Document

The Swiss Competence Centre
for Heat and Electricity Storage
Thomas J. Schmidt, Joerg Roth
November 26, 2015, UKES Birmingham
The near Future?
Jules Vernes, 1875 (1874?)
• Et qu’est-ce qu’on brûlera à la place du
charbon?
• L’eau, répondit Cyrus Smith.
• L’eau, s’écria Pencroff, l’eau pour chauffer
les bateaux à vapeur et
les locomotives, l’eau pour chauffer l’eau !
November 26, 2015, UKES Birmingham
2
World 1973 Energy
Energy Sources
Energy Consumption
η= 76%
Iea; Key World Energy STATISTICS
November 26, 2015, UKES Birmingham
3
World 2012 Energy
Energy Sources
Energy Consumption
η= 67%
Iea; Key World Energy STATISTICS
November 26, 2015, UKES Birmingham
4
UK Energy Scenario
+ Renewable
- Coal
Changes over time in primary demand by fuel type
(Department of Energy and Climate Change, Updated Energy and Emission Projections 2014)
November 26, 2015, UKES Birmingham
5
Energiestrategy 2050
« Turnaround »
Today
Consumption
Anticipated Consumption
!
Electricity -Imports
(new) Combined Cycle
(new) Renewable
Nuclear
(new) Hydro
Hydro
http://slideplayer.org/slide/861892/#, Prognos 2011
November 26, 2015, UKES Birmingham
6
One Common Goal Different Approaches
We need to tackle major challenges
• Reduction of CO2 emissions.
• Replacement of currently used and dangerous
technologies.
 Electricity gap needs to be closed.
November 26, 2015, UKES Birmingham
7
One Common Goal Different Approaches
We need to tackle major challenges
• Reduction of CO2 emissions
• Replacement of currently used and dangerous
technologies.
 Electricity gap needs to be closed
Cap at 60 TWh consumption
Increase energy efficiency (saving)
Maximize hydropower (37  40 TWh)
Increase Renewables (1.3  22 TWh)
Complement with fossil fuel production
November 26, 2015, UKES Birmingham
2035: 400 TWh total,
CO2 Renewable: 148 TWh 30% (15% in 2013)
Replacing coal by renewable sources
9
One Common Goal Different Approaches
We need to tackle major challenges
• Reduction of CO2 emissions
• Replacement of currently used and dangerous
technologies.
 Electricity gap needs to be closed
Cap at 60 TWh consumption
Increase energy efficiency (saving)
2035: 400 TWh total,
Maximize hydropower (37  40=TWh)
Exploit Renewable
Renewable: 148 TWh 30% (15% in 2013)
Increase Renewables (1.3  22 TWh) SourcesReplacing coal by renewable sources
Complement with fossil fuel production
November 26, 2015, UKES Birmingham
10
Strategy Implementation
Energy Strategy 2050
•
Research plays a strategic role
to find solutions to problems arising from the “energy revolution”
Coordinated Energy Research in Switzerland Action Plan
Swiss Competence Centers for Energy Research (CHF 72 million)
• R&D projects in the energy field (CHF 46 million)
• Funding schemes for young scientist (CHF 24 million)
•
Swiss Competence Centers for Energy Research (SCCER)
Inter-university research networks
• Seven predefined action areas
• Supervised by the Commission for Technology and Innovation (CTI) and the
Swiss National Science Foundation (SNF)
•
November 26, 2015, UKES Birmingham
11
Landscape of SCCERs
November 26, 2015, UKES Birmingham
12
Motivation
Key Message
•
•
•
Energy is available but not “in time”
Heat from solar radiation and entropic loss is
− easy to capture
− difficult to store
Storage is needed for flexibility and efficient use of energy
November 26, 2015, UKES Birmingham
13
Thomas J. SCHMIDT (PSI)
SCCER Head
WP 1: Storage of
electrical energy
(electricity)
WP 2: Storage of thermal
energy (heat)
Andreas ZÜTTEL (EPFL)
SCCER Deputy Head
WP 3: H2 Production &
Storage
WP 4: Catalytic &
Electrocatalytic CO2
Reduction
LMER
LIMNO
LCOM
WP 5: Technology Interactions of Storage Systems
November 26, 2015, UKES Birmingham
14
Thomas J. SCHMIDT (PSI)
SCCER Head
WP 1: Storage of
electrical energy
(electricity)
WP 2: Storage of thermal
energy (heat)
Andreas ZÜTTEL (EPFL)
SCCER Deputy Head
WP 4: Catalytic &
Electrocatalytic CO2
institutions Reduction
WP 3: H2 Production &
Storage
25 research partners from 11
2 Federal universities
LMER
2 Cantonal universtities
LIMNO
2 Federal research centers
5 Universtites
of applied science
LCOM
~80 FTE’s (150 Heads)
11 mio. CHF/a (40% directly funded)
WP 5: Technology Interactions of Storage Systems
November 26, 2015, UKES Birmingham
15
Technical Approaches
High Temperature Storage
Heat
Engine
Dual Energy Storage
and
Converter
Heat
Pump
Pin
Pout
Low Temperature
Storage
November 26, 2015, UKES Birmingham
16
Project Mix
Short term
•
•
•
•
Classic Power-to-Gas
Battery Reliability
Battery Production
LCA and Technoeconomic analyses
• TES (stones, PCM)
Medium term
• Li-ion batteries
• H2-Storage (hydrides
& HCOOH)
• Redox Flow Cell/H2
• Catalytic CO2
conversion
• Advanced P2G
• P2-Heat-P
Long term
• Na-ion batteries
• Photo-EC H2
production
• co-electrolysis
Short term (<10y)
Medium term (10-15y)
Long term (>15y)
November 26, 2015, UKES Birmingham
19
Team Members
Prof. Dr. M. Kovalenko (ETHZ/EMPA)
Dr. C. Villevieille (PSI), Prof. Dr. P. Novak (PSI)
Prof. Dr. K. Fromm (UFribourg)
Work-package overview
Dynamic and cooperative
focused research
Chemistries:
Goals:








Energy density
Cost
Safety
Stability
Key Contact
Keyword:
Prof. Dr. Petr Novak
Electrochemical Laboratory
Li-ion batteries
Na-ion batteries
Mg-ion batteries
Li-air batteries
 Nanostructured electrodes
 «new» Chemistry
Paul Scherrer Institut
http://www.psi.ch/lec/electrochemical-energy-storage
November 26, 2015, UKES Birmingham
20
Na-ion material’s playground
Significantly different material’s landscape from that of Li-ion batteries
November 26, 2015, UKES Birmingham
21
Team Members
Thermal
Energy
Dr. A. Haselbacher (ETHZ)
Prof. Dr. Roth (FHNW)
Prof. Dr. M. Rommel (HSR)
Prof. Dr. S. Haussener (EPFL)
Prof. Dr. Beat Ribi (FHNW),
Prof. Dr. Barbato (SUPSI)
Heat Storage Systems
Copyright Airlight Energy SA
Copyright Airlight Energy SA
Key Contact:
Dr. Andreas Haselbacher
Institute of Energy Technology
ETHZ
http://www.pre.ethz.ch/staff/?id=haselbacher
November 26, 2015, UKES Birmingham
22
Thermal Energy
Energy Storage Systems
November 26, 2015, UKES Birmingham
23
Thermal chemical storage based on NaOH + H2O


System integration
Heat Exchanger
development
November 26, 2015, UKES Birmingham
24
Combined Sensible/Latent TES Concept
Basic idea: Add layers of encapsulated PCM on top of packed bed of rocks
Copyright Airlight Energy SA
Copyright Airlight Energy SA
Copyright Airlight Energy SA
Copyright Airlight Energy SA
Rocks from Rafzerfeld area and AlSi12 encapsulated in steel tubes
Labscale storage with Etot = 42.4 kWhth
G. Zanganeh et al., Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials, Applied Thermal
Engineering, 70:31-320, 2014
November 26, 2015, UKES Birmingham
25
High Temperature TES
Thermomechanical analysis (Direct FEM):
November 26, 2015, UKES Birmingham
26
Team Members
Prof. Dr. K. Sivula (EPFL)
Prof. Dr. H. Girault (EPFL)
Prof. Dr. A. Züttel (EMPA)
Prof. Dr. G. Laurenczy (EPFL)
Key Contact:
Prof. Dr. Andreas Züttel
Laboratory of Materials for Renewable Energy
EPFL
http://sb.epfl.ch/chemistry
November 26, 2015, UKES Birmingham
27
H2 production: Redox flow battery
November 26, 2015, UKES Birmingham
28
H2 storage: Formic acid
Energy/hydrogen storage and delivery
Hydrogen storage in CO2/HCOOH sytems
HCOOH
catalyst reduction
H2
H2O
Ru/TPPTS
CO2
(from renewable sources)
H2
(delivery)
Medium scale formic reactor for the continuous generation of
hydrogen (2-3 m3/h H2)
Science, 2011, 333, 1733 – 1736.
Nature Comm., 2014, 5, 4017;
ChemCatChem, 2015, 7, 2332-2339.
Proposed mechanism
and insights into improvement
November 26, 2015, UKES Birmingham
29
Team Members
Dr. P. Broekmann (UBerne)
Prof. Dr. T.J. Schmidt (PSI)
Prof. Dr. P. Dyson (EPFL)
Prof. Dr. C. Coperet (ETHZ)
H2O+ CO2  CxHyOz
Artificial Photosynthesis
Key Contact:
Prof. Dr. Paul Dyson
Laboratory of Organometallic and Medicinal Chemistry
EPFL
http://isic.epfl.ch/
November 26, 2015, UKES Birmingham
30
Electrocatalytic CO2 reduction: Proof of Concept
 Electrolysis cell geometry: 0.6 cm2 active area
 CO2RR quantification: online Mass Spectrometer
(MS, Prisma) at cathode outlet
 Production of CH4, C2H4 and CO (amount to 10-20% F.E. up to 0.2 A/cm2)
November 26, 2015, UKES Birmingham
31
CO2 Hydrogenation Catalysts
Development of stable and selective CO2 hydrogenation catalysts
Based on supported Cu nanoparticles
ZrO2: promising support material
Increase of Activity and Selectivity
T. Shohei, K. Larmier, A. Comas-Vives, C. Copéret (SCCER) – Coll. ETHZ/ICIQ/PSI
Presented at SCS Fall meeting, annual SCCER meeting publication under preparation
November 26, 2015, UKES Birmingham
Team Members
Prof. Dr. M. Patel (UGeneva)
Prof. Dr. M. Friedl (HSR)
Dr. Ch. Bauer (PSI)
Dr. U. Sennhauser (EMPA)
Prof. Dr. A. Fürst (BFH)
Prof. Dr. J. Worlitschek (HSLU)
Interaction of Storage Systems and Life Cycle Assessment
Key Contact:
Prof. Dr. Jörg Worlitschek
Thermische Energiesysteme & Verfahrenstechnik
Hochschule Luzern - Technik & Architektur
https://www.hslu.ch/technik-architektur
November 26, 2015, UKES Birmingham
33
Flexibility of Power and Heat
Thermal
Storage
𝑄𝑄̇
Heat-to-Power
𝑄𝑄̇
Applications
𝑄𝑄̇
𝑄𝑄̇
Rankine
Cycle
𝑃𝑃
Heat Pump
Power-to-Heat
𝑃𝑃
𝑃𝑃
A. Stamatiou, A. Ammann & J. Worlitschek, Proceedings of Int. Greenstock Conf, best paper award
November 26, 2015, UKES Birmingham
34
Influence of stress cycles on Li-ion batteries
Capacity loss for different stress cycles
WLTC driving cycle class 3
• SOC range: 42%-100%
• 8560 cycles / 284kWh until
20% capacity loss
•
•
•
Discharge-charge cycle
• SOC range: 0%-100%
• 1175 cycles / 38kWh until
20% capacity loss
investigated cells show long life time during driving cycles: estimated driving
distance of a battery with 70 cells is 195’779km
using the average power of the WLTC driving cycle over the full SOC range
shortens live time tremendously
further test showed that a reduced SOC range is more appropriate
November 26, 2015, UKES Birmingham
M. Held & U. Sennhauser, accepted for publication by CHIMIA (2015)
35
Power-to-Gas: LCA results
Power to Methane for Mobility, with:
PEM Electrolysis (1 MW)with PV Supply
CO2 captured from clinker production with hard coal powered - grid
Thermo-chemical methanantion
green flows from right
represent negative emissions
„Zhang et al., PSI, to be published“
November 26, 2015, UKES Birmingham
36
Power-to-Gas: LCA results
Power to Methane for Mobility, with:
PEM Electrolysis (1 MW)with PV Supply
CO2 captured from clinker production with hard coal powered - grid
Thermo-chemical methanantion
P2G allows for a reduction of environmental impacts compared to “business-asusual” scenarios (i.e. “without P2G”) only under specific conditions
Key factors determining environmental performance of P2G:
•
Electricity supply for electrolysis
−
•
hydro and wind power provide most benefits
Source of CO2 for methanation
−
direct capture from the atmosphere & from biogenic sources preferred
(both still on pilot level)
−
CO2 from cement plants could be a good option in Switzerland
green flows from right
represent negative emissions
„Zhang et al., PSI, to be published“
November 26, 2015, UKES Birmingham
37
Summary
The SCCR Heat & Electricity Storage
• Producing solutions for the energy turnaround by
developing the Swiss Energy Storage Community,
bringing together researchers from the academic,
industrial and policy domains.
• For more information see www.sccer-hae.ch
• SpecialP Issue: CHIMIAP 12/2015
• Symposium 2016: October 24, 2016, Switzerland
High Temperature Storage
Heat
Engine
Dual Energy Storage
and
Converter
Heat
Pump
in
out
Low Temperature
Storage
November 26, 2015, UKES Birmingham
38
Acknowledgements
Andreas Abdon ,TEVT, HSLU
Ismaïl Akçoc ,SB ISIC LCOM, EPFL
Andreas Ammann ,TEVT, HSLU
Benoît Baichette ,CHEM, UniFribourg
Maurizio Barbato ,ICIMSI, SUPSI
Christian Bauer ,TA, PSI
Birgit Begelspacher ,TI, BFH
Martin Bertschi ,IBRE/ITFE, FHNW
Selmar Binder ,LRESE, EPFL
Felix Bobbink ,SB ISIC LCOM, EPFL
Pauline BORNOZ ,ISIC-LIMNO, EPFL
Lucien Boulet ,ECL, PSI
Wiktor BOUREE ,ISIC-LIMNO, EPFL
Peter Broekmann ,DCB, UniBern
Jean-Pierre Brog ,CHEM, UniFribourg
Peter Burgherr ,TA, PSI
Elsa Callini ,Hydrogen & Energy, EPFL/EMPA
Riccarda Caputo ,LAC, ETZH/EMPA
Colin Cianelli ,IET, HSR
Aleix Comas Vives ,LAC, ETHZ
Vito Crameri ,IET, HSR
Christophe Copéret , LAC, ETHZ
Aurélien Crochet ,CHEM, UniFribourg
Xavier Daguenet-Frick ,SPF, HSR
Christopher Dennison ,LEPA, EPFL
November 26, 2015, UKES Birmingham
Julien Durst ,ECL, PSI
Abhijit Dutta ,DCB, UniBern
Paul Dyson ,SB ISIC LCOM, EPFL
Felix Eckl ,TEVT, HSLU
Emiliana Fabbri ,ECL, PSI
Alexey Fedorov ,LAC, ETHZ
Cornel Fink ,SB ISIC LCOM, EPFL
Ludger Fischer ,TEVT, HSLU
Marco Fossati ,ICIMSI, SUPSI
Elimar Frank ,IET, HSR
Katharina Fromm ,CHEM, UniFribourg
Yongchun Fu ,DCB, UniBern
Michael Füeg ,DCB, UniBern
Axel Fuerst ,TI, BFH
Antonio Gaetano ,ICIMSI, SUPSI
Paul Gantenbein ,SPF, HSR
Natalia Gasilova ,LEPA, EPFL
Lukas Geissbühler ,IET, ETHZ
Hubert Girault ,LEPA, EPFL
Thomas Gloor ,ECL, PSI
Aswin Gopakumar ,SB ISIC LCOM, EPFL
Martin Granzotto ,SPF, HSR
Martin Grasemann ,SB ISIC LCOM, EPFL
Timothy Griffin ,IBRE/ITFE, FHNW
Valentine Grimaudo ,DCB, UniBern
Acknowledgements
Vitali Grozovski ,DCB, UniBern
Nam-Hee Kwon ,CHEM, UniFribourg
Nestor Guijarro,ISIC-LIMNO, EPFL
Genevieve Lau ,SB ISIC LCOM, EPFL
Frédéric Gumy ,LEPA, EPFL
Gabor Laurenczy ,SB ISIC LCOM, EPFL
Christoph Guntlin ,LAC, ETZH/EMPA
Florian Le Formal ,ISIC-LIMNO, EPFL
Damian Gwerder ,TEVT, HSLU
Dmitry Lebedev ,LAC, ETHZ
Aysegül Haktanir ,TI, BFH
Gael Leveque ,LRESE, EPFL
Andreas Haselbacher ,IET, ETHZ
Hsueh-Ju Liu ,LAC, ETHZ
Sophia Haussener, LRESE, EPFL
Hung-Kun Lo ,LAC, ETHZ
Meng He ,LAC, ETZH/EMPA
Benjamin Löffel ,TI, BFH
Thomas Heck ,TA, PSI
Nicola Lüdi ,DCB, UniBern
Marcel Held ,Materials, EMPA
Sivarajakumar Maharajan ,CHEM, UniFribourg
Nelly Hérault ,CHEM, UniFribourg
Simon Maranda ,TEVT, HSLU
Juan Herranz ,ECL, PSI
Tigran Margossian ,LAC, ETHZ
Maria Ibáñez Sabaté ,LAC, ETZH/EMPA
Cyril Marino ,ECL, PSI
Pierre Ineichen ,ISE/Forel Inst., Energy Group, UniGenf Boris Meier ,IET, HSR
Stefan Jost ,TI, BFH
Floriane Mermoud ,ISE/Forel Inst.,UniGenf
Veera Bhadra Rao Kaliginedi ,DCB, UniBern
Stephan Michael ,IBRE/ITFE, FHNW
Shunsuke Kato ,Hydrogen & Energy, EPFL/EMPA
Miklos Mohos ,DCB, UniBern
Marc Keusch ,IBRE/ITFE, FHNW
Mickael Montandon-Clerc ,SB ISIC LCOM, EPFL
Martin Kotyrba ,LAC, ETZH/EMPA
Pavel Moreno ,DCB, UniBern
Maksym Kovalenko ,LAC, ETZH/EMPA
Dominik Müller ,IBRE/ITFE, FHNW
Kostiantyn Kravchyk ,LAC, ETZH/EMPA
Chris Mutel ,TA, PSI
Franziska Krieg ,LAC, ETZH/EMPA
Georgian Nedelcu ,LAC, ETZH/EMPA
Akiyoshi Kuzume ,DCB, UniBern
Thi Minh Hai Nguyen ,DCB, UniBern
November 26, 2015, UKES Birmingham
Acknowledgements
Emma Oakton ,LAC, ETHZ
Astrid Olaya ,LEPA, EPFL
Melissa OLSON JOHNSON ,ISIC-LIMNO, EPFL
Alberto Ortona ,ICIMSI, SUPSI
Marek Oszajca ,LAC, ETZH/EMPA
Yohan Paratcha ,ECL, PSI
David Parra ,ISE/Forel Inst., UniGenf
Martin Patel ,ISE/Forel Inst., UniGenf
Alexandra Patru ,ECL, PSI
Ilham Perdana ,TI, BFH
Anastasia Permyakova ,ECL, PSI
David Perraudin ,LRESE, EPFL
Christian Peter ,ECL, PSI
Daniel Philippen ,SPF, HSR
Mauro Povia ,ECL, PSI
Mathieu Prevot ,ISIC-LIMNO, EPFL
Motiar Rahaman ,DCB, UniBern
Ehsan Rezaei ,ICIMSI, SUPSI
Beat Ribi ,IBRE/ITFE, FHNW
Mercedes Rittmann-Frank ,SPF, HSR
Jonathan Roncolato ,ICIMSI, SUPSI
Hannes Roth ,TI, BFH
Stefan Roth ,IBRE/ITFE, FHNW
Alexander Rudnev ,DCB, UniBern
November 26, 2015, UKES Birmingham
Florian Ruesch ,SPF, HSR
Albert Ruggi ,CHEM, UniFribourg
Fabian Ruoss ,IET, HSR
Carmine Sabia ,ICIMSI, SUPSI
Christian Scheller ,Materials, EMPA
Warren Schenler ,TA, PSI
Clemens Scherrer ,IBRE/ITFE, FHNW
Marina Schifferle ,IET, HSR
Luca Schmidlin ,IET, HSR
Thomas Schmidt ,ECL, PSI
Martin Schwarzwälder ,LAC, ETHZ
Urs Sennhauser ,Materials, EMPA
Hans Siegenthaler ,DCB, UniBern
Marius-Christian Silaghi ,LAC, ETHZ
Kevin Sivula ,ISIC-LIMNO, EPFL
Nicholas Stadie ,LAC, ETZH/EMPA
Anastasia Stamatiou ,TEVT, HSLU
Evelyn Stilp ,Materials, EMPA
Shohei Tada ,LAC, ETHZ
Indre Thiel ,LAC, ETHZ
Jürg Thut ,ECL, PSI
Karin Treyer ,TA, PSI
Farid Vahedi ,ICIMSI, SUPSI
Claire Villevieille ,ECL, PSI
Acknowledgements
Leonie Vogt ,ECL, PSI
Heron Vrubel ,LEPA, EPFL
Kay Waltar ,ECL, PSI
Marc Walter ,LAC, ETZH/EMPA
Shutao Wang ,LAC, ETZH/EMPA
Joachim Weber ,SB ISIC LCOM, EPFL
Dieter Winkler ,IBRE/ITFE, FHNW
Jörg Worlitschek ,TEVT, HSLU
Hervé Yao ,CHEM, UniFribourg
Simone Zavattoni ,ICIMSI, SUPSI
Fei Zhafou ,SB ISIC LCOM, EPFL
Xiaojin Zhang ,TA, PSI
Andreas Züttel ,Hydrogen & Energy, EPFL/EMPA
November 26, 2015, UKES Birmingham