Spyder / Ed. 91

Uso de NDVI para hacer mapas de peso de poda en viñedos
Pedro C. Towers, Ingeniero Agrónomo
Alberdi 325; (5178) La Cumbre; Córdoba; Argentina
Tel./Fx: 54 3548 452938 E-mail: [email protected]
Reconocimientos
Esta investigación fue financiada por Grupo Peñaflor SA de Coquimbito, Maipú,
Provincia de Mendoza, Argentina y AgriSat SA de La Cumbre, Córdoba, Argentina.
El autor quisiera agradecer al Dr. Rodolfo Bongiovanni por su orientación y ayuda con
la preparación de datos y análisis estadístico; Nicholas Morrow de GeoVantage Inc.
por su ayuda en la planificación de misiones aéreas; Leonardo Sardá y Claudio
Rodríguez del Grupo Peñaflor SA por llevar a cabo y organizar el trabajo de campo y
toma de muestras; y Rodrigo Bonich y Peter Szuhi de SA por ayudar con el
procesamiento de imágenes y los SIG.
Palabras clave: NDVI, peso de poda, balance de vid, espaldero, parral, desfase
espacial, error espacial.
Resumen
El peso de poda es comúnmente usado por los viticultores para conocer si un viñedo
ha producido dentro de un rango de equilibrio vegetativo-reproductivo adecuado, valor
que resulta crucial para la producción de uva para vino de calidad y para determinar
correcciones en el manejo del cultivo en campañas futuras. La posibilidad de obtener
una estimación del peso de poda durante el ciclo de crecimiento, a partir de datos de
percepción remota, proporcionaría a los viticultores un medio para decidir las
estrategias de manejo de canopia y de carga de fruto que aseguren en cada sitio del
viñedo el equilibrio de vid deseado, o asistir en la definición de áreas de cosecha con
calidad de uva uniforme.
El objetivo de este estudio fue determinar si con los mapas del NDVI obtenidos de
relevamientos aéreos multiespectrales actualmente disponibles y de bajo costo,
durante el ciclo del cultivo, es posible estimar acertadamente el peso de poda medio
de grupos de nueve a quince plantas adyacentes, mediante una sola función
temporalmente robusta. Se tomaron datos de un viñedo en Caucete, San Juan,
Argentina, durante dos temporadas consecutivas, sobre lotes con dos sistemas de
conducción y dos variedades. Los resultados mostraron que las funciones de regresión
obtenidas no difirieron significativamente entre las temporadas o las variedades con
igual sistema de conducción y manejo similar, aunque el vigor de la vid varió
substancialmente de un año al otro y entre algunas variedades. Los ajustes fueron
superiores para cultivos en espalderos que para los conducidos en parrales. La
inclusión de error y lag espacial como parámetros en las regresiones demostraron ser
significativos pero aportaron poco a la bondad de ajuste. El estudio demuestra la
posibilidad de obtener funciones confiables y predictivas con el NDVI en una instancia,
con las cuales el mapeo espacial del peso de poda puede ser calculado en
temporadas posteriores, durante el ciclo del cultivo.
Introducción
Una calidad dada de uva para la elaboración de vino requiere que el fruto crezca hasta
un tamaño tal que determinados compuestos presentes en la piel y la pulpa estén
presentes en las proporciones correctas. El tamaño del fruto es consecuencia de la
capacidad de la planta para llenarlo, y eso depende de la cantidad de frutos (destinos)
y del área foliar (AF – fuente) que aporta los fotoasimilados para el llenado de sólidos y
la regulación de la entrada de agua. Esta relación fuente-destino se denomina
equilibrio vegetativo-reproductivo y se define como el cociente entre el área foliar y la
carga de frutos que ésta alimenta. Ambos factores pueden ser regulados mediante el
manejo de raleo o defoliación, o con otros métodos. Como el AF es trabajoso de
medir, los viticultores usan el peso de poda (PdP) como un indicador de la
productividad de la planta, y con él evalúan si la carga de frutos fue excesiva o
insuficiente. Esto resulta del hecho que el crecimiento vegetativo compite como
destino con el llenado de frutos, por lo que la masa de tallos al final del ciclo de
crecimiento dependerá del tamaño de la fuente y la carga de fruto que la planta tuvo.
Como la poda se hace después de la cosecha, y el vigor en un viñedo varía
espacialmente, si se pretende actuar en sobre el cultivo durante el ciclo de crecimiento
para producir uvas de determinada calidad, resulta necesario un medio para mapear el
peso de poda durante el ciclo de crecimiento a fin de conocer qué partes de un cuartel
están equilibrados, y esta determinación no puede esperar a la poda.
El mapeo del Índice de Vegetación Normalizado (NDVI) obtenido a partir de
relevamientos remotos durante la temporada puede capturar la variabilidad espacial
del vigor y del PdP (Johnson, 2003). Dicha variabilidad espacial observable en
parcelas cultivadas parece ser más la regla que la excepción. La evidencia obtenida a
través del mapeo de rendimientos y de suelos en diversos cultivos y ambientes ha
demostrado que el rango de valores es de suficiente importancia para promover el
desarrollo de medios para mapear las posibles causas y efectos de la variabilidad, y
buscar maneras de optimizar la producción mediante prácticas de manejo sitioespecíficas (Bongiovanni y Lowenberg-DeBoer. 2004). El uso de Sistemas de
Información Geográfica (SIG), las tecnologías relacionadas al GPS como el monitoreo
de rendimiento, y la percepción remota han aportado herramientas que pueden
combinarse para dirigir muestreos a campo y/o capturar la información sobre
variabilidad espacial de manera directa (Werner et al. 2000).
En muchos cultivos el aumento de rendimiento es un objetivo esencial para el
incremento de los ingresos. En otros, como la vitivinicultura, el precio asociado a la
calidad de la fruta puede contribuir a la rentabilidad tanto o más que diferencias en el
rendimiento (Gladstones. 1999). Sin embargo, la calidad es consecuencia de una
combinación de atributos de los cuales el rendimiento es una de varias variables
importantes.
Décadas de investigación y práctica productiva han establecido que para la producción
sustentable de una calidad de uva particular, resulta necesario que el cociente entre la
cantidad de fruta y el área foliar (AF) que le sirve de fuente se mantenga dentro de un
rango específico. Este concepto, comúnmente conocido como el equilibrio vegetativoreproductivo de la vid (o simplemente “equilibrio”), fue reconocido hace más de un
siglo por Ravaz y con el tiempo fue desarrollado por otros (Howell. 2001). Actualmente
el monitoreo de equilibrio es una práctica común entre los viticultores para determinar
si la producción y el manejo de canopia han sido correctamente realizados (Hidalgo
Togores. 2006). Sin embargo, como la determinación del AF es laboriosa, un método
común y más sencillo para estimar equilibrio consiste en medir el rendimiento y el peso
de poda por vid (o unidad de longitud del cordón) para derivar un cociente, conocido
como “Índice de Ravaz”, que puede luego ser comparado a un valor ya conocido que
se sabe corresponde a fruta de una calidad particular. Dicho índice debe su utilidad al
hecho que la partición de los fotoasimilados durante la maduración se distribuye a la
fruta y al crecimiento de brotes (Keller. 2010), por lo que el peso de poda es un buen
indicador de la performance de las vides para un determinado rendimiento. Así, con
este dato los ajustes en las metas de producción pueden ser evaluados y las prácticas
de manejo ajustadas para las próximas temporadas (Smart et al. 1990).
El uso del peso de poda como indicador de equilibrio en vid tiene dos deficiencias
importantes. En primer lugar el peso de poda se mide después de la cosecha, por lo
que su uso está limitado a evaluar un manejo pasado que solo puede modificarse con
el propósito de corregir resultados futuros (Hidalgo Togores. 2006) y esto supone
condiciones de crecimiento futuras similares a las pasadas. En segundo lugar, la
variabilidad espacial en una misma parcela puede ser tal que requiera de una cantidad
apreciable de muestras de peso de poda a fin de disponer de valores que abarquen
todo el rango de equilibrio existente, y así poder acotarlo, mediante el manejo
adecuado, al objetivo.
La capacidad de la percepción remota para capturar toda el área cultivada resolvería
ambas deficiencias si el peso de poda puede predecirse a partir datos obtenidos de
ese modo. Más aún, si la relación encontrada es temporalmente estable se abre la
posibilidad de emplear el peso de poda estimado para su uso en decidir acciones de
manejo durante el ciclo de crecimiento.
El uso de índices de vegetación como el NDVI (Índice de Vegetación Normalizado)
para estimar el AF (Minen et al. 1997) y asistir en la toma de decisiones agronómicas
ha sido aplicado con éxito en varios cultivos (Hatfield et al. 2008), incluyendo vides
(Johnson, 2003). Investigaciones recientes también demuestran que el peso de poda
puede ser predicho por medio de imágenes multiespectrales tanto aéreas como
satelitales (Johnson et al. 1996, 2001). A pesar de esta evidencia, los mapas de peso
de poda derivados de imágenes de NDVI no están comúnmente disponibles para los
productores. En Argentina, las imágenes multiespectrales satelitales no han sido
adoptadas como fuentes de datos, ya que un 98% de los viñedos para viticultura se
encuentran en regiones con patrones de lluvias monsónicos que aumentan la
presencia de nubes durante el ciclo de crecimiento (la distribución de viñedos puede
ser encontrada en la página Web del INV, www.inv.gob.ar), y, además de la presencia
de nubosidad, el suministro de las imágenes suele ser lento para los propósitos de la
gestión dentro de la temporada. Más aún, a pesar de la evidencia que sostiene una
moderada a alta relación del NDVI al peso de poda a la fecha no hay información
definitiva sobre su estabilidad temporal de una temporada a la otra.
Por contraste, la disponibilidad de imágenes aéreas multiespectrales de bajo costo ha
permitido una captura de imágenes rápida, en buenas condiciones climáticas, y un
suministro de datos veloz que puede ser usado dentro de la temporada. En el estudio
corriente, hemos hecho uso de esta información y del muestreo en el terreno para
establecer la relación entre el NDVI y el peso de poda para dos sistemas de
conducción diferentes- con dos variedades cada uno, y parcelas individuales, durante
de dos temporadas para evaluar la viabilidad del uso de imágenes aéreas
multiespectrales para la generación de los algoritmos temporalmente estables y
espacialmente aplicables que permitan realizar mapas del peso de poda.
Materiales y Métodos
El estudio fue llevado a cabo en el viñedo de “Pozo de los Algarrobos” perteneciente al
Grupo Peñaflor en Caucete, San Juan, Argentina (S 31º 41’ 20”; W 068º 11’ 57”). La
producción del viñedo está manejada consistentemente para producir la uva para
vinos premium populares. Las parcelas de vid reciben prácticas similares todas las
temporadas, con una fuerte dependencia en el suministro de agua para el control del
crecimiento y la productividad.
Se obtuvieron imágenes aéreas multiespectrales de la propiedad el 14 de diciembre
del 2008 y el 17 de diciembre del 2009, aproximadamente dos horas antes del
mediodía, con una cámara GeoVantage 3000 de 4 bandas (B-G-R-NIR) (GeoVantage
Inc., Peabody, Massachussets, USA).
La altura de vuelo se estableció para obtener una resolución espacial de 1 m sobre el
terreno. La cámara está equipada con DGPS y un sistema inercial de precisión mayor
a un mili radian, con los que se deriva una precisión posicional de las imágenes
iguales o mejor a 3 m (CE90).
Se elaboraron mosaicos de NDVI para ambas fechas, y las imágenes de 2009 se
registraron a las de 2008, después que estas fueran ajustadas a puntos de control
DGPS, con lo que se consigue llevar la precisión posicional a aproximadamente 30
cm. Sitios pseudo-invariantes fueron tomados de los mosaicos para obtener una
transformación linear (Jensen. 1996) que luego fue aplicada para lograr un registro
radiométrico de las imágenes de 2009 a las de 2008.
Para nuestro estudio, se eligieron cuarteles con dos sistemas de conducción y cuatro
variedades, como se detallada en la tabla 1. Todas las parcelas han estado en
producción por más de cinco años y han alcanzado un tamaño de canopia estable.
Parcela
Variedad
Conducción
Esp. entre
plantas (m)
Esp. entre
hileras (m)
Año de
plantación
7
Cabernet franc
Parral
2.5
3.0
1999
9
Cabernet franc
Parral
2.5
3.0
1999
8
Malbec
Parral
2.5
3.0
1999
10
Malbec
Parral
2.5
3.0
1999
31
Sauvignon blanc Espaldero
3.0
2.5
1994
32
Sauvignon blanc Espaldero
3.0
2.5
1994
33
Sauvignon blanc Espaldero
3.0
2.5
1994
44
Sauvignon blanc Espaldero
3.0
2.5
1998
37
Chardonnay
Espaldero
2.5
2.5
1994
42
Chardonnay
Espaldero
2.5
2.5
1994
Tabla 1: Características principales de los cultivos por cuarteles seleccionados para el estudio.
Se definieron las unidades de muestreo en base a la exactitud posicional de las
imágenes y consultas con viticultores. Tomando en cuenta que el error máximo de la
ubicación antes del registro a puntos de control es de unos 3 m, vale decir semejante
al espaciamiento entre hileras; y que los viticultores suelen emplear como unidad de
manejo un claro (cinco plantas entre dos postes de sostén sobre una línea de
espaldero), la unidad a muestrear se estableció midiendo los valores de PdP y NDVI
en plantas individuales pero integrando los resultados en grupos de quince plantas de
tres hileras adyacentes para espaldero y nueve plantas de tres hileras adyacentes
para parrales. Los errores de ubicación máximos posibles entonces resultan de una
hilera, y una prueba Moran’s I fue usada para confirmar la extremadamente alta
correlación espacial de los valores individuales de PdP (0,88) entre plantas a esa
escala, y algo similar ocurre con el NDVI (0,84). Esto asegura que la posible
inexactitud posicional tenga muy poco efecto en los resultados.
Se compararon mapas de NDVI de temporadas anteriores para confirmar que los
patrones espaciales de vigor son relativamente estables y disponer de un modo de
ubicar los sitios a muestrear que asegure la captura de todo el rango de variación de
vigor. Los valores de NDVI de las parcelas individuales del mosaico del 2008 fueron
segmentadas en tres clases de igual rango. En cada clase resultante fueron elegidos
siete sitios de muestreo en cada parcela y se registraron sus coordenadas centrales.
Las coordenadas para cada planta individual en cada sitio fueron calculadas basadas
en la distancia del espacio entre plantas e hileras desde la planta más cercana a la
coordenada principal determinada, empleando Microsoft Excel.
En el invierno siguiente a cada vuelo, los pesos de poda y las longitudes de los
cordones fueron medidos en todos los sitios para cada planta individual, y se midió el
PdP por planta y por metro de cordón. Las plantas faltantes o dañadas fueron
eliminadas de los datos. Los datos fueron ordenados como un archivo de vector de
puntos y se dibujó un buffer circular equivalente a la distancia mínima entre plantas e
hileras empleando QGIS (www.qgis.org). La capa vectorial resultante se desplegó
sobre los mosaicos de NDVI registrados y se extrajo el promedio de valor de NDVI
dentro del área del buffer para cada planta. Puntos adicionales fueron levantados
sobre suelo descubierto de calles que rodean a cada parcela, correspondiendo a peso
de poda cero. Se promediaron los valores de planta y metro de cordón para cada
claro, y los valores correspondientes al suelo descubierto fueron asignados a la
parcela más cercana.
El análisis exploratorio de los datos se realizó con InfoStat (InfoStat, UNC, Córdoba,
Argentina).
Debido a que los resultados usando las plantas o los valores por metro de cordón
fueron muy similares, se usó el segundo para el estudio por ser de uso preferido entre
los viticultores locales. Se elaboraron tablas para relacionar geográficamente los
valores por sitio, y los datos fueron luego analizados con GeoDa (GeoBa Center, ASU,
Tempe, Arizona, USA) para evaluar cómo se ajustan los modelos de regresión donde
el peso de poda es una función del NDVI, así como éste combinado con otras
variables como año, variedad, cuarteles individuales, retraso espacial, y error espacial
para los datos dentro de cada bloque. Los coeficientes de regresión fueron testeados
en todos los modelos de regresión, incluyendo las variables citadas de manera
creciente.
Resultados y discusión
La regresión de todos los datos de peso de poda a valores del NDVI (cuadro 2)
entrega una función lineal con sólo 0,35 R2 ajustado. Agregando el NDVI2 se consigue
un ajuste similar. Cuando se añade la variable año, la bondad de ajuste no aumenta
mucho pero aparecen diferencias significativas. Sin embargo, al agregar el sistema de
conducción (figura 1) los R2 ajustado saltan a 0.76, o 0.77 si se incluye el NDVI2.
R2 ajustado>
0.3497 0.3484 0.3707 0.3867 0.7589 0.7659 0.7591 0.7669 0.7631 0.7734
Parámetros_Probabilidad P
P
P
P
P
P
P
P
P
P
Constante
< 0.01
0.02
< 0.01
0.07
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
NDVI
< 0.01
< 0.01
< 0.01
0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
2
NDVI
0.98
0.36
Conducción
< 0.01
< 0.01
Conducción_NDVI
< 0.01
2
Conduccion_NDVI
0.46
< 0.01
< 0.01
0.10
< 0.01
0.09
< 0.01
0.01
Variedad
Variedad_NDVI
2
Variedad_NDVI
Año
Año_NDVI
< 0.01
< 0.01
> 0.15
< 0.01
> 0.01
< 0.01
< 0.01
0.61
0.14
0.59
< 0.01
0.03
0.19
0.73
2
Tabla 2: R ajustado para las regresiones por mínimos cuadrados ordinarios y significación de los coeficientes
del parámetro (expresado como P = Probabilidad) usando diferentes combinaciones de parámetros y datos de
todos los sitios.
Figura 1: Media del NDVI y el peso de poda por metro de cordón. Datos de todos los sitios, repartidos por el
sistema de conducción.
Usando los datos de los cuadros que tienen parral como sistema de conducción, se ve
que la inclusión progresiva de las variables (Tabla 3) mejora el ajuste del R2 ajustado
de 0,51 a 0,65, con una mayor al incluir los cuarteles individuales como variables.
En todas las combinaciones de variables, el NDVI domina la respuesta. Fuera del
NDVI y el sistema de conducción, las demás variables predictivas, como un término
cuadrático de NDVI, variedad, año, o desfase espacial y error espacial, contribuyen
poco a mejorar el ajuste y algunas combinaciones muestran una multicolinearidad
extremadamente alta (> 15-20), indicando que los pronosticadores están fuertemente
correlacionados y que su contribución individual a la precisión del modelo es confusa.
Multicolinearidad>
6.01
2
29.53
14.02
13.93
65.98
22.34
108.62
NA
NA
R Ajustado>
0.5134 0.5092 0.5412 0.5775 0.5419 0.65
0.6955 0.5443 0.5386
Parámetros, Probabilidad
P
P
P
P
P
P
P
Constante
0.01
0.09
< 0.01
< 0.01
0.45
NDVI
< 0.01
< 0.01
< 0.01
< 0.01
0.42
NDVI2
0.69
Variedad
Variedad_NDVI
0.28
0.31
0.47
0.91
0.17
2
Variedad_NDVI
P
P
< 0.01 0.70
0.11
< 0.01
< 0.01 0.37
< 0.01
< 0.01
< 0.01
0.16
Año
Año_NDVI
0.43
2
Año_NDVI
0.05
Cuarteles Individuales_Constante
> 0.01 > 0.01
Cuarteles Individuales_NDVI
> 0.01 1/4
2
Cuarteles Individuales_NDVI
Desfase espacial
Error espacial
1/4
0.02
0.01
2
Tabla 3: R ajustado para regresiones, y significancia en los coeficientes de los parámetros (expresados como
P= Probabilidad) usando los datos de los sitios con parrales como sistema de conducción. Las fracciones
expresan proporciones de coeficientes significativos (P < 0.01). No hay valores de multicolinearidad para los
parámetros espaciales.
Los resultados de regresión con datos de espalderos como sistema de conducción se
muestran en la Tabla 4. Como en las vides con parral como sistema de conducción, en
las combinaciones de parámetros donde hay una multicolinearidad aceptablemente
baja (< 20), el NDVI se destaca como la variable predictiva de más importancia,
explicando la mayor parte de la variabilidad del peso de poda, con R2 ajustado > 0,72
(incluyendo una constante de intercepción al origen). Al igual que la variedad, la
interacción del NDVI2 con el año tiene efectos insignificantes.
Sin embargo, si las relaciones entre NDVI y el peso de poda se establecen teniendo
en cuenta los cuarteles individuales, el ajuste aumenta a cerca de 0.82, aunque
mostrando una alta multicolinearidad que convierten en dudoso el efecto puro del
cuartel. Las probabilidades de desfase espacial y de error espacial son significativas
pero suman poco a la capacidad predictiva de los modelos.
Multicolinearidad>
5.25
22.96 12.17 53.7
10.32
45.7
R Ajustado>
0.723
0.734 0.725 0.751
0.729
Parámetros/Probab.
P
P
P
P
Constante
< 0.01
<
0.01
<
0.01
< 0.01
<
0.01
<
0.01
2
NDVI
<
0.01
NDVI2
61.43 29.86
152.7 34.31 175.7
0.742 0.73
0.758 0.813
0.829 0.815 0.8410
P
P
P
P
P
P
P
P
0.05
<
0.01
0.03
<
0.01
0.1
<
0.01
0.28
<
0.01
0.33
0.03
<
0.01
0.02
<
0.01
0.14
<
0.01
0.26
<
0.01
0.39
<
0.01
14.32
<
0.01
Variedad
Variedad_NDVI
<
0.01
0.02
0.50
0.02
0.43
0.09
0.06
0.10
0.06
2
Variedad_NDVI
0.02
0.37
0.25
0.02
Año
0.55
0.10
0.71
0.09
0.92
0.12
Año_NDVI
0.94
0.03
0.79
0.02
0.48
0.04
<
0.01
Año_NDVI2
<
0.01
< 0.01
Cuarteles
Individuales_Cte
1/6
0/6
1/6
0/6
Cuarteles
Individuales_NDVI
1/6
0/6
1/6
0/6
Cuarteles
Individuales_NDVI2
0/6
0/6
R2 Ajustado>
0.766
0.775
0.767
0.768
0.778
0.824
0.82
0.84
Variable
P
P
P
P
P
P
P
P
Constante
< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.08
NDVI
< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.19
2
NDVI
0.04
Año
0.91
Año_NDVI
0.51
0.05
Cuarteles Individuales_
Constante
Cuarteles Individuales_NDVI
1/6
1/6
0/6
1/6
1/6
0/6
2
Cuarteles Individuales__NDVI
Desfase Espacial
Error Espacial
0/6
< 0.01
< 0.01 < 0.01
< 0.01
< 0.01
< 0.01
0.03
< 0.01
Tabla 4:R2 ajustado para regresiones, y significancia de los coeficientes de parámetros (expresados como P =
Probabilidad) usando datos de sitios con espalderos como sistema de conducción. Las fracciones expresan la
proporción de coeficientes significativos (P < 0.01). No hay valores de multicolinearidad para parámetros
espaciales.
Aunque agregando el año o la variedad a los modelos de regresión se mejora poco la
predicción del peso de poda con el NDVI, es importante señalar que el valor medio de
NDVI tiene una diferencia importante de una temporada a la otra para los mismos
lugares de muestreo, y de una variedad a la otra en algunos casos. Por ejemplo,
cuando se trazan los diferentes años juntos (Figura 2) resulta evidente que los valores
NDVI fueron mayores en diciembre de 2008 que un año más tarde, en espalderos.
Asimismo, el Cabernet Franc aparece como más vigoroso que el Malbec (Figura 3,
Tabla 5) en los parrales del 2008. De modo que, a pesar de las diferencias, los
resultados muestran que los valores de los puntos muestreados se mueven a los largo
de la misma función de un año a otro, para cualquier variedad, en un mismo sistema
de conducción.
Al observar los datos graficados resulta evidente la existencia de heterocedasticidad.
Las pruebas (no mostradas) indican de modo irrefutable que la dispersión no es
uniforme dentro del rango de valores, como puede apreciarse visualmente en las
figuras 1 a 4, donde el aumento de dispersión con el incremento del NDVI es evidente.
Sin embargo, los valores de la media de NDVI en la mayoría de los cuarteles es
alrededor de 0.40 en espalderos y 0.46 en parrales con desvíos estándar de
aproximadamente 0.1, lo que indicaría que la dispersión aumenta notablemente en
valores de NDVI que no son comunes a campo (Tabla 5).
Figura 2: Media de NDVI y peso de poda por sitio para espalderos, separados por año.
Un número de factores puede estar contribuyendo a esta dispersión. La antigüedad del
viñedo, conforme mueren y son reemplazadas las plantas individuales; el daño por
granizo; la presencia de pestes o enfermedades, son todos factores que pueden influir
en la dispersión asociada al vigor.
Figura 3: Valores de NDVI en parrales de diciembre del 2008, y valores del peso de poda del invierno del 2009,
graficados por variedad.
Conclusiones
Los mapas de NDVI pueden ser usados para predecir y mapear el peso de poda
dentro de una temporada con exactitud si los modelos tienen en cuenta el sistema de
conducción utilizado.
Los modelos obtenidos para espalderos son más exactos que los usados para las
vides con parral como sistema de conducción.
Para valores de NDVI muy altos la predicción del peso de poda pierde exactitud, pero
ocurre en los extremos altos de vigor solamente.
Fecha en la que se captó la imagen >
Cuartel
Variedad
Sistema
conducción
7
Cabernet franc
9
Dic-08
de
NDVI
Dic-09
medio
Desvío
estándar
Parral
0.567
Cabernet franc
Parral
8
Malbec
10
Malbec
NDVI
medio
Desvío
estándar
0.099
0.435
0.113
0.509
0.089
0.480
0.138
Parral
0.402
0.078
0.456
0.104
Parral
0.407
0.102
0.447
0.127
Espaldero
0.389
0.097
0.303
0.116
Espaldero
0.397
0.082
0.321
0.097
Espaldero
0.390
0.090
0.362
0.082
Sauvignon
31
blanc
Sauvignon
32
blanc
Sauvignon
33
blanc
Sauvignon
44
blanc
Espaldero
0.579
0.115
0.369
0.107
37
Chardonnay
Espaldero
0.466
0.100
0.330
0.114
42
Chardonnay
Espaldero
0.490
0.083
0.369
0.108
Tabla 5: Media y desvíos estándar de los valores de NDVI para los cuarteles en ambas estaciones.
Los modelos son temporalmente estables para ambas estaciones, aun cuando la
media de NDVI difiere notablemente, apoyando la hipótesis que determinando el
modelo en una estación se podría obtener una relación robusta para uso futuro en el
mismo viñedo.
Los modelos no mejoran significativamente cuando se tiene en cuenta la variedad.
Aún así, teniendo en cuenta el manejo propio de la finca en cuestión, suponemos que
resulta cauto asegurarse que la gestión de todas las variedades sea similar antes de
emplear un mismo algoritmo.
Para una capacidad predictiva máxima, podrían derivarse modelos para cuarteles
individuales.
El desfase espacial y los términos de error deberían ser estimados en todos los casos
para verificar su importancia y decidir su inclusión en los modelos para cuarteles
individuales.
Implicancias
Con un mapa de peso de poda obtenido del NDVI próximo a envero algunos
viticultores pueden todavía estar a tiempo de aplicar ciertas acciones para llevar las
áreas con canopias desbalanceadas al rango deseado , como fue sugerido por Fredes
(Fredes et al. 2010).
Aunque esto no sea siempre práctico, por lo menos sería posible enfocar los esfuerzos
de la cosecha a separar las calidades de obtenidas del mapeo.
Mínimamente, los muestreos dirigidos por estos mapas de la calidad a cosecha en
cada zona de una finca o cuadro pueden proveer un (posiblemente no bienvenido)
cálculo estimativo del impacto económico de las áreas desbalanceadas.
De modo que mediante una simple técnica que involucra el muestreo de peso de poda
combinado con un vuelo multiespectral en envero, en una estación de crecimiento, se
puede estimar la calidad de la uva y, eventualmente, ajustar el manejo del cultivo para
obtener beneficios de importante impacto económico a un costo muy competitivo, si el
acceso a imágenes aéreas está disponible y a un precio razonable.
Adoptando este método podemos prever una mejora substancial en la calidad del vino
con solo un pequeño gasto. Se obtendría a cambio información para abordar de modo
cuantitativo las decisiones relativas al manejo de canopia y carga de fruta que asegure
incrementos de la rentabilidad en las áreas que producen uvas de calidad.
Bibliografía citada:
Bongiovanni, R., and Lowenberg-DeBoer, J.
Sustainability. Precision Agriculture, 5(4):359-387.
2004.Precision
Agriculture
and
Fredes, C., Y. Moreno, S. Ortega, and E. Von Bennewitz. 2010.Vine balance: a study
case in Carménèregrapevines. Ciencia e InvestigaciónAgraria 37(1):143-150
Gladstones, J.S. 1999. Viticulture and environment: a study of the effects of
environment on grapegrowing and wine qualities, with emphasis on present and future
areas for growing winegrapes in Australia. Winetitles, Adelaide.
Hatfield, J.L., A. A. Gitelson, J. S. Schepers, and C. L. Walthall. 2008. Application of
Spectral Remote Sensing for Agronomic Decisions. AgronomyJournal. 100:S-117–S131
Hidalgo Togores, J. 2006. Sistemas de evaluación del potencial enológico. In La
Calidad del vino desde el viñedo. Ediciones Mundi-Prensa, Madrid. pp 281-297.
Howell, G.S. Sustainable Grape Productivity and the Growth-Yield Relationship: A
Review. 2001. American Journal of Enology and Viticulture. 52(3):165-174.
Jensen, J.R. 1996. Image Preprocessing: Radiometric and Geometric Correction. In
Introductory Digital Image Processing, 2 nd Edition. Keith C. Clarke (ed), Prentice Hall
Series in Geographic Information Series, Prentice-Hall, New Jersey, USA. pp 107-124.
Johnson, L. F. 2003. Temporal stability of an NDVI-LAI relationship in a Napa Valley
vineyard. Australian Journal of Grape and Wine Research. 9:96–101.
Johnson, L.F., B. Lobitz, R. Armstrong, R. Baldy, E. Weber, J. De Benedectis, and D.
Bosch. 1996. Airborne Imaging for Vineyard Canopy Evaluation. California Agriculture.
50:4:1-12
Johnson, L. F., D. Roczen, and S. Youkhana. 2001. Vineyard canopy density mapping
with Ikonos satellite imagery.In Proceedings of the Third International Conference on
Geospatial Information in Agriculture and Forestry. Denver, Colorado.
Keller, M. 2010. Partitioning of Assimilates. In The Science of grapevines. Academic
Press, London, UK.pp 125-158.
Myneni, R. B., R. R. Nemani, and S. W. Running. 1997. Estimation of global leaf area
index and absorbed PAR using radiative transfer models. IEEE Transactions on
Geoscience and Remote Sensing.35:1380– 1393.
Smart, R.E., J.K. Dick, I.M. Gravett, and B.M. Fisher. 1990. Canopy management to
improve grape and wine quality – principles and practices. South African Journal of
Enology and Viticulture. 11(1):3-17
Werner, A., S. Dölling, A. Jarfe, J. Kühn, J. Pauly, and R. Roth. 2000. Deriving maps of
yield potentials with crop models, site information and remote sensing. In: Proceedings
of the Fifth International Conference on Precision Agriculture. P.C. Robert, R.H. Rust,
and W.E. Larson, (ed.): ASA-Press, St. Paul, Minnesota, USA.