoma de Barcelona [email protected] Los encoders ópticos son dispositivos de alta precisión que permiten determinar la posición y velocidad de un eje giratorio en todo momento, con una determinada resolución N, cuyo valor puede llegar a ser de 10000, es decir se miden diezmilésimas de grado en la posición. Para ello se utilizan dos señales ópticas basadas en laser, una señal de referencia Z y una segunda señal A que referida a A da la posición y mide revoluciones. La señal Z ha de ser mucho mas intensa que la A. El cómo generar Z acaba siendo matemáticamente un problema de teoría de códigos, concretamente el de la generación de señales binarias cuya función de autocorrelación no circular sea óptima en un cierto sentido. En la presentación se explicará principalmente el contexto y desarrollo matemático del problema que, sorprendentemente, muestra que la solución aportada a la empresa és la óptima teórica. A Mathematical Model for an Application to Satellite Images Bartomeu Coll TAMI (Tratamiento y Analisis Matematico de Imagenes), Depto. Ciencias Matematicas e Informatica. Universitat de les Illes Balears. [email protected] Coautores: J. Duran, A. Buades, C. Sbert Many Earth observation satellites provide continuously growing quantities of remote sensing images useful for a wide range of tasks. Most satellites decouple the acquisition of a panchromatic (grayscale) image at high spatial resolution from the acquisition of a multispectral image at lower spatial resolution. The pansharpening problem refers to the fusion process of inferring a high-resolution multispectral image from a high-resolution panchromatic image and a low-resolution multispectral one. We present a functional that incorporates a nonlocal regularization term and two fidelity terms, one describing the relation between the panchromatic and the high-resolution spectral channels and the other one preserving the colors from the low-resolution modality. This model is applied on real images from the satellite Pléiades thanks to a joint project with CNES, the French spatial agency. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S20. Soluciones matemáticas e innovación en la industria 136 Heuristic Optimization to design Solar Power Tower systems Carmen-Ana Domínguez-Bravo Instituto Universitario de Investigación de Matemáticas (IMUS) Universidad de Sevilla [email protected] Coautores: Emilio Carrizosa, Enrique Fernández-Cara, Manuel Quero The design of solar power tower systems involves, among others, the heliostat field design (heliostats number, location and size) and the receiver design (number, size, position, aperture tilt, etc.). The different problems under consideration have been written as large-scale nonlinear nonconvex mathematical optimization problems. Under a contract financed by Abengoa Solar NT, the research team has designed a prototype implementing new algorithms to address the above mentioned issues. Due to the large dimensionality of the problem (thousands of variables), the time-consuming evaluation of the objective function (given by a blackbox procedure) and the highly nonconvex shape of the feasible region, heuristics have been developed. As output of the project, designs with higher efficiency than those reported in the literature are being obtained, and unexplored challenges so far have been answered as well. Stochastic optimization for risk management in energy generation capacity and transmission expansion problem Laureano Escudero Universidad Rey Juan Carlos, Mostoles, Madrid. [email protected] Coautores: M.A. Garín, M. Merino, G. Pérez One of the great and difficult problems that EU is facing today consists of the estimation of timing for clean power generation technologies and electricity free transmission expansion network at a pan-European level in a long term (e.g., 30 years time horizon). EU has established aggressive pollutant emission reduction targets: a 20 Progressive Visibility Recovery on Mammographic Images Adrián Galdrán Tecnalia Research & Innovation and the University of the Basque Country (UPV/EHU) [email protected] With the introduction of digital mammography, image processing and computer vision algorithms are becoming standard in the field of mammographic image analysis, to support diagnosis and early cancer detection. In this context, image enhancement methods are regularly applied, in order to improve the visibility of abnormalities within the breast, as well as to serve as a pre-processing step to ease posterior tasks such as segmentation, detection or classification. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S20. Soluciones matemáticas e innovación en la industria 137 In this talk, we present recent the latest advances in the Computer Vision group of Tecnalia to design an iterative visibility recovery algorithm, able to gradually increase quality of a mammogram. Contrarily to other one-step methods, our approach ensures that potentially critical image characteristic are preserved and available to visual examination, since starting from the original image, subsequent improved versions of it remain accessible to the radiographer that can easily appreciate the evolution of the enhancement process. Uncertainty Quantification and its role in designing efficient simulations for biomedical applications Luca Gerardo-Giorda Basque Center for Applied Mathematics (BCAM), Bilbao. [email protected] Mathematical modeling and Scientific computing have been closely interacting with medical science for the last 25 years at least. The possibility of performing a virtual surgery on a patient-specific geometry is fundamental to have additional, noninvasive, insights at both diagnostic and prognostic levels. Numerical models and fast dedicated solvers already exist and allow in-silico exploration of the mechanisms underlying the pathologies of interest at the cost of large-scale simulations, and CFD (Computational Fluid Dynamics) and electrophysiological simulations on real geometries extracted from medical imaging have become an important supporting tool in advanced clinical practice. In particular, CFD simulations are today a standard step in the decision process for both cardiovascular surgeons treating diseases such as cerebral aneurisms, arterial stenosis, and bypass design, and nasal surgeons that need to assess the performance of a given morphology of the nose. However, such techniques suffer from a series of limitations that question their reliability in view of their direct application to the bedside in clinical routine. In particular, such methodologies are based on deterministic models that do not fully take into account the huge variability associated with such complex problems. The reconstruction of the geometry of interest using MRI or CT scan is affected by errors, the coefficients of the models are known only through a range of admissible values, and the boundary conditions may significantly vary in time, entailing meaningless simulations. In order to overcome such limitations, Uncertainty Quantification (UQ) can be used: UQ is a broad term encompassing a variety of methodologies whose common goal is the assessment of the effect that input uncertainties have on the response output of interest. In this talk I will highlight the impact of UQ in designing reliable simulations. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S20. Soluciones matemáticas e innovación en la industria 138 New trends in TEWS: Establishing the HySEA-tsunami model for the Italian TEWS José Manuel González Vida Dpto. Matemática Aplicada. Universidad de Málaga. [email protected] Coautores: M. J. Castro, J. Macías, M. de la Asunción, C. Parés, I. Molinari, D. Melini, F. Romano, R. Tonini, S. Lorito, A. Piatanesi The current state of the art for the propagation phase in TEWS (Tsunami Early Warning Systems) relies on databases of pre-computed elementary tsunami scenarios and on the linearity of the propagation of tsunami waves in deep waters. The inundation phase sometimes is computed in reduced coastal domains or estimated using empirical formulations, both methods using as input the result of the precomputed propagation phase. Up to date no TEWS around the world performs real time simulations to reproduce, in much faster than real time, observed submarine tsunamigenic earthquakes effects in coastal areas. This strategy of direct real time computation, that could seem unfeasible a decade ago, it is now foreseeable thanks to the astonishingly recent increase in the computational power and band wide evolution of modern GPUs. The INGV in collaboration with the EDANYA Group (University of Málaga) are proposing a new paradigm in TEWS by using a FTRT (Faster Than Real Time) Tsunami Simulation approach to be implemented in the Italian TEWS, namely the Centro Allerta Maremoti (CAT), which will be preoperational starting from 1 October 2014, in the 24/7 seismic monitoring room at INGV. Tsunami-HySEA model, developed by EDANYA Group, implements in the same code the three phases of an earthquake generated tsunami: generation, propagation and coastal inundation. The generation step implements the classical Okada model. Once initial conditions are generated, both propagation and inundation steps are computed using an efficient GPU-based model which uses mixed finitedifference and finite volume schemes. At the same time, this model has been implemented in nested meshes with different resolution and multi-GPU environment, which allows much faster than real time simulations. The challenge set by the Italian TEWS is to be able to compute the generation, propagation and a first inundation stage of a tsunami generated in the Mediterranean Sea, in computation time below few minutes for the whole basin. Optimizing the supply of weighted customer-oriented services: blood transfusions items on sale, and tourist attractions Carlos Gorria The University of the Basque Country (UPV/EHU) [email protected] Coautores: M. Lezaun, F. J. López In this work there are shown three cases of optimization models developed by our research group in collaboration with a healthcare institution and with two private companies. The first one concerns an inventory problem related to the optimal management of blood stock and transfusions. The other two concern statistical tools that adapt leisure, entertainment and tourist services to the customerŠs preferences. The degree of accuracy reached by the solution is highly influenced by the correct choice of the model, the availability of resources of the service provider and Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S20. Soluciones matemáticas e innovación en la industria 139 the demand forecast. Several mathematical tools are used in order to get a good fit between the predicted results and the real observations. 3-D Wind Fields Simulation over Complex Terrain Gustavo Montero University Institute for Intelligent Systems and Numerical Applications in Engineering, SIANI, University of Las Palmas de Gran Canaria [email protected] Coautores: A. Oliver, E. Rodríguez, J. Ramírez, J.I. López, M. Brovka, J.M. Escobar, F. Díaz, G.V. Socorro, R. Montenegro, J.M. Cascón A new methodology for wind field simulation or forecasting over complex terrain is introduced. The idea is to use wind measurements or predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model. The method has been recently implemented in the freelyavailable Wind3D code. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in. HARMONIE provides wind prediction with a maximum resolution about 1 Km that is refined by the finite element model in a local scale (about a few meters). An interface between both models is implemented such that the initial wind field approximation is obtained by a suitable interpolation of the HARMONIE results. The final model approximation is adjusted to this interpolated field verifying incompressibility and tangency to terrain. In addition, measured data can be considered to improve the reliability of the simulations. An automatic tetrahedral mesh generator, based on the meccano method, is applied to adapt the three-dimensional discretization to complex terrains. This method combines several former procedures: a mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. The key of the method lies in defining a one-to-one volumetric transformation between the parametric domain (a simple cuboid in this case) and the physical domain. The main characteristic of the whole framework is a minimal user intervention. The final goal is to validate our model in several realistic applications in Gran Canaria Island, Spain. For this purpose, genetic algorithms are used to obtain the optimal model parameter values. These wind simulations can also be used for air pollution modeling. Mathematics at the nanoscale Tim Myers Centre de Recerca Matematica (CRM) and Dept. de Matematica Aplicada I, Universitat Politecnica de Catalunya, Barcelona. [email protected] In this talk I will briefly discuss a number of applications of mathematics to research topics in nanotechnology. 1. Phase change: The mathematical description of the change of phase of a substance, for example from liquid to solid, is well established. However, in certain situations the standard formulations break down. I will describe our recent work Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S20. Soluciones matemáticas e innovación en la industria 140 on the melting of nanoparticles which includes two important effects that are normally neglected: the decrease in melt temperature due to the high value of surface tension induced stress and the density variation through the phase change. 2. Heat transfer of nanofluids: A nanofluid is a fluid containing nanoparticles. It has been suggested that nanofluids can remove significantly more heat than standard fluids and so may be able to solve the imminent crisis of heat removal in modern electronic devices. We will develop a time-dependent model for the heat flow to show that the ŠanomalousŠ increase in the thermal conductivity of the fluid is actually captured by a simple mathematical model. We will then use boundary layer theory to show how perhaps the most popular model for nanofluid flow, which has been used by numerous authors to explain enhanced heat transfer, in fact predicts the opposite result. 3. Enhanced flow in carbon nanotubes: Carbon nanotubes are viewed as one of the most exciting new materials with applications in electronics, optics, materials science and architecture. One unusual property s that liquid flows through nanotubes have been observed up to five orders of magnitude faster than predicted by classical fluid dynamics. I will describe a model for fluid flow in a CNT and show that the theoretical limit is closer to 50 times the classical value. This result is in keeping with recent experimental and molecular dynamics papers. Along the way we will see a physical interpretation of the Navier slip length for atomically smooth surfaces. Presentación de la Red Española Matemática-Industria math-in Carlos Parés Ecuaciones Diferenciales, Análisis Numérico y Aplicaciones (EDANYA) Universidad de Málaga and Member of the management board of math-in [email protected] Esta presentación inaugural comenzará con un saludo y bienvenida a los participantes y asistentes, informándoles del ámbito y propósitos de la sesión. Seguidamente un miembro de la junta directiva de la red de matemática industria “math-in” hará una breve exposición de la composición, funcionamiento, historia y objetivos de la asociación, de los grupos que la componen y del tipo de sectores industriales que más demandan la cooperación con grupos de investigación de matemáticas. Mesh adaptation and fluid dynamic simulation for industrial applications Lakhdar Remaki BCAM- Basque center for applied mathematics, Bilbao, Spain [email protected] The talk will be on the fluid dynamic simulation by the discretization of NavierStokes equations by a cell-centered finite volume method. A mesh adaptivity technique will be presented focusing on a shock-filtering PDE-based model that allows better capturing of multiple-shocks. The talk will end with some applications to challenging industrial problems. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S21. Teoría de aproximación y funciones especiales de la física matemática http://rsme2015.ugr.es/s21.php Una generalización del concepto de pares coherentes al caso discreto y sus aplicaciones Renato Álvarez-Nodarse Universidad de Sevilla [email protected] Coautores: J. Petronilho, N. C. Pinzón-Cortés y R. Sevinik-Adıgüzel Sean dos sucesiones de polinomios {P n (x)}n≥0 y {Q n (x)}n≥0 ortogonales con respecto a los funcionales lineales regulares U y V , respectivamente. Diremos que el par (U , V ) es un par (M , N )-coherente de orden (m, k) si las familias {P n (x)}n≥0 y {Q n (x)}n≥0 satisface la siguiente relación de estructura: ΣiM=0 a i ,n D m P n+m−i (x) = ΣiN=0 b i ,n D k Q n+k−i (x), n ≥ 0, donde M , N , m, k ∈ N ∪ {0}, a i ,n i b i ,n son números complejos tales que a M ,n 6= 0 para n ≥ M , b N ,n 6= 0 para n ≥ N , y a i ,n = b i ,n = 0 para i > n, siendo D j el operador derivada de orden j . En esta charla, vamos a mostrar como la teoría de los pares coherentes “continuous” se puede extender al caso discreto. Es decir, cuando cambiamos el operador p(x+ω)−p(x) o el operador derivada d /d x por el operador diferencias finitas D ω p(x) = ω p(q x)−p(x) q-derivada de Jackson D q p(x) = (q−1)x (ω ∈ C\{0}, q ∈ C\{0, 1}), respectivamente. Revisaremos algunos aspectos de la teoría de polinomios clásicos discretos y enumeraremos varios problemas abiertos relacionados con el problema de la coherencia discreta. Finalmente mostraremos una aplicación a los polinomios de Sobolev discretos. On para-orthogonal polynomials Ruymán Cruz Barroso Universidad de La Laguna [email protected] Coautores: Kenier Castillo, Francisco Perdomo Pío The aim of this talk is to present some new results on para-orthogonal polynomials (on the unit circle). First, the role played by the free parameter that characterizes these polynomials will be discussed, in particular, in the construction of quadrature formulas on the unit circle. Secondly, the recursive computation and analogous to the classical Favard and Geronimus-Wendroff theorems will be stated. The second part of this talk is a part of a joint work with K. Castillo and F. Perdomo-Pío. Referencias 1. K. Castillo, R. Cruz-Barroso and F. Perdomo-Pío, Para-orthogonality from a new viewpoint, submitted 2014. 141 S21. Teoría de aproximación y funciones especiales de la física matemática 142 Algunos resultados sobre la interpolación de Hermite en el intervalo acotado Jaime Díaz de Bustamante Universidad de Vigo [email protected] Coautores: Elías Berriochoa, Alicia Cachafeiro En esta charla se presentan algunos resultados sobre la interpolación de Hermite en el intervalo acotado con nodos de Chebyshev-Lobato. Se obtienen fórmulas explícitas para los coeficientes de la segunda fórmula baricéntrica. Además, se estudia su convergencia y otros problemas relacionados. Polinomios ortogonales multivariantes y sistemas integrables Manuel Mañas Baena Universidad Complutense de Madrid [email protected] Coautores: Gerardo Araznibarreta En esta charla abordaremos como la factorización de Gauss-Borel de la matriz de momentos es útil en la descripción de polinomios ortogonales multivariantes. Consideramos tanto polinomios con medidas soportados en el espacio euclidiano como polinomios de Laurent en el toro unitario. Obtenemos fórmulas de recurrencia y de Christoffel-Darboux. También presentamos flujos integrables discretos y continuos con los correspondientes elementos de la teoría de integrabilidad como funciones de onda, pares de Lax, ecuaciones de curvatura nula, ecuaciones bilineales y matrices quasi-tau. En particular para el caso discreto tratamos las transformaciones de Darboux elemental y su iteración. Todos estos elementos son expresados en términos de quasi-determinantes. Uniform convergence of Hermite-Padé approximants for different systems of Markov type functions Sergio Medina Peralta Universidad Carlos III de Madrid [email protected] This talk deals with simultaneous rational approximation. In particular we study type I and type II Hermite-Padé approximants of analytic and meromorphic functions of Markov type. In the literature one can find a number of results on the convergence of type II Hermite-Padé approximants, in this talk we present recent result about the convergence of type I Hermite-Padé approximants to a Nikishin system which has been perturbed by rational functions. This kind of problem was first study by A.A Gonchar in 1975 for the usual Padé approximantion. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S21. Teoría de aproximación y funciones especiales de la física matemática 143 Special functions in a discrete Laplacian Luz Roncal Gómez Universidad de La Rioja [email protected] Coautores: Ó. Ciaurri, T. A. Gillespie, P. R. Stinga, J. L. Torrea, J. L. Varona. It is known that the fundamental solution to u t (n, t ) = ∆d u(n, t ) := u(n + 1, t ) − 2u(n, t ) + u(n − 1, t ), n ∈ Z, t > 0, with u(n, 0) = δnm for every fixed m ∈ Z, is given by u(n, t ) = e −2t I n−m (2t ) (see [3] and [4]), where I k (t ) is the Bessel function of imaginary argument. Consequently, the heat semigroup is given by the formal series Wt f (n) = Σm∈Z e −2t I n−m (2t ) f (m). This function is the solution to the discrete heat equation with initial data { f (n)}n∈Z . Other second order differential operators and the associated discrete heat kernels arise when dealing with equations connected with physics, see [4,5]. By using semigroup theory, the formula for Wt f (n) will allow us to tackle problems in two different contexts. • On one hand, we will define and analize some classical operators of the Harmonic Analysis associated with the discrete Laplacian ∆d , such as maximal operators, square functions, and Riesz transforms [1]. • On the other hand we will be able to define the fractional powers of the discrete Laplacian on a mesh of size h and then to show the convergence to the fractional Laplacian on the whole space in the discrete supremum norm as h → 0 [2]. Since the discrete heat semigroup is given in terms of modified Bessel functions, the careful and exhaustive use of some properties and facts about these functions is crucial to get the results. The work is in collaboration with Ó. Ciaurri, T. A. Gillespie, P. R. Stinga, J. L. Torrea and J. L. Varona. Referencias 1. Ó. Ciaurri, T. A. Gillespie, L. Roncal, J. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, arXiv:1401.2091, to appear in J. Anal. Math.. 2. Ó. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea and J. L. Varona, The discrete fractional Laplacian, preprint (2014). 3. F. A. Grünbaum, “The bispectral problem: an overview”, in Special functions 2000: current perspective and future directions (Tempe, AZ), 129–140, NATO Sci. Ser. II Math. Phys. Chem. 30, Kluwer Acad. Publ., Dordrecht, 2001. 4. F. A. Grünbaum and P. Iliev, Heat kernel expansions on the integers, Math. Phys. Anal. Geom. 5 (2002), no. 2, 183–200. 5. P. Iliev, Heat kernel expansions on the integers and the Toda lattice hierarchy, Selecta Math. (N. S.) 13 (2007), no. 3, 497–530. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S21. Teoría de aproximación y funciones especiales de la física matemática 144 Some interesting examples of discrete families of orthogonal matrix polynomials Vanesa Sánchez Canales Universidad de Sevilla [email protected] Coautores: Antonio Durán Guardeño In this talk we show several examples of discrete orthogonal matrix polynomials in arbitrary size defined by a matrix Rodrigues’ formula. These examples satisfy some interesting properties: they are eigenfunctions of a second order difference operator, their differences are orthogonal. We also show that these properties are equivalent in the scalar case but not in the matrix one. Ortogonalidad polinómica: entropía, complejidad y entrelazamiento Jesus Sánchez-Dehesa Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada [email protected] La ortogonalidad polinómica de tipo Shohat-Favard (también llamada, a veces, clásica o hipergeométrica) no solo ha jugado un papel fundamental en el desarrollo de la teoría de funciones especiales, sino que ha sido determinante en numerosos problemas científicos. En particular, ha permitido calcular analíticamente las soluciones exactas de la ecuación de movimiento mecano-cuántica no-relativista (i.e., ecuación de Schrödinger) de un conjunto reducido de sistemas físicos realistas, que incluye el hidrógeno. Ello ha posibilitado recientemente la determinación de las medidas teórico-informacionales de tales sistemas en términos de funcionales polinómicos de tipo entrópico y de complejidad, cuyo significado y cálculo matemáticos serán tratados en esta charla. Además se discutirá la necesidad de otros tipos de ortogonalidad polinómica (e.g., matricial, multivariada) para poder explicar los efectos relativistas y de entrelazamiento en los sistemas cuánticos. Una realización espectral de los ceros de Riemann Germán Sierra Rodero Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid [email protected] Polya y Hilbert conjeturaron entorno a 1910 que la hipótesis de Riemann podría ser demostrada si la parte imaginaria de los ceros no triviales de la función zeta de Riemann fueran los autovalores de un Hamiltoniano. Existen numerosos indicios de la existencia de dicho Hamiltoniano procedentes de la Teoría de Matrices Aleatorias y del Caos Cuántico. En la charla mostraremos cómo los ceros de Riemann aparecen en el espectro de un fermión de Dirac en un espacio tiempo de Rindler y sometido a un potencial construído a partir de los números primos. Este resultado confirma la conjetura de Polya y Hilbert y podría llevar a una demostración de la hipótesis de Riemann. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S21. Teoría de aproximación y funciones especiales de la física matemática 145 Mordell integrals and supersymmetric gauge theory Miguel Tierz Parra Universidad Complutense de Madrid [email protected] We show how to compute observables of Chern-Simons theories with supersymmetric matter, using Mordell integrals. We also explain how these results follow from the random matrix model description of the gauge theory and the ensuing orthogonal polynomial solution. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S22. Teoría de números http://rsme2015.ugr.es/s22.php Curvas de género 3 y realizaciones de GSp6 (F` ) como grupo de Galois sobre Q Sara Arias de Reyna Domínguez University of Luxembourg [email protected] Coautores: Cécile Armana, Valentijn Karemaker, Marusia Rebolledo, Lara Thomas, Núria Vila Dada una curva C de género n, definida sobre el cuerpo Q de los números racionales y un número primo `, la acción del grupo de Galois absoluto G Q sobre los puntos de `-torsion de la variedad Jacobiana J (C ) asociada a C proporciona una representación de Galois ρ ` : G Q → GSp2n (F` ), que a su vez nos proporciona una realización de la imágen de ρ ` como grupo de Galois sobre Q. En esta charla consideramos el siguiente problema para dimensión n = 3: dado un primo `, construir explícitamente una curva C de género 3 sobre Q tal que la imagen de ρ ` coincida con GSp6 (F` ). Nuevos métodos para el cálculo de invariantes de factorización no única Pedro A. García-Sánchez Universidad de Granada [email protected] Recientemente el estudio de las factorizaciones en dominios de integridad se ha trasladado al ambiente de los monoides (pues podemos prescindir de la suma). Así términos como dominio de factorización única y dominios de factorización media (todas las factorizaciones de un elemento tienen igual longitud) pasan a estudiarse en monoides cancelativos (e incluso no cancelativos o no conmutativos). Invariantes como la elasticidad, catenariedad, amansamiento y w-primalidad se tratan desde el punto de vista de las presentaciones del monoide. Podemos así usar grafos asociados a elementos, programación lineal entera e ideales binomiales para el cálculo de estos invariantes. Daremos ejemplos de cálculos hechos con GAP, Normaliz y Singular. 146 S22. Teoría de números 147 Torsión de curvas elípticas racionales sobre cuerpos de números Enrique González-Jiménez Universidad Autónoma de Madrid [email protected] Coautores: Filip Najman, José M. Tornero Dada una curva elíptica definida sobre el cuerpo de los racionales. Estudiamos la relación entre el subgrupo de torsión sobre los racionales y el subgrupo de torsión sobre un cuerpo de números de grado d. En esta charla, se presentan varios trabajos conjuntos que abarcan el caso cuadrático (d=2, junto con J.M. Tornero [1,2]) y el caso cúbico (d=3, junto con F. Najman y J.M. Tornero [3]). Referencias 1. E. González-Jiménez, J.M. Tornero. "Torsion of rational elliptic curves over quadratic fields". Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), 923-934. 2. E. González-Jiménez, J.M. Tornero. "Torsion of rational elliptic curves over quadratic fields II". arXiv: 1411.3468. 3. E. González-Jiménez, F. Najman, J.M. Tornero. "Torsion of rational elliptic curves over cubic fields". arXiv: 1411.3467. Pierre Fermat y su último Teorema Josep González Rovira Universitat Politècnica de Catalunya [email protected] Es una exposición histórica, que basada en la correspondencia de Fermat, intenta mostrar las técnicas y herramientas matemáticas que él utilizaba para sus demostraciones. Finalmente, la charla se centra en su último Teorema. Norma relativa y cuerpos intermedios en extensiones de cuerpos numéricos Ma Ángeles Gómez Molleda Universidad de Málaga [email protected] Daremos una demostración de la existencia, para cada extensión de cuerpos numéricos K ⊂ M , de un elemento primitivo α tal que todo cuerpo intermedio L está generado sobre K por la norma relativa NLM (α). Veremos cómo calcularlo y su aplicación en algunos casos. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S22. Teoría de números 148 Cuerpos de definición de puntos de torsión en curvas elípticas con ramificación mínima Alvaro Lozano-Robledo University of Connecticut y Universidad Autonoma de Madrid (visita) [email protected] Sea E una curva elíptica definida sobre Q, sea p un número primo, y sea n ≥ 1. Es bien sabido que el cuerpo de definición de la p n -torsión Q(E [p n ]) de una curva elíptica E contiene las p n -esimas raices de la unidad. Por tanto, la extensión de Galois Q(E [p n ])/Q se ramifica sobre el primo p, y el índice de ramificación e(p, Q(E [p n ])/Q) de un ideal primo ℘ de Q(E [p n ]) sobre p es divisible por ϕ(p n ). El objectivo de esta charla es construir curvas elípticas E /Q tales que e(p, Q(E [p n ])/Q) es precisamente ϕ(p n ), y tales que el grupo de Galois de Q(E [p n ])/Q sea tan grande como es posible, es decir isomorfo a GL(2, Z/p n Z). Elliptic curves and Diophantine triples Juan Carlos Peral Alonso UPV/EHU [email protected] Coautores: Andrej Dujella (Zagreb University) A set {a 1 , a 2 , . . . , a m } of m non-zero integers (rationals) is called a (rational) Diophantine m-tuple if a i · a j + 1 is a perfect square for all 1 ≤ i < j ≤ m. In this presentation, we consider elliptic curves of the form y 2 = (ax + 1)(bx + 1)(c x + 1), where {a, b, c} is a rational Diophantine triple. We say that this elliptic curve is induced by the Diophantine triple {a, b, c}. By Mazur’s theorem, there are at most four possibilities for the torsion group of such curves, namely, Z/2Z × Z/2Z, Z/2Z × Z/4Z, Z/2Z × Z/6Z and Z/2Z × Z/8Z. In this presentation (joint work with Andrej Dujella), we study the rank of elliptic curves induced by Diophantine triples with torsion Z/2Z × Z/4Z. The previous records for this torsion group were rank 8 over Q and rank ≥ 3 over Q(t ). We have found new examples of such curves over Q with rank 8 and one example with rank 9, and a parametric family of elliptic curves with torsion group Z/2Z × Z/4Z and with rank ≥ 4. Moveover, we will prove that its generic rank is equal to 4 and find the generators of the Mordell-Weil group by using a recent result of I. Gusi´c, P. Tadi´c. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 S22. Teoría de números 149 Descomposición de jacobianos de curvas sobre cuerpos finitos Antonio Rojas León Universidad de Sevilla [email protected] Coautores: Omran Ahmadi, Gary McGuire Consideramos el problema de cuándo el jacobiano de una curva definida sobre un cuerpo finito tiene un factor isógeno al jacobiano de otra, lo que se refleja en una relación de divisibilidad entre sus polinomios L. Existen varios ejemplos ya conocidos, provenientes de relaciones geométricas entre las curvas (por ejemplo, la existencia de un morfismo finito entre ellas). En esta charla repasaremos estos resultados anteriores y describiremos un nuevo ejemplo relacionado con una conjetura sobre ciertas sumas exponenciales. Primos y órbitas unipotentes Adrián Ubis Martínez Universidad Autónoma de Madrid [email protected] Coautores: P. Sarnak Hablaré sobre una versión cuantitativa del Teorema de Ratner para el flujo horocíclico xu n , n ∈ N, en la superficie modular y su aplicación al estudio de la distribución de los puntos xu p , con p primo. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres http://rsme2015.ugr.es/posters.php Superficies de traslación de tipo lineal Weingarten en el espacio euclídeo Antonio Bueno Departamento de Geometría y Topología, Universidad de Granada [email protected] Coautores: Rafael López Consideramos superficies en el espacio euclídeo R3 que satisfacen una relación de tipo aH + bK = c, donde a, b, y c son números reales y H y K son la curvatura media y la curvatura de Gauss, respectivamente. Estas superficies son llamadas en la literatura superficies lineales de Weingarten [3,5,6]. Esta familia de superficies generaliza a las de H constante (b = 0) y K constante (a = 0). En este trabajo estudiamos superficies de traslación, es decir, aquéllas que locamente se escriben de la forma z = f (x) + g (y), donde (x, y, z) son las coordenadas cartesianas de R3 . Las superficies de traslación con K o H constantes fueron clasificadas en [4] y son un plano, un cilindro generalizado o la superficie de Scherk. El resultado que probamos, proporcionando una demostración significativamente más simple que la que aparece en [2], es el siguiente [1]: Teorema. Una superficie lineal de Weingarten de traslación en R3 es una superficie con K constante o H constante. En particular, la superficie es congruente con un plano, una superficie mínima de Scherk, o un cilindro generalizado. Con pequeñas modificaciones, este teorema se extiende al espacio de LorentzMinkowski. Referencias 1. A. Bueno, R. López, Translation surfaces of linear Weingarten type, arXiv:1410.2510 (2014). 2. F. Dillen, W. Goemans, I. Van de Woestyne, Translation surfaces of Weingarten type in 3-space. Bull. Transilvania Univ. Brasov (Ser. III), 50 (2008), 109–122. 3. A. Gálvez, A. Martínez, F. Milán, Linear Weingarten surfaces in R 3 , Monatsh. Math. 138 (2003), 133–144. 4. H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141–149. 5. R. López, On linear Weingarten surfaces. Int. J. Math 19 (2008), 439–448. 6. H. Rosenberg, R. Sa Earp, The geometry of properly embedded special surfaces in R 3 ; e.g., surfaces satisfying aH + bK = 1, where a and b are positive, Duke Math. J. 73 (1994), 291–306. 150 Sesión de pósteres 151 Vórtices termoconvectivos secundarios en un anillo cilíndrico con calentamiento no homogéneo por debajo Damián Castaño Universidad de Castilla - La Mancha. Departamento de Matemáticas. Facultad de CC. y TT. Químicas, Ciudad Real, España [email protected] Coautores: María Cruz Navarro, Henar Herrero La importancia de los procesos termoconvectivos en la formación e intensidad de fenómenos meteorológicos como torbellinos o huracanes es bien conocida [1]. Los torbellinos se forman más fácilmente en presencia de grandes gradientes de temperatura horizontal, y la evolución de la intensidad en huracanes depende, entre otros factores, del intercambio de calor con la superficie del océano que se encuentra justo debajo del ojo [2]. Estos fenómenos atmosféricos tienen una estructura vortical común caracterizada por un movimiento primario en espiral alrededor del ojo. En numerosas ocasiones se observa la aparición de vórtices secundarios embebidos en la circulación primaria [3]. Estos vórtices secundarios siguen esencialmente trayectorias circulares concéntricas en torno al centro del torbellino. En Ref. [4], se prueba que bajo ciertas condiciones térmicas (incluyendo gradientes verticales y horizontales de temperatura) y condiciones geométricas (relación de aspecto) pueden generarse numéricamente vórtices a través de una inestabilidad termoconvectiva en un problema de Rayleigh-Bénard en un anillo cilíndrico con calentamiento no homogéneo por debajo, y con un flujo lateral de entrada/salida. Estos vórtices son estados estacionarios axisimétricos caracterizados por el giro alrededor del cilindro interior. En el póster, se mostrará cómo estas estructuras vorticales se desestabilizan a través de una bifurcación secundaria, así como la forma de dicha perturbación creciente, que nos dará información sobre el estado que se estabiliza tras la bifurcación. Hemos observado que la perturbación creciente lleva a la formación de vórtices secundarios embebidos en la circulación primaria. El resultado es relevante ya que de una manera sencilla (inestabilidades termoconvectivas) se explican las observaciones de campo en torbellinos [3]. Referencias 1. N. O. Rennó, M. L. Burkett, and M. P. Larkin, A simple thermodynamical theory for dust devils, J. Atmos. Sci 55 (1998), 3244-3252 2. K. S. Emanuel, Thermodynamic control of hurricane intensity, Nature 401 (1999), 665-669 3. P. C. Sinclair, The lower structure of dust devil, J. Atmos. Sci 30 (1973), 15991619 4. M. C. Navarro and H. Herrero, Vortex generation by a convective instability in a cylindrical annulus, Physica D 240 (2011), 1181-1188 Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 152 Boundedness of operators in Morrey spaces Óscar Ciaurri Departamento de Matemáticas y Computación, Universidad de La Rioja [email protected] Coautores: Alberto Arenas and Edgar Labarga In the last few years some classical harmonic analysis operators have been analyzed in Morrey spaces. This poster contains two new results connected with this topic. On the one hand, we study the boundedness of the partial sum operator related to Fourier–Jacobi expansions. As a consequence we characterize the convergence of these series in Morrey spaces. On the other hand, we focus on the multiplier of the interval [0, 1] for the Hankel transform of order α ≥ −1/2. In this case we consider Morrey spaces with the measure d µα (x) = x 2α+1 d x. Coutilidad: protocolos autocumplidos (self-enforcing) sin mecanismos de coordinación Josep Domingo-Ferrer Universitat Rovira i Virgili [email protected] Coautores: Jordi Soria-Comas, Oana Ciobotaru La realización de una tarea entre un conjunto de pares (peers) requiere el uso de algún protocolo que regule las interacciones entre ellos. Si los pares son racionales, pueden intentar subvertir el protocolo para su propio beneficio, en un intento de alcanzar un resultado que les proporcione más utilidad. Revisitamos los conceptos clásicos de protocolos autocumplidos (self-enforcing) implementados mediante conceptos existentes de solución de teoría de juegos. Seguidamente, describimos sus inconvenientes en aplicaciones del mundo real y proponemos un nuevo tipo de protocolos autocumplidos, llamados protocolos coútiles. Estos protocolos representan un concepto de solución que puede implementarse sin mecanismo de coordinación alguno en situaciones en que el concepto clásico de protocolo autocumplido requiere un mecanismo de coordinación. Los protocolos coútiles son claramente ventajosos en sistemas descentralizados de pares racionales, a causa de su eficiencia y equidad. Ilustramos la aplicación de protocolos coútiles a las tecnologías de la información, en concreto a preservar la privacidad de los perfiles de consulta de los usuarios de motores de búsqueda y/o bases de datos. La privacidad del perfil se mide usando teoría de la información y se emplea como función de utilidad de los usuarios. Referencias 1. J. Domingo-Ferrer, J. Soria-Comas and O. Ciobotaru (2015) “Co-utility: selfenforcing protocols without coordination mechanisms”, en Proc. of the 2015 IEEE Intl. Conference on Industrial Engineering and Operations Management, IEEE, en prensa. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 153 Simetrías en las formas reales de e6 Cristina Draper Universidad de Málaga [email protected] Coautores: Valerio Guido Una G-graduación de un álgebra, para G grupo abeliano, es una descomposición del álgebra en suma directa de subespacios indizada en G de modo compatible con el producto. En el caso de álgebras complejas, dichas graduaciones están en correspondencia con subgrupos diagonalizables del grupo de automorfismos del álgebra, lo que ha permitido clasificar todas las graduaciones finas (que no pueden partirse más) de las álgebras de Lie simples complejas finito-dimensionales. La monografía [4], recientemente publicada por la AMS, recoge dicha clasificación, con excepción de los casos e7 y e8 , de los que sólo aparece una conjetura (para más información, consultar [2]). Esta técnica no puede emplearse en el caso de álgebras reales, cuyas simetrías son bastante más desconocidas. En este póster describiremos una amplia colección de graduaciones finas en las cinco formas reales del álgebra de Lie excepcional e6 : 9 en la forma real split, 9 en e6,2 , 6 en e6,−14 , 4 en e6,−26 y 2 en el caso compacto. Es muy probable que dispongamos de la totalidad de graduaciones finas salvo equivalencia. Algunos de los precedentes en los que se apoya este trabajo son [3], en el que se clasifican las 14 graduaciones finas del álgebra compleja e6 (clasificación que también aparece en [4]), y [1], en el que se estudian las graduaciones de las formas reales de las álgebras de Lie excepcionales de dimensión inferior a la de e6 . Los resultados que presentamos en este póster son parte de la tesis doctoral [5], recientemente defendida en la Universidad del Salento y cuyos resultados están aún sin publicar. Referencias 1. A.J. Calderón, C. Draper and C. Martín. Gradings on the real forms of g2 and f4 . J. Math. Phys. 51(5) (2010), 053516, 21 pp. 2. C. Draper and A. Elduque. Fine gradings on the simple Lie algebras of type E . Note Mat. 34 (2014), no. 1, 53–86. 3. C. Draper and A. Viruel. Fine gradings on e6 . arXiv:1207.6690v1. To appear in Pub. Mat. 4. A. Elduque and M. Kochetov. Gradings on Simple Lie Algebras. Mathematical Surveys and Monographs, Vol 189. Amer. Math. Soc. 2013. 5. V. Guido. Gradings on e6 . Ph.D.Thesis. Dottorato di Ricerca in Matematica, Università del Salento, 2013-2014. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 154 Gröbner bases for modules on skew P BW extensions. Claudia Gallego Universidad Nacional de Colombia, sede Bogotá [email protected] We present the Buchberger’s algorithm for computing Gröbner bases of modules defined on a new class of noncommutative rings: the skew P BW extensions, introduced by us in [3], as a generalization of the PBW extensions established by Bell and Goodearl in [1]. Further, we show some elementary applications of this, such as: membership problem, syzygy module, presentation of a module, kernel and image of a homomorphism. Referencias 1. Bell, A. and Goodearl, K., Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensons, Pacific Journal of Mathematics, 131(1), 1988, 13-37. 2. Bueso, J., Gómez-Torrecillas, J. and Verschoren, A., Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups, Kluwer,2003. 3. Gallego, C. and Lezama, O., Gröbner bases for ideals of skew P BW extensions, Communications in Algebra, 39, 2011, 50-75. 4. Gallego, C., Gröbner bases for bijective skew P BW extensions, Preprint. 5. Lezama, O. and Reyes, M.A., Some homological properties of skew PBW extensions, Communications in Algebra, 42, 2014, 1200-1230 Multiple Geronimus transformation Juan Carlos García Ardila Universidad Carlos III de Madrid [email protected] Coautores: Maxim Derevyagin, Francisco Marcellán We consider multiple Geronimus transformations and show that they lead to discrete (non-diagonal) Sobolev type inner products. Moreover, it is shown that every discrete Sobolev inner product can be obtained as a multiple Geronimus transformation. A connection with Geronimus spectral transformations for matrix orthogonal polynomials is also considered. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 155 Álgebras de Lie cuadráticas nilpotentes Jesús A. Laliena Universidad de La Rioja [email protected] Coautores: Pilar Benito, Daniel de la Concepción Una forma bilineal simétrica, B , sobre un álgebra de Lie, L, se dice invariante si verifica: B ([x, y], z) = B (x, [y, z]) La forma Killing es una forma invariante sobre cualquier álgebra de Lie semisimple. Un álgebra de Lie nilpotente se dice cuadrática si está dotada de una forma invariante no degenerada. Las álgebras de Lie cuadráticas nilpotentes están relacionadas con la Física y la Geometría Riemanniana. Han sido investigadas por diversos autores. Así, por ejemplo, las álgebras de Lie nilptentes cuadráticas de dimensión hasta 7 fueron clasificadas en 1987 por G. Favre y I. J. Santharoubane; y I. Kath clasificó hasta las de dimensión 10 en 2007. G. Ovando probó en 2012 que hay álgebras de Lie cuadráticas 2-nilpotentes de cualquier dimensión, salvo 2 y 4. En este póster se presenta una equivalencia entre la categoría de las álgebras de Lie cuadráticas t -nilpotentes con d generadores y una categoría cuyos objetos son las formas bilineales simétricas invariantes sobre el álgebra de Lie libre t -nilpotente con d generadores, nd ,t . Con esta equivalencia se muestra que la clasificación, salvo isomorfismo, de las álgebras de Lie cuadráticas t -nilpotentes con d generadores tiene relación con la determinación de las órbitas de una acción del grupo de los automorfismos de nd ,t sobre las formas bilineales invariantes de nd ,t . Convexidad de las soluciones espaciales de la ecuación de curvatura media constante en el espacio de Lorentz-Minkowski Rafael López Departamento de Geometría y Topología. Universidad de Granada [email protected] Coautores: Alma L. Albujer (Universidad de Córdoba), Magdalena Caballero (Universidad de Córdoba) Dado un número real H ∈ R y un dominio Ω ⊂ R2 , la solución del problema de Dirichlet ! à Du = 2H , |Du| < 1 en Ω div p 1 − |Du|2 u = 0 en ∂Ω representa una superficie espacial con curvatura media constante H en el espacio de Lorentz-Minkowski R3 y con frontera ∂Ω ([2,3]). Consideramos el problema de convexidad de la solución en el caso que Ω sea un dominio compacto y convexo. Se dice que la curva ∂Ω tiene frontera pseudo-elíptica si interseca a lo más en cinco puntos a cualquier rama de cualquier hipérbola. En este trabajo probamos ([1]) Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 156 Teorema. Sea Σ un grafo compacto espacial en R3 con curvatura media constante H 6= 0. Si la frontera ∂Σ es una curva plana que es pseudo-elíptica, entonces Σ tiene curvatura de Gauss negativa en todos sus puntos interiores. En particular, Σ es una superficie convexa. La demostración sigue ideas de Chen-Huang de comparación de un grafo euclídeo de curvatura media constante con semi-cilindros euclídeos ([4]). En nuestro caso, donde el espacio ambiente es lorentziano, utilizamos cilindros hiperbólicos, los cuales tienen la particularidad de ser grafos sobre todo R2 . La condición sobre la curva frontera no se puede eliminar, y mostramos un ejemplo de un grafo espacial definido sobre un dominio convexo que tiene curvatura media constante pero no es estrictamente convexo. Referencias 1. A. Albujer, M. Caballero, R. López, Convexity of the solutions to the constant mean curvature spacelike surface equation in the Lorentz-Minkowski space, aparecerá en J. Differential Equations. 2. L.J. Alías, R. López, J.A. Pastor, Compact spacelike surfaces with constant mean curvature in the Lorentz-Minkowski 3-space, Tohoku Math. J. (2) 50 (4) (1998) 491–501. 3. R. Bartnik, L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1) (1982/1983) 131–152. 4. J. T. Chen, W. H. Huang, Convexity of capillary surfaces in the outer space, Invent. Math. 67 (1982) 253–259. A Calabi-type correspondence for the prescribed mean curvature equation José M. Manzano Politecnico di Torino [email protected] Coautores: Hojoo Lee A Killing submersion is a Riemannian submersion Π : E → M from an orientable 3-manifold E to a surface M , such that the fibres of the submersion are the integral curves of a unit Killing vector field. If E is endowed with a Riemannian metric, then Π is called Riemannian, whereas Π is called Lorentzian when the Killing vector field is timelike in E. In any of the two cases, there exists a natural geometric function in M , called bundle curvature, which encodes completely the geometry and topology of E (see [2]). In 1970 Calabi proved a remarkable correspondence between minimal surfaces in the Euclidean space R3 and maximal spacelike surfaces in the Minkowski space L3 . Using the fact that the bundle curvature and the mean curvature of a surface in a Killing submersion admit divergence-type equations (at least locally when the surface is transversal to the Killing vector field), we are able to generalize the aforementioned Calabi’s correspondence to a correspondence between (a) Mean curvature H graphs in Riemannian Killing submersions over some surface with bundle curvature τ. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 157 (b) Mean curvature τ spacelike graphs in Lorentzian Killing submersions over the same surface with bundle curvature H . Here τ and H are arbitrary smooth functions defined on the base M , which leads to a quite general result with applications, among other, to the existence of solutions for the prescribed mean curvature equation in R3 or to the non-existence of complete spacelike surfaces in a large class of spacetimes (see [1]). 1. Lee, H., Manzano, J.M., Generalized Calabi’s correspondence and complete spacelike surfaces (2013, arXiv:1301.7241). 2. Manzano, J.M., On the classification of Killing submersions and their isometries. Pacific Journal of Mathematics, 270 (2014), no. 2, 367-392. Matrix Pearson equations for bivariate Koornwinder weights Misael E. Marriaga Universidad Carlos III de Madrid [email protected] Coautores: Francisco Marcellán, Teresa E. Pérez, Miguel Piñar We consider Koornwinder’s method for constructing orthogonal polynomials in two variables from orthogonal polynomials in one variable. If semiclassical orthogonal polynomials in one variable are used, then Koornwinder’s construction generates semiclassical orthogonal polynomials in two variables. We consider two methods for deducing matrix Pearson equations for weight functions associated with these polynomials, and consequently, we deduce the second order linear partial differential operators for classical Koornwinder polynomials. Continua of solutions for quasilinear elliptic problems Alexis Molino Universidad de Granada [email protected] Coautores: Lourdes Moreno-Mérida We study the existence of positive solutions for some quasilinear elliptic equations, having lower order terms with quadratic growth in the gradient and singularities. In particular, we consider the problem u ∈ H01 (Ω) : −∆u + µ(x)g (u) |∇u|2 = λu p + f 0 (x) where Ω is a smooth bounded and open subset of RN , N ≥ 3. The functions µ ∈ L ∞ (Ω), g ∈ C 1 ((0, +∞)) and f 0 ∈ L q (Ω) for some q > N /2 are nonnegative and nontrivial. Using topological methods we obtain the existence of an unbounded continuum of solutions and we improve the results obtained in [1, 2]. The authors present the results of a joint work with José Carmona (see [3]). Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 158 Referencias 1. D. Arcoya, J. Carmona, P.J. Martínez-Aparicio, Bifurcation for Quasilinear Elliptic Singular BVP, Communications in Partial Differential Equations 36, 670692 (2011). 2. L. Boccardo, L. Orsina, M. A. Porzio, Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources, Adv. Calc. Var. 4, no. 4, 397-419 (2011). 3. J. Carmona, A. Molino, L. Moreno-Mérida, Existence of a continuum of solutions for a quasilinear elliptic singular problem, Preprint. Asymptotics for a nonstandard family of discrete orthogonal polynomials Juan José Moreno Balcázar Departamento de Matemáticas, Universidad de Almería [email protected] We provide a Mehler-Heine type formula for a nonstandard family of discrete orthogonal polynomials. Concretely, we consider the ∆-Meixner-Sobolev polynomials which are orthogonal with respect to an inner product involving the Pascal distribution and the forward difference operator. Consequences on the zeros of these polynomials are analyzed and illustrated numerically. This research was partially supported by Junta de Andalucía, Research Group FQM-0229 (belonging to Campus of International Excellence CEI-MAR) and Ministerio de Ciencia e Innovación of Spain–European Regional Development Fund, grant MTM2011-28952-C02-01. 1. ∆–Meixner–Sobolev orthogonal polynomials: Mehler–Heine type formula and zeros, J.J. Moreno-Balcázar, J. Comput. Appl. Math., in press, 2015. Virtual dynamic models. Application to the teaching and investigation on architectural forms M. Luisa Márquez García University of Granada (Spain) [email protected] Coautores: Ángel H. Delgado-Olmos The explanations of the bodies analysis topics as well as of their sections and intersections among they are usually some themes that have a great difficulty to assimilate for the students. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 159 On the other hand the construction of problems on these topics also creates difficulties to the professor, especially for inserting the problem appropriately in positions and measures that are compatible with the limits of the format used for its resolution. In this work we treat about these topics by means of the making of 3D scale models that allow the professor the developing of these themes and to build presentations with virtual scale models, susceptible of movements for to show the solutions as well as to make the adequate analysis. Static Proportions: The Leon Cathedral M. Luisa Márquez García University of Granada [email protected] Coautores: C. Valverde, M.L. Márquez-Garcia, M. Pasadas The 2:3 static proportion does not have a great relevance in a specific historic period but it appears with certain force in some moments in history. Although this proportion appears in some rooms of buildings of different architectonic styles, where acquires greater importance is in the Ancient Egypt and in the Gothic. In the Ancient Egypt appears on the temples, particularly shaping the room dedicated to the God of the temple, that is, the most important room of the building. In the Gothic period appears in the headers of the Spain cathedrals, specifically in the León cathedral it acquires a great importance since it appears in a trapeze shape and moreover it determines all the spaces of the cathedral header. In this work we study some properties of the 2:3 static proportion and its using in the Gothic architecture. Invariant functions of filiform Lie algebras Juan Núñez Dpto de Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla. [email protected] Coautores: José María Escobar (Dpto de Geometría y Topología. Universidad de Sevilla) y Pedro Pérez-Fernández (Dpto. de Física Aplicada III, Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.) The invariant functions ψ and ϕ were introduced in 2007 by Hrivnák and Novotný [Petr Novotný, Jirí Hrivnák, On (α, β, γ)-derivations of Lie algebras and corresponding invariant functions, Journal of Geometry and Physics 58:2 (2008), 208-217] as a tool to get advances in the knowledge of Lie algebras, particularly in the study of contractions. As a particular type of Lie algebras, filiform Lie algebras, which are the most structured subclass of nilpotent Lie algebras, were introduced by M. Vergne in the late 60’s of the past century [Vergne, M., Cohomologie des algèbres de Lie nilpotentes, Application à l’étude de la variété des algebres de Lie nilpotentes. Bull. Soc. Math. France 98 (1970), 81-116]. The structure of these algebras allows us to use and study them easier than other Lie algebras, hence its importance. In this poster, although by using a different procedure, we particularize the study of the previously Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 160 cited invariant functions of Lie algebras in general to the case of filiform Lie algebras. In fact, we confirm some results by the previously mentioned authors and we deal with the filiform case in dimensions 3, 4 and 5. Isotopisms of Lie algebras Juan Núñez Dpto de Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla. [email protected] Coautores: Óscar J. Falcón (dpto. de Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla) y Raúl M. Falcón (dpto de Matemática Aplicada I, Facultad de Informática e Ingeniería. Universidad de Sevilla). The distribution of algebras into equivalence classes is usually done according to the concept of isomorphism. However, such a distribution can also be done into isotopism classes. The concept of isotopism was explicitly introduced in 1942 by Abraham Adrian Albert [A. A. Albert, Non-Associative Algebras: I. Fundamental Concepts and Isotopy, Annals of Mathematics, Second Series 43 (1942), no. 4, 685–707] to classify non-associative algebras. In this poster we deal with the study of isotopisms of Lie algebras. The reasons for using both criteria, isotopisms and isomorphisms, to classify Lie algebras is due to that classifications by isotopisms are different from those by isomorphisms, which involves obtaining new information about these algebras. On a sake of example, we indicate some recent results obtained by ourselves, which are related to the distribution into isomorphism and isotopism classes of filiform Lie algebras over finite fields. In the poster, a very brief survey about the theory of isotopisms of algebras and quasigroups is also included. First stability eigenvalue of compact CMC surfaces Irene Ortiz Universidad de Murcia [email protected] Coautores: Miguel A. Meroño We find out upper bounds for the first eigenvalue of the stability operator for compact constant mean curvature (CMC) orientable surfaces immersed in a Riemannian Killing submersion. As a consequence, the strong stability of such surfaces is studied. We also characterize constant mean curvature Hopf tori as the only ones attaining the bound in certain cases. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 161 Orden de eliminación de variables para el cálculo de las bases de Gröbner Walter Andrés Ortiz Vargas Universidad del Tolima, Ibagué,Colombia [email protected] The study of Gröbner Basis on the ring of polynomials in several variables, K[x 1 , x 2 , . . . , x n ] (K field) begins with the concept of reduction, which allows for the multivariate algorithm division; the Gröbner basis describing the ideals of the ring of polynomials,so that they can make effective calculations using the Buchberger algorithm.To find these bases is important to establish order in the variables (lex, deglex, degrevlex) and the monomials. Is another way to calculate using the variables elimination method. Which allows finding the intersection of two ideal, so is also generalized to more than two ideal Referencias 1. W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, RI, 1994. 2. T. Becker and V. Weisfening, Gröbner Bases: A Computational Aproach to Conmutative Algebra, Springer Verlag, Berlin and New York, 1993. 3. W.Ortiz. Orden de eliminación para el cálculo de las bases de Gröbner, tesis Lic en Matemáticas. Universidad del Tolima.2012 Markov-type inequalities and duality in weighted Sobolev spaces Jose Manuel Rodríguez Universidad Carlos III de Madrid [email protected] Coautores: Francisco Marcellán, Yamilet Quintana The aim of this work is to provide Markov-type inequalities in the setting of weighted Sobolev spaces when the considered weights are generalized classical weights. Also, as results of independent interest, we prove some basic facts about Sobolev spaces with respect to measures: separability, reflexivity, uniform convexity and duality. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 162 Estudio comparativo de métodos de obtención de estimaciones máximo verosímiles de los parámetros del proceso Gompertz-Lognormal Desirée Romero Universidad de Granada [email protected] Coautores: Rico, Nuria (Universidad de Granada) G-Arenas, Maribel (Universidad de Granada) Para ajustar un proceso de difusión a unos datos muestrales se necesita estimar los parámetros del mismo. Entre los métodos de estimación, el método de máxima verosimilitud presenta la ventaja de que permite estimar las funciones de los parámetros del modelo de forma directa a partir de las estimaciones de los mismos, pero tiene el inconveniente de que la función a maximizar puede plantear algunas dificultades. El sistema de ecuaciones normales no siempre es directamente resoluble, y en ocasiones es necesario recurrir a métodos numéricos para obtener una solución. Dichos métodos pueden presentar problemas de dependencia de la solución inicial, lo cual puede evitarse combinándolo con otros métodos metaheurísticos. Otra opción es usar algoritmos bio-inspirados para la optimización directa de la verosimilitud. En este trabajo se estudian y comparan varios de estos métodos para resolver el problema de la estimación de los parámetros del proceso de difusión Gompertz-lognormal, el cual puede utilizarse para modelizar datos con tendencia exponencial, Gompertz o una combinación de ambas. Finalmente, para el estudio comparativo se han simulados datos del proceso y se han considerado diversas medidas de errores. The GC-content of a family of cyclic codes Josu Sangroniz Universidad del País Vasco, UPV/EHU [email protected] Coautores: Luis Martínez In this work we study some properties of a family of cyclic codes defined over the finite field with q r , r > 1, elements that include the quadratic-residue codes over the field with q 2 elements. Most notably, we can count how many codewords have a fixed number of coordinates in the subfield with q elements. Our results can be used to find large DNA-codes with fixed GC-content (that is, codes over an alphabet with four letters, say A,G,C , T , all of whose words have the same number of letters G or C ). Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015 Sesión de pósteres 163 Real hypersurfaces in complex two-plane Grassmannians with GTW connections Changhwa Woo Department of Mathematics, Kyungpook National University [email protected] Coautores: Juan de Dios Pérez and Young Jin Suh In this talk, we will give some non-existence properties for Hopf real hypersurfaces in complex two-plane Grassmannians with certain geometric conditions. First, real hypersurfaces in complex two-plane Grassmannians with generalized TanakaWebster recurrent shape operator A will be talked in detail. Next, harmonic curvature with generalized Tanaka-Webster connection for Hopf hypersurfaces in complex two-plane Grassmannians and its related topics will be given. Referencias 1. J. Berndt, Riemannian geometry of complex two-plane Grassmannians, Rend. Sem. Mat. Univ. Politec. Torino, 55 (1997), 19-83. 2. J. Berndt and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math., 127 (1999), 1–14. 3. N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math., 20 (1976), 89-102. 4. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. AMS 314 (1989), 349-379. 5. S.M. Webster, Peudo-Hermitian structures on a real hypersurface. J. Diff. Geom., 13 (1978), 25-41. Congreso bienal de la RSME. Granada, 2–6 de febrero de 2015
© Copyright 2025