ESD.S30 Electric Power System Modeling for a Low Carbon Economy Impact of renewable energy sources in short-term generation planning Prof. Andres Ramos http://www.iit.upcomillas.es/aramos/ [email protected] [email protected] Massachusetts Institute of Technology (MIT). October 2014 Contents 1. Wind generation in Spain 2. Impact of wind generation in medium and long-term planning 3. Impact of wind generation in short-term planning 4. Impact of wind generation in real time operation 5. Stochastic Unit Commitment 6. Prototype stochastic unit commitment. Mathematical formulation 7. Prototype stochastic unit commitment. Computer implementation Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 2 1 Wind generation in Spain Impact of WG in medium and long-term planning Impact of WG in short-term planning Impact of WG in real time operation Stochastic UC Prototype stochastic UC. Mathematical formulation Prototype stochastic UC. Computer implementation Wind generation in Spain Renewable Energy Sources (RES) • Renewable Energy Sources Wind generation (WG) – Solar Thermal – Photovoltaic Solar – Small Hydro – Biomass – Solid Waste – • Cogeneration or Combined Heat and Power (CHP) and as another uncertain resources • • Demand Response (DR) Electric Vehicle (EV) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 4 Cecre: control centre of renewable energies Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 5 WG in mainland Spain • Year 2013: 21.1 % wind energy – 22746 MW (22.2 % of total installed capacity) installed on Dec-31-2013 Energy [GWh] – • Year 2016 (NREAP): Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Winter Peak [MW] Summer Peak [MW] Min Load [MW] Max Up Reserve [MW] Max Down Reserve [MW] Nuclear [MW] Coal [MW] CCGT [MW] Gas Turbines [MW] Max Hydro Output [MW] Pure Pumped Storage Hydro [MW] Combined Pumped Storage Hydro [MW] Wind Generation [MW] CHP [MW] Other RES [MW] Natural Hydro Inflows [GWh] Coal Price [€/Mcal] Natural Gas Price [€/Mcal] CO2 Price [€/t CO2] # of Electric Vehicles [units] Impact of RES in Short-Term Generation Planning 6 323408 59135 44511 18385 6155 1183 7000 6338 25026 2100 10000 2432 2985 29778 9008 10758 28517 0.014 0.025 30 50000 Solar and wind generation http://www.iit.upcomillas.es/aramos/Productores_Regimen_Especial.kmz Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 8 Installed capacity of WG Installed Capacity [MW] 25000 22746 22573 21011 19569 18722 20000 15977 15000 13529 11290 9654 10000 7777 5816 4391 5000 1 2817 1829 6341022 375 146 97 1 30 34 39 Source: REE 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 0 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 9 Demand share of WG 25 22 19 Demand share[%] 20 17 16 15 15 12 10 10 8 9 7 4 5 0 0 0 0 0 0 0 0 1 1 2 5 3 Source: REE 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 0 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 10 Monthly WG capacity factor Spanish saying: Febrero revuelto, marzo ventoso y abril lluvioso, sacan a mayo florido y hermoso Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 11 WG Operation hours at full capacity 2440 2421 2341 Operation Hours at Full Capacity [h] 2500 2078 2097 2000 1873 1951 2395 2208 2161 2132 2109 2 026 2027 2024 2004 2015 2 014 1988 1656 1651 1500 1000 570 500 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 0 Source: REE Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 12 Yearly WG Capacity factor 29% 30% 28%28% 27% 25% 24% Capacity facotr [p.u.] 21% 19% 20% 22% 27% 25% 25% 24% 24% 23%23% 23%23%23%23% 23% 10% 19% 15% 10% 7% 5% 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 0% Source: REE Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 13 Maximum WG output (Wednesday, 2012-04-18) 52% 16593 MW Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 14 Maximum WG output (Tuesday, 2010-11-09) 14901 MW Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI 53% Impact of RES in Short-Term Generation Planning 15 Maximum WG output (Thursday, 2010-02-24) 12843 MW Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 45 % 16 Maximum WG output (Thursday, 2009-03-05) 11180 MW Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 42 % 17 Maximum hourly WG share 64.2 % (Monday, 2012-09-24 3 am) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 18 Maximum hourly WG share 59.7 % (Sunday, 2011-11-06 2 am) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 19 Maximum daily WG share (Sunday, 2009-11-08) 11536 MW 53 % 45% daily Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 20 Maximum monthly WG share (April 2012) Solar PV Wind Hydro Solar thermal Thermal RES Nuclear Cogeneration and other RES Combined Cycle Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Coal Impact of RES in Short-Term Generation Planning 22 2 Wind generation in Spain Impact of WG in medium and long-term planning Impact of WG in short-term planning Impact of WG in real time operation Stochastic UC Prototype stochastic UC. Mathematical formulation Prototype stochastic UC. Computer implementation Impact of WG in medium and longterm planning Maximum WG share (Monday, 2012-09-24) 13333 MW 64.2 % 3 am Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 25 Minimum WG share (Saturday, 2010-06-26) <1 % 192 MW 10 am Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 26 Probability density function f(x) (2006) Potencia (% potencia instalada) Source: REE Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 27 95 -100 90 -95 85 -90 80 -85 75 -80 70 -75 65 - 70 60 -65 55 -60 50 -55 45 -50 40 -45 35 -40 30 -35 25 -30 20 -25 15 - 20 10 - 15 5 - 10 0-5 18 16 14 12 10 8 6 4 2 0 0 Frecuencia (% tiempo) Distribución de frecuencias producción eólica Total peninsular Probability distribution f(x) and F(x) 400 100.00% 350 90.00% 80.00% Frecuency [h] 300 250 60.00% 200 50.00% 150 40.00% 30.00% 100 20.00% 50 10.00% 0 0.00% 100 1800 3500 5200 6900 8600 10300 12000 13700 15400 17100 18800 20500 22200 23900 25600 27300 5.2 % of installed capacity 95 % of being exceeded 70.00% Mean value: 24.15 % of installed capacity Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI 73.5 % of installed capacity in 2020 Output [MW] Source: REE Impact of RES in Short-Term Generation Planning 28 Number of hours of low WG per year 200 180 160 # of hours per year 140 120 IG v 12hMA 100 24hMA 48hMA 80 72hMA v 96hMA 60 40 v 20 0 0.6% 1.3% 1.9% 2.5% 3.1% 3.8% 4.4% 5.0% 5.6% 6.3% 6.9% 7.5% 8.1% 8.8% % of installed capacity Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 29 9.4% 10.0% Number of occurrences of low WG per year 100 Occurrence: any number of consecutive hours 90 80 # of low wind periods per year 70 60 IG v 12hMA 50 24hMA 48hMA 40 72hMA 96hMA 30 20 10 v v 0 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% % of installed capacity Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 30 10.0% Demand vs. Intermittent Generation (2008) 50000 No correlation 45000 40000 Hourly demand [MW] 35000 30000 Intermittent 25000 20000 15000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Hourly generation [MW] Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 31 10000 Impact of WG in medium and long-term planning • Reliability assessment Low coincidence with yearly peak loads (January and July) – Almost no dispatchability of WG – Will there be enough generation to meet peak loads? Determine some system adequacy reliability measures for the system. Determine WG contribution to the system reliability: capacity credit. NEED OF COMPLEMENTARY UNITS – Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 32 3 Wind generation in Spain Impact of WG in medium and long-term planning Impact of WG in short-term planning Impact of WG in real time operation Stochastic UC Prototype stochastic UC. Mathematical formulation Prototype stochastic UC. Computer implementation Impact of WG in short-term planning High ramp rates of WG (Monday, 2005-05-09) • Approx. 10400 MW of installed capacity Decrement of 1000 MW in 1 h and 45 minutes Ramp rate: -570 MW/h Increment of 800 MW in 45 minutes Ramp rate: 1067 MW/h Source: REE Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 34 Hourly ramp rates of WG (2006) Rampas horarias de generación eólica en 2006 (MW) Total peninsular V a ria c ió n h o ra ria (M W ) 1000 500 0 -500 -1000 -1500 -2000 Source: REE Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 35 Load demand (Wednesday, 2010-03-03) No downward tertiary reserve from 2-6 am 39183 MW 23653 MW 1 CCGT in offpeak hours Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 27 CCGT in peak hours 36 Load demand (Wednesday, 2010-03-03) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 37 Load demand (Wednesday, 2010-03-03, 4:30 h) CCGT 1.3 % Wind 21.1 % Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 38 Load demand (Wednesday, 2010-03-03, 20:20 h) CCGT 30.2 % Wind 9.6 % Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 39 Load demand (Wednesday, 2010-03-03) WG 4000 MW CCGT 12000 MW WG 6000 MW CCGT 200 MW No support from neighbors Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 40 Nuclear units decrease production 20 % (Friday 2013-03-29) WG 6990 MW NUC 7080 MW HYD 8520 MW Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning NUC 5960 MW 41 Iberian daily market prices (March, 2013) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 42 Impact of WG in short-term planning • Variability. Unit commitment Strong variability of WG over the day. Opposite behavior with respect to the demand in certain periods – Ramps, minimum load, startups and shutdowns. NEED OF FLEXIBLE UNITS – Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 43 4 Wind generation in Spain Impact of WG in medium and long-term planning Impact of WG in short-term planning Impact of WG in real time operation Stochastic UC Prototype stochastic UC. Mathematical formulation Prototype stochastic UC. Computer implementation Impact of WG in real time operation WG Forecast error Source: EPRI The Integration of Large-Scale Renewable Resources into the Spanish Power System 2010 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 45 WG Forecast error wrt. WG output 19 % in 24 h 18 % in 12 h 15 % in 6 h Source: G. González (REE) Wind power prediction in the Spanish system operation (peninsula and islands) Sipreólico 2008 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 46 WG Forecast error wrt. WG installed capacity NRMSE: normalized root mean square error SIPREOLICO 2007 4.9 % in 24 h 4.4 % in 12 h 4 % in 6 h Source: EPRI The Integration of Large-Scale Renewable Resources into the Spanish Power System 2010 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 47 WG curtailment (Thursday, 2012-11-01) 1000 MW due to excess of generation Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI 1000 MW to commit one CCGT Impact of RES in Short-Term Generation Planning 48 Load demand (Thursday, 2012-11-01) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 49 WG curtailment (Tuesday, 2008-03-04) • • Instantaneous peak 10032 MW at 15:53 h (28 % of demand). Hourly peak 9803 MW between 15:00 and 16:00 h A reduction order of 500 MW of wind generation was sent 500 MW Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 50 WG curtailment (Sunday, 2008-11-02) 2800 MW due to stability reasons Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 51 Load demand (Sunday, 2008-11-02) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 52 ERCOT Texas incident (Tuesday, 2008-02-26) • • • • The wind production dropped from over 1700 MW (out of 8000 MW), three hours before the event, down to 300 MW and that led to some system constraints in moving power from the generation in the north zone to load in the west zone Evening electricity load was increasing Multiple power providers falling below their scheduled energy production ERCOT activated demand response program known as Loads Acting as Resource (LAARs), which added approximately 1100 MW of resources within a 10-minute period. LAARs are typically large industrial and commercial users who are paid to curtail their electricity use as needed for reliable grid operation. Most of the interruptible loads were restored after approximately an hour and a half. Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 53 Impact of WG in real time operation • Predictability. Forecast error. Operating reserves. Wind curtailment – Limited predictability or uncertainty: errors increasing with forecast horizon – Critical time horizons are 24 or 36 hours in advance for D1 reserve evaluation and 6 hours for real-time unit commitment. – Rapid dynamic adjustments to fix WG forecast errors. Balancing mechanisms, operating reserves. NEED OF OPERATING RESERVES Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 54 Short-term operation scheduling Market Operator System Operator: Red Eléctrica de España < 9.00 h < 11.00 h < 12.00 h Previous information Day-Ahead Market Nomination schedules Technical constraints management (DM) Secondary regulation capacity Intra-Day Market: Sessions 1 a 6 Technical constraints management (IM) Generation-load unbalance mechanism Tertiary reserve Technical constraints management (RT) 14.00 h 16.00 h 18.30 h … 19.20 h 21.00 h … 15 min before Real Time Source: M. de la Torre, J. Paradinas Integration of renewable generation. The case of Spain Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 55 55 Operating reserves in the Iberian market • Secondary reserve Offered and cleared one day in advance (at 16 h D-1) – Can be asked for at any time – Has to be deployed in less than 15 min – • Tertiary reserve Offered one day in advance (at 23 h D-1) and updated continuously – Asked with 10 min in advance – • Can the WG contribute these operating reserves? One single wind farm can only guaranty approximately 30 % of the installed capacity one day in advance – The whole system may have a 15-20 % of forecast error of the output one day in advance – Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 56 Impact of WG at different time scopes • • • Medium and long-term planning. Reliability assessment – Will there be enough generation to meet peak loads? Determine some system adequacy reliability measures for the system. NEED OF COMPLEMENTARY UNITS Short-term operation planning. Unit commitment – Strong variability of WG over the day. Opposite behavior with respect to the demand in certain periods. Ramps, minimum load, startups and shutdowns. NEED OF FLEXIBLE UNITS Real time operation. Operating reserves – Limited predictability or uncertainty: errors increasing with forecast horizon – Critical time horizons are 24 or 36 hours in advance for D-1 reserve evaluation and 6 hours for real-time unit commitment. – Rapid dynamic adjustments to fix WG forecast errors. Balancing mechanisms, operating reserves. NEED OF OPERATING RESERVES Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 57 5 Wind generation in Spain Impact of WG in medium and long-term planning Impact of WG in short-term planning Impact of WG in real time operation Stochastic UC Prototype stochastic UC. Mathematical formulation Prototype stochastic UC. Computer implementation Stochastic Unit Commitment Introduction • Deterministic unit commitment (UC) – • Stochastic unit commitment – • Given load forecasts and available generators, decide when to start up and shut down generators so as to minimize costs and maintain reliability. Plant ramp rates and minimum down and uptimes must be respected, and fixed start-up costs must be considered. Some parameters are uncertain. Only their distribution is known Sources of uncertainty Generation • Intermittent generation (wind, solar) • Failure of connected units (security constrained UC) – Demand – • ROM Model (Reliability and Operation Model for Renewable Energy Sources) (http://www.iit.upcomillas.es/aramos/ROM.htm) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 59 Solution methods • Heuristics – • Priority ordering Classical optimization Direct solution of MIP problem (Branch and cut) – Dynamic programming (time decomposition) – Lagrangian relaxation (unit decomposition) – • Metaheuristics Genetic algorithm – Tabu search – Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 60 References (i) • B. F. Hobbs, M. H. Rothkopf, R. P. O'Neill, H-P. Chao (eds.) The Next Generation of Electric Power Unit Commitment Models Kluwer Academic Publishers 2001 • Unit commitment survey N. Padhy Unit commitment-a bibliographical survey IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1196–1205, 2004 • S. Takriti, J. R. Birge, and E. Long A stochastic model for the unit commitment problem IEEE Trans. Power Syst., vol. 11, pp. 1497–1508, Aug. 1996. • • Centralized framework. Lagrangian relaxation – • Growe-Kuska, N., K.C. Kiwiel, M.P. Nowak, W. Romisch, I. Wegner (2002). Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation, in: C. Greengard, A. Ruszczynski (eds.), Decision Making under Uncertainty: Energy and Power. Vol. 128 of IMA volumes on Mathematics and its Applications, Springer-Verlag, pp. 39–70. Deregulated framework. Benders decomposition – S. Cerisola, A. Baillo, J.M. Fernandez-Lopez, A. Ramos, R. Gollmer Stochastic Power Generation Unit Commitment in Electricity Markets: A Novel Formulation and A Comparison of Solution Methods Operations Research 57 (1): 32-46 Jan-Feb 2009 10.1287/opre.1080.0593 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 61 References (ii) • Tight and compact unit commitment G. Morales-España, J.M. Latorre, and A. Ramos Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem IEEE Transactions on Power Systems 28 (4): 4897-4908, Nov 2013 10.1109/TPWRS.2013.2251373 • G. Morales-España, J.M. Latorre, and A. Ramos Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment IEEE Transactions on Power Systems 28 (2): 1288-1296, May 2013 10.1109/TPWRS.2012.2222938 • • Impact on operating reserves G. Morales-España, A. Ramos, and J. Garcia-Gonzalez An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling IEEE Transactions on Power Systems 10.1109/TPWRS.2013.2259601 • G. Morales-España, J. García-González, A. Ramos Impact on Reserves and Energy Delivery of Current UC-based Market-Clearing Formulations 9th International Conference on the European Energy Market (EEM 12). Florence, Italy. May 2012 10.1109/EEM.2012.6254749 • Tight: small integrality gap, initial LP relaxation close to the final MIP solution • Compact: small optimization problem, few constraints and variables • Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 62 6 Wind generation in Spain Impact of WG in medium and long-term planning Impact of WG in short-term planning Impact of WG in real time operation Stochastic UC Prototype stochastic UC. Mathematical formulation Prototype stochastic UC. Computer implementation Prototype Stochastic UC. Mathematical Formulation Mathematical formulation • Objective function – • Variables – – • Minimize the total expected variable costs plus penalties for energy not served BINARY: commitment, startup and shutdown of thermal units Thermal output Operation constraints Load balance and operating reserve – Thermal operation constraints – • Mixed integer linear programming (MIP) Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 64 Indices • Time scope – 1 day • Period – 1 hour Hour n Scenario ω • Scenario Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 65 Demand (5 weekdays) Chronological Load Curve (5 Working Days) Demand [MW ] Dn 50000 45000 40000 Demand [MW] 35000 30000 25000 20000 15000 10000 5000 0 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 Hours Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 66 Intermittent generation (IG) Intermittent generation [MW ] ignω Intermittent Generation [MW] 1200 1000 800 600 400 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 67 Technical characteristics of thermal units (t) • • • • Maximum and minimum output Fuel cost Slope and intercept of the heat rate straight line Operation and maintenance (O&M) variable cost No load cost = fuel cost x heat rate intercept – Variable cost = fuel cost x heat rate slope + O&M cost – • • Cold startup and shutdown cost Up and down ramps Max and min output [MW ] pt , pt No load cost [€ / h ] ft Variable cost [€ / MWh ] vt Startup cost Shutdown cost Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI [€] [€] Ramp up [MW / h ] rupt Ramp down [MW / h ] rdwt sut sdt Impact of RES in Short-Term Generation Planning 68 Scenario tree • • • Stage 1 Represents how the stochasticity is revealed over time, i.e., the different states of the random parameters and simultaneously the non anticipative decisions over time Nodes: where decisions are taken. Scenarios: instances of the random process. Stage 2 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Stage 3 Stage 4 Scenario Impact of RES in Short-Term Generation Planning 69 Weekly load, a 4-scenario tree example 4 3 x 10 2.8 Historical series (green) 2.6 2.4 Scenario tree (black) 2.2 2 1.8 1.6 1.4 0 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI 20 40 60 80 100 120 Impact of RES in Short-Term Generation Planning 140 70 160 180 Weekly load, x 10 a 32-scenario tree example 4 3 2.8 2.6 2.4 Scenario tree (colored) 2.2 2 1.8 1.6 1.4 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI 0 20 40 60 80 100 120 140 Impact of RES in Short-Term Generation Planning 160 71 180 Scenario tree for the SDUC • Commitment decisions of thermal units (the set of committed units) are unique under different stochastic scenarios (intermittent generation IG, demand, etc.) Hour 1 Hour 24 Scenario 1 Hour 1 Scenario 3 Hour 24 Scenario 5 FIRST-STAGE DECISIONS Unique commitment decisions for every hour TWO-STAGE DECISION PROBLEM Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Scenario 7 SECOND-STAGE DECISIONS Generator output for every hour depend on the scenario Probability of scenario pω Impact of RES in Short-Term Generation Planning 72 Scenario tree example with IG uncertainty Hour 2 Hour 1 IG Output 400 MW IG Output 410 MW Prob: 0.3 IG Output 430 MW IG Output 420 MW Prob: 0.2 IG Output 630 MW Prob: 0.25 IG Output 560 MW IG Output 550 MW Prob: 0.25 IG Output 600 MW Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 73 Variables • Commitment, startup and shutdown of thermal units (BINARY) Commitment, startup and shutdown • {0,1} UCnt , SUnt , SDnt Production of thermal units Production of a thermal unit [MW ] Pntω • Intermittent generation Intermittent generation [MW ] IGnω • Energy not served Energy not served [MW ] ENSnω Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 74 Constraints: Operating power reserve Committed output of thermal units + Maximum output of hydro plants >= Demand + Operating reserve for each load level and scenario ∑ pUC t t nt + ∑ ph ≥ Dn + On Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI ∀n h Impact of RES in Short-Term Generation Planning 75 Constraints: Generation and load balance Generation of thermal units + Energy not served = Demand for each load level and scenario ∑P ω nt + IGnω + ENSnω = Dn ∀ωn t Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 76 Constraints: Production in consecutive load levels Unit output in any hour - Unit output in previous one ≤ ramp up Unit output in any hour - Unit output in previous one ≥ – ramp down Pntω − Pnω−1t ≤ rupt ∀ωnt Pntω − Pnω−1t ≥ −rdwt ∀ωnt Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 77 Constraints: Commitment, startup and shutdown Commitment of a thermal unit in an hour – Commitment of a thermal unit in the previous hour = Startup of a thermal unit in this hour – Shutdown of a thermal unit in this hour UCnt −UCn−1t = SUnt − SDnt Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI ∀nt Impact of RES in Short-Term Generation Planning 78 Constraints: Commitment and production Production of a thermal unit on every scenario ≤ Commitment of a thermal unit x the maximum output Production of a thermal unit on every scenario ≥ Commitment of a thermal unit x the minimum output UCnt pt ≤ Pntω ≤UCnt pt ∀ωnt • If the thermal unit is committed (UCnt = 1) it can produce between its minimum and maximum output • If the thermal unit is not committed (UCnt = 0) it can’t produce Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 79 Constraints: Operation limits Power output between limits for each unit 0 ≤ Pntω ≤ pt ∀ωnt Commitment, startup and shutdown for each unit UCnt , SUnt , SDnt ∈ {0,1} ∀nt Intermittent generation limit 0 ≤ IGnω ≤ ignω ∀ωn Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 80 Multiobjective function • Minimize – Thermal unit expected variable costs ω ω su SU + sd SD + fUC + v P p ∑ t nt ∑ t nt ∑ t nt ∑ t nt nt – nt nt ωnt Expected penalty introduced in the objective function for energy not served ω ω ′ v ENS p ∑ n ωn Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 81 Short Run Marginal Cost (SRMC) • Short Run Marginal Cost = Dual variable of generation and load balance when binary variables are fixed [€/MWh] – Change in the objective function due to a marginal increment in the demand ω ω ω P + IG + ENS = Dn ∑ nt n n : σnω ∀ωn t SRMCnω = σnω Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI ∀ωn Impact of RES in Short-Term Generation Planning 82 7 Wind generation in Spain Impact of WG in medium and long-term planning Impact of WG in short-term planning Impact of WG in real time operation Stochastic UC Prototype stochastic UC. Mathematical formulation Prototype stochastic UC. Computer implementation Prototype Stochastic UC. Computer implementation StarGenLite_SDUC Stochastic Daily Unit Commitment Model (http://www.iit.upcomillas.es/aramos/StarGenLite_SDUC.zip) • Files Microsoft Excel interface for input and output data StarGenLite_SDUC.xlsm – GAMS file StarGenLite_SDUC.gms – • How to use it Save the Excel workbook if data have changed – Run the model Run – The model creates • tmp.xlsx with the output data and • StarGenLite_SDUC.lst as the listing file of the GAMS execution – Load the results into the Excel interface Load results – Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 84 StarGenLite_SDUC (i) $title StarGen Lite Stochastic Daily Unit Commitment of Thermal Units (SDUC) $ontext Model name Developed by Andrés Ramos Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería - ICAI UNIVERSIDAD PONTIFICIA COMILLAS Alberto Aguilera 23 28015 Madrid, Spain [email protected] Authorship and version Allow declaration of empty sets and multiple declaration. Suppress listing October 14, 2014 $offtext $onempty onmulti offlisting * solve the optimization problems until optimality option OptcR = 0 ; Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Obtain the optimal solution Impact of RES in Short-Term Generation Planning 85 StarGenLite_SDUC (ii) * definitions sets n hour n1(n) first hour of the day sc scenario Set definition g generating unit t (g) thermal unit h (g) hydro plant parameters pDemand (n ) pOperReserve(n ) pOperReserveUp(n ) pOperReserveDw(n ) pIntermGen (n,sc) pScenProb (sc ) pCommitt ( g,n) pProduct (sc,g,n) pSRMC (sc, n) pMaxProd (g) pMinProd (g) pMaxCons (g) pIniOut (g) pIniUC (g) pRampUp (g) pRampDw (g) pSlopeVarCost (g) pInterVarCost (g) pEmissionCost (g) pStartupCost (g) pShutdownCost (g) pMaxReserve (g) pMinReserve (g) pIniReserve (g) pEffic (g) pInflows (g,n) pENSCost pCO2Cost hourly load hourly operating reserve hourly operating reserve up hourly operating reserve down stochastic IG generation probability of scenarios commitment of the unit output of the unit short run marginal cost [GW] [GW] [GW] [GW] [GW] [p.u.] [0-1] [GW] [ € per MWh] maximum output minimum output maximum consumption initial output > min load initial commitment ramp up ramp down slope variable cost intercept variable cost emission cost startup cost shutdown cost maximum reserve minimum reserve initial reserve pumping efficiency inflows energy not served cost CO2 emission cost [GW] [GW] [GW] [GW] [0-1] [GW per h] [GW per h] [M€ per GWh] [M€ per h] [M€] [M€] [M€] [GWh] [GWh] [GWh] [p.u.] [GWh] [M€ per GWh] [M€ per tCO2] Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning Parameter definition 86 StarGenLite_SDUC (iii) variables vTotalVCost total system variable cost [M€] binary variables vCommitt ( n,g) commitment of the unit vStartup ( n,g) startup of the unit vShutdown ( n,g) shutdown of the unit [0-1] [0-1] [0-1] positive variables vProduct (sc,n,g) vProduct1 (sc,n,g) vConsump (sc,n,g) vENS (sc,n ) vIG (sc,n ) vReserve (sc,n,g) vSpillage (sc,n,g) output of the unit output of the unit > min load consumption of the unit energy not served intermittent generation reserve at the end of period spillage [GW] [GW] [GW] [GW] [GW] [GWh] [GWh] equations eTotalVCost eBalance (sc,n ) eOpReserve( n ) eReserveUp(sc,n ) eReserveDw(sc,n ) eMaxOutput(sc,n,g) eMinOutput(sc,n,g) eTotOutput(sc,n,g) eRampUp (sc,n,g) eRampDw (sc,n,g) eUCStrShut( n,g) eWtReserve(sc,n,g) total system variable cost [M€] load generation balance [GW] operating reserve [GW] operating reserve upwards [GW] operating reserve downwards [GW] max output of a committed unit [GW] min output of a committed unit [GW] tot output of a committed unit [GW] bound on ramp up [GW] bound on ramp down [GW] relation among commitment startup and shutdown water reserve [GWh] ; Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning Variables 87 Equation definition StarGenLite_SDUC (iv) * mathematical formulation eTotalVCost .. vTotalVCost =e= sum[(sc,n ), sum[(sc,n,g), sum[(sc,n,g), n,g), sum[( n,g), sum[( n,g), sum[( pENSCost *vENS (sc,n )*pScenProb(sc)] + pSlopeVarCost(g)*vProduct (sc,n,g)*pScenProb(sc)] + pEmissionCost(g)*vProduct (sc,n,g)*pScenProb(sc)] + pInterVarCost(g)*vCommitt ( n,g)] + pStartupCost (g)*vStartup ( n,g)] + pShutdownCost(g)*vShutdown( n,g)] ; eBalance (sc,n ) .. sum[t, vProduct(sc,n,t)] + sum[h, vProduct(sc,n,h)] - sum[h, vConsump(sc,n,h)/pEffic(h)] + vIG(sc,n) + vENS(sc,n) =e= pDemand(n) ; eOpReserve( n ) .. sum[t, pMaxProd(t) * vCommitt(n,t) ] + sum[h, pMaxProd(h)] =g= pOperReserve (n) + pDemand(n) ; eReserveUp(sc,n ) .. sum[t, pMaxProd(t) * vCommitt(n,t) - vProduct(sc,n,t)] =g= pOperReserveUp(n) ; eReserveDw(sc,n ) .. sum[t, pMinProd(t) * vCommitt(n,t) - vProduct(sc,n,t)] =l= - pOperReserveDw(n) ; eMaxOutput(sc,n,t) $pMaxProd(t) .. vProduct(sc,n,t) / pMaxProd(t) =l= vCommitt(n,t) ; eMinOutput(sc,n,t) $pMinProd(t) .. vProduct(sc,n,t) / pMinProd(t) =g= vCommitt(n,t) ; eTotOutput(sc,n,t) eRampUp eRampDw .. vProduct(sc,n,t) =e= pMinProd(t)*vCommitt(n,t) + vProduct1(sc,n,t) ; (sc,n,t) .. vProduct1(sc,n,t) - vProduct1(sc,n-1,t) - pIniOut(t) $n1(n) =l= pRampUp(t) ; (sc,n,t) .. vProduct1(sc,n,t) - vProduct1(sc,n-1,t) - pIniOut(t) $n1(n) =g= - pRampDw(t) ; eUCStrShut( n,t) .. vCommitt(n,t) - vCommitt(n-1,t) - pIniUC(t) $n1(n) =e= vStartup(n,t) - vShutdown(n,t) ; eWtReserve(sc,n,h) .. vReserve(sc,n-1,h) + pIniReserve(h) $n1(n) + pInflows(h,n) - vSpillage(sc,n,h) vProduct(sc,n,h) + vConsump(sc,n,h) =e= vReserve(sc,n,h) ; model SDUC / all / ; SDUC.solprint = 1 ; SDUC.holdfixed = 1 ; Reduced solution output Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Model includes all the equations Eliminate fixed variables Impact of RES in Short-Term Generation Planning Mathematical formulation of equations 88 StarGenLite_SDUC (v) * read input data from Excel and include into the model file TMP / tmp.txt / $onecho > tmp.txt i="%gams.user1%.xlsm" r1=indices o1=indices r2=param o2=param r3=demand o3=demand r4=oprres o4=oprres r5=oprresup o5=oprresup r6=oprresdw o6=oprresdw r7=IGgen o7=IGgen r8=thermalgen o8=thermalgen r9=hydrogen o9=hydrogen r10=inflows o10=inflows Read input from Excel named ranges and write into text files $offecho $call xls2gms m @"tmp.txt" sets $include ; $include parameter $include indices param pDemand(n) demand parameter pOperReserve(n) $include oprres hourly load [MW] / / hourly operating reserve [MW] / / parameter pOperReserveUp(n) hourly operating reserve [MW] / $include oprresup / parameter pOperReserveDw(n) hourly operating reserve [MW] / $include oprresdw / pIntermGen(n,sc) stochastic IG generation [MW] table $include IGgen pThermalGen(g,*) table $include thermalgen pHydroGen (g,*) table $include hydrogen pInflows (g,n) table $include inflows Input from text files into GAMS Delete read text files Instituto de Investigación Tecnológica Impact of RES in Short-Term Generation Planning 89 Escuela Técnica Superior de Ingeniería ICAI 'del tmp.txt indices param demand oprres oprresup oprresdw IGgen thermalgen hydrogen inflows' ; execute StarGenLite_SDUC (vi) * determine the first hour of the day First hour of the day n1(n) $[ord(n) = 1] = yes ; * assignment of thermal units, storage hydro and pumped storage hydro plants t (g) $[ pThermalGen(g,'FuelCost') * pThermalGen(g,'MaxProd')] = yes ; h (g) $[not pThermalGen(g,'FuelCost') and pHydroGen (g,'MaxProd')] = yes ; * scaling of parameters to GW and M€ pDemand (n ) = pDemand (n ) pOperReserve(n ) = pOperReserve(n ) pIntermGen (n,sc) = pIntermGen (n,sc) * 1e-3 ; * 1e-3 ; * 1e-3 ; pENSCost pMaxProd (g) pMinProd (g) pIniOut (g) pRampUp (g) (g) pRampDw pSlopeVarCost(g) = = = = = = = pEmissionCost(g) pInterVarCost(g) pStartupCost (g) pShutdownCost(g) = = = = pENSCost pThermalGen(g,'MaxProd' ) pThermalGen(g,'MinProd' ) pThermalGen(g,'IniProd' ) pThermalGen(g,'RampUp' ) pThermalGen(g,'RampDw' ) pThermalGen(g,'OMVarCost' ) pThermalGen(g,'SlopeVarCost') pThermalGen(g,'EmissionRate') pThermalGen(g,'InterVarCost') pThermalGen(g,'StartupCost' ) pThermalGen(g,'ShutdownCost') * * * * * * * * * * * * pMaxProd pMinProd pMaxCons pEffic pMaxReserve pMinReserve pIniReserve = = = = = = = pHydroGen pHydroGen pHydroGen pHydroGen pHydroGen pHydroGen pHydroGen * 1e-3 ; * 1e-3 ; * 1e-3 ; ; * 1e-3 ; * 1e-3 ; * 1e-3 ; (h) (h) (h) (h) (h) (h) (h) (h,'MaxProd' (h,'MinProd' (h,'MaxCons' (h,'Efficiency' (h,'MaxReserve' (h,'MinReserve' (h,'IniReserve' ) ) ) ) ) ) ) 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-6 1e-6 1e-6 ; ; ; ; ; ; + * * * * * Scaling of parameters pThermalGen(g,'FuelCost') pCO2Cost ; pThermalGen(g,'FuelCost') pThermalGen(g,'FuelCost') pThermalGen(g,'FuelCost') ; ; ; ; Initial committed units * if the initial output of the unit is above its minimum load then the unit is committed, otherwise it is not committed pIniUC (g) = 1 $[pIniOut(g) >= pMinProd(g)] ; * if the efficiency pEffic (h) $[pEffic Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI of a hydro plant is 0, it is changed to 1 (h) = 0] = 1 ; Impact of RES in Short-Term Generation Planning 90 StarGenLite_SDUC (vii) * bounds on variables Bounds on variables vProduct.up(sc,n,g) = pMaxProd (g ) ; vIG.up (sc,n ) = pIntermGen(n,sc) ; vConsump.up(sc,n,g) = pMaxCons (g ) ; * solve stochastic daily unit commitment model Solve the optimization problem solve SDUC using MIP minimizing vTotalVCost ; * scaling of results pCommitt( g,n) = vCommitt.l( n,g) + eps ; pProduct(sc,g,n) = vProduct.l(sc,n,g)*1e3 + eps ; (sc, n) = eBalance.m(sc,n )*1e3 + eps ; pSRMC Scaling the results * data output to xls file put TMP putclose 'par=pCommitt rdim=1 rng=UC!a1' / 'par=pProduct rdim=2 rng=Output!a1' / 'par=pSRMC rdim=1 rng=SRMC!a1' 'tmp.gdx' pProduct pCommitt pSRMC execute_unload 'gdxxrw.exe tmp.gdx SQ=n EpsOut=0 O="tmp.xlsx" @tmp.txt' execute 'del tmp.gdx tmp.txt' execute $onlisting Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Write output to Excel Impact of RES in Short-Term Generation Planning 91 Interface StarGenLite_SDUC. Menu Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 92 Interface StarGenLite_SDUC. Indices Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 93 Interface StarGenLite_SDUC. Parameters Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 94 Interface StarGenLite_SDUC. DemandReserveIG Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 95 Interface StarGenLite_SDUC. Generation Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 96 Task assignment • • • • • • Run a deterministic version of the model for every scenario (three different cases) Run the stochastic daily unit commitment model – Determine the committed units and the output of each unit Compare the results of the four cases – Total expected variable costs – Committed thermal units – Thermal unit output Introduce two additional extreme intermittent generation scenarios with low probability and analyze the results – Do the main results depend on the scenarios defined? Introduce a constraint with a emission maximum allowance Formulate mathematically the introduction of Demand Side Management strategies in the model Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 97 Deterministic solution for scenario 1 10 9 8 FuelOilGas 7 OCGT_3 OCGT_2 OCGT_1 6 CCGT_4 CCGT_3 5 CCGT_2 CCGT_1 ImportedCoal_Bituminous 4 ImportedCoal_SubBituminous BrownLignite 3 DomesticCoal_Anthracite Nuclear 2 1 0 h01 h02 h03 h04 h05 h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 98 Deterministic solution for scenario 2 10 9 8 FuelOilGas 7 OCGT_3 OCGT_2 OCGT_1 6 CCGT_4 CCGT_3 5 CCGT_2 CCGT_1 ImportedCoal_Bituminous 4 ImportedCoal_SubBituminous BrownLignite 3 DomesticCoal_Anthracite Nuclear 2 1 0 h01 h02 h03 h04 h05 h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 99 Deterministic solution for scenario 3 10 9 8 FuelOilGas 7 OCGT_3 OCGT_2 OCGT_1 6 CCGT_4 CCGT_3 5 CCGT_2 CCGT_1 ImportedCoal_Bituminous 4 ImportedCoal_SubBituminous BrownLignite 3 DomesticCoal_Anthracite Nuclear 2 1 0 h01 h02 h03 h04 h05 h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 100 Deterministic solution for mean scenario 10 9 8 FuelOilGas 7 OCGT_3 OCGT_2 OCGT_1 6 CCGT_4 CCGT_3 5 CCGT_2 CCGT_1 ImportedCoal_Bituminous 4 ImportedCoal_SubBituminous BrownLignite 3 DomesticCoal_Anthracite Nuclear 2 1 0 h01 h02 h03 h04 h05 h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 101 Deterministic solution for the scenario tree 10 9 8 FuelOilGas 7 OCGT_3 OCGT_2 OCGT_1 6 CCGT_4 CCGT_3 5 CCGT_2 CCGT_1 ImportedCoal_Bituminous 4 ImportedCoal_SubBituminous BrownLignite 3 DomesticCoal_Anthracite Nuclear 2 1 0 h01 h02 h03 h04 h05 h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24 Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 102 Summary of results Scenario 1 p=0.3 Scenario 2 p=0.5 Scenario 3 p=0.2 Mean scenario Stochastic Solution 2.563975 2.514956 2.328417 2.488835 2.493131 3.0 1.0 -6.4 62329 61386 56270 Thermal generation [%] 2.8 1.2 -7.2 Wind generation [MWh] 13805 14748 19863 Wind generation [%] -10.9 -4.8 28.2 Objective function [M€] Objective function [%] Thermal generation [MWh] Instituto de Investigación Tecnológica Escuela Técnica Superior de Ingeniería ICAI Impact of RES in Short-Term Generation Planning 0.2 60646 60646 0.0 15488 15488 0.0 103 Prof. Andres Ramos http://www.iit.upcomillas.es/aramos/ [email protected] [email protected] Instituto de Investigación Tecnológica Santa Cruz de Marcenado, 26 28015 Madrid Tel +34 91 542 28 00 Fax + 34 91 542 31 76 [email protected] www.upcomillas.es
© Copyright 2024