XXV CONGRESO DE MATEMATICA CAPRICORNIO Universidad Católica del Norte, Antofagasta, Agosto 2 - 5, 2016 Sesión Invitada de Análisis Numérico de Ecuaciones Diferenciales Parciales Organizada por: Gabriel N. Gatica Centro CI2 MA, Universidad de Concepción, Chile PROGRAMA BLOQUE 1: Martes 2 de Agosto, de 16.15 a 18.45 16.15 - 16.45 Nelson Moraga: Stabilization of convective terms by a Darcy-Brinkman-Forch- heimer porous model for alloy solidification and food solar drying. 16.45 - 17.15 Julio Careaga: Entropy solutions of a scalar conservation law modelling sed- imentation in vessels with varying cross sectional area. 17.15 - 17.45 Jessika Camaño: A priori and a posteriori error analyses of a flux-based mixed- FEM for convection-diffusion-reaction problems. 17.45 - 18.15 Elvis Gavilán: A computational approach to a spatio-temporal and gender- structured model for hantavirus infection in rodents. 18.15 - 18.45 Gabriel N. Gatica: A posteriori error analysis of a fully-mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. BLOQUE 2: Miércoles 3 de Agosto, de 16.15 a 18.45 16.15 - 16.45 Ricardo Oyarzúa: An augmented stress-based mixed finite element method for the Navier-Stokes equations with variable viscosity. 16.45 - 17.15 Carlos Garcı́a: Finite element analysis of a pressure-stress formulation for the time-domain fluid-structure interaction. 17.15 - 17.45 Luis Gatica: Analysis of a HDG method applied to n-dimensional linear Brink- man models. 17.45 - 18.15 Eligio Colmenares: A posteriori error analysis of an augmented fully-mixed FEM for the Boussinesq problem. 18.15 - 18.45 Juan Calvo: A Schwarz algorithm in H(curl) for irregular subdomains in 3D. BLOQUE 3: Jueves 4 de Agosto, de 16.15 a 18.45 16.15 - 16.45 Luis M. Villada: High order numerical schemes for one-dimension non-local conservation laws. 16.45 - 17.15 Nestor Sánchez: A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier-Stokes/Brinkman problem. 17.15 - 17.45 Felipe Vargas: A high order HDG method for Stokes flow in curved domains. 17.45 - 18.15 Vı́ctor Osores: Métodos de alto orden para sistemas hiperbólicos con productos no conservativos, aplicados a sistemas shallow water multicapa con sedimentación polidispersa. 18.15 - 18.45 Nelson Moraga: A new sequential algorithm for fluid mechanics and heat transfer in complex conjugate problems solved by finite volume method. XXV COMCA Congreso de Matemática Capricornio 2,3,4 y de Agosto de 2016, Antofagasta, Chile Stabilization of convective terms by a Darcy-Brinkman-Forchheimer porous model for alloy solidification and food solar drying Nelson Moraga ∗ Departamento de Ingeniería Mecánica Universidad de La Serena Benavente 980, La Serena, Chile Abstract Influence of inertial and friction effects on fluid flows in porous media are accounted for by the Darcy-Brinkman-Forchheimer (DBF) model [1-3]. The objective of this paper is to analyze the effects of adding the correcting BF terms on the stabilization of the non-linear convective terms in the Navier-Stokes equations. Physical examples investigated include the solution of two phase change problems: food dehydration inside a solar dryer and binary alloy solidification in a thick walled square mold. In the first case, heat and mass diffusion of water inside a granular food (porous media) being removed by a laminar air flow with mixed heat and mass transfer is described by a conjugate seven PDE’s model in a solar dryer. Binary solidification of a binary aluminum alloy with an original model of porous temperature dependent porosity and permeability for the mushy zone is described by a five PDE’s coupled system. Finite Volume Method allows to solve the problems with in house programs. Solutions for the fluid mechanics are examined in terms of the evolution of stream functions in air flow and of the heat and mass transfer by the variation in time of temperature and water content in air and in grapes inside the solar dryer. The stabilization role of the convective terms by the temperature dependent porosity-permeability DBF mushy zone model of solidification is examined in terms of the computing time to solve the problem against the use of the non-porous classical solidification model. Joint work with: David Gallardo, Departamento de Ingeníería Mecánica, Universidad de La Serena, Benavente 980, La Serena, Chile. Roberto Cabrales1 , Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile. References [1] N. Kladis, V. Prasad, Experimental verification of Darcy-Brinkman-Forchheimer flow model for natural convection in porous media. J. of Thermophysical and Heat Transfer, vol. 5(4), pp. 560–576, (1991). ∗ Partially 1 e-mail: supported by CONICYT-Chile to FONDECYT 1140074 project, e-mail: [email protected] [email protected] 1 [2] D. Dan, P. Biswal, M. Roy, T. Basak, Role of the importance of Forchheimer term for visualization of natural convection in porous enclosures of various shapes. International Journal of Heat Mass Transfer, vol. 97, pp. 1044–1068, (2016) . [3] N. Moraga, G. Sánchez, J. Riquelme, Unsteady mixed convection in a vented enclosure partially filled with two non-Darcian porous layers. Numerical Heat Transfer A, vol. 57, pp. 1–23, (2010). 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile Entropy solutions of a scalar conservation law modelling sedimentation in vessels with varying cross sectional area Julio Careaga∗ CI MA and Departamento de Ingeniería Matemática Universidad de Concepción Concepción, Chile 2 Abstract The sedimentation of an ideal suspension in a vessel with variable cross-sectional area can be described by an initial-boundary value problem for a scalar nonlinear hyperbolic conservation law with a nonconvex flux function and a weight function that depends on spatial position. The sought unknown is the local solids volume fraction. For the most important cases of vessels with downward-decreasing cross-sectional area and flux function with at most one inflection point, entropy solutions of this problem are constructed by the method of characteristics. Solutions exhibit discontinuities that mostly travel at variable speed, i.e., they are curved in the spacetime plane. These trajectories are given by ordinary differential equations that arise from the jump condition. It is shown that three qualitatively different solutions may occur in dependence of the initial concentration. The potential application of the findings is a new method of flux identification via settling tests in a suitably shaped vessel. Related models also arise in flows of vehicular traffic, pedestrians, and in pipes with varying cross-sectional area. A comparison of the solution obtained by using the method of characteristics with the numerical solution using an approximation of the flow function given by Godunov method is also presented. This work has partly been inspired by the construction of solutions of the problem with the method of characteristics by Anestis [1] (see also [2]). Furthermore, numerical solutions under slightly different assumptions on the flux function, are presented in [3]. Joint work with: Raimund Bürger1 , CI2 MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile. Stefan Diehl2 , Centre for Mathematical Sciences, Lund University, Lund, Sweden. ∗ Partially supported by CONICYT (Chile) through projects; BASAL project CMM, Universidad de Chile and Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción; Anillo ACT1118 (ANANUM), e-mail: [email protected] 1 Partially supported by CONICYT (Chile) through projects Fondecyt 1130154; BASAL project CMM, Universidad de Chile and Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción; Anillo ACT1118 (ANANUM); CRHIAM, project CONICYT/FONDAP/15130015; and Fondef ID15I10291, e-mail: [email protected] 2 Partially supported by Lund University, e-mail: [email protected] 1 References [1] G. Anestis, Eine eindimensionale Theorie der Sedimentation in Absetzbehältern veränderlichen Quersch-nitts und in Zentrifugen. PhD Thesis, TU Vienna, Austria, 1981. [2] G. Anestis, W. Schneider, Application of the theory of kinematic waves to the centrifugation of suspensions. Ing. arch., vol 53, pp. 399–407, (1983). [3] R. Bürger, J. J. R. Damasceno, K. H. Karlsen, A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section. Int. J. Miner. Process., vol. 73, pp. 183–208, (2004). 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile A priori and a posteriori error analyses of a flux-based mixed-FEM for convection-diffusion-reaction problems Jessika Camaño∗ Departamento de Matemática y Física Aplicadas Universidad Católica de la Santísima Concepción Concepción, Chile, and 2 CI MA, Universidad de Concepción, Concepción, Chile. Abstract In this work we propose and analyze a new mixed finite element method for the diffusionconvection-reaction problem with non-homogeneous Dirichlet boundary conditions. We consider a mixed formulation, which yields the flux as the main unknown of the system. The original unknown u is easily recovered as a simple postprocess of its gradient. Then, we apply the Generalized Lax-Milgram Lemma to derive sufficient conditions for the unique solvability of the resulting continuous and discrete formulations. In particular, a feasible choice of subspaces is given by Raviart-Thomas of order k ≥ 0 for the gradient of u. Next, we derive a reliable and efficient residual-based a posteriori error estimator for the problem. The proof of reliability makes use of the global inf-sup condition, Helmholtz decomposition, and local approximation properties of the Clément interpolant and Raviart-Thomas operator. On the other hand, inverse inequalities, the localization technique based on element-bubble and edge-bubble functions, and known results from previous works, are the main tools for proving the efficiency of the estimator. Finally, some numerical results illustrating the good performance of the method and the capability of the corresponding adaptive algorithm to localize the singularities of the solution, and confirming the theoretical rate of convergence and the theoretical properties of the estimator, are reported. Joint work with: Luis F. Gatica1 , Departamento de Matemática y Física Aplicadas, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile, and CI2 MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile. Ricardo Oyarzúa2 , GIMNAP-Departamento de Matemática, Universidad del Bio-Bío, Casilla 5-C, Concepción-Chile, and CI2 MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile. ∗ Partially supported by CONICYT-Chile through project Inserción de Capital Humano Avanzado en la Academia 79130048 and project Fondecyt 11140691, e-mail: [email protected] 1 Partially supported by Dirección de Investigación, Universidad Católica de la Santísima Concepción through the project DIN 14/2016, e-mail: [email protected] 2 Partially supported by CONICYT-Chile through project Anillo ACT1118 (ANANUM), project Fondecyt 1161325, and DIUBB project 120808 GI/EF., e-mail: [email protected] 1 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile A computational approach to a spatio-temporal and gender-structured model for hantavirus infection in rodents Elvis Gavilán CI2 MA and Departamento de Ingeniería Matemática Universidad de Concepción Concepción, Chile Abstract Hantavirus represents a health problem in Chile. In particular the transmission dynamics of this virus among rodents, has not been studied sufficiently. In this presentation, we will present a preliminary model of the spatio temporal transmission in a gender structured rodent population. The purpose of this work is to take a deterministic model and apply some ideas of a predator prey model [3] and we utilize a spatio-temporal version of the gender-structured model for hantavirus infection of [2]. The non-linear system consists of a non-local conservation law for male-gender coupled with a parabolic equation for female-gender. The non-local conservation law describes the movement of the males that can be directed toward region with high female density, and in the direction opposite to region with high male density. Joint work with: R. Bürger1 , Universidad de Concepción, Concepción, Chile. G. Chowell, Georgia State University, Atlanta, Georgia, USA. Pep Mulet, Universitat de València, València, Spain. Luis-Miguel Villada, Universidad del Bío-Bío, Concepción, Chile. References [1] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. A, vol. 115, pp. 700–721, (1927). [2] L.J.S. Allen, R.K. McCormack, C.B. Jonsson, Mathematical models for hantavirus infection in rodents. Bull. Math. Biol., vol. 68, pp. 511–524, (2006). [3] R.M. Colombo, E. Rossi, Hyperbolic predators versus parabolic preys. Commun. Math. Sci., vol. 13, pp. 369–400, (2015). 1 This work was funded by CONICYT (Chile) through projects Fondecyt 1130154; BASAL project CMM, Universidad de Chile and Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; Anillo ACT1118 (ANANUM); CRHIAM, project CONI- CYT/FONDAP/15130015; and Fondef ID15I10291 (to R.B.) and CONICYT scholarship (to C.M.)., e-mail: [email protected] 1 [4] E. Rossi, V. Schleper, Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions. ESAIM Math. Modelling Numer. Anal., vol. 50, pp. 475–497. [5] S. Boscarino, R. Bürger, P. Mulet, G. Russo, L. M. Villada, Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems. SIAM J. Sci. Comput., vol. 37(2), pp. B305–B331, (2015). 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile A posteriori error analysis of a fully-mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity Gabriel N. Gatica∗ CI MA and Departamento de Ingeniería Matemática Universidad de Concepción, Casilla 160-C Concepción, Chile 2 Abstract In this paper we consider an augmented fully-mixed variational formulation that has been recently proposed for the coupling of the Navier–Stokes equations (with nonlinear viscosity) and the linear Darcy model, and derive a reliable and efficient residual-based a posteriori error estimator for the associated mixed finite element scheme. The finite element subspaces employed are piecewise constants, Raviart–Thomas elements of lowest order, continuous piecewise linear elements, and piecewise constants for the strain, Cauchy stress, velocity, and vorticity in the fluid, respectively, whereas Raviart–Thomas elements of lowest order for the velocity, piecewise constants for the pressure, and continuous piecewise linear elements for the traces, are considered in the porous medium. The proof of reliability of the estimator relies on a global inf-sup condition, suitable Helmholtz decompositions in the fluid and the porous medium, the local approximation properties of the Clément and Raviart–Thomas operators, and a smallness assumption on the data. In turn, inverse inequalities, the localization technique based on bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported. Joint work with: Sergio Caucao1 , CI2 MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile. Ricardo Oyarzúa2 , GIMNAP-Departamento de Matemática, Universidad del Bio-Bío, Casilla 5-C, Concepción, Chile, and CI2 MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile. ∗ Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and project Anillo ACT1118 (ANANUM); and by Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, e-mail: [email protected]. 1 Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and the BecasChile Programme for Chilean students, e-mail: [email protected] 2 Partially supported by CONICYT-Chile through projects Fondecyt 1161325, project Anillo ACT1118 (ANANUM) and by Dirección de Investigación Universidad del Bío-Bío, through project 120808 GI/EF, e-mail: [email protected] 1 References [1] J. Camaño, G.N. Gatica, R. Oyarzúa, G. Tierra, An augmented mixed finite element method for the Navier-Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54 (2016), no. 2, 1069–1092. [2] S. Caucao, G.N. Gatica, R. Oyarzúa, and I. Šebestová, A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. J. of Num. Math., to appear. [3] P. Clément, Approximation by finite element functions using local regularisation. RAIRO Modélisation Mathématique et Analyse Numérique 9 (1975), 77–84. [4] A.I. Garralda-Guillém, G.N. Gatica, A. Márquez, and M. Ruiz-Galán, A posteriori error analysis of twofold saddle point variational formulations for nonlinear boundary value problems. IMA J. Numer. Anal. 34 (2014), no. 1, 326–361. [5] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. SpringerBriefs in Mathematics. Springer, Cham, 2014. [6] G.N. Gatica, A note on stable Helmholtz decompositions in 3D. Preprint 2016–03, Centro de Investigación de Ingeniería Matemática (CI2 MA), Universidad de Concepción, Chile, (2016). [7] G.N. Gatica, A. Márquez, R. Oyarzúa, and R. Rebolledo, Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Engrg. 270 (2014), no. 1, 76–112. [8] G.N. Gatica, G. Tierra, and R. Ruiz-Baier, A posteriori error analysis of an augmented mixed method for the Navier-Stokes equations with nonlinear viscosity. Preprint 2016–11, Centro de Investigación de Ingeniería Matemática (CI2 MA), Universidad de Concepción, Chile, (2015). [9] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics, 5. Springer–Verlag, Berlin, 1986. x+374 pp. [10] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2013. xx+393 pp. 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile An augmented stress-based mixed finite element method for the Navier-Stokes equations with variable viscosity Ricardo Oyarzúa∗ GIMNAP-Departamento de Matemática, Universidad del Bío-Bío, Concepción, Chile, and 2 CI MA, Universidad de Concepción, Concepción, Chile Abstract A new stress-based mixed variational formulation for the Navier-Stokes equations with constant density and variable viscosity depending on the magnitude of the strain tensor, is proposed and analyzed in this work. Our approach is a natural extension of a technique applied in a recent paper by some of the authors to the same boundary value problem but with a viscosity that depends nonlinearly on the gradient of velocity instead of the strain tensor. In the present case, and besides remarking that the strain-dependence for the viscosity yields a physically more meaningful model, we notice that in order to handle this nonlinearity we now need to incorporate not only the strain itself but also the vorticity as auxiliary unknowns. Furthermore, similarly as in that previous work, and aiming to deal with a suitable space for the velocity, the variational formulation is augmented with Galerkin type terms arising from the constitutive and equilibrium equations, the relations defining the two additional unknowns, and the Dirichlet boundary condition. In this way, and since the resulting augmented scheme can be rewritten as a fixed point operator equation, the classical Schauder and Banach theorems together with monotone operators theory are applied to derive the well-posedness of the continuous and associated discrete schemes. In particular, we show that arbitrary finite element subspaces can be utilized for the latter, and then we derive optimal a priori error estimates and the corresponding rates of convergence. Next, a reliable and efficient residual-based a posteriori error estimator on arbitrary polygonal and polyhedral regions is proposed. The main tools employed include Raviart-Thomas and Clément interpolation operators, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions. Finally, several numerical essays illustrating the good performance of the method, confirming the reliability and efficiency of the a posteriori error estimator, and showing the desired behaviour of the adaptive algorithm, are reported. ∗ Partially supported by CONICYT-Chile through projects Fondecyt 1161325, project Anillo ACT1118 (ANANUM) and by Dirección de Investigación Universidad del Bío-Bío, through project 120808 GI/EF, e-mail: [email protected] 1 Joint work with: Jessika Camaño1 , Departamento de Matemática y Física Aplicadas, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile, and CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile. Gabriel N. Gatica2 , CI2 MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile. Ricardo Ruiz-Baier3 , Mathematical Institute, Oxford University, Andrew Wiles Building, Woodstock Road, OX2 6GG Oxford, UK. References [1] J. Camaño, G.N. Gatica, R. Oyarzúa, G. Tierra, An augmented mixed finite element method for the Navier-Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54 (2016), no. 2, 1069–1092. [2] J. Camaño, R. Oyarzúa, G. Tierra, Analysis of an augmented mixed-FEM for the NavierStokes problem. Math. Comp., DOI: http://dx.doi.org/10.1090/mcom/3124. [3] G.N. Gatica, A note on stable Helmholtz decompositions in 3D Preprint 2016-03, Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, Chile, (2016). available at http://www.ci2ma.udec.cl/publicaciones/prepublicaciones. [4] G.N. Gatica, R. Ruiz–Baier, and G. Tierra., A posteriori error analysis of an augmented mixed method for the Navier–Stokes equations with nonlinear viscosity. Preprint 2016-11, Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, Chile, (2016). available at http://www.ci2ma.udec.cl/publicaciones/prepublicaciones. 1 Partially supported by CONICYT-Chile through project Inserción de Capital Humano Avanzado en la Academia 79130048 and project Fondecyt 11140691, e-mail: [email protected] 2 Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Anillo ACT1118 (ANANUM), e-mail: [email protected] 3 e-mail: [email protected]. 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile Finite element analysis of a pressure-stress formulation for the time-domain fluid-structure interaction Carlos García∗ CI MA and Departamento de Ingeniería Matemática Universidad de Concepción, Concepción, Chile 2 Abstract We present a convergence analysis for the space discretization of a time-dependent system of partial differential equations modeling an elasto-acoustic interaction problem. We use the Arnold-Falk-Winther mixed finite element method with weak symmetry in the solid and the usual Lagrange finite element method in the acoustic medium. The error analysis of the resulting global semi-discrete scheme relies essentially on the mapping properties of an adequate projector. We show that the method is stable uniformly with respect to the space discretization parameter and the Poisson modulus and we prove asymptotic error estimates. Joint work with: Gabriel N. Gatica1 , Centro de Investigación en Ingeniería Matemática CI2 MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile. Salim Meddahi2 , Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oviedo, Oviedo, España. References [1] C. García, G. N. Gatica, S. Meddahi, A new mixed finite element analysis of the elastodynamic equations. Applied Mathematics Letters, vol. 59, pp. 48–55,(2016). [2] G. N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham, (2014). ∗ Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile; by project Anillo ACT1118 (ANANUM), e-mail: [email protected] 1 Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile; by project Anillo ACT1118 (ANANUM), e-mail: [email protected] 2 Partially supported by Ministery of Education of Spain through the project MTM2013-43671-P, e-mail: [email protected] 1 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile Analysis of a HDG method applied to n-dimensional linear Brinkman models Luis F. Gatica∗ Departamento de Matemática y Física Aplicadas Universidad Católica de la Santísima Concepción and Centro de Investigación en Ingeniería Matemática (CI2 MA) Universidad de Concepción, Concepción, Chile Abstract In this talk we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the linear Brinkman model of porous media flow in two and three dimensions, with nonhomogeneous Dirichlet boundary conditions. We consider a fully-mixed formulation in which the main unknowns are given by the pseudostress, the velocity and the trace of the velocity, whereas the pressure is easily recovered through a simple postprocessing. We show that the corresponding continuous and discrete schemes are well-posed. In particular, we use the projection-based error analysis in order to derive a priori error estimates. Furthermore, we develop a reliable and efficient residual-based a posteriori error estimator, and propose the associated adaptive algorithm for our HDG approximation. Finally, several numerical results illustrating the performance of the method, confirming the theoretical properties of the estimator, and showing the expected behaviour of the adaptive refinements, are presented. Joint work with: Filánder A. Sequeira1 , Escuela de Matemática, Universidad Nacional de Costa Rica, Heredia, Costa Rica. References [1] B. Cockburn, J. Gopalakrishnan, N. C. Nguyen, J. Peraire and F. J. Sayas, Analysis of HDG methods for Stokes flow. Math. Comp., 80 (2011) pp. 723-760. [2] B. Cockburn, J. Gopalakrishnan and F. J. Sayas, A projection-based error analysis of HDG methods. Math. Comp., 79 (2010) pp. 1351-1367. ∗ Partially supported by Dirección de Investigación of the Universidad Católica de la Santísima Concepción, through the project DIN 14/2016, e-mail: [email protected] 1 e-mail: [email protected] 1 [3] G.N. Gatica, A note on stable Helmholtz decompositions in 3D. Preprint 2016-03, Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, Chile. [4] G. N. Gatica and F. A. Sequeira, Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput., 65 (2015), pp. 1270-1308. [5] G. N. Gatica and F. A. Sequeira, Analysis of the HDG method for the Stokes-Darcy coupling. Preprint 2015-23, Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, Chile. [6] G. N. Gatica and F. A. Sequeira, A priori and a posteriori error analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flow. J. Sci. Comput., to appear. 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile A posteriori error analysis of an augmented fully–mixed FEM for the Boussinesq problem Eligio Colmenares∗ Centro de Investigación en Ingeniería Matemática (CI2 MA) and Departamento de Ingeniería Matemática Universidad de Concepción, Concepción, Chile Abstract In this talk we present an a posteriori error analysis for a high–order quasi–optimally convergent augmented fully–mixed finite element method introduced and analyzed in an earlier work of us to numerically simulate heat driven flows in the Boussinesq approximation setting. Our approach there incorporates as additional unknowns a modified pseudostress tensor and an auxiliary vector in the governing fluid and heat equations, respectively, the pressure is then eliminated by its own definition, and redundant Galerkin terms are included to the resulting weak formulation. The corresponding solvability analysis, its discretization, and the convergence of the latter were stated, and for any conforming family of finite element subspaces. Optimal order a priori error estimates were particularly proven by using Raviart–Thomas elements for the aforementioned auxiliary unknowns, and Lagrange elements for the velocity and the temperature. Here we propose a reliable and efficient, fully local and computable, residual–based a posteriori error estimator in two and three dimensions. Standard arguments based on duality techniques, stable Helmholtz decompositions, and well–known results from previous a posteriori error analyses of related mixed schemes are the main underlying tools used in our methodology. Numerical experiments validate the expected behavior of the associated adaptive algorithm and illustrate the accuracy improvement of the technique for approximating not only the principal unknowns but also several other physically relevant post-processed variables, such as the pressure, the vorticity fluid, the shear–stress tensor, and the velocity and the temperature gradient. Joint work with: Gabriel N. Gatica1 , CI2 MA y Departmento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile. Ricardo Oyarzúa2 , GIMNAP-Departamento de Matemática, Universidad del Bío-Bío y CI2 MA – Universidad de Concepción, Concepción, Chile. ∗ Partially supported by the Becas–Chile programme for foreign students and Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, e-mail: [email protected] 1 Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Anillo ACT1118 (ANANUM), and project Fondecyt 11121347, e-mail: [email protected] 2 Partially supported by Universidad del Bío-Bío through DIUBB project 120808 GI/EF, e-mail: [email protected] 1 References [1] M. Álvarez, G. N. Gatica, R. Ruíz–Baier, A posteriori error analysis for a viscous flow–transport problem. ESSAIM: Mathematical Modelling and Numerical Analysis, DOI: http://dx.doi.org/10.1051/m2an/2016007. [2] E. Colmenares, G. N. Gatica, R. Oyarzúa, An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo, to appear. DOI: 10.1007/s10092-0160182-3. [3] E. Colmenares, G. N. Gatica, R. Oyarzúa, Analysis of an augmented mixed–primal formulation for the stationary Boussinesq Problem. Numerical Methods for Partial Differential Equations, vol. 32, 2, pp. 445-478, (2016). [4] E. Colmenares, G. N. Gatica, R. Oyarzúa, Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. Comptes Rendus - Mathematique, vol. 354, 1, pp. 57-62, (2016). [5] E. Colmenares, M. Neilan, Dual–mixed formulations for the stationary Boussinesq problem. Preprint 2016–07, Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, Chile, (2016). [6] C. Dominguez, G. N. Gatica, S. Meddahi, A posteriori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem. Journal of Computational Mathematics, vol. 33, 6, pp. 606-641, (2015). [7] G. N. Gatica, G. Hsiao, S. Meddahi, A residual–based a posteriori error estimator for a two-dimensional fluid-solid interaction problem. Numerische Mathematik, vol. 114, 1, pp. 63-106, (2009). 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile A Schwarz algorithm in H(curl) for irregular subdomains in 3D Juan Gabriel Calvo ∗ Centro de Investigación en Matemática Pura y Aplicada Universidad de Costa Rica San José, Costa Rica Abstract A new coarse space for a two-level overlapping Schwarz algorithm is presented for 3D problems posed in H(curl). Previous studies [1, 2] for these methods are very restrictive about the geometry of the subdomains, and this new space is valid for general subdomains. The coarse space is based on energy minimization and its dimension equals the number of interior subdomain edges. Local direct solvers are used on the overlapping subdomains. In most of the existing domain decomposition literature, the subdomains are assumed to be tetrahedra or cubes, or the union of a few such objects or to be at least convex. The coarse space is often assumed to be the Nédélec space on such a special coarse triangulation. Subdomains can be quite irregular for example if they are obtained from a mesh partitioner, and there is no straightforward approach to define coarse functions for such subdomains. In practice it is also normal to have discontinuities in the material properties, so it is very restrictive to assume that the coefficients are constant. The goal is to develop an algorithm that can be defined for any subdomain geometry and that works for highly discontinuous coefficient distributions. Numerical experiments with irregular subdomains and different coefficient distributions are presented. These results are very promising, even for random and discontinuous values of the coefficients. The algorithm is scalable, independent of the number of degrees of freedom on each subdomain and independent of discontinuities in the coefficients. Numerically, the condition number of the preconditioned system grows quadratically as a function of H/δ, similar to the bound obtained in [1, 2] for the particular case of regular subdomains and constant coefficients. References [1] A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions, Numer. Math. vol. 86, pp. 733–752, (2000). [2] R. Hiptmair and A. Toselli, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions, Parallel solution of Partial Differential Equations (P. Bjørstad and M. Luskin, eds.),of IMA Vol. Math. Appl., Springer, vol. 120, pp. 181–208, (2000). ∗ e-mail: [email protected] 1 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile High order numerical schemes for one-dimension non-local conservation laws Luis-Miguel Villada Osorio∗ GIMNAP-Departamento de Matemticas Universidad del Bío-Bío Concepción, Chile and 2 CI MA, Universidad de Concepción, Concepción, Chile Abstract This talk deals the numerical approximation of the solutions of scalar conservation laws with non-local flux. This equations can be applied to models of traffic flow [3] in which the mean velocity depends on a weighted mean of the downstream traffic density or sedimentation models [1] where either the solid phase velocity or the solid-fluid relative velocity depends on the concentration in a neighborhood. In both models, velocity is a function of a convolution term between the unknown and a finite supported kernel function. The solution of this equations can exhibit oscillations that are very difficult to approximate using classical first order numerical schemes. We propose to use Discontinuous Galerkin methods [2] and Finite Volume WENO scheme [4] to obtain high order approximations. DG methods can be applied in a natural way, however their CFL restriction is very strong. FV-WENO schemes present less restrictive CFL conditions but it is necessary to use quadratic polynomials in each cell to evaluate the convolution term in order to obtain a high order approximation. Simulations are presented for both applications.. Joint work with: Paola Goatin1 , INRIA Sophia Antipolis - Méditerranée, France. Christophe Chalons2 , Université Versailles Saint-Quentin-en-Yvelines, France . References [1] F. Betancourt, R. Bürger, K. Karlsen, E. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity, 24, pp. 855–885, (2011). [2] B. Cockbur, C-W. Shu, Runge-Kutta Discontinuous Galerkin methods for convectiondominate problems. J. Sci. Comput., vol. 16, pp. 173–261, (2001). ∗ Partially supported by Fondecyt project 11140708 , e-mail: [email protected] [email protected] 2 e-mail: [email protected] 1 e-mail: 1 [3] P. Goatin, S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media, vol. 11(1), pp. 107–121, (2016). [4] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Springer Berlin Heidelberg, pp. 325–432, (1998). 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier-Stokes/Brinkman problem Nestor Sánchez∗ GIMNAP-Departamento de Matemática, Universidad del Bío-Bío, Concepción, Chile Abstract We introduce and analyze an augmented mixed finite element method for the Navier-StokesBrinkman problem. We employ a technique previously applied to the stationary Navier-Stokes equation, which consists of the introduction of a modified pseudostress tensor relating the gradient and the pressure with the convective term, and propose a pseudostress-velocity formulation for the model problem. Since the convective term forces the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin type terms. The resulting augmented scheme is then written equivalently as a fixed point equation, so that the well-known Banach theorem, combined with the Lax-Milgram theorem, are applied to prove the unique solvability of the continuous and discrete systems. We point out that no discrete inf-sup conditions are required for the well-posedness of the Galerkin scheme, and hence arbitrary finite element subspaces of the respective continuous spaces can be utilized. In particular, given an integer k ≥ 0, Raviart-Thomas spaces of order k and continuous piecewise polynomials of degree ≤ k +1 constitute feasible choices of discrete spaces for the pseudostress and the velocity, respectively, yielding optimal convergence. In addition, we derive a reliable and efficient residual-based a posteriori error estimator for the augmented mixed method. The proof of reliability makes use of the global inf-sup condition, a Helmholtz decomposition, and local approximation properties of the Clément interpolant and Raviart-Thomas operator. On the other hand, inverse inequalities, the localization technique based on element-bubble and edge-bubble functions, approximation properties of the L2 -orthogonal projector, and known results from previous works, are the main tools for proving the efficiency of the estimator. Finally, several numerical results illustrating the performance of the augmented mixed method, confirming the theoretical rate of convergence and the theoretical properties of the estimator, and showing the behaviour of the associated adaptive algorithms, are reported. Joint work with: Luis F. Gatica1 , Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile, ∗ Partially supported by CONICYT-Chile through projects Fondecyt 11121347, project Anillo ACT1118 (ANANUM) and by Dirección de Investigación Universidad del Bío-Bío, through project 120808 GI/EF, e-mail: [email protected] 1 Partially supported by Dirección de Investigación, Universidad Católica de la Santísima Concepción through project DIN 14/2016, e-mail: [email protected] 1 and CI2 MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile. Ricardo Oyarzúa2 , GIMNAP-Departamento de Matemática, Universidad del Bio-Bío, Casilla 5-C, Concepción, Chile, and CI2 MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile. References [1] J. Camaño, R. Oyarzúa and G. Tierra, Analysis of an augmented mixed-FEM for the Navier-Stokes problem. Mathematics of Computation, DOI: http://dx.doi.org/10.1090/mcom/3124 [2] S. Caucao, D. Mora and R. Oyarzúa, A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density. IMA Journal of Numerical Analysis, vol. 36, 2, pp. 947-983, (2016). [3] G.N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing RT0 –P1 –P0 approximations. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 40, 1, pp. 1–28, (2006). [4] G.N. Gatica, A note on stable Helmholtz decompositions in 3D. Preprint 2016-03, Centro de Investigación en Ingeniería Matemática (CI2MA), UDEC, (2016). [5] G.N. Gatica, L.F. Gatica and A. Márquez, Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numerische Mathematik, vol 126, 4, pp. 635-677, (2014). 2 Partially supported by CONICYT-Chile through projects Fondecyt 11121347 and 1161325, project Anillo ACT1118 (ANANUM) and by Dirección de Investigación Universidad del Bío-Bío, through project 120808 GI/EF, e-mail: [email protected] 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile A high order HDG method for Stokes flow in curved domains Felipe Vargas Martínez∗ CI2 MA and Departmento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile Abstract We propose and analyze a high order hybridizable discontinuous Galerkin (HDG) method for the Stokes equations in a curved domain Ω. It is based on approximating Ω by a polygonal/polyhedral domain where an HDG approximation can be computed. In in order to obtain a suitable approximation for the Dirichlet boundary data in the computational domain, we employ a transferring technique based on integrating the extrapolated discrete gradient. We also propose to extrapolate the discrete pressure and impose its mean value over the computational domain in such a way that the approximated pressure has zero mean in the entire domain Ω. We show that, if the computational domain is defined through interpolating the boundary of Ω by a piece-wise linear function, the method provides optimal order of convergence, i.e., order k + 1 for the approximations of the pressure, the velocity and its gradient; and order k + 2 for the numerical trace of the velocity and for the element-by-element post-processed velocity. We also provide numerical experiments validating the theoretical error estimates. Joint work with: Manuel Solano1 , Departmento de Ingeniería Matemática & CI2 MA, Universidad de Concepción, Concepción, Chile. References [1] B. Cockburn, J. Gopalakrishnan, N. C. Nguyen, J. Peraire, Analysis of HDG methods for Stokes flow. Math. of Comp., vol. 80 (274), pp. 723–760 (2010). [2] B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG methods. Math. Comp., vol. 79, pp. 1351–1367, (2010). [3] B. Cockburn, W. Qiu and M. Solano, A priori error analysis for HDG methods using extensions from subdomains to achieve boundary-conformity. Math. of Comp. vol. 83, pp. 665– 699 (2014). ∗ Partially supported by the Scholarship Program of CONICYT-Chile, e-mail: [email protected] supported by CONICYT-Chile through the FONDECYT project No. 1160320, BASAL project CMM, Universidad de Chile, by Centro de Investigación en Ingeniería Matemática (CI2 MA), 24 Universidad de Concepción, and by Project Anillo ACT1118 (ANANUM), e-mail: [email protected] 1 Partially 1 [4] M. Solano and F. Vargas, A high order HDG method for Stokes flow in curved domains. Preprint 2016-12, Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción, 2016. 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile Métodos de alto orden para sistemas hiperbólicos con productos no conservativos, aplicados a sistemas shallow water multicapa con sedimentación polidispersa Víctor Osores∗ CI2 MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile Abstract En este trabajo consideramos una mezcla formada por un fluido viscoso y material particulado disperso en ella formado principalmente por partículas sólidas pequeñas de diferentes especies y diferentes tamaños. El modelo que se presenta nace de combinar un sistema Shallow Water (o Saint Venant) con un sistema de sedimentación polidispersa, esto permite conocer tanto el comportamiento vertical de la especies en la mezcla como también el movimiento horizontal de ellas en el fluido. El modelo resultante logra ser escrito en forma condensada como un sistema hiperbólico con productos no conservativos, el cual resolvemos a través técnicas de tipo volúmenes finitos para sistemas hiperbólicos con este tipo de productos. Se muestra como a partir de un método numérico a orden uno, conocida la función de flujo numérico F (U, V ), es posible desarrollar métodos de orden mayor para este tipo de ecuaciones. Aquí no consideramos el efecto de sedimento compresible, ni tampoco la variación de la batimetría producto del sedimento depositado en el fondo. Trabajo conjunto con: Raimund Bürger, CI2 MA, Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile. Enrique Fernández-Nieto, Departamento de Matemática Aplicada I, E.T.S. Arquitectura, Universidad de Sevilla, Sevilla, España. References [1] E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B, vol. 5, pp. 189–214 (2005). [2] S. Berres, R. Bürger, K.H. Karlsen, E.M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math., vol. 64, pp. 41–80, (2003). ∗ Financiado parcialmente por CONICYT (Chile) a traves de proyecto CMM basal, Anillo ACT118 (ANANUM), e-mail: [email protected] 1 [3] M. Castro, J. M. Gallardo, C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput., vol. 1103, (1134), pp. 281–314 . [4] E.D. Fernández-Nieto, E.H. Koné, T. Morales de Luna, R. Bürger. A multilayer shallow water system for polydisperse sedimentation. J. Comput. Phys., vol. 238, pp. 281–314, (2013). 2 XXV COMCA Congreso de Matemática Capricornio 2,3,4 y de Agosto de 2016, Antofagasta, Chile A new sequential algorithm for fluid mechanics and heat transfer in complex conjugate problems solved by finite volume method Nelson Moraga ∗ Departamento de Ingeniería Mecánica Universidad de La Serena Benavente 980, La Serena, Chile Abstract A novel prediction-corrector algorithm to solve the Navier-Stokes equations coupled to the unsteady heat convection-diffusion equations for incompressible flows is presented. The objective of this work is to analyze the effects on accuracy and numerical efficiency of using inner doublyiterative processes [1], followed by two cycles of prediction-correction for solving the continuity, linear momentum and energy equations [2]. The performance of the new algorithm for the Finite Volume Method on solving unsteady natural heat convection problems inside square and annular cylindrical thick walled cavities is investigated. Increments in accuracy is accounted for by comparison with experimental available data of air and water convection for Rayleigh numbers Ra = 104 and 105 . Enhancement on robustness is described by the influence of the under-relaxation coefficients for the velocity components on the number of iterations in the solution of natural convective heat problems. Efficiency in the solution procedure is examined by the computation time required with the new algorithm in relation to the classical SIMPLE [3] and PISO [4] algorithms. Joint work with: Juan Jaime, Departamento de Ingeníería Mecánica, Universidad de La Serena, Benavente 980, La Serena, Chile. References [1] D.I. Sun, Z.Q. Qu, Y.L. He, W.Q. Tao, An efficient segregated algorithm for incompressible fluid flow and heat transfer problems-IDEAL (inner doubly-iterative efficient algorithm for linked-equations) part I: mathematical formulation and solution procedure. Numerical Heat Transfer B, vol. 53, pp. 1–17, (2008). [2] N.O.Moraga, S.C. Ramírez, M.J. Godoy, P. Ticchione, Study of convective nonNewtonian alloy solidification in molds by the Psimpler/Finite volume method. Numerical Heat Transfer A, vol. 12, pp. 936–953, (2010). ∗ The authors acknowledge the support received from CONICYT-Chile to FONDECYT 1140074 project, e-mail: [email protected] 1 [3] S.V. Patankar, B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Heat Mass Transfer vol. 15, pp. 1787-1806, (1972). [4] R.I. Issa, Solution of implicitly discretized fluid flow equation by operator splitting. J. Computational Physics, vol. 62, pp. 40–65 (1985). 2
© Copyright 2024