UNIVERSIDAD DE GRANADA INSTITUTO DE NEUROCIENCIAS DEPARTAMENTO DE PSICOLOGÍA EXPERIMENTAL Y FISIOLOGÍA DEL COMPORTAMIENTO TESIS DOCTORAL DESARROLLO DE LA FUNCIÓN HIPOCAMPAL Y MEMORIA GUSTATIVA EN RATAS: PAPEL DEL CONTEXTO TEMPORAL TATIANA MANRIQUE ZULUAGA GRANADA, 2008 Editor: Editorial de la Universidad de Granada Autor: Tatiana Manrique Zuluaga D.L.: GR.1789-200 ISBN: 978-84-691-5649-0 Dña. MILAGROS GALLO TORRE, PROFESORA TITULAR DE PSICOBIOLOGÍA DE LA UNIVERSIDAD DE GRANADA CERTIFICA: Que el trabajo de investigación titulado “DESARROLLO DE LA FUNCIÓN HIPOCAMPAL Y MEMORIA GUSTATIVA EN RATAS: PAPEL DEL CONTEXTO TEMPORAL” ha sido realizado por Dña. Tatiana Manrique Zuluaga para optar al grado de Doctor Europeo en Psicología en el Departamento de Psicología Experimental y Fisiología del Comportamiento de la Facultad de Psicología de la Universidad de Granada, bajo su dirección. Y para que conste donde proceda se firma este certificado en Granada a 10 de Abril de 2008 Fdo. Milagros Gallo Torre Fdo. Tatiana Manrique Zuluaga Esta tesis ha sido subvencionada por los siguientes proyectos de investigación: BSO2002-01215 del Ministerio de Ciencia y Tecnología de España, SEJ2005-01344 del Ministerio de Educación y Ciencia de España, ambos parcialmente subvencionados por el Fondo Europeo de Desarrollo Regional y el proyecto HUM 02763 de la Junta de Andalucía. Esta tesis está dedicada a una mujer, a quien respeto y admiro profundamente … a Milagros. AGRADECIMIENTOS Un sueño hecho realidad, cuando llegué de Colombia hace casi 9 años, tenía grandes ilusiones y deseos, sólo contaba con el apoyo de mi familia y mis ideales. Tenía claro que en España encontraría lo que estaba buscando, no fue fácil pero a pesar de diversos obstáculos encontré el camino con la ayuda de Milagros, con su profesionalismo y apoyo incondicional logramos no solo este valioso documento sino una maravillosa amistad. Pero todo esto no es un trabajo sólo de dos, a mis compañeros de laboratorio colegas y amigos, un agradecimiento sincero por compartir sus experiencias y su tiempo conmigo … Nacho, Nines, Fernando, Ana, David y Rosa gracias por tan espléndida colaboración. A aquellos docentes que siempre confiaron en mi trabajo y en mis destrezas, que condujeron cada una de mis inquietudes e hicieron que amara cada día más esta profesión, Isabel de Brugada, Felisa González, Antonio Cándido, Antonio Maldonado, Andrés Catena, André Fenton, hoy y siempre gracias por estar ahí. A Esteban compañero y amigo, por su colaboración en la diagramación y expresión gráfica de posters y charlas presentadas en congresos, al igual que por su apoyo, gracias. Finalmente a mi madre, a mis hermanas y a mi tía gracias por estar ahí, por darme siempre una voz de aliento y por no dejarme desfallecer ni dar un paso atrás. A la memoria de mi padre hoy le ofrezco más que un logro, una satisfacción por todas sus enseñanzas y buen ejemplo de la vida. A todos mil gracias, sin ustedes no hubiera sido posible… DESARROLLO DE LA FUNCIÓN HIPOCAMPAL Y MEMORIA GUSTATIVA EN RATAS: PAPEL DEL CONTEXTO TEMPORAL La presente tesis doctoral está compuesta de seis capítulos. Cada uno de ellos contiene un artículo original de la autora de esta tesis ya publicado (capítulos 1, 2, 3 y 6) o que se encuentra en proceso de revisión en una revista científica (capítulos 4 y 5). En conjunto los experimentos contenidos en esta tesis están dirigidos al estudio de la función hipocampal y su relación con el aprendizaje en ratas desde una aproximación de desarrollo, entendido el término en su sentido más amplio desde las etapas tempranas de formación del Sistema Nervioso hasta el envejecimiento. El capítulo 1 presenta una introducción general al aprendizaje aversivo gustativo, modelo de aprendizaje empleado en la mayor parte de la tesis (capítulos 1-5), y su valor para los estudios de desarrollo. Este material fue publicado (en castellano) en una reconocida revista de divulgación científica (Mente y cerebro, 2006, 11, 3940). El capítulo 2, que contiene una revisión de los efectos del envejecimiento normal sobre el aprendizaje aversivo gustativo, consiste en una revisión sobre el tema ya publicada (Chemical Senses, 2007). El resto de los capítulos incluyen las aportaciones experimentales que forman el grueso de esta tesis. El capítulo 3 incluye la demostración de que un cambio de hora puede actuar como contexto en aprendizaje aversivo gustativo, interfiriendo con el fenómeno de inhibición latente, hallazgo publicado en Neurobiology of Learning and Memory, (2004, 82, 77-80). En el capítulo 4 se demuestra la utilidad de aplicar el protocolo empleado en el capítulo anterior en ratas envejecidas intactas y con lesiones del hipocampo, poniendo de manifiesto tanto la ausencia de modulación por parte del contexto temporal, como la facilitación de formas alternativas de modulación, respectivamente. El capítulo 5 contiene un estudio dirigido a investigar la ontogenia de la inhibición latente y su modulación por el contexto temporal. Los resultados ponen de manifiesto cursos de desarrollo independientes para el fenómeno de inhibición latente, la especificidad contextual de la aversión gustativa y la especificidad contextual del fenómeno de inhibición latente en aprendizaje aversivo gustativo. Por último, el capítulo 6 está formado por un estudio ya publicado en Developmental Psychobiology (2005, 46, la 340-349) que demuestra la relevancia no sólo de las experiencias de aprendizaje previas sobre el desarrollo de las capacidades de aprendizaje adultas sino también de sus parámetros temporales. DESARROLLO DE LA FUNCIÓN HIPOCAMPAL Y MEMORIA GUSTATIVA EN RATAS: PAPEL DEL CONTEXTO TEMPORAL Contents CONTENTS Resumen .........................................................................................................................1 Introducción.......................................................................................................3 Aprendizaje Aversivo Gustativo (Capítulo 1) ......................................6 Envejecimiento y Aprendizaje Aversivo Gustativo (Capítulo 2) .......10 Justificación y objetivos .....................................................................14 Inhibición Latente y Contexto Temporal (Capítulo 3) .......................17 Ontogenia de la inhibición latente y de los efectos del contexto temporal en aprendizaje aversivo gustativo (Capítulo 5) ...................22 Envejecimiento, Hipocampo y Contexto Temporal (Capítulo 4) .......28 Fracaso Temprano y Aprendizaje Adulto (Capítulo 6).......................32 Conclusiones....................................................................................................41 Referencias ......................................................................................................44 Chapter 1. Neurobiología del Aprendizaje Aversivo Gustativo...................................63 Chapter 2. Hippocampus, Ageing, and Taste Memories..............................................71 Abstract ...........................................................................................................73 2.1. Introduction .............................................................................................74 2.2. Ageing and taste memories......................................................................79 2.3. Hippocampus and taste memories ...........................................................84 Tatiana Manrique 2.4. Hippocampal decline and ageing impact on taste memories ...................89 2.5. Conclusions .............................................................................................91 References .......................................................................................................93 Chapter 3. Time of day-dependent latent inhibition of conditioned taste aversions in rats ..............................................................................................................................101 Abstract..........................................................................................................103 3.1. Introduction ...........................................................................................104 3.2. Materials and methods...........................................................................105 3.3. Results ...................................................................................................108 3.4. Discussion..............................................................................................111 References .....................................................................................................114 Chapter 4. Hippocampus, Aging and Segregating memories.....................................117 Abstract..........................................................................................................119 4.1. Introduction ...........................................................................................120 4.2. Materials and Methods ..........................................................................123 4.2.1. Behavioural Protocol .............................................................124 4.2.2. Dorsal Hippocampal Lesion ..................................................126 4.3. Results ...................................................................................................129 4.3.1. Experiment 1..........................................................................129 4.3.1.1. Results....................................................................129 Contents 4.3.2. Experiment 2........................................................................135 4.3.2.1. Results....................................................................136 4.4. Discussion..............................................................................................139 References .....................................................................................................146 Chapter 5. Peculiar modulation of taste aversion learning by the time of day in developing rats ...........................................................................................................151 Abstract .........................................................................................................153 5.1. Introduction ...........................................................................................154 5.2. Experiment 1 .........................................................................................158 5.2.1. Method...................................................................................160 5.2.1.1. Subjects..................................................................160 5.2.1.2. Apparatus ...............................................................161 5.2.2. Procedure ...............................................................................162 5.2.3. Results and Discussion ..........................................................164 5.3. Experiment 2 .........................................................................................167 5.3.1. Subjects..................................................................................168 5.3.2. Procedure ...............................................................................169 5.3.3. Results and Discussion ..........................................................170 5.4. General Discussion ................................................................................178 References .....................................................................................................189 Tatiana Manrique Chapter 6. Early Learning Failure Impairs Adult Learning in Rats ..........................203 Abstract..........................................................................................................205 6.1. Introduction ...........................................................................................206 6.2. Experiment 1..........................................................................................208 6.2.1. Methods .................................................................................208 6.2.1.1. Subjects ..................................................................208 6.2.1.2. Apparatus ...............................................................210 6.2.1.3. Procedure ...............................................................211 6.2.2. Results....................................................................................213 6.2.2.1. Morris Water Maze ................................................213 6.2.2.2. Avoidance Task......................................................215 6.2.3. Discussion..............................................................................217 6.3. Experiment 2..........................................................................................218 6.3.1. Method ...................................................................................220 6.3.1.1. Subjects ..................................................................220 6.3.1.2. Procedure ...............................................................221 6.3.2. Results.....................................................................................221 6.3.2.1. Morris Water Maze ................................................221 6.3.2.2. Avoidance Task......................................................225 6.3.3. Discussion..............................................................................228 6.4. General Discussion ................................................................................230 References .....................................................................................................238 RESUMEN INTRODUCCIÓN El estudio de la organización anatómica y funcional de los circuitos neuronales responsables del aprendizaje y la memoria se beneficia no sólo de la investigación sobre el cerebro adulto (para una revisión ver Gallo y Manrique, 2007) sino también de una aproximación de desarrollo. Del mismo modo que las técnicas de lesión permanente o reversible (Gallo, 2007) permiten disociar procesos de aprendizaje dependientes de regiones cerebrales diferentes, el estudio de la emergencia y decaimiento de distintas capacidades de aprendizaje, así como de las modificaciones que dichas capacidades sufren a lo largo de la vida, representa una herramienta excepcional para establecer disociaciones de forma natural entre los múltiples procesos involucrados. Las diferentes capacidades de aprendizaje surgen a lo largo del desarrollo temprano a medida que maduran los circuitos cerebrales, y se modifican a lo largo de la vida incorporando los efectos de la experiencia previa y siendo, algunas de ellas, especialmente sensibles al envejecimiento. Aquellos tipos de aprendizaje que requieren la participación de memoria declarativa o explícita, como es el caso del aprendizaje espacial en ratas, son abolidos selectivamente por lesiones del hipocampo, muestran una emergencia tardía durante el desarrollo, de acuerdo con el prolongado curso de maduración hipocampal, y suelen decaer a edades avanzadas, como consecuencia de la Resumen vulnerabilidad hipocampal a los efectos del envejecimiento. Sin embargo, otros tipos de aprendizaje que requieren memoria no-declarativa o implícita, tales como distintas formas de condicionamiento clásico, no requieren un hipocampo intacto, aparecen a edades más tempranas dependiendo de la maduración de los sistemas sensoriales implicados y son resistentes a los efectos del envejecimiento. Ello es congruente con la existencia de múltiples sistemas de memoria con bases cerebrales disociables, en el sentido propuesto por Squire (1994) y otros autores. De este modo es posible distinguir entre tipos de aprendizaje basados en memoria declarativa, que dependen de la maduración del sistema hipocampal y áreas corticales asociadas (Alvarado y Bachevalier, 2000; Nelson, 1998), y una diversidad de tipos de aprendizaje con circuitos neurales independientes, que son maduros a edades más tempranas y que no decaen con la edad (Gerhardstein, Adle y Rovee-Collier, 2000). Adicionalmente, la organización peculiar de los sistemas de memoria durante el desarrollo temprano, debido tanto a la falta de maduración de ciertas regiones cerebrales como al exceso de sinapsis previo a los procesos de poda axónica, facilita capacidades de aprendizaje peculiares no observadas en el adulto (Barr, Marrott, y Rovee-Collier, 2003; Bordner y Spear, 2006; Brasser y Spear, 2004; Campbell y Spear, 1972; Hoffmann y Spear, 1988; Molina, Hoffmann, Serwatka y Spear, 1991). Del mismo modo, el cerebro envejecido muestra una organización peculiar que va más allá del decaimiento funcional de 4 Memoria, Contexto e Hipocampo ciertas regiones cerebrales y que se corresponde con una reorganización de las capacidades de aprendizaje y memoria (Erickson y Barnes, 2003; Kelly et al., 2006). Sin embargo, el empleo de diversos tipos de aprendizaje en la investigación sobre la evolución de los sistemas de memoria a lo largo de la vida plantea dificultades de interpretación dadas las diferentes exigencias sensoriales, motoras, motivacionales, emocionales, etc., que pueden resultar, asimismo, afectadas de forma diferencial por la edad. Los problemas de interpretación se reducen cuando se emplea una única tarea de aprendizaje a la que se van añadiendo mayores exigencias de aprendizaje y/o de memoria. Aproximaciones de este tipo han sido seguidas con éxito por diversos grupos empleando paradigmas de aprendizaje tales como condicionamiento palpebral o miedo condicionado (para una revisión Hunt et al., 2007). Los resultados han mostrado una emergencia diferencial de nuevas posibilidades durante el desarrollo siguiendo una secuencia en la que a la capacidad de establecer asociaciones básicas entre estímulo condicionado e incondicionado, le sigue la posibilidad de introducir mayores dilaciones entre estímulos y aparición de otros fenómenos de aprendizaje, como inhibición latente, y modulación por el contexto. Del mismo modo, se ha reportado deterioro inducido por el envejecimiento en aquellas capacidades de aprendizaje de aparición más tardía. 5 Resumen Una aproximación de este tipo es especialmente eficaz si cumple una serie de requisitos. En primer lugar, debe emplear modalidades estimulares que exhiban un desarrollo tan temprano como sea posible. Ello es especialmente importante es especies altriciales como la rata que no son capaces de oír y ver hasta la segunda semana postnatal. En segundo lugar, las modalidades sensoriales empleadas no deberían resultar afectadas por el envejecimiento. Es bien conocido que el envejecimiento está frecuentemente asociado a una pérdida de visión, audición y olfato. En tercer lugar, es especialmente útil el empleo de un tipo de aprendizaje básico de aparición muy temprana y que no sufra deterioro con la edad. Por último, debe tratarse de un tipo de aprendizaje que permita el estudio de fenómenos de diversa complejidad mediante pequeñas modificaciones del procedimiento que no alteren los procesos sensoriales, motores, motivacionales y emocionales implicados. Aprendizaje Aversivo Gustativo (Capítulo 1) La adquisición de aversiones gustativas aprendidas representa un tipo de aprendizaje de especial interés para una aproximación de desarrollo. García, Kimeldorf y Hunt (1956) fueron los primeros en la observación de este tipo de aprendizaje en ratas. Estos autores descubrieron que el consumo de agua y comida disminuía durante la exposición a dosis relativamente bajas de radiación 6 Memoria, Contexto e Hipocampo gamma de baja intensidad. Sugirieron que el cambio progresivo en el comportamiento de consumo durante exposiciones repetidas podría ser, en parte, una respuesta condicionada en la que la evitación de agua y comida es reforzada debido a la asociación con las consecuencias de la exposición radioactiva. El uso de una solución de sacarina demostró la eficacia de la radiación iónica como estímulo incondicionado en el comportamiento animal. Las ratas tendían a evitar el estímulo gustativo asociado a la radiación. En la tarea básica se establece una asociación entre un sabor desconocido y el malestar gastrointestinal posterior, generalmente inducido mediante una inyección i.p. de cloruro de litio (LiCl). Como consecuencia, el sabor se convierte en desagradable, induce patrones de respuesta característicamente aversivos y es rechazado en posteriores ocasiones, protegiendo al organismo de la ingestión repetida de sustancias nocivas. Las modalidades sensoriales químicas involucradas (gustativo-olfativa y visceral) son de las primeras en ser funcionales durante la vida prenatal y, en el caso de la modalidad gustativa, no sufre cambios críticos a edades avanzadas. El aprendizaje aversivo gustativo se ha descrito ya en la etapa fetal en ratas (Smotherman y Robinson, 1985; Smotherman, 2002a, 2002b) y persiste, e incluso resulta potenciado, a edades avanzadas (Cooper, McNamara y Thompson, 1980; Peterson, Valliere, Misanin y Hinderliter, 1985; Misanin y Hinderliter, 1994, 1995; Misanin, Hoefel, Riedy y Hinderliter, 1997; Misanin, Hoefel, Riedy, Wilson y Hinderliter, 2000; 7 Resumen Misanin et al, 2002; Morón, Ballesteros, Cándido y Gallo, 2002). Por tanto, se trata de un tipo de condicionamiento clásico presente a lo largo del ciclo vital, que ofrece un procedimiento de aprendizaje aplicable desde la etapa prenatal hasta edades avanzadas. El aprendizaje aversivo gustativo exhibe una serie de características peculiares que, además de representar en su momento un reto para la teoría del aprendizaje obligando a su remodelación, son especialmente adecuadas para una aproximación de desarrollo. En primer lugar, es posible inducir intensas aversiones selectivas a un sabor en un único ensayo, lo que evita la necesidad de entrenamientos largos que impidan determinar con precisión el momento de desarrollo en que surgen las capacidades de aprendizaje. Ello es de especial importancia en la investigación con ratas infantes dado el rápido curso de desarrollo que permite el inicio de la adolescencia al final del primer mes (día postnatal 28, según Spear, 2000). En segundo lugar, no requiere respuestas motoras, ya que es posible inducirlo incluso en animales inconscientes. Ello facilita la investigación a lo largo de toda la vida, incluyendo periodos en los que, debido a inmadurez o deterioro, puedan existir deficiencias motoras. Por último, en el adulto permite introducir largas dilaciones entre los estímulos a asociar. La duración de dicho intervalo varía en función de la edad, incrementándose gradualmente durante el desarrollo temprano y ampliándose 8 Memoria, Contexto e Hipocampo durante el envejecimiento (Misanin et al, 2002). Así, es posible investigar la adquisición gradual de nuevas posibilidades de aprendizaje. A pesar de exhibir características peculiares, que no están presentes juntas en ningún otro tipo de condicionamiento clásico, el aprendizaje aversivo gustativo exhibe los fenómenos de aprendizaje descritos en otras tareas de condicionamiento clásico. Se ha descrito inhibición latente, bloqueo condicionado y efectos de modulación por el contexto, entre una variedad de fenómenos (para una revisión véase Gallo, Ballesteros, Molero y Morón, 1999). Por tanto, permite investigar la emergencia y deterioro de las funciones relevantes para la aparición de dichos fenómenos. El circuito neural básico responsable de este tipo de aprendizaje incluye áreas cerebrales en distintos niveles del sistema nervioso (Yamamoto, 1993, 1994; Yamamoto, Shimura, Sakai y Ozaki, 1994; Spector, 1995; Bures, Bermudez-Rattoni y Yamamoto, 1998; Bernstein, 1999; Gallo et al., 1999; Bermudez-Rattoni, 2004), siendo al parecer la interacción entre el núcleo parabraquial y la corteza gustativa crítica para el establecimiento de la asociación en ratas adultas (Gallo et al., 1992). A su vez, ciertos fenómenos de aprendizaje complejos implican la función hipocampal en el adulto, como es el caso del fenómeno de bloqueo (Gallo y Cándido, 1995a, 1995b; Gallo, Valouskova y Cándido, 1997; Morón, Ballesteros, Valouskova y Gallo, 2001) o los efectos del contexto. El hecho de que el circuito neural del que depende la 9 Resumen adquisición de aversiones a los sabores integre áreas cerebrales situadas en diferentes niveles de organización e interaccione con el sistema hipocampal (Manrique y Gallo, 2005) permite investigar la formación y evolución dependiente de la edad de los sistemas de memoria, gracias a la imposición de nuevas exigencias mediante modificaciones del procedimiento comportamental. Cuando se trata de estudiar el efecto del envejecimiento sobre la función hipocampal, el aprendizaje aversivo gustativo es especialmente adecuado. A diferencia de lo que ocurre en otras tareas de aprendizaje, el aprendizaje aversivo gustativo básico no sólo no muestra deterioro sino que resulta facilitado. Ello facilita la interpretación de los efectos del envejecimiento sobre fenómenos complejos. Envejecimiento y Aprendizaje Aversivo Gustativo (Capítulo 2) El deterioro cognitivo generalmente relacionado con el envejecimiento no involucra un decaimiento general en el funcionamiento de los sistemas de memoria. En términos generales, algunos tipos de aprendizaje están preservados, mientras que aquellos que requieren memoria declarativa usualmente decaen durante el envejecimiento (Gallagher y Rapp, 1997). Con respecto al aprendizaje aversivo gustativo el envejecimiento no parece afectar ni a la percepción ni a la memoria de los sabores habitualmente 10 Memoria, Contexto e Hipocampo empleados. No se han observado deficiencias en la respuesta neofóbica, en su habituación, ni en el fenómeno de inhibición latente en ratas envejecidas (Gallagher and Burwell, 1989; Morón and Gallo, 2007; Morón, Ballesteros, et al., 2002). De hecho, la capacidad de asociar sabores con consecuencias gastrointestinales negativas resulta potenciada en ratas de edades avanzadas (Misanin, Collins, et al., 2002; Misanin, Goodhart, et al., 2002; Morón, Ballesteros, et al., 2002). Sin embargo, el envejecimiento induce un deterioro selectivo sobre el bloqueo de una aversión aprendida a un sabor que se presenta en compuesto con otro sabor previamente condicionado (Gallo et al., 1997; Morón et al., 2001; Morón, Ballesteros, et al., 2002). Se trata, por tanto, de un panorama complejo que incluye capacidades preservadas, potenciadas y deterioradas. Ello es congruente con una interpretación del envejecimiento que va más allá de un mero decaimiento de los sistemas de aprendizaje y memoria. Por el contrario, la senescencia se presenta como un periodo de la vida con necesidades de adaptación propias y que se beneficia de una larga historia aprendida previamente (Morón and Gallo, 2007). Dado el efecto pernicioso del envejecimiento sobre el bloqueo del aprendizaje aversivo gustativo, fenómeno que requiere la integridad del hipocampo en la rata adulta, el aprendizaje aversivo gustativo se presenta como adecuado para el estudio de la función hipocampal a edades avanzadas. Sin embargo, esta aproximación no ha sido objeto de estudio con anterioridad y los 11 Resumen resultados sobre el efecto de la lesión del hipocampo empleando animales adultos en este tipo de aprendizaje son también escasos. Ello se ha debido probablemente al hecho de que lesiones permanentes o reversibles del hipocampo no impiden (Gallo and Cándido, 1995a) e incluso pueden potenciar (Stone, Grimes y Katz, 2005) la adquisición de aversiones gustativas aprendidas en adultos. Resultados similares se han obtenido con respecto a la inhibición latente del aprendizaje aversivo gustativo. Existen reportes tanto de ausencia de efecto (Gallo and Cándido, 1995a) como facilitación (Reilly, Harley y Revusky, 1993; Purves, Bonardi y Hall, 1995; Stone et al., 2005) inducida por lesiones hipocampales en adultos. Ello ha podido determinar la pérdida de interés en la exploración del efecto del daño hipocampal en la modulación del aprendizaje aversivo gustativo por el contexto, función hipocampal ya demostrada en otros tipos de aprendizaje (Honey and Good, 1993; Holland and Bouton, 1999; Maren and Holt, 2000). Efectivamente, el contexto en el que la exposición al sabor tiene lugar modula la adquisición de aversiones aprendidas (Puente, Cannon, Best y Carrell, 1988; Bonardi, Honey y Hall, 1990; Loy, Alvarez, Rey y López, 1993; Boakes, Westbrook, Elliot y Swinbourne, 1997) y modula también el fenómeno de inhibición latente del aprendizaje aversivo gustativo (Hall and Channell, 1986; Rosas and Bouton, 1997) en ratas adultas. 12 Memoria, Contexto e Hipocampo Sin embargo, la investigación de los efectos del envejecimiento sobre esta función hipocampal se enfrenta con una dificultad relacionada con la definición habitual de “contexto” en términos de estimulación externa, haciendo referencia a las condiciones del lugar de la situación de aprendizaje, lo cual plantea los problemas de interpretación previamente mencionados. En este sentido, puede resultar especialmente interesante el empleo de contextos independientes de la estimulación exteroceptiva. De hecho, se ha demostrado que la hora del día puede emplearse bien como parte del contexto (Bonardi et al., 1990; Hall and Channell, 1986) o como el único contexto (Morón et al., 2002) en aprendizaje aversivo gustativo, abriendo nuevas posibilidades para una aproximación de desarrollo en el estudio de la función hipocampal. 13 Resumen Justificación y objetivos El estudio de la emergencia y decaimiento de distintas capacidades de aprendizaje, así como de las modificaciones que dichas capacidades sufren a lo largo de la vida, representa una herramienta excepcional para investigar la organización anatómica y funcional de los circuitos neuronales responsables del aprendizaje y la memoria. La función hipocampal es necesaria para aquellos tipos de aprendizaje que requieren la participación de memoria declarativa o explícita. Se trata de un tipo de memoria que muestra una emergencia tardía durante el desarrollo, revelando un prolongado curso de maduración hipocampal, y suele decaer a edades avanzadas, como consecuencia de la vulnerabilidad hipocampal a los efectos del envejecimiento. Adicionalmente, el sistema hipocampal ejerce efectos moduladores sobre los circuitos neurales responsables de aprendizajes de aparición temprana y resistencia a los efectos de la edad, como evidencia su papel crucial en ciertos fenómenos de aprendizaje complejos, tales como los efectos del contexto. El aprendizaje aversivo gustativo muestra una temprana emergencia durante la vida prenatal y persiste, e incluso resulta potenciado, a edades avanzadas, y, sus características peculiares, tales como la adquisición en un ensayo e independencia de la maduración motora, son especialmente adecuadas 14 Memoria, Contexto e Hipocampo para una aproximación de desarrollo. El hecho de que presente fenómenos de aprendizaje que requieren la función hipocampal, tales como bloqueo condicionado y modulación por el contexto, permite que sea empleado para investigar la emergencia y deterioro de las funciones relevantes para la aparición de dichos fenómenos. La definición habitual de contexto en términos de estimulación externa, suele hacer referencia al lugar en que se produce la situación de aprendizaje, lo cual plantea los problemas de interpretación cuando se aplica a estudios de desarrollo en ratas, ya que involucra funciones sensoriales de maduración tardía y/o especialmente vulnerables a los efectos del envejecimiento, así como procesamiento espacial. Por ello, en el estudio de la función hipocampal desde una aproximación de desarrollo resulta especialmente interesante el empleo de contextos independientes de la estimulación exteroceptiva. En este sentido, estudios previos indican que la hora del día puede actuar como un contexto en sí misma (Arvanitogiannis, Sullivan y Amir, 2000). De hecho, se ha demostrado que la hora del día puede emplearse bien como parte del contexto (Bonardi, et al, 1990; Hall and Channell, 1986) o como el único contexto (Morón et al., 2002) en aprendizaje aversivo gustativo, abriendo nuevas posibilidades para una aproximación de desarrollo en el estudio de la función hipocampal. La presente tesis doctoral pretende emplear la modulación del aprendizaje aversivo gustativo por parte de la hora del día como herramienta 15 Resumen fundamental para investigar el desarrollo de la función hipocampal a lo largo de la vida, desde la infancia y adolescencia hasta el envejecimiento. Adicionalmente, se pretenden emplear otras modalidades de aprendizaje con el fin de explorar interacciones entre sistemas de memoria. Para ello se plantean los siguientes objetivos: 1. Investigar la posibilidad de emplear la hora del día, en ausencia de otro tipo de estímulos externos, para explorar la especificidad contextual del fenómeno de inhibición latente en aprendizaje aversivo gustativo, empleando ratas adultas. 2. Explorar la emergencia ontogenética en crías de rata del fenómeno de inhibición latente y su especificidad temporal, empleando tareas de aprendizaje aversivo gustativo similares a las aplicadas en ratas adultas. 3. Investigar el efecto del envejecimiento sobre la especificidad temporal del fenómeno de inhibición latente en aprendizaje aversivo gustativo en ratas de 25 meses de edad. 4. Investigar el efecto de la lesión hipocampal sobre la modulación temporal del fenómeno de inhibición latente en ratas senescentes. 5. Evaluar las consecuencias del fracaso temprano, inducido mediante la exposición de ratas de 18 días a una tarea hipocampal irresoluble a esa 16 Memoria, Contexto e Hipocampo edad, sobre la capacidad de aprendizaje adulta en una tarea de evitación independiente, que no requiere la integridad del hipocampo. 6. Evaluar las consecuencias del entrenamiento de ratas de 25 días durante un periodo crítico de desarrollo hipocampal a una tarea hipocampal que comienza a ser resoluble a dicha edad, sobre la capacidad de aprendizaje adulta en una tarea de evitación independiente, que no requiere la integridad del hipocampo. Inhibición Latente y Contexto Temporal (Capítulo 3) Como acaba de mencionarse, una de las funciones atribuidas al sistema hipocampal es mediar los diversos efectos del contexto en las tareas de memoria (Holland y Bouton, 1999). En las tareas de memoria de reconocimiento gustativo, los efectos del contexto se han puesto de manifiesto empleando procedimientos que incluyen preexposición al estímulo gustativo. Por un lado, se ha investigado la dependencia del contexto en el fenómeno de inhibición latente (IL). Este fenómeno pone de manifiesto cómo la experiencia previa a un sabor sin consecuencias aversivas retrasa la adquisición posterior de una aversión condicionada a dicho sabor (Lubow, 1989). Los estudios de Hall y Channell (1986), y posteriormente de otros autores (Maren y Holt, 2000; De la Casa y Lubow, 2001; Wesbrook, Jones, Bailey y Harris, 2000), han demostrado 17 Resumen que el cambio de contexto entre la preexposición y el condicionamiento interrumpe el fenómeno. Por otro lado, en tareas de discriminación condicionada se ha planteado que la recuperación de una aversión gustativa aprendida puede ser dependiente del contexto (Bonardi, et al., 1990; Loy, et al., 1993), especialmente cuando el sabor ha sido previamente preexpuesto sin consecuencias (Puente et al., 1988; Boakes et al., 1997). En conjunto, la evidencia indica que las señales contextuales pueden facilitar la recuperación tanto de recuerdos gustativos apetitivos como aversivos. Es importante destacar que al hablar de contexto pueden incluirse claves externas e internas, así como un sentido del tiempo (Bouton, 1993). Sin embargo, la relevancia de las señales temporales como contexto ha sido muy poco explorada. Existe un estudio en el que se reporta a la hora del día como un contexto en sí misma, mostrando la dependencia temporal de la expresión de una sensibilización comportamental a la anfetamina (Arvanitogiannis, et al., 2000). Experimentos previos en nuestro laboratorio (Morón, Manrique, Molero, Ballesteros, Gallo y Fenton, 2002b) fueron diseñados con el fin de evaluar la dependencia contextual espacial y temporal de la inhibición latente. Los resultados indicaron que el cambio de contexto espacial y temporal tiene efectos similares sobre el fenómeno de condicionamiento aversivo gustativo (Morón, 2002). Se demostró que la recuperación de la aversión fue específica de contexto, demostrando por primera vez que las ratas adultas usan la hora del día 18 Memoria, Contexto e Hipocampo para modular la expresión de una aversión gustativa adquirida en un solo ensayo de forma similar a lo que ocurrió cuando se empleó un contexto espacial sin cambios temporales. El procedimiento usado por Morón et al (2002) incluía 2 días de habituación a beber agua durante 15 minutos en la mañana y en la tarde, dos sesiones de preexposición a una solución salina isotónica, restricción a 6 ml de consumo el día de condicionamiento y 5 sesiones de prueba con botella única. El experimento del capítulo 3 de esta tesis (publicado en Neurobiology of Learning and Memory, 2004) se diseño con el objetivo de evaluar si la inhibición latente del condicionamiento aversivo gustativo depende del cambio de hora del día. Para ello se hicieron sutiles modificaciones al procedimiento. Se usaron 4 grupos de ratas Wistar en un diseño 2 x 2 (Preexposición x Grupo). Los grupos Preexpuestos (Pre), pero no los Controles (Ctrl) recibieron 2 preexposiciones a la solución salina isotónica antes del condicionamiento. En cada condición (Pre o Ctrl) los animales fueron asignados a dos grupos: un grupo Same en el que las preexposiciones, el condicionamiento y los tests tuvieron lugar a la misma hora del día (la sesión de tarde), y un grupo Diff que fue condicionado a una hora diferente de las preexposiciones y los tests. Las modificaciones del procedimiento usado por Morón et al (2002) fueron dos: se aplicaron 5 días de habituación en lugar de 2 y se les permitió beber libremente durante el condicionamiento. 19 Resumen Los resultados de este experimento indicaron que el cambio de hora del día entre la preexposición y el condicionamiento interrumpió el fenómeno de inhibición latente. El grupo que fue preexpuesto a la solución salina a una hora diferente del condicionamiento adquirió una aversión de similar intensidad a la de los grupos control no preexpuestos. Sin embargo, la reducción en la magnitud de la aversión fue evidente en los grupos que fueron preexpuestos, condicionados y probados a la misma hora del día. Las sutiles modificaciones al procedimiento de Morón et al (2002) aplicadas en el capítulo 3 permitieron observar la dependencia contextual de la inhibición latente, a diferencia de la dependencia contextual de la aversión observada en Morón et al (2002). Por lo que sabemos, esta es la primera demostración de que las ratas usan la hora del día como un contexto para modular el fenómeno de inhibición latente. Es de destacar que usando dos procedimientos similares, que básicamente difieren en la duración de la habituación al contexto y en la existencia o no de restricción del consumo durante el condicionamiento, se obtienen patrones de ingestión opuestos en los grupos preexpuestos, sin que haya diferencias entre los grupos controles no-preexpuestos. Hall y Channell (1986) propusieron que la duración y el tipo de habituación al contexto pueden determinar su habilidad para modular el aprendizaje. Los datos obtenidos en este capítulo 3 (Manrique, Molero, Ballesteros, Morón, Gallo y Fenton, 2004) pueden interpretarse en el sentido de 20 Memoria, Contexto e Hipocampo que una habituación más larga, incrementando la saliencia y discriminación entre sesiones de mañana y tarde, ha facilitado la aparición de la dependencia contextual de la inhibición latente. Además, el consumo libre durante el condicionamiento puede ser una característica adicional para el incremento en la saliencia temporal del contexto. En conjunto, los resultados obtenidos por Morón et al (2002) y Manrique et al (2004) ponen de manifiesto que la hora del día, en ausencia de cambios externos, actúa como contexto en el condicionamiento aversivo gustativo, permitiendo el estudio de la dependencia contextual de la aversión y de la inhibición latente mediante el mismo procedimiento con sutiles modificaciones. Ello apoya la validez del aprendizaje aversivo gustativo como modelo adecuado para estudiar efectos contextuales en aprendizaje. A su vez, esto permite emplear tareas de aprendizaje aversivo gustativo para investigar tanto circuitos de memoria hipocampales como no hipocampales en ratas adultas, tal y como ha sido previamente propuesto (Gallo et al, 1999). Aunque la integridad del sistema hipocampal no sea necesaria para el condicionamiento aversivo gustativo (Gallo y Cándido, 1995a), el hipocampo puede tener un papel crítico en la mediación de otros efectos en aprendizaje gustativo, tales como los efectos del contexto. Aún más, el empleo de la hora del día como contexto permite investigar la función hipocampal a lo largo de la vida, incluyendo tanto etapas tempranas 21 Resumen como envejecimiento y eliminando las grandes dificultades de interpretación asociadas a los cambios evolutivos en las capacidades sensoriales y motoras. Ontogenia de la inhibición latente y de los efectos del contexto temporal en aprendizaje aversivo gustativo (Capítulo 5) Ontogenéticamente, el condicionamiento aversivo gustativo es un tipo de aprendizaje asociativo primitivo y tempranamente desarrollado. La habilidad para asociar sabores con el malestar visceral inducido por cloruro de litio y mostrar aversiones condicionadas en presentaciones posteriores ha sido reportada tan tempranamente como en fetos de rata (Abate, Pepino, Domínguez, Spear y Molina 2000; Smotherman, 2002a, 2002b; Smotherman y Robinson, 1985). Ratas recién nacidas y predestetadas son capaces de aprender aversiones a olores y sabores (Arias y Chotro, 2006; Nizhnikov, Petrov y Spear, 2002; Rudy y Cheatle, 1977). Efectivamente, se han observado aversiones a soluciones saladas o dulces inducidas mediante inyecciones de cloruro de litio en crías de 5 días evaluadas 5 o 16 días después (Kehoe y Blass, 1986). Sin embargo, el fenómeno de inhibición latente del condicionamiento aversivo gustativo muestra una emergencia tardía durante el desarrollo. Algunos estudios muestran inhibición latente en ratas de 20 a 25 días después de un gran número de preexposiciones (Franchina, Donato, Patsiokas y Griesemer, 22 Memoria, Contexto e Hipocampo 1980), mientras que otros estudios reportan déficits en la inhibición latente del condicionamiento aversivo gustativo antes de los 20-25 días de edad (Klein, Mikulka, Domato, y Hallstead, 1977; Misanin, Blatt, y Hinderliter, 1985; Misanin, Guanowsky, y Riccio, 1983; Wilson y Riccio, 1973). De hecho, Nicolle, Barry, Veronesi, y Stanton (1989) en un estudio que incluía todos los controles adecuados no encontraron evidencia de inhibición latente a soluciones de café y sacarina en ratas menores de 32 días aplicando 4 preexposiciones intraorales. Adicionalmente, si el hipocampo es el responsable del procesamiento del contexto y la hora del día puede considerarse como contexto, es de esperar que el desarrollo tardío del sistema hipocampal en ratas induzca un retraso en la ontogenia de los efectos moduladores del aprendizaje aversivo gustativo. Dada la aparición tardía del fenómeno de inhibición latente es de esperar que la dependencia temporal de la aversión condicionada aparezca antes que la dependencia temporal del fenómeno de inhibición latente durante el desarrollo. En el capítulo 5 de esta tesis, se presenta un estudio usando el condicionamiento aversivo gustativo con el fin de explorar la ontogenia de la inhibición latente (Experimento 1) y su especificidad contextual (Experimento 2) en ratas destetadas aplicando un protocolo de aprendizaje que ha sido apropiado para inducir la inhibición latente específica de la hora del día en el 23 Resumen condicionamiento aversivo gustativo en ratas adultas (Capítulo 3, Manrique, et al, 2004). Con relación a la ontogenia del fenómeno de inhibición latente, los resultados del experimento 1 mostraron que la inhibición latente del condicionamiento aversivo gustativo es evidente a los 32 pero no a los 24 días de edad aplicando un procedimiento de dos días de habituación a beber agua dos veces al día durante 15 minutos, dos preexposiciones a la solución salina (0.1%) y una tercera exposición al sabor seguida de una inyección intraperitoneal de cloruro de litio (LiCl, 0.15M, 2% peso corporal), idéntico al usado en ratas adultas. En el experimento 2 se usaron 5 días de habituación en lugar de 2, y se confirmó la presencia de inhibición latente a los 32 días de edad. Los resultados son congruentes con los de Nicolle et al (1989) quienes no encontraron evidencia de inhibición latente en ratas menores de 32 días en el aprendizaje aversivo gustativo usando cuatro preexposiciones al sabor aplicadas durante dos días. Estos autores atribuyeron el retraso en la aparición de la inhibición latente a la inmadurez del sistema hipocampal, dado que la sección del fórnix llevada a cabo en ratas predestetadas interrumpió la emergencia de la inhibición latente a los 32 días de edad. Sin embargo, hasta ahora no ha habido evidencia que ponga de manifiesto un papel crítico del hipocampo en la inhibición latente del condicionamiento aversivo gustativo (para una revisión ver Buhusi, Gray y 24 Memoria, Contexto e Hipocampo Schmajuk, 1998; Gallo, Ballesteros, Molero y Morón, 1999). Estudios de lesión en ratas adultas no muestran efecto (Gallo y Cándido, 1995a) o muestran un aumento de la inhibición latente (Purves, Bonarde y Hall, 1995; Reilly, Harley y Revusky, 1993). Aún más, se ha reportado que la sección del fórnix, similar a la empleada por Nicolle et al. (1989), no interrumpe la inhibición latente en ratas adultas (Weiner, Feldon, Tarrasch, Harrison y Joel, 1998). Es posible plantear que la sección del fórnix durante el desarrollo temprano tenga efectos más generales sobre la organización de los circuitos neuronales obstaculizando una explicación simple de sus efectos en crías de rata. El rango de edad elegido en este capítulo para estudiar la ontogenia de la especificidad contextual de la inhibición latente cubrió el período completo de adolescencia, desde los 32 hasta los 64 días, lo cual está de acuerdo con propuestas previas que aplican un criterio laxo en términos de cambios comportamentales (Spear, 2000). Los resultados mostraron una emergencia tardía de la modulación del condicionamiento aversivo gustativo por el contexto temporal, la cual no es evidente en ratas de 32 días. Sin embargo, la modulación del condicionamiento aversivo gustativo por el contexto temporal en ratas de 48 y 64 días de edad difirió dramáticamente de la observada en el grupo de ratas adultas. En las ratas adultas el cambio de contexto temporal interrumpió la inhibición latente del condicionamiento aversivo gustativo, mostrando 25 Resumen aversiones similares a las exhibidas por los grupos no preexpuestos. Por lo tanto, el grupo condicionado a una hora diferente (Diff) de la preexposicion mostró una aversión más intensa que la del grupo preexpuesto y condicionado a la misma hora del día (Same). Esta especificidad contextual de la inhibición latente en ratas adultas confirma los resultados presentados en el capítulo 3, usando el mismo procedimiento. Sin embargo, la inhibición latente del condicionamiento aversivo gustativo no se interrumpió al aplicar el condicionamiento a una hora diferente de las preexposiciones en los grupos de 48 y 64 días de edad. Los grupos preexpuestos Same y Diff mostraron aversiones más débiles que sus grupos control no preexpuestos, indicando la presencia del fenómeno. No obstante, la aversión fue más intensa en los grupos Same que en los grupos Diff, en los que el cambio de hora del día indujo un patrón de diferencias opuesto al observado en los grupos de ratas adultas. Ese patrón de diferencias entre los grupos preexpuestos Same y Diff se ha reportado previamente en ratas adultas (Morón et al, 2002) aplicando un protocolo comportamental de dos días de habituación en lugar de 5 y consumo restringido durante el condicionamiento en lugar del consumo libre usado en el presente estudio. Una aversión más débil en aquellos grupos condicionados y evaluados a una hora diferente del día que aquellos condicionados y evaluados a la misma hora del día puede interpretarse como especificidad contextual de la aversión en los grupos preexpuestos. Por tanto, la 26 Memoria, Contexto e Hipocampo especificidad contextual de la inhibición latente y la especificidad contextual de la aversión son fenómenos evolutivamente disociables, mostrando el primero una emergencia más tardía que el segundo. Una organización peculiar de los sistemas de aprendizaje y memoria durante la adolescencia, que facilite la formación de la representación del compuesto sal y hora del día, podría explicar el hecho de que el mismo procedimiento que permite detectar la especificidad contextual de la inhibición latente en ratas adultas pueda permitir la especificidad contextual de la aversión en ratas adolescentes. De esta manera, es posible observar la especificidad contextual de aversiones gustativas aprendidas que en ratas adultas sólo es evidente con un protocolo de habituación corta. En conjunto, los resultados confirman hallazgos previos que indican una emergencia tardía del fenómeno de inhibición latente en aprendizaje aversivo gustativo, durante la adolescencia temprana a los 32 días de edad en ratas. Además, muestran una disociación ontogenética entre el efecto del cambio de contexto temporal sobre la aversión condicionada, que es evidente a los 48 días de edad, y sobre el fenómeno de inhibición latente, efecto que únicamente aparece en el grupo adulto. Ello parece implicar un largo periodo durante la adolescencia desde 48 hasta 64 días de edad en la rata, durante el cual la peculiar organización de los sistemas de aprendizaje y memoria facilita determinados efectos contextuales sobre el aprendizaje e impide la especificad contextual de la inhibición latente. De acuerdo con la prolongada duración de 27 Resumen los procesos de maduración hipocampal podría proponerse que la especificidad temporal de la inhibición latente muestra una emergencia tardía debido a su dependencia de una determinada función que aún no puede soportar el hipocampo en desarrollo. Envejecimiento, Hipocampo y Contexto Temporal (Capítulo 4) Recientemente ha sido demostrado que la capacidad para segregar elementos de una experiencia en representaciones internas separadas es dependiente del hipocampo. Kubik y Fenton (2005) han estudiado dicha función segregadora usando tareas espaciales en ratas adultas. Estos autores proponen que una función fundamental del hipocampo es facilitar la segregación de representaciones de estímulos en un compuesto, incluso cuando los estímulos a segregar no sean espaciales (Kesner, Lee y Gilbert, 2004; Wesierska, Dockery y Fenton, 2005). En este sentido, el empleo de tareas de condicionamiento aversivo gustativo con cambio de hora del día puede resultar especialmente adecuado para poner a prueba esta hipótesis, ya que en ellas es difícil identificar componente espacial alguno, siendo la hora del día la única variable que permite distinguir la experiencia de condicionamiento entre los diferentes grupos preexpuestos. Puede proponerse que la especificad temporal de la inhibición 28 Memoria, Contexto e Hipocampo latente, observada en la rata adulta, requiere dicha segregación entre el sabor y la hora del día, mientras que para que se produzca la especificidad temporal de la aversión, que ya es evidente en la rata adolescente, el sabor y la hora del día son probablemente representados como un único estímulo compuesto. Esta podría ser la explicación de que en el primer caso durante los tests, llevados a cabo a la misma hora de la preexposición (contexto seguro), se recupere una intensa aversión, mientras que en el segundo caso, sea necesario que el sabor se presente a la hora del condicionamiento para que se incremente la aversión. Como se mencionó antes, el deterioro cognitivo relacionado con el envejecimiento no involucra un decaimiento generalizado en el funcionamiento de los sistemas de memoria. Algunos tipos de memoria están preservados, mientras otros usualmente decaen durante el envejecimiento normal (Gallagher y Rapp, 1977; Manrique, Morón, Ballesteros, Guerrero y Gallo, 2007). De hecho, son aquellas tareas que requieren un hipocampo intacto las que sufren mayor deterioro a edades avanzadas, probablemente debido a modificaciones bien conocidas en la función hipocampal (Rosenzweig y Barnes, 2003; Wilson et al, 2003). Puede proponerse, en consecuencia, que las ratas envejecidas deben mostrar deficiencias en la modulación temporal de la inhibición latente empleando aprendizaje aversivo gustativo. El capítulo 5 de esta tesis es un artículo actualmente en revisión, diseñado para evaluar el efecto del 29 Resumen envejecimiento y de la lesión del hipocampo dorsal en la modulación temporal del aprendizaje aversivo gustativo. Aplicando el procedimiento usado en el Capítulo 3 (Manrique et al., 2004) se estudió la dependencia contextual de la inhibición latente en ratas envejecidas (25 meses), cuya ejecución fue comparada con la de ratas adultas (4-5 meses). En cada edad se usaron únicamente dos grupos preexpuestos, uno condicionado a la misma hora de las preexposiciones y los test y otro condicionado a una hora diferente. Los resultados indicaron que a diferencia de las ratas adultas, las envejecidas no fueron sensibles a la hora del día en la que fueron condicionadas (Manrique, Gámiz, Morón, Ballesteros y Gallo, 2008, en revisión). La magnitud de la aversión no difirió entre estos grupos y su intensidad fue intermedia a la aversión expresada por las ratas adultas que fueron condicionadas a una hora familiar y diferente. Por tanto, mientras las ratas envejecidas adquirieron aversiones condicionadas al sabor de una magnitud similar a las ratas adultas, no mostraron modulación de la aversión en función de la hora del día. Este resultado podría explicarse por la posibilidad de que ratas envejecidas tengan alterada la detección de señales temporales, pero esta explicación fue descartada en el Experimento 2. En el segundo experimento se comparó la ejecución de ratas envejecidas intactas con aquellas que recibieron lesiones excitotóxicas del hipocampo dorsal, mediante la inyección intracerebral de NMDA (0.077M). 30 Memoria, Contexto e Hipocampo Sorprendentemente, las ratas lesionadas, a diferencia de las intactas, usaron la hora del día para modular la expresión de la aversión condicionada al sabor, aunque mostraron un patrón de ingestión opuesto al de las ratas adultas intactas del primer experimento. El grupo preexpuesto, condicionado y probado a la misma hora del día mostró una mayor aversión a la solución salina en comparación con el grupo condicionado a una hora diferente. Se trata de un patrón similar al observado en ratas adolescentes, como se ha descrito en el capítulo anterior, que puede interpretarse como especificidad temporal de la aversión condicionada. El hecho de que la lesión del hipocampo dorsal en ratas envejecidas facilite la modulación de la aversión gustativa aprendida por parte de la hora del día demuestra que las ratas envejecidas pueden usar la hora del día en representaciones de la experiencia. Sin embargo, la pérdida de la especificidad temporal del fenómeno de inhibición latente en animales lesionados parece indicar que la habilidad para codificar, mantener o usar representaciones segregadas del sabor y las señales temporales requiere un hipocampo intacto. Por otro lado, los resultados ponen de manifiesto que los efectos del envejecimiento no son comparables a los producidos por la lesión hipocampal, ya que no se observó modulación temporal alguna en los animales envejecidos, mientras que el efecto se invirtió con respecto a los adultos en ratas envejecidas con lesión hipocampal. La ausencia de efecto del cambio de hora en ratas 31 Resumen senescentes intactas refleja un deterioro cognitivo que puede ser el resultado de alteraciones en la función hipocampal provocadas por la edad. Además, la facilitación de la especificidad temporal de la aversión aprendida por parte de la lesión hipocampal es consistente con otras evidencias experimentales que sugieren interacciones entre múltiples sistemas de memoria. En este caso, los resultados apoyan la existencia de interacciones competititivas, mostrando un efecto inhibidor por parte del sistema hipocampal sobre los circuitos cerebrales responsables de la modulación temporal de la aversión aprendida, inhibición que es eliminada por la lesión, pero no por la disfunción hipocampal asociada al envejecimiento. La naturaleza de la interacción entre sistemas de aprendizaje y memoria diferentes puede verse modificada a lo largo de la vida en función de las experiencias vividas y de las modificaciones inducidas por la edad. Fracaso Temprano y Aprendizaje Adulto (Capítulo 6) Como se ha mencionado previamente, ciertas tareas de aprendizaje y memoria que en el adulto dependen del sistema hipocampal, tales como desigualación a la muestra demorada y aprendizaje espacial, muestran emergencia tardía durante el desarrollo temprano y decaimiento asociado al envejecimiento. En las tareas de aprendizaje espacial se han reportado déficits en ratas predestetadas menores de 20 días en la adquisición de la tarea de 32 Memoria, Contexto e Hipocampo búsqueda de plataforma oculta en el laberinto acuático (Morris, 1981), debido a la incompleta maduración del sistema hipocampal, el cual permite integrar señales distales para la realización de esta tarea. En general, la ejecución en esta tarea decae a edades avanzadas (Jones, Barnes, Kirkby y Higgins, 1995; Quirón et al, 1995; Greferath, Bennie, Kourakis y Barret 2000; Smith, Al-Khamees, Costall, Naylor y Smythe, 2002; Yau et al., 2002) y ello se ha relacionado con disfunciones hipocampales asociadas al envejecimiento normal (Gallagher, Nagahara y Burwell, 1995; Zhong et al., 2000). Teniendo en cuenta la posibilidad de interacción entre distintos sistemas de memoria planteada previamente y el hecho de que el hipocampo pueda jugar un papel crítico en dicha interacción, como pone de manifiesto su participación en diversos tipos de aprendizaje cuando se emplean fenómenos complejos, resulta de especial interés explorar la posibilidad de modificar capacidades de aprendizaje generales actuando sobre el sistema hipocampal a edades tempranas. Ello podría realizarse sometiendo a los animales a tareas hipocampales durante el periodo crítico de aparición de la capacidad de aprendizaje. El procedimiento a seguir podría consistir en entrenar a ratas de alrededor de 20 días en una tarea espacial de búsqueda de plataforma oculta en laberinto acuático. Si la maduración hipocampal a esta edad permitiera el aprendizaje de la tarea, el procedimiento representaría la estimulación temprana del sistema hipocampal, y podría ejercer un efecto beneficioso sobre el desarrollo posterior de las 33 Resumen capacidades de aprendizaje, en general. Por el contrario, si la inmadurez hipocampal a esa edad impide el aprendizaje, el animal se encontraría expuesto a una situación irresoluble, con las consecuencias emocionales que conlleva la frustración. En efecto, la exposición a eventos incontrolables puede dificultar la capacidad para aprender en tareas posteriores. En el paradigma convencional de indefensión aprendida las ratas son expuestas a choques incontrolables y luego evaluadas en tareas de escape o evitación (Drugan, Basile, Ha, Healy y Ferland, 1997; Vollmayr y Henn, 2001). Aunque el fenómeno de indefensión aprendida ha sido reportado usando diferentes tareas (para una revisión ver Maier y Seligman, 1976; Overmier, 2002), parece ser que un factor importante es la incontrolabilidad, ya sea a la hora de eventos aversivos inescapables o problemas de discriminación irresolubles (Hiroto y Seligman, 1975). Por tanto, la incontrolabilidad puede ser inducida aplicando una tarea irresoluble o con demandas de aprendizaje excesivas en una etapa temprana del desarrollo maduracional y sabiendo que las experiencias tempranas con eventos estresantes incontrolables pueden tener efectos a largo plazo (Hannum, Rosellini y Seligman, 1976; Seligman y Visintainer, 1985). El Capítulo 6 de esta tesis presenta un estudio diseñado con el propósito de evaluar el efecto de someter a ratas en desarrollo a una tarea hipocampal resoluble, bien a una edad en que comienzan a ser capaces de resolverla o bien a 34 Memoria, Contexto e Hipocampo una edad más temprana en la que es irresoluble debido a la inmadurez cerebral, sobre la capacidad para aprender una tarea de evitación independiente, que no requiere la integridad del hipocampo, una vez que son adultas. Esta investigación longitudinal ha sido publicada en Developmental Psychobiology en 2005 por Manrique, Molero, Cándido y Gallo. En un primer experimento piloto se comparó la ejecución de ratas adultas, que habían sido entrenadas durante la infancia en una tarea espacial de búsqueda de plataforma oculta en laberinto acuático, en la adquisición de una respuesta de evitación ante un choque pareado a un tono. De acuerdo con la experiencia temprana de aprendizaje los sujetos fueron asignados a tres grupos contrabalanceados por sexo: PN17 y PN25, teniendo lugar la primera sesión de la tarea espacial los días postnatales 17 y 25 respectivamente. El grupo control (Ctrl) no fue entrenado durante el desarrollo. Al terminar esta fase, las ratas permanecieron agrupadas por sexo en grupos de tres o cuatro hasta los 3 meses, edad en la que fueron individualizados para iniciar el entrenamiento de evitación de un choque en presencia de un tono. Los resultados del aprendizaje temprano en la tarea de laberinto acuático de Morris (Morris, 1981) revelaron que el grupo con 25 días aprendió a localizar la plataforma oculta en 10 bloques de ensayos (2 bloques diarios de 4 ensayos cada uno) mientras que el de 17 días no lo hizo. Estos resultados confirman informes previos sobre un desarrollo tardío del aprendizaje espacial en ratas (Carman y Mactutus, 2001; Kraemer y Randall, 35 Resumen 1995; Rudy y Paylor, 1988; Rudy, Staedler-Morris y Albert, 1987). Rudy et al (1987, 1988) reportaron déficits maduracionales en ratas con menos de 20 días en habilidades espaciales requeridas para aprender la relación entre la plataforma oculta y claves distales, aunque fueron capaces de aprender la localización de la plataforma usando claves proximales. Adicionalmente, los resultados confirman otros reportes (Carman y Mactutus, 2001; Kraemer y Randall, 1995) mostrando una ejecución inferior en crías menores de 20 días comparada con ratas mayores, incluso cuando se usan procedimientos de aprendizaje con ensayos espaciados, lo cual facilita el aprendizaje al reducir la fatiga. Sin embargo, en nuestros experimentos el déficit en aprendizaje espacial fue facilitado por el gran tamaño de la piscina. A los tres meses de edad los grupos (PN17, PN25, Ctrl) fueron individualizados y entrenados en la tarea de evitación con salto en el aire siguiendo el procedimiento descrito en Cándido, Maldonado y Vila (1988). En resumen, los sujetos debían saltar ante la presencia de una señal auditiva de aviso para evitar una descarga en las patas. El entrenamiento terminó cuando alcanzaron 10 respuestas consecutivas de evitación (Consecutive Avoidance Responses, CARs, sus siglas en inglés) o hasta un máximo de 240 ensayos en 4 sesiones (cada una de 60 ensayos). Los resultados de este entrenamiento adulto mostraron que los sujetos que fracasaron en la resolución de la tarea espacial a la edad de 17 días debido a su desarrollo inmaduro, necesitaron un mayor 36 Memoria, Contexto e Hipocampo número de ensayos para adquirir la respuesta de evitación que el grupo entrenado a los 25 días en la tarea de laberinto acuático, pero también que el grupo control sin experiencia previa. No se observó mejora significativa sobre el aprendizaje adulto inducida por el éxito en la resolución de la tarea en el laberinto acuático de Morris, en el grupo que fue entrenado a los 25 días de edad. Se diseñó entonces un segundo experimento con el fin de replicar los resultados del experimento piloto añadiendo dos grupos control para excluir explicaciones alternativas en términos de incapacidad para aprender una tarea resoluble o haber sido sometidos a ejercicio. El entrenamiento fue similar al del experimento piloto con tres diferencias. Primero, en lugar de 10 bloques de ensayos en el laberinto acuático se aplicaron 8, dado que se inició la tarea a los 18 días de edad permitiendo un mayor desarrollo sensorial. Segundo, se añadieron dos grupos controles, uno en el que la plataforma cambiaba de cuadrante al azar en cada ensayo, convirtiendo la tarea en irresoluble para ambos grupos de edad, y otro sin plataforma dentro del agua, para explorar los efectos del ejercicio. Cada sujeto de estos grupos fue igualado en sexo y punto de partida en el laberinto a un sujeto del grupo experimental permaneciendo el mismo tiempo en el agua. Tercero, se añadió un test de retención sin plataforma al terminar el octavo bloque de ensayos. 37 Resumen De forma congruente con el experimento 1, las ratas adultas que fueron entrenadas a los 18 días para localizar la plataforma oculta en el laberinto acuático, necesitaron un mayor número de ensayos para alcanzar los criterios de aprendizaje (CARs 3, 5 y 10) en la tarea de evitación del choque con salto en el aire que aquellas ratas que recibieron un entrenamiento previo similar a la edad de 25 días. En ambos experimentos los grupos más jóvenes mostraron déficits en aprendizaje espacial, evidenciando latencias más largas a la hora de localizar la plataforma, y en el experimento 2, menos tiempo de búsqueda en el cuadrante objetivo durante la prueba, comparado con los grupos de mayor edad. Adicionalmente, el grupo entrenado a los 25 días de edad en la tarea espacial sin plataforma mostró un retraso en la adquisición del aprendizaje de evitación, evidente sólo cuando se incremento la dificultad. Dado el patrón de inmovilidad observado en esta condición en el grupo mayor, pero no en el menor, los resultados pueden interpretarse en términos de un efecto general de la inducción de indefensión aprendida en periodos tempranos del desarrollo sobre el aprendizaje adulto. De hecho, la magnitud del déficit adulto observado en la tarea de evitación parece estar relacionada con la percepción de fracaso en el aprendizaje más que con el resultado de la tarea espacial temprana, ya que el efecto no aparece en la tarea irresoluble con posiciones variables de la plataforma. Resultados previos 38 muestran que la experiencia con problemas de Memoria, Contexto e Hipocampo discriminación irresolubles puede llevar a la indefensión aprendida y a déficits de aprendizaje posteriores (Hiroto y Seligman, 1975) dando apoyo a esta propuesta. Esta interpretación podría implicar que las ratas más jóvenes discriminan entre la tarea espacial con plataforma fija como resoluble, pero identifican como irresolubles la plataforma al azar y la tarea sin plataforma. Tanto la plataforma fija como al azar implican colocar al animal en la plataforma después de cada ensayo si no la encuentra durante el ensayo de 60 segundos. Es de esperar que las ratas más jóvenes sean capaces de identificar la localización de la plataforma basandose en claves proximales. Podrían entonces percibir la condición de plataforma fija como una tarea resoluble a pesar de ser incapaces de resolverla, puesto que la tarea requiere un procesamiento complejo de claves distales. Sin embargo, los animales pueden percibir la condición al azar como una tarea irresoluble debido a que la localización de la plataforma cambia. Así, aunque el resultado es similar en ambas condiciones, es decir, el fracaso en la localización de la plataforma, la evaluación cognitiva de la situación puede ser diferente. Se ha propuesto que la experiencia en situaciones donde la percepción es que las demandas superan los recursos puede ser una importante fuente de estrés (Kemeny, 2003). Se puede plantear entonces que el efecto pernicioso del entrenamiento temprano en la tarea con plataforma fija sobre el aprendizaje adulto puede deberse a un nivel de demanda excesivo, llevando a la indefensión aprendida. 39 Resumen Los resultados de estos experimentos abren nuevos conocimientos sobre el efecto de la intervención temprana durante periodos sensibles del desarrollo en la modificación de la organización de los circuitos neuronales, que conduzcan a cambios permanentes que influencian el aprendizaje y la plasticidad neuronal adulto (Kolb, Gibb y Robinson, 2003; Mlynarik, Johansson y Jezova, 2004). Los resultados del grupo experimental más joven en la tarea espacial muestran que el entrenamiento espacial temprano tuvo lugar durante un periodo de desarrollo crítico para la función hipocampal, en el que las habilidades de aprendizaje estaban emergiendo. Por lo tanto, la formación de circuitos cerebrales específicos relevantes para esta tarea podría haber sido influenciada por el fracaso en el aprendizaje temprano. Sin embargo, el hecho de que los déficits adultos fueran encontrados en una tarea de aprendizaje independiente dos meses y medio después del entrenamiento temprano apunta a un efecto pernicioso general sobre los mecanismos plásticos cerebrales, que pudiera ser mediado por circuitos emocionales. Esto podría implicar que el entrenamiento temprano en una tarea, antes de que los circuitos cerebrales específicos involucrados alcancen el estado maduracional necesario para resolverla, puede tener efectos de larga duración sobre el aprendizaje adulto. En conjunto, los resultados de esta investigación apuntan al papel de las experiencias de aprendizaje y la historia temprana de éxito o fracaso en la formación de habilidades de aprendizaje adulto en general. 40 Memoria, Contexto e Hipocampo Conclusiones 1. La hora del día actúa como un contexto en la modulación del aprendizaje aversivo gustativo en ratas adultas. 1.1 Un cambio de contexto temporal entre la preexposición y el condicionamiento interrumpe la inhibición latente del condicionamiento aversivo gustativo en ratas adultas, si se emplea un protocolo que incluye 5 días de habituación a beber dos veces al día y no se restringe la cantidad ingerida durante la sesión de condicionamiento. 1.2 Cambios en la duración del procedimiento de habituación a los contextos temporales usados modifican el efecto del cambio de hora entre exposición, condicionamiento y tests, poniendo de manifiesto la especificidad temporal ora de la aversión aprendida, ora del fenómeno de inhibición latente. 2 El fenómeno de inhibición latente, la especificidad temporal de la aversión aprendida y la especificidad temporal de la inhibición latente del aprendizaje aversivo gustativo muestran cursos de desarrollo ontogenético disociables que se suceden durante la adolescencia en ratas. 41 Resumen 2.1 El fenómeno de inhibición latente del aprendizaje aversivo gustativo es evidente en ratas de 32 pero no de 24 días de edad, cuando se emplea un protocolo idéntico al aplicado en adultos. 2.2 La especificidad temporal del fenómeno de inhibición latente del aprendizaje aversivo gustativo muestra una aparición tardía, no siendo evidente en ratas de 48 ni 64 días de edad. 2.3 La modulación de la memoria de reconocimiento gustativo por la hora del día durante la adolescencia muestra características peculiares. La especificidad temporal de la aversión gustativa aprendida resulta facilitada en ratas de 48 y 64 días de edad, poniéndose de manifiesto con el procedimiento comportamental que en ratas adultas evidencia la especificidad temporal de la inhibición latente. 3 El envejecimiento deteriora la especificidad temporal del fenómeno de inhibición en aprendizaje aversivo gustativo. Las ratas senescentes sometidas a la sesión de condicionamiento a una hora diferente de la de las preexposiciones y tests adquirieron aversiones gustativas de la misma magnitud que aquellas en las que todas las sesiones tuvieron lugar a la misma hora. 4 La lesión neurotóxica mediante inyección intracerebral de NMDA en ratas senescentes facilita la especificidad temporal de la aversión gustativa, 42 Memoria, Contexto e Hipocampo haciéndose evidente con el procedimiento comportamental que en ratas adultas induce especificidad temporal de la inhibición latente. 5 El entrenamiento en tareas irresolubles durante el periodo crítico de desarrollo hipocampal, en el que dichas capacidades de aprendizaje están emergiendo, puede ejercer un amplio y duradero efecto sobre los sistemas de memoria alterando la capacidad de aprendizaje adulto. 5.1 Ratas de 18 días de edad que fracasaron en una tarea hipocampal irresoluble, como es la búsqueda de plataforma oculta en el laberinto acuático, debido a la inmadurez del sistema hipocampal, mostraron un retraso en la adquisición de una respuesta de evitación cuando fueron adultas. 5.2 No se observaron efectos facilitadores del éxito temprano en la tarea de búsqueda de plataforma oculta en el laberinto acuático sobre el aprendizaje de evitación adulto. 5.3 El entrenamiento en la misma tarea a los 25 días, edad en que comienza a ser resoluble, no alteró la capacidad de aprendizaje de evitación adulta. Sin embargo, el grupo que a la misma edad fue sometido a ejercicio en ausencia de la plataforma mostró retraso en el aprendizaje adulto con mayor nivel de dificultad. 43 Resumen Referencias Abate, P., Pepino, M. Y., Domínguez, H. D., Spear, N. E., y Molina, J. C. (2000). Fetal associative learning mediated through maternal alcohol intoxication. Alcoholism, Clinical and Experimental Research, 24(1), 3947. Alvarado, M. y Bachevalier, J. (2000). Revisiting the maturation of media temporal lobe memory functions in primates. Learning and Memory, 7, 244-256. Arias, C. and Chotro, M.G. (2006). Ethanol-induced preferences or aversions as a function of age in preweanling rats. Behavioral Neuroscience, 120(3), 710-718 Arvanitogiannis, A., Sullivan, J., y Amir, S. (2000). Time acts as a conditioned stimulus to control behavioral sensitization to amphetamine. Neuroscience, 101, 1–3. Barr, R., Marrott, H., and Rovee-Collier, C. (2003). The role of sensory preconditioning in memory retrieval by preverbal infants. Learning and Behavior, 31(2), 111-123. Bermúdez-Rattoni, F. (2004). Molecular mechanisms of taste-recognition memory. Nature reviews. Neuroscience, 5(3), 209-217. 44 Memoria, Contexto e Hipocampo Bernstein, I. L. (1999). Taste aversion learning: a contemporary perspective. Nutrition, 15, 229–234. Boakes, R., Westbrook, R., Elliot, M., y Swinbourne, A. (1997). Context dependency of conditioned aversions to water and sweet tastes. Journal of Experimental Psychology: Animal Behavior Processes, 23, 56-67. Bonardi, C., Honey, R., y Hall, G. (1990). Context specificity of conditioning in flavor-aversion learning, extinction and blocking test. Animal Learning and Behavior, 18, 29-37. Bordner, K. A, and Spear , N. E. (2006). Olfactory learning in the one-day old rat: reinforcing effects of isoproterenol. Neurobiology of Learning and Memory, 86(1), 19-27. Bouton, M. (1993). Context, time and memory retrieval in the interference paradigms of Pavlovian learning. Psychological bulletin, 114(1), 80-99. Brasser, S. M., and Spear, N. E. (2004). Contextual conditioning in infants, but not older animals, is facilitated by CS conditioning. Neurobiology of Learning and Memory, 81(1), 46-59. Buhusi, C. V., Gray, J. A., y Schmajuk, N. A. (1998). Preplexing effects of hippocampal lesions on latent inhibition: a neural network solution. Behavioral Neuroscience, 112, 316–351. Bures, J., Bermudez-Rattoni, F., y Yamamoto, T. (1998). Conditioned taste aversion: memory of a special kind. Oxford: Oxford University Press. 45 Resumen Cándido, A., Maldonado, A., y Vila, J. (1988). Vertical jump¬ing and signaled avoidance. Journal of Experimental Anal¬ysis of Behavior, 50(2), 273– 276. Campbell, B. A. and Spear, N. E. (1972). Ontogeny of memory . Psychological Review, 79, 215-236. Carman, H. M., y Mactutus, C. F. (2001). Ontogeny of spatial navigation in rats: A role for response requirements?. Behavioral Neuroscience, 115(4), 870–879. Cooper, R., McNamara, M. y Thompson, W. (1980). Vasopresin and conditioned flavor aversión in aged rats. Neurobiology of aging, 1(1), 53-57. Cuppini, R., Bucherelli, C., Ambrogini, P., Ciuffoli, S., Orsini ,L., Ferri, P. and Baldi, E. (2006). Age-related naturally occurring depression of hippocampal neurogenesis does not affect trace fear conditioning. Hippocampus, 16(2):141-148. De la Casa, L. y Lubow, R. (2001). Latent inhibition with a response time measure from a within-subject desing: effects of number of preexposures, masking task, Neuropsychology, 15(2), 244-253. 46 context change and delay. Memoria, Contexto e Hipocampo Drugan, R. C., Basile, A. S., Ha, J. H., Healy, D., y Ferland, R. J. (1997). Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Research Protocols, 2, 69–74. Erickson, C. A., Barnes, C. A. (2003). The neurobiology of memory changes in normal aging. Experimental Gerontology, 38(1-2), 61-69 Franchina, J., Domato, G., Patsiokas, A., y Griesemer, H. (1980). Effects of number of pre-exposures on sucrose taste aversion in weanling rats. Developmental Psychobiology, 13(1), 25-31. Gallagher, M., y Burwell, R. D. (1989). Relationship of age-related decline across several behavioural domains. Neurobiology of Aging, 10, 681– 708. Gallagher, M., y Rapp, P. R. (1997). The use of animal models to study the effects of aging on cognition. Annual Review of Psychology, 48, 339– 370. Gallagher, M., y Rapp, P. R. (1997). The use of animal models to study the effects of aging on cognition. Annual Review of Psychology, 48:339– 370. 47 Resumen Gallagher, M., Nagahara, A. y Burwell, R. (1995). Cognition and hippocampus systems in aging animal models. En: Brain and memory: modulation and mediation of neuroplasticity. Ed. J. MacGaugh, N. Weinberg y G. Lynch, pp. 103-126. New York: Oxford University Press. Gallo, M. (2007). Reversible brain inactivation of brain circuits in learning and memory research. En: Neural plasticity and memory: From genes to brain imaging. Ed. F. Bermúdez-Rattoni. Taylor and Francis Group, USA: Series “Frontiers in Neuroscience”, pp. 157-173. Gallo, M., y Cándido, A. (1995a). Dorsal hippocampal lesions impair blocking but not latent inhibition of taste aversion learning in rats. Behavioral Neuroscience, 109, 413–425. Gallo, M., y Cándido, A. (1995b). Reversible inactivation of dorsal hippocampus by tetrodotoxin impairs blocking of taste aversion selectively during the acquisition but not the retrieval in rats. Neuroscience Letters, 186, 1–4. Gallo, M. y Manrique, T. (2007). Neurobiología del Aprendizaje. En:. Psicología del Aprendizaje. Eds O. Pineño, M. Vadillo y E. Matute. Badajoz: Editorial Abecedario, pp. 249-270. 48 Memoria, Contexto e Hipocampo Gallo, M., Ballesteros, M. A., Molero, A., y Morón, I. (1999). Taste aversion learning as a tool for the study of hipppocampal and non-hippocampal brain memory circuits regulation diet selection. Nutritional Neuroscience, 2, 277–302. Gallo, M., Ballesteros, M. A., Molero, A., y Morón, I. (1999). Taste aversion learning as a tool for the study of hipppocampal and non-hippocampal brain memory circuits regulation diet selection. Nutritional Neuroscience, 2, 277–302. Gallo, M., Roldán, G. y Bures, J. (1992). Differential involvement of gustatory insular cortex and amigdala in the acquisition and retrieval of conditioned taste aversion in rats. Behavioral Brain Research, 52, 91-97. Gallo, M., Valouskova, V., y Cándido, A. (1997). Fetal hippocampal transplants restore conditioned blocking in rats with dorsal hippocampal lesions: effect of age. Behavioral Brain Research, 88, 67–74. García, Kimeldorf y Hunt (1956). Conditioned responses to manipulative procedures resulting from exposure to gamma radiation. Radiation Research, 5(1), 79-87. Gerhardstein, P., Adle, A. y Rovee-Collier, C. (2000). A dissociation in infants´ memory for stimulus size: Evidence for the early development of multiple memory systems. Developmental Psychobiology, 36, 123-135. 49 Resumen Greferath, U., Bennie, A., Kourakis, A. y Barret, G. (2000). Impaired spatial learning in aged rats is associated with loss of p75-positive neurons in basal forebrain. Neuroscience, 100(2), 363-373. Hall, G., y Channell, S. (1986). Context specificity of latent inhibition in taste aversion learning. Quarterly Journal of Experimental Psychology, 38B, 121–139. Hannum, R., Rosellini, R., y Seligman, M. (1976). Learned helplessness in the rat: Retention and immunization. Developmental Psychology, 12(5), 449–454. Hiroto, D. S., y Seligman, M. (1975). Generality of learned helplessness in man. Journal of Personality and Social Psychology, 31, 311–327. Holland, P. C., y Bouton, M. E. (1999). Hippocampus and context in classical conditioning. Current Opinion in Neurobiology, 9, 195–202. Honey, R. C., y Good, M. (1993). Selective hippocampal lesions abolish the con-textual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107, 23–33. Hoffman, H., and Spear, N. E. (1988). Ontogenetic differences in conditioning of an aversion to a gustatory CS with a peripheral US. Behavioral and Neural Biology, 50(1), 16-23. 50 Memoria, Contexto e Hipocampo Hunt, P. S., Fanselow, M. S., Richardson, R., Mauk, M.D., Freeman, J.H., Stanton, M. E. (2007). Synapses, circuits, and the ontogeny of learning. Develomental Psychobiology, 49(7), 649-663. Jones, D., Barnes, J., Kirkby, D. y Higgins, G. (1995). Age-associated impairments in a test of attention: Evidence for involvement of cholinergic systems. Journal of Neuroscience, 15(11), 7282-7292. Kehoe, P., y Blass, E. M. (1986). Conditioned aversions and their memories in 5-day-old rats during suckling. Journal of Experimental Psychology: Animal Behavior Processes, 12(1), 40-47. Kelly, K. M., Nadon, N. L., Morrison, J.H., Thibault, O., Barnes, C. A., Blalock, E. M. (2006). The neurobiology of aging. Epilepsy Research, 68(Suppl 1), S5-S20. Kemeny, M. E. (2003). The psychobiology of stress. Current Directions in Psychological Science, 12(4), 124–129. Kesner, R. P., Lee, I., y Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Reviews Neuroscience, 15, 333-351. Klein, S. B., Mikulka, P. J., Domato, G. C., y Hallstead, C. (1977). Retention of internal experiences in juvenile and adult rats. Physiological Psychology, 5, 63-66. 51 Resumen Kolb, B., Gibb, R., y Robinson, T. E. (2003) Brain plasticity and behaviour. Current Directions in Psychological Science, 12(1), 1–5. Kraemer, P., y Randall, C. K. (1995). Spatial learning in preweanling rats trained in a Morris water maze. Psychobiology, 23, 144–152. Kubik, S., y Fenton, A. (2005). Behavioral evidence that segregation and representation are dissociable hippocampal functions. Journal of Neuroscience, 25, 9205-9212. Loy, I., Alvarez, R., Rey, V., y López, M. (1993). Context-US associations rather than occasion setting in taste aversion learning. Learning and Motivation, 24, 55–72. Lubow, R.E. (1989). Latent inhibition and conditioned theory. Cambridge: Cambridge University Press. Maier, S. F., y Seligman, M. (1976). Learned help¬lessness: theory and evidence. Journal of Experimental Psychology: General, 105(1), 3–46. Manrique, T. y Gallo, M. (2005). Neurobiología del aprendizaje aversivo gustativo. Mente y Cerebro, 11, 39-40. Manrique, T., Molero, A., Cándido, A. y Gallo, M. (2005). Early learning faillure impairs adult learning in rats. Developmental Psychobiology, 46, 340-349. 52 Memoria, Contexto e Hipocampo Manrique, T., Morón, I., Ballesteros, M. A., Guerrero, R. M., Fenton, A. A., y Galllo, M. (2008). Hippocampus, aging and segregating memories. En revisión. Manrique, T., Morón, I., Ballesteros, M. A., Guerrero, R. M. y Gallo, M. (2007). Hippocampus, ageing and taste memories. Chemical Senses, 32(1), 111117 Maren, S., y Holt, W. (2000). The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behavioral Brain Research, 110, 97– 108. Mlynarik, M., Johansson, B. B., Jezova, D. (2004). Enriched environment influences adrenocortical response to immune challenge and glutamate receptor gene expression in rat hippocampus. Annals of the New York Academy of Science, 1018, 273-280. Misanin, J. Hoefel, T., Riedy, C., Wilson, H y Hinderliter, C. (2000). Multiple remote-US preexposures and the blocking effect produced by proximalUS. Physiology and Behavior, 71(1-2), 199-202. Misanin, J. R., y Hinderliter, C. F. (1994). Efficacy of lithium chloride in the taste¬aversion conditioning of young-adult and old-age rats. Psychological Reports, 75, 267–271. 53 Resumen Misanin, J. R., y Hinderliter, C. F. (1995). Lack of age differences in contextillness associations in the long-delay taste-aversion conditioning of rats. Perceptual and Motor Skills, 80, 595–598. Misanin, J. R., Collins, M., Rushanan, S., Anderson, M. J., Goodhart, M., y Hinderliter, C. F. (2002). Aging facilitates long-trace taste-aversion conditioning in rats. Physiology and Behavior, 75, 759–764. Misanin, J. R., Goodhart, M. G., Anderson, M. J., y Hinderliter, C. F. (2002). The interaction of age and unconditioned stimulus intensity on long-trace conditioned flavor aversion in rats. Developmental Psychobiology, 40, 131–137. Misanin, J. R., Guanowsky, V., y Riccio, D. C. (1983). The effect of CSpreexposure on conditioned taste aversion in young and adult rats. Physiology and Behavior, 30, 859-862. Misanin, J. R., Hoefel, T. D., Riedy, C. A., y Hinderliter, C. F. (1997). Remote and proximal US preexposure and aging effects in taste aversion learning in rats. Physiology and Behavior, 61, 221–224. Misanin, J., Blatt, L., y Hinderliter, C. (1985). Age dependency in neophobia: Its influence on taste-aversion learning and the flavor-preexposure effect in rats. Animal Learning and Behavior, 13, 69-79. 54 Memoria, Contexto e Hipocampo Misanin, J., Goodhart, M., Anderson, M., y Hinderliter, C. (2002). The interaction of age and unconditioned stimulus intensity on long-trace conditioned flavour aversion in rats. Developmental Psychobiology, 40(2), 131-137. Molina J. C., Hoffmann, H., Serwatka, J., and Spear, N. E. (1991). Establishing intermodal equivalence in preweanling and adult rats. Journal of Experimental Psychology: Animal Behavior Processes, 17(4), 433-447. Morón, I., y Gallo, M. (2007). Effect of previous taste experiences on taste neophobia in young-adult and aged rats. Physiology and Behavior, 90(23), 308-317. Morón, I., Ballesteros, M. A., Cándido, A., y Gallo, M. (2002). Taste aversion learning and aging: a comparison with the effect of dorsal hippocampal lesions in rats. Physiological Research, 51, S21–S27. Morón, I., Ballesteros, M. A., Valouskova, V., y Gallo, M. (2001). Conditioned blocking is re-established by neurotransplantation in mature rats. Neuroreport, 12, 2297–2301. Morón, I., Manrique, T., Molero, A., Ballesteros, M. A., Gallo, M., y Fenton, A. (2002). The contextual modulation of conditioned taste aversions by the physical environment and time of day is similar. Learning and Memory, 9, 218–223. 55 Resumen Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239–260. Nelson, C. (1998). The nature of early memory. Preventive Medicine, 27, 172179. Nicolle, M., Barry, C., Veronesy, B., y Stanton, M. (1989). Fornix transections disrupt the ontogeny of latent inhibition in the rat. Psychobiology, 17, 349-357. Nizhnikov, M. E., Petrov, E.S., y Spear, N.E. (2002). Olfactory aversive conditioning in the newborn (3-hr-old) rat impairs later suckling for water and milk. Journal of Experimental Psychology: Animal Behavior Processes, 28(3), 277-283. Overmier, J. B. (2002). On learned helplessness. Integrative Physiological and Behavioral Science, 37(1), 4–8. Peterson, C., Valliere, W., Misanin, J. y Hinderliter, C. (1985). Age differences in the potentiation of taste aversion by odor cues. Physiological Psychology, 13(2), 103-106. Puente, G. P., Cannon, D. S., Best, M. R., y Carrell, L. E. (1988). Occasion setting of fluid ingestion by contextual cues. Learning and Motivation, 19, 239–253. 56 Memoria, Contexto e Hipocampo Purves, D., Bonardi, C. y Hall, G. (1995). Enhancement of latent inhibition in rats with electrolytic lesions of the hippocampus. Behavioral Neuroscience, 109, 366–370. Purves, D., Bonardi, C., y Hall, G. (1995). Enhancement of latent inhibition in rats with electrolytic lesions of the hippocampus. Behavioral Neuroscience, 109, 366–370. Quiron, R., Wilson, A., Rowe, W., Aubert, I., Richard, J., Doods, H., Parent, A., White, N. y Meany, M. (1995). Facilitation of acetylcholine release and cognitive performance by an M2.muscarinic receptor antagonist in aged memory-impaired rats. Journal of Neuroscience, 15(2), 1455-1462. Reilly, S., Harley, C, y Revusky, S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107(6), 996-1004. Reilly, S., Harley, C., y Revusky S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107, 996–1004. Rosas, J. M., y Bouton, M. E. (1997). Renewal of a conditioned taste aversion upon return to the conditioning context after extinction in another cue. Learning and Motivation, 28, 216–229. 57 Resumen Rosenzweig, E. S., y Barnes, C. A. (2003). Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Progress in Neurobiology, 69, 143–179. Rudy, J. W., y Paylor, R. (1988). Reducing the temporal demands of the Morris place-learning task fails to amelior¬ate the place-learning impairment of preweanling rats. Psychobiology, 16(2), 152–156. Rudy, J. W., Staedler-Morris, S., y Albert, P. (1987). Ontogeny of spatial navigation behaviours in the rat: Dissociation of ‘‘proximal’’-and ‘‘distal’’-cue-based behaviours. Behavioral Neuroscience, 101, 62–73. Rudy, J. y Paylor, R. (1988) Reducing the temporal demands of the Morris place-learning task fails to ameliorate the place-learning impairment of preweanling rats. Psychobiology, 16(2), 152-156. Rudy, J.W., y Cheatle, M. D. (1977). Odor-aversion learning in neonatal rats. Science, 198(4319), 845-846. Seligman, M., y Visintainer, M. A. (1985). Tumor re¬jection and early experience of uncontrollable shock in the rat. En: Affect, conditioning and cognition: Essays on the determinants of behavior. Eds F.R. Brushand J. B. Overmier. Hillsdale, NJ: Lawrence Erlbaum Associates. Smith, J., Al-Khamees, O., Costall, B., Naylor, R. y Smythe, J. (2002). Chronic aspirin ingestion improves spatial learning in adult and aged rats. Pharmacology and Biochemical Behavior, 71(1-2), 233-238. 58 Memoria, Contexto e Hipocampo Smotherman, W. (2002a). Classical conditioning in the rat fetus: involvement of mu and kappa opioid systems in the conditioned response. Developmental Psychobiology, 40(2), 104-115. Smotherman, W. (2002b). Classical conditioning in the rat fetus: temporal characteristics and behavioural correlates of the conditioned response. Developmental Psychobiology, 40(2), 116-130. Smotherman, W., y Robinson, S. (1985). The rat fetus in its environment: behavioural adjustments to novel, familiar, aversive and conditioned stimuli presented in utero. Behavioral Neuroscience, 99(3), 521-530. Smotherman, W., y Robinson, S. (1985). The rat fetus in its environment: behavioural adjustments to novel, familiar, aversive and conditioned stimuli presented in utero. Behavioral Neuroscience, 99(3), 521-530. Spear, L. (2000). The adolescent brain and age-related behavioural manifestations. Neuroscience and Biobehavioral Reviews, 24, 417-463. Spector, A. (1995). Gustatory fuction in the parabrachial nuclei: implications from lesion studies in rats. Reviews in Neurosciences, 6, 143-175. Squire, L. (1994). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. En: Memory Systems. Eds. D.L. Schacter y E. Tulving. MIT Press: Cambridge. pp. 203-231 Stone, M. E., Grimes, B. S., y Katz, D. B. (2005). Hippocampal inactivation enhances taste learning. Learning and Memory, 12, 547–548. 59 Resumen Tejedor-Real, P., Costela, C., and Gubert-Rahola, J. (1998). Neonatal handling reduces emocional reactivity and susceptibility of learned helplessness. Involvement of catecholaminergic systems. Life Sciences, 62(1), 37–50. Vollmayr, B., y Henn, F. A. (2001). Learned helplessness in the rat: Improvements in validity and reliability. Brain Research Protocols, 8, 1– 7. Yau, J., Noble, J., Hibberd, C., Rowe, W., Meany, M., Morris, R. y Seckl, J. (2002) Chronic treatment with the antidepressant amitriptyline prevents impairments in water maze learning in aging rats. Journal of Neuroscience, 22(4), 1436-1442. Weiner, I., Feldon, J., Tarrasch, R., Hairston, I., y Joel, D. (1998). Fimbriafornix cut affects spontaneous activity, two-way avoidance and delayed non matching to sample, but not latent inhibition. Behavioral Brain Research, 96(1-2), 59-70. Wesbrook, R., Jones, M., Bailey, G. y Harris, J. (2000). Contextual control over conditioned responding in latent inhibition paradigm. J. Exp. Psychol. Anim. Behav. Proc, 26(2), 157-173. Wesierska, M., Dockery, C., y Fenton, A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. Journal of Neuroscience, 25(9), 24132419. 60 Memoria, Contexto e Hipocampo Wilson, I. A., Ikonen, S., McMahan, R. W., Gallagher, M., Eichenbaum, H., y Tanila, H. (2003). Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiology of Aging, 24, 297-305. Wilson, L. M., y Riccio, D. C. (1973). CS familiarization and conditioned suppression in weanling and adult albino rats. Bulletin of the Psychonomic Society, 1, 184-186. Yamamoto, T. (1993). Neural mechanisms of taste aversión learning. Neuroscience Research, 16, 181-185. Yamamoto, T. (1994). A neural model for taste aversion learning. Neuroscience Research, 16, 181-185. Yamamoto,T., Shimura, T., Sakai, n. y Ozaki, N. (1994). Representation of hedonics and quality of taste stimuli in the parabrachial nucleus of the rat. Psysiology and Behavior, 56, 1197-1202. Yau, J., Noble, J., Hibberd, C., Rowe, W., Meany, M., Morris, R. y Seckl, J. (2002) Chronic treatment with the antidepressant amitriptyline prevents impairments in water maze learning in aging rats. Journal of Neuroscience, 22(4), 1436-1442. Zhong, Y., Nishijo, H., Uwano, T., Tamura, R., Kawanishi, K. y Ono, T. (2000). Red ginnseng ameliorated place navigation deficits in young rats with hippocampal lesiones and aged rats. Physiology and Behavior, 69(4-5), 511-525. 61 CHAPTER 1 Manrique, T. y Gallo, M. (2005). Neurobiología del aprendizaje aversivo gustativo. Mente y Cerebro, 11: 39-40. Neurobiología del aprendizaje aversivo gustativo ¿Por qué ciertos sabores nos resultan desagradables mientras que otros nos producen sensaciones placenteras? ¿Qué mecanismos cerebrales permiten aprender nuevas aversiones a los sabores? Nuestro bienestar depende de la selección de una dieta adecuada que excluya sustancias nocivas para el organismo. Para distinguir las sustancias beneficiosas de las perjudiciales nos valemos del sentido del gusto. Pero el olor adquiere también especial relevancia cuando se presenta en combinación con información gustativa dando lugar a lo que denominamos “sabor”. A lo largo de la evolución se han venido desarrollando preferencias por los sabores dulce y salado, propios de los hidratos de carbono y sales minerales necesarios para el organismo. Los sabores amargo y ácido, que suelen ir asociados a venenos y alimentos en mal estado, tienden a resultar desagradables. Sin embargo, cada individuo desarrolla su propio repertorio de preferencias y aversiones en el curso de la vida. Comenzó a forjarse en la etapa fetal y continúa enriqueciéndose hasta edades avanzadas, gracias a diversos procesos de aprendizaje gustativo. Entre tales procesos, la adquisición de aversiones gustativas representa un tipo de aprendizaje de especial interés, pues Chapter 1 permite establecer en un solo ensayo asociaciones selectivas entre el sabor de lo que hemos comido o bebido y efectos nocivos que no se manifiestan de forma inmediata. Se produce siempre que la ingestión de un sabor desconocido vaya seguida de malestar gastrointestinal, que, a su vez, suele ir acompañado de náuseas y vómitos. Ante esa experiencia, el sabor se convierte en desagradable y es rechazado en posteriores ocasiones, protegiendo de sustancias nocivas al organismo. Pionero en la investigación de tales asociaciones fue John García, de la Universidad de California. Experimentando con ratas, en los años cincuenta y sesenta del siglo pasado, las conclusiones a que llegó pusieron en tela de juicio los principios generales del aprendizaje tal y como eran postulados en la época: contigüidad temporal, ensayos repetidos y equipotencialidad de los eventos a asociar. La controversia desencadenada a raíz de los hallazgos de García estimuló la investigación experimental de los mecanismos cerebrales implicados en ese tipo de aprendizaje. En España, a finales de los setenta, Amadeo Puerto, hoy en la Universidad de Granada, inició una línea de trabajo que ha sido continuada por varias generaciones de psicobiólogos. El cerebro muestra una sorprendente capacidad para asociar sensaciones de malestar gastrointestinal con sabores, una facultad menos evidente cuando se trata de otras modalidades sensoriales. Basta que el malestar visceral se produzca después de haber probado un sabor desconocido en una sola ocasión 66 Neurobiología del aprendizaje aversivo gustativo para que se desarrolle una intensa aversión gustativa. Tras ese fenómeno podría hallarse la estrecha relación anatómica entre los sistemas sensoriales implicados. En efecto, las vías cerebrales que procesan la información gustativa y visceral se superponen desde el primer nivel de relevo sensorial. Este tipo de aprendizaje lo observamos en toda la escala filogenética, así como en etapas precoces del desarrollo ontogenético del individuo. Se trata, pues, de un carácter primitivo; tesis que no se debilita porque los cerebros menos desarrollados no soporten largas dilaciones entre los estímulos. Las pruebas obtenidas en roedores sobre sus bases cerebrales por diversos laboratorios, incluido el nuestro, ha permitido situar el locus asociativo básico en el área parabraquial, segundo relevo de información gustativa y visceral. Esa estructura se halla en el tronco cerebral, una de las subdivisiones más antiguas del encéfalo. En experimentos con ratas, la inactivación reversible del área parabraquial después de la sesión de condicionamiento impide la formación de aversiones gustativas, tanto si el malestar ha sido inducido mediante inyecciones de cloruro de litio como si ha sido provocado por rotación corporal, sin que se haya interrumpido el procesamiento gustativo, visceral o ambos. 67 Chapter 1 Sin embargo, la capacidad de establecer asociaciones gustativoviscerales no puede explicarse exclusivamente por convergencia anatómica en la zona asociativa cuando median minutos, e incluso horas en condiciones óptimas, entre el sabor y el malestar visceral. Se requieren mecanismos de memoria gustativa que permitan la existencia de convergencia temporal, además de anatómica. Al parecer, las conexiones recíprocas directas de la corteza insular gustativa y la amígdala con el área parabraquial añaden nuevas posibilidades de memoria y posibilitan un procesamiento más complejo de los estímulos a asociar. A su vez, este circuito neural especializado se beneficia de 68 Neurobiología del aprendizaje aversivo gustativo la interacción con sistemas generales de aprendizaje y memoria; en particular, si tales sistemas intervienen en la formación de aversiones moderadas en la vida cotidiana, cuando se trata de sabores conocidos y no aparecen aislados, sino en complejas combinaciones. En estos casos la experiencia adquirida modula la adquisición de nuevas aversiones. Aunque el hipocampo dorsal no forma parte del circuito básico necesario para adquirir aversiones gustativas, podría participar en la modulación del aprendizaje aversivo gustativo, relacionado con la experiencia previa y las condiciones ambientales. A diferencia del aprendizaje aversivo gustativo básico, algunas de estas funciones decaen con la edad. Nuestra investigación ha demostrado que pueden ser restablecidas en ratas de edad avanzada o que han sufrido daño hipocampal mediante trasplantes de tejido precursor hipocampal embrionario. En conjunto, los resultados obtenidos en nuestro laboratorio, junto a M. a Angeles Ballesteros, Ignacio Morón y Andrés Molero, sugieren que el aprendizaje aversivo gustativo podría constituir un modelo privilegiado para estudiar la organización de los sistemas de aprendizaje y memoria. El complejo circuito neural del que depende la adquisición de aversiones a los sabores integra áreas cerebrales situadas en diferentes niveles de organización e interacciona con otros sistemas de memoria independientes. 69 CHAPTER 2 Manrique, T., Morón, I., Ballesteros, MA., Guerrero, RM. and Gallo, M. (2007). Hippocampus, ageing and taste memories. Chemical Senses, 32(1): 111-117. Hippocampus, Ageing, and Taste Memories a,b Manrique, T., a,b Morón, I, a Ballesteros, M.A., a,b Guerrero, R. and a,b Gallo, M. a Department of Experimental Psychology and Physiology of Behavior, University of Granada, Campus Cartuja, Granada-18071, Spain. b Institute of Neurosciences F. Oloriz, University of Granada, Spain. ABSTRACT Previous studies have shown that ageing may induce deficits in hippocampaldependent learning and memory tasks, the spatial task being most extensively applied in rats. It is proposed that taste learning and memory tasks may assist in understanding the ageing of memory systems, giving access to a more complete picture. Taste learning tasks allow us to explore a variety of learning phenomena in safe and aversive memories using similar behavioral procedures. In demanding the same sensory, response, and motivational requirements, this approach provides reliable comparisons between the performance of hippocampal lesioned and aged rats in different types of memory. Present knowledge on the effect of both ageing and hippocampal damage in complex taste learning phenomena is reviewed. Besides inducing deficits in hippocampal-dependent phenomena, such as blocking of conditioned taste aversion, while at the same time leaving intact non-hippocampaldependent effects, such as latent inhibition, ageing is also associated with an increased neophobia by previous aversive taste memories and enhanced taste aversion conditioning which cannot be explained by age-related changes in taste or visceral distress sensitivity. In all, the results indicate a peculiar organization of the memory systems during aging that cannot be explained by a general cognitive decline or exclusively by the decay of the hippocampal function. Chapter 2 This article was supported by the CICYT grants BSO2002-01215 (Ministerio de Ciencia y Tecnología, Spain) and SEJ2005-01344 (Ministerio de Educación y Ciencia, Spain) which are both partially supported by Fondo Europeo de Desarrollo Regional. Key words: ageing, conditioned blocking, context, hippocampal, latent inhibition, taste aversion, taste recognition memory, time of day, rat 2.1. Introduction Ageing is a developmental process that offers a privileged opportunity to study the plasticity of the memory systems induced by both a long-life learning experience, together with changes in some body functions and new adaptive requirements. The cognitive decline related to ageing does not involve a general decay in the functioning of the memory systems. Some types of memories are spared, whereas others usually decay during normal ageing (Gallagher and Rapp, 1997). This complex picture has arisen from research using a variety of different learning procedures that may involve different sensory modalities and different response requirements. Well-known changes in the hippocampal function (Rosenzweig and Barnes, 2003; Wilson et al., 2005) have been related to a lower performance of aged rats in various memory tasks, there being the spatial tasks most extensively studied. However, the conventional behavioral tasks used to study the hippocampal functions have several pitfalls (Eichenbaum and Fortin, 2003) that are magnified when applied 74 Hippocampus, Ageing and Taste Memories to aged animals. The main criticism concerns the fact that some of these tasks may involve sensory, motor, and motivational requirements that may decline during ageing, Thus, a worse performance in a learning and memory task by old-age rats compared with young adult rats could have several interpretations, not necessarily related to the hippocampal involvement in learning and memory. For example, considerable research has focused on the use of the hidden platform water maze task on which performance is impaired in both aged and hippocampal-damaged young adult rats. Due to the visual component of the task, a worse performance of old rats in this task could be due to the well described effects of visual system degeneration by ageing. Even if the aged rats behave as young adults in cued or visible platform control versions of the task, lower visual in the control tasks compared with those requiring processing of several environmental distal cues in the experimental task cannot be excluded. Motor deficits in aged rats can be another confounding variable if the escape latency is measured because swimming speed may decrease in aged rats. Even if path length is used to test learning and memory of the platform location, escape latency is a useful measure to assess the potential motivational changes induced by aging. Motivational differences between old and young adult rats have been stressed as a major point of concern in ageing studies using the water maze task as poorer thermoregulation of aged rats may affect either the motivation to escape from the water or the emotional reactivity to the 75 Chapter 2 test situation (Van der Staay, 2002). In all, cued or visible platform versions of the task proposed as the best control for motivational variables are only useful if the escape latencies of young adult and old rats are similar, which should not be expected in most of the cases. We have previously proposed taste memory tasks as a suitable model for the study of hippocampal and non-hippocampal brain memory circuits in adult rats (Gallo et al., 1999). We also propose taste memory tasks as a choice paradigm for studying ageing-induced changes in different neural systems and cognitive domains. Taste recognition memory tasks allow us to study aversive and safe memories with dissociable neural, cellular, and molecular mechanisms (Bermúdez-Rattoni, 2004). Aversive and safe taste memories have been widely studied in the laboratory using novel tastes which produce an innate response called neophobia. This consists of a tendency to reject a novel taste when it is first presented to the animal (Lubow, 1989; Morón and Gallo, 2007). Safe taste memories are learned when a novel taste is presented without visceral malaise. As a consequence, there will be an increase in taste consumption in successive presentations of the taste. This learning process is called habituation of neophobia (Lubow, 1989). Conditioned taste aversions (CTAs) are learned when a taste is followed by aversive visceral consequences. The basic procedure for inducing aversive taste memories in the laboratory involves a single pairing of a novel taste (CS) 76 Hippocampus, Ageing and Taste Memories and a malaise-inducing treatment (US). An intraperitoneal injection of lithium chloride (LiCl) is typically used as the US. As a consequence, the taste becomes aversive inducing orofacial aversive reactions and being avoided in later presentations. Besides basic aversive and safe memories that depend on the consequences of ingesting novel tastes, the development of taste memories in daily life is profoundly modulated by previous and other ongoing experiences with the same or different tastes. Thus, understanding the effect of previous taste experience plays a major role in investigating taste memory and its role in diet selection at an advanced age. This can be investigated in the laboratory by using modified behavioral procedures that have been thoroughly studied in a variety of learning tasks. Contrary to early indications, CTA can access a variety of so-called complex learning phenomena, relying on the effect of previous experience, such as latent inhibition (LI), the US preexposure effect, and blocking, and also exhibits sensitivity to the context. LI refers to reduced conditioning if a familiar taste solution previously exposed without aversive consequences is used as the CS. The effect of the US exposure refers to a similar reduced conditioning if the US, LiCl injection for instance, was previously applied without being associated with the conditioned taste. Blocking consists of a reduced conditioning of a taste if it is presented during the conditioning trial in compound with a second taste that had 77 Chapter 2 previously been paired with the US. Moreover, both safe and aversive taste memories are sensitive to the context where they are established. For instance, a context change either between preexposure and conditioning or between conditioning and testing can disrupt learning. In the former case, the context change disrupts LI, and conditioning proceeds as if a novel taste was used. In the latter case, the context change impairs retrieval of the taste aversion. For a summary of the behavioral procedures used see Table 1. Demonstrating each of the above-mentioned learning phenomena requires at least 2 groups of animals as the experimental group should show a different strength aversion than a control group without previous experience or not subjected to the context change. In order to detect differences in consumption between groups and to avoid ceiling effects, one-bottle tests are required. Lower US dosage and several trials are also applied for some of the effects to appear. Although basic CTA does not involve the hippocampus, more complex learning phenomena may either be hippocampal or non-hippocampal dependent. Thus, taste memory may be a valuable tool for exploring the aging impact on hippocampal-dependent cognition. 78 Hippocampus, Ageing and Taste Memories 2.2. Ageing and taste memories Although ageing does not affect some taste memory abilities, it may induce either an enhancement or impairment of other taste memory tasks. First, ageing does not impair unconditioned reactions to tastes. No effect of ageing has been reported in neophobia to a grape juice solution (Gallagher and Burwell, 1989) or to sodium saccharin (0.1%) (Morón and Gallo, 2007), sodium chloride (0.5%), and cider vinegar (3%) solutions (Morón et al., 2002a). The acquisition of safe taste memories seems also to be largely spared in aged rats. Habituation of the neophobic response, implying an increased intake of the now familiar taste solution, is also evident in aged rats. Although a diminished habituation of grape juice neophobia in aged rats has been reported (Gallagher and Burwell, 1989), we have found similar habituation of neophobia in adult and aged rats using a low concentration (0.5%) sodium chloride solution (Morón et al., 2002a). Moreover, the LI phenomenon is not impaired by ageing. Both in young adult and ageing Wistar rats, the acquired safe taste memory after 6 preexposures to a saline solution interferes with the acquisition of a LiCl-induced aversion to this familiar taste. The experimental preexposed group showed weaker saline aversions than the control nonpreexposed group, as demonstrated by a higher saline intake in a one-bottle test 79 Chapter 2 (Morón, et al., 2002b). Second, far from being impaired, the acquisition of aversive taste memories is even potentiated in aged rats (Misanin et al., 2002a; Misanin et al., 2002b; Morón et al., 2002a). Saccharin (0.1%) taste aversions assessed in a 24h saccharin–water choice test can be induced in 24- to 30-month-old Wistar rats using longer delays between the taste and the LiCl injections than in younger rats. Wistar rats of 2 and 2.5 years of age, but not those of 0.25, 1, and 1.5 years of age, developed taste aversions using a 360¬min delay between saccharin and lithium (Misanin et al., 2002a). It has been consistently shown that when using a conventional 15-min delay between the taste solution and the lithium injection, a stronger taste aversion is found in ageing Wistar rats compared with young adult rats provided that ceiling effects are avoided by presenting a palatable 0.5% saline solution previously exposed (Morón et al., 2002a), a 3% cider vinegar solution in compound with a 0.1% sodium saccharin solution (Morón et al., 2002a), or by using a low LiCl dosage (1% body weight [b.w.], 0.15 M) after a saccharin solution intake (Morón and Gallo, 2007). Although the latter aversions were assessed in one¬bottle tests, an interpretation based on an age-related unspecific reduction of fluid intake seems to be excluded by the absence of differences between aged and young adult rats in taste consumption during the conditioning session. 80 Hippocampus, Ageing and Taste Memories Several explanations that could account for this enhancement of taste aversion learning in aged rats can be excluded. An enhanced sensitivity to the CS, leading to greater taste intensity, is not supported by the fact that the preference for the 0.1% saccharin solution over water does not change in 30 month-old rats compared with 3- and 12-month-old rats (Misanin et al., 2002a). Moreover, the amount of the taste solution ingested during conditioning follows a pattern of differences that does not correspond to the age differences during testing (Misanin et al., 2002a). In fact, it seems unlikely that ageing would increase taste sensitivity because the opposite, that is, decreased taste sensitivity, would be expected. A second explanation based on an increased effect of the US in aged rats is not supported by the results. For instance, an account based on there being a more intense US in aged rats because the higher amount of LiCl injected in heavier animals can be discarded because a fixed LiCl amount (2.3 ml) induced greater aversions in aged than in young adult rats (Misanin and Hinderliter, 1994). Also, an increased sensitivity to LiCl in aged rats due to physical deterioration, such as renal dysfunction, this leading to a more intense US, cannot explain why the interval over which long-trace conditioning is evident can be extended by increasing the unconditioned stimulus intensity in old-age rats but not in young adult rats. (Misanin et al., 2002b). Finally, an effect of an increased familiarity with the cage context due to extended life experiences which could have reduced interference by the 81 Chapter 2 context in aged rats may not account for the aversions acquired with CS–US delays longer than in young adult rats. Aged rats but not young adult rats show aversions irrespective of the context in which they were kept during the interstimulus interval (Misanin and Hinderlitter, 1995). Slowing down of a pacemaker that shortens the time between events has also been proposed as the explanation for the longer CS–US interval at advanced age (Misanin et al., 2002b). However, this would not explain the reported enhanced taste aversion at conventional CS–US delays. In all, the age-related potentiation of CTA can be considered as a learning superiority, which may represent an advantage for survival because aged rats may be less able to deal with poisoning. Moreover, it cannot be discarded that the effect of previous learning experiences during an extended life may play a role in the development of this adaptive age difference, but more research is needed to unveil the underlying mechanisms. This is consistent with the effect of previously learned taste aversions on later neophobia in 27-to 28-month-old Wistar rats. An enhanced effect of a previous saccharin aversion induced by a 1% b.w. injection of LiCl (0.15 M) on the later neophobic response to a 1% saline solution has been recently reported in aged rats (Morón and Gallo, 2007). The increased neophobic response does not seem to be related to the enhanced saccharin aversion in aged rats because a 82 Hippocampus, Ageing and Taste Memories similar strength aversion induced by a 2% b.w. LiCl injection in young adult rats did not induce a similar saline neophobia. Thus, this seems to be another example of age-related potentiation of taste memory functions. Third, although ageing does not affect some complex taste learning phenomena such as LI, old rats do show impairments in other tasks such as blocking (Gallo et al., 1997; Morón et al., 2001; Morón et al., 2002a) and the effect of unconditioned stimulus preexposure on later learning (Misanin et al., 1997). Previous research in our laboratory has shown that blocking may be a sensitive assay for detecting age-induced cognitive deficits. We have found that blocking is absent in ageing rats (Morón et al., 2001; Morón et al., 2002a). In 15-to 17-month-old rats, a previously learned saccharin (0.1%) aversion did not reduce the magnitude of a cider vinegar (3%) aversion presented in compound with saccharin during the conditioning trial, the vinegar aversion being as strong as if no previous experience had taken place. This deficit may appear as early as 8 months in Wistar rats (Gallo et al., 1997). Similarly, the US preexposure effect seems to be also disrupted by ageing. Misanin et al. (1997) have reported that 6 daily 1% b.w. injections of 0.15 M LiCl interfered with the acquisition of a saccharin (0.1%) aversion induced by a similar LiCl 83 Chapter 2 injection in weanling (20–25 days) and young adult (90–105 days) but not in aged (635–725 days) rats. Thus, taste learning and memory tasks reveal a complex but complete picture of ageing as inducing a different organization of the learning abilities instead of mere decay. Both enhanced and preserved functions besides those deteriorated represent useful tools to study the ageing brain. 2.3. Hippocampus and taste memories The basic brain circuit required for CTA involves several brain areas, such as the nucleus of the solitary tract, the parabrachial nucleus, the insular gustatory cortex, and the amygdala (for reviews see Bernstein, 1999; Gallo et al., 1999; Bermúdez-Rattoni, 2004; Reilly and Bornovalova, 2005). The hippocampal integrity is not required for basic CTA. In fact, permanent lesions of the dorsal hippocampus do not interfere with taste aversion learning (Gallo and Cándido, 1995a). Moreover, enhanced taste aversion learning after temporary dorsal hippocampal inactivation by muscimol infusions has been reported (Stone, Grimes and Kats, 2005). However, the hippocampus may have 84 Hippocampus, Ageing and Taste Memories a critical role in mediating some of the effects of previous experience on subsequent taste learning. On the one hand, the role played by the hippocampus in LI has been controversial, especially using taste learning tasks, and this remains to be clarified. Disruption, no effect (Gallo and Cándido, 1995a), or enhanced (Reilly, Harley and Revusky, 1993; Purves, Bonardi and Hall, 1995; Stone et al., 2005) LI of taste aversion learning by hippocampal lesions or by inactivation have all been reported (for a critical review of early studies reporting disruption, see Gallo et al., 1999). These discrepancies have been attributed to differences in the behavioral procedures used and total time of CS exposure which may interact with the hippocampal lesion, thus affecting CS novelty (Buhusi, Gray and Schmajuk, 1998). However, a hippocampal role in LI of CTA different to that observed in LI when using other learning tasks cannot be discarded because the facilitatory effect of hippocampal lesions on LI has been reported only using a taste aversion procedure (Buhusi et al., 1998). In general, the present evidence does not support a critical hippocampal role on LI of taste aversion learning, but some modulatory function cannot be excluded. On the other hand, previous results obtained in our laboratory have shown that the hippocampus becomes critically involved in other complex taste 85 Chapter 2 learning phenomena such as blocking and the contextual modulation of learning. Consistent with findings from other learning procedures, permanent electrolytic lesions (Gallo and Cándido, 1995a) or reversible inactivation by TTX injections (Gallo and Cándido 1995b) of the dorsal hippocampus, while not affecting LI of either saccharin (0.1%) or saline (0.5%) aversions, impair blocking of cider vinegar (3%) aversions when presented in compound with a previously conditioned saccharin solution in adult rats. This impairment can be reversed by hippocampal fetal transplants in lesioned rats (Gallo et al., 1997). In addition to the above, some effects of the contextual in-formation on various memory tasks have also been demonstrated to be hippocampal dependent in adult rats (Honey and Good, 1993; Holland and Bouton, 1999; Maren and Holt, 2000), but this remains to be investigated using taste learning tasks. In fact, both aversive (Puente, Cannon, Best and Carrell, 1988; Bonardi, Honey and Hall, 1990; Loy, Alvarez, Rey and López, 1993; Boakes, Westbrook, Elliot and Swinbourne, 1997) and safe (Hall and Channell, 1986; Rosas and Bouton, 1997) taste memories are bound to the external environment in which learning occurred. The context dependency of taste aversive memories was probably not revealed in the early studies due to ceiling effects induced by the conventional one-trial taste aversion learning protocol. Consistently, Bonardi et al., (1990) 86 Hippocampus, Ageing and Taste Memories used NaCl (1%) and HCl (1%) for testing the contextual specificity of taste aversions induced by a low (1% b.w.) dose of LiCl (0.3 M) after a previous habituation session with each of 2 contexts which included visual, tactile, auditory, spatial, and temporal differences. They reported no differences between the groups tested in the same or different context throughout 6 onebottle extinction tests in a single trial protocol. However, after 5 conditioning pairings, a weaker aversion was evident in the group tested in a different context by the third extinction test as the aversion began to diminish. Similarly, other studies showing a context specificity of learned taste aversions have used several conditioning trials (Puente et al. 1988; Loy et al. 1993; Boakes et al., 1997). However, a study reporting negative results applied a single saccharin– LiCl pairing (Rosas and Bouton, 1997). Although it has been proposed that a single pairing might not be sufficient for establishing the context as a conditional cue controlling the CS–US association (Bonardi et al., 1990), we have demonstrated the context dependency of a saline (1%) aversion after a single conditioning trial by using a behavioral procedure that included 2 habituation days to the contexts and 2 saline preexposures. The reduced saline aversion when tested in a different context was clear if a place context was used and reached significance in the second extinction test when the time of day was used as a context (Morón et al., 2002b). The hippocampus does not seem to play a role in the contextual specificity of taste aversions because N87 Chapter 2 methyl-D-aspartate (NMDA) induced lesions of the dorsal hippocampus do not disrupt the effect when changes of the temporal context are used (Gallo 2005). On the contrary, the hippocampus may be involved in the contextual specificity of safe taste memories. Both the development of a safe taste memory during extinction and the LI effect depending on the safe taste memory developed during preexposure have been demonstrated to be context specific. Returning to the conditioning context after extinction in a different context may lead to a renewal of the previously learned taste aversion (Rosas and Bouton, 1997; Morón et al., 2002b). Also, a context change between preexposure and conditioning disrupts LI, leading to increased aversions in the group subjected to the context change com-pared with that preexposed and conditioned in the same context. The context dependency of LI is evident using either 6 (Hall and Channell, 1986) or 5 (Manrique et al., 2004) habituation days to the contexts used. Moreover, the effect appears not only using a mixture of spatial, visual, texture, and time cues to conform the context (Hall and Channell, 1986) but also using the time of day itself (Manrique et al., 2004). This latter effect has been reported to be hippocampal dependent because NMDA lesions of the dorsal hippocampus disrupt it in young adult rats. 88 Hippocampus, Ageing and Taste Memories 2.4. Hippocampal decline and ageing impact on taste memories The hippocampus of the rat shows changes in its functional organization during ageing without significant neuron loss (Erickson and Barnes, 2003; Kelly et al., 2006). Anatomical studies have shown no cell loss that could be related to memory impairment in any of the aged hippocampus fields (Rapp and Gallagher, 1996; Rasmussen, Schliemann, Sorensen, Zimmer and West, 1996). However, ageing is associated with changes in connectivity and functional responsiveness of the hippocampal neurons (Erickson and Barnes, 2003; Rosenzweig and Barnes, 2003; Kelly et al., 2006; Wilson et al., 2005). Alterations in connectivity have been reported, including a decline in functional cholinergic transmission, fewer but compensatory increases in the strengths of remaining synapses in the dentate granule cells, loss of functional synapses in CA1 pyramidal cells, and increased gap junctional connectivity. Moreover, the aged hippocampus shows alterations in different forms of plasticity. In addition to a reduced persistence of long-term potentiation (LTP) and LTP induction deficits using perithreshold parameters, long-term depression is more easily induced in aged rats. The variety of neurophysiological and biochemical alterations in the hippocampal functions during ageing may account for the failure to support 89 Chapter 2 some complex learning tasks. Thus, impaired performance of aged rats has been reported in a variety of learning and memory tasks requiring an intact hippocampus (Gallagher and Rapp, 1997; Erickson and Barnes, 2003). We have compared the performance of adult hippocampal and old rats in a variety of taste memory tasks (Morón et al., 2002a). In accordance with an explanation of the age-related cognitive impairment based on the decline of the hippocampal function, LI, but not blocking, was preserved both in aged and hippocampal rats. Moreover, blocking was reestablished by fetal hippocampal transplants both in hippocampal lesioned and in intact aged rats (Morón et al., 2001). However, aged, but not adult hippocampal lesioned, rats showed an enhancement of taste aversion learning (Morón et al., 2002a). Moreover, hippocampal grafts, which reinstated blocking, did not reverse this age-induced enhancement (Morón et al., 2001). This suggests that, in addition to hippocampal-related impairments, ageing induces independent changes in the brain circuit required for basic taste aversion learning, which may be responsible for enhanced taste memory functions. 90 Hippocampus, Ageing and Taste Memories 2.5. Conclusions Taste recognition memory may be proposed as a choice model for the study of the ageing impact on memory. Taste learning tasks represent useful behavioral tools for studying ageing-related changes in cognition because they allow us to investigate the participation of different types of memory by introducing variations in the same basic procedure. Thus, sensory, motor, motivational, and emotional requirements are shared, and this facilitates comparisons. The results show impaired, preserved, and enhanced functions in aged rats, indicating alterations in the organization of the memory systems during ageing. Some of the effects of dorsal hippocampal lesions in adult rats are also seen in aged rats. Both aged and hippocampal adult rats show an intact LI effect. Similarly, conditioned blocking is absent in both aged and hippocampal adult rats. Thus, it is conceivable that the aged hippocampus is unable to support certain types of taste memory modulation. However, with the behavioral procedure used, aged rats exhibited an enhancement of basic taste aversion that is not induced by hippocampal lesions in young adult rats. In all, the results confirm that the impact of age on memory is complex and cannot be explained by a general cognitive decline or exclusively by 91 Chapter 2 hippocampal function decay. Rather, the present results suggest that there is reorganization within the brain memory systems during the ageing process. Acknowledgements The authors wish to thank to Ms. Ana Molina for her technical help with the animal care and are grateful to Dr Michelle Symonds for reviewing the manuscript and for helpful suggestions with the English. 92 Hippocampus, Ageing and Taste Memories References Bermúdez-Rattoni, F. (2004). Molecular mechanisms of taste-recognition memory. Nature Reviews Neuroscience, 5, 209–217. Bernstein, I. L. (1999). Taste aversion learning: a contemporary perspective. Nutrition, 15, 229–234. Boakes, R. A., Westbrook, R. F., Elliot, M., and Swinbourne, A. L. (1997). Context dependency of conditioned aversions to water and sweet tastes. Journal of Experimental Psychology: Animal Behavior Processes, 23, 56–67. Bonardi, C., Honey R. C., and Hall G. (1990). Context specificity of conditioning in flavor-aversion learning, extinction and blocking tests. Animal Learning and Behavior, 18, 229–237. Buhusi, C. V., Gray, J. A., and Schmajuk, N. A. (1998). Preplexing effects of hippocampal lesions on latent inhibition: a neural network solution. Behavioral Neuroscience, 112, 316–351. Eichenbaum, H., and Fortin, N. (2003). Episodic memory and the hippocampus, it’s about time. Current Directions in Psychological Science, 12, 53–57. 93 Chapter 2 Erickson, C. A., and Barnes, C. A. (2003). The neurobiology of memory changes in normal aging. Experimental Gerontology, 38, 61–69. Gallagher, M., and Burwell, R. D. (1989). Relationship of age-related decline across several behavioural domains. Neurobiology of Aging, 10, 681– 708. Gallagher, M., and Rapp, P. R. (1997). The use of animal models to study the effects of aging on cognition. Annual Review of Psychology, 48, 339– 370. Gallo, M. (2005). Hippocampus, temporal context and taste memories. Chemical Senses, 30(Suppl 1), i160–i161. Gallo, M., Ballesteros, M. A., Molero, A., and Morón, I. (1999). Taste aversion learning as a tool for the study of hipppocampal and non-hippocampal brain memory circuits regulation diet selection. Nutritional Neuroscience, 2, 277–302. Gallo, M., and Cándido, A. (1995a). Dorsal hippocampal lesions impair blocking but not latent inhibition of taste aversion learning in rats. Behavioral Neuroscience, 109, 413–425. 94 Hippocampus, Ageing and Taste Memories Gallo, M., and Cándido, A. (1995b). Reversible inactivation of dorsal hippocampus by tetrodotoxin impairs blocking of taste aversion selectively during the acquisition but not the retrieval in rats. Neuroscience Letters, 186, 1–4. Gallo, M., Valouskova, V., and Cándido A. (1997). Fetal hippocampal transplants restore conditioned blocking in rats with dorsal hippocampal lesions: effect of age. Behavioral Brain Research, 88, 67–74. Hall, G., and Channell, S. (1986). Context specificity of latent inhibition in taste aversion learning. Quarterly Journal of Experimental Psychology, 38B, 121–139. Holland, P. C., and Bouton, M. E. (1999). Hippocampus and context in classical conditioning. Current Opinion in Neurobiology, 9, 195–202. Honey, R. C., and Good, M. (1993). Selective hippocampal lesions abolish the con-textual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107, 23–33. Kelly, K. M., Nadon, N. L., Morrison, J. H., Thibault, O., Barnes, C. A., and Blalock, E. M. (2006). The neurobiology of aging. Epilepsy Research, 68S, S5–S20. 95 Chapter 2 Loy, I., Alvarez, R., Rey, V., and López, M. (1993). Context-US associations rather than occasion setting in taste aversion learning. Learning and Motivation, 24, 55–72. Lubow, R.E. (1989). Latent inhibition and conditioned theory. Cambridge: Cambridge University Press. Manrique, T., Molero, A., Ballesteros, M. A., Morón, I., Gallo, M., and Fenton, A. (2004). Time of day-dependent latent inhibition taste aversion learning in rats. Neurobiology of Learning and Memory, 82, 77–80. Maren, S., and Holt, W. (2000). The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behavioral Brain Research, 110, 97–108. Misanin, J. R., Collins, M., Rushanan, S., Anderson, M. J., Goodhart, M., and Hinderliter, C. F. (2002a). Aging facilitates long-trace taste-aversion conditioning in rats. Physiology and Behavior, 75, 759–764. Misanin, J. R., Goodhart, M. G., Anderson, M. J., and Hinderliter, C. F. (2002b). The interaction of age and unconditioned stimulus intensity on long-trace conditioned flavor aversion in rats. Developmental Psychobiology, 40, 131–137. 96 Hippocampus, Ageing and Taste Memories Misanin, J. R., and Hinderliter, C. F. (1994). Efficacy of lithium chloride in the taste¬aversion conditioning of young-adult and old-age rats. Psychological Reports, 75, 267–271. Misanin, J. R., and Hinderliter, C. F. (1995). Lack of age differences in context-illness associations in the long-delay taste-aversion conditioning of rats. Perceptual and Motor Skills, 80, 595–598. Misanin, J. R., Hoefel, T. D., Riedy, C. A., and Hinderliter, C. F. (1997). Remote and proximal US preexposure and aging effects in taste aversion learning in rats. Physiology and Behavior, 61, 221–224. Morón, I., Ballesteros, M. A., Cándido, A., and Gallo, M. (2002a). Taste aversion learning and aging: a comparison with the effect of dorsal hippocampal lesions in rats. Physiological Research, 51, S21–S27. Morón, I., Ballesteros, M. A., Valouskova, V., and Gallo, M. (2001). Conditioned blocking is re-established by neurotransplantation in mature rats. Neuroreport, 12, 2297–2301. Morón, I., and Gallo, M. (2007). Effect of previous taste experiences on taste neophobia in young-adult and aged rats. Physiology and Behavior, 90(2-3), 308-317. 97 Chapter 2 Morón, I., Manrique, T., Molero, A., Ballesteros, M. A., Gallo, M., and Fenton, A. (2002b). The contextual modulation of conditioned taste aversions by the physical environment and time of day is similar. Learning and Memory, 9, 218–223. Puente, G. P., Cannon, D. S., Best, M. R., and Carrell, L. E. (1988). Occasion setting of fluid ingestion by contextual cues. Learning and Motivation, 19, 239–253. Purves, D., Bonardi, C., and Hall, G. (1995). Enhancement of latent inhibition in rats with electrolytic lesions of the hippocampus. Behavioral Neuroscience, 109, 366–370. Rapp, P. R., and Gallagher, M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proceedings of the National Academy of Science, 93, 9926–9930. Rasmussen, T., Schliemann, T., Sorensen, J. C., Zimmer, J., and West, M. J. (1996). Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiology of Aging, 17, 143–147. Reilly, S., and Bornovalova, M. A. (2005). Conditioned taste aversion and amygdala lesions in the rat: a critical review. Neuroscience and Biobehavioral Reviews, 29, 1067–1088. 98 Hippocampus, Ageing and Taste Memories Reilly, S., Harley, C., and Revusky S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107, 996–1004. Rosas, J. M., and Bouton, M. E. (1997). Renewal of a conditioned taste aversion upon return to the conditioning context after extinction in another cue. Learning and Motivation, 28, 216–229. Rosenzweig, E. S., and Barnes, C. A. (2003). Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Progress in Neurobiology, 69, 143–179. Stone, M. E., Grimes, B. S., and Katz, D. B. (2005). Hippocampal inactivation enhances taste learning. Learning and Memory, 12, 547–548. Van der Staay, F. J. (2002). Assesment of age-associated cognitive deficits in rats: a tricky business. Neuroscience and Biobehavioral Reviews, 26, 753–759. Wilson, I.A., Ikonen, S., Gallagher, M., Eichenbaum, H., and Tanila, H. (2005). Age¬associated alterations of hippocampal place cells are subregion specific. Journal of Neuroscience, 25, 6877–6886. 99 CHAPTER 3 Manrique, T., Molero, A., Morón, I., Ballesteros, M.A., Gallo, M. and Fenton, A. (2004). Time of day-dependent latent inhibition of conditioned taste aversions in rats. Neurobiology of Learning and Memory, 82 (2): 77-80. Time of day-dependent latent inhibition of conditioned taste aversions in rats a,b Manrique, T., a Molero, A., a,b Morón, I., a Ballesteros, M. A., a,b Gallo, M. and c,d Fenton, A. a Department of Experimental Psychology and Physiology of Behavior, University of Granada, Campus Cartuja, Granada-18071, Spain. Oloriz, University of Granada, Spain. Sciences, Prague, Czech Republic. d c b Institute of Neurosciences F. Institute of Physiology, Czech Academy of Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA ABSTRACT We have determined that the temporal context of drinking can modulate latent inhibition of learned saline aversions in Wistar rats by changing the time of day of drinking of the preexposure and conditioning phases. Latent inhibition was absent in the group preexposed and conditioned to saline at different times of the day, but not in the group that was preexposed and conditioned at the same time of day. The results confirm a previous report that the time of day can modulate taste aversion learning independently of other environmental cues. It is proposed that the features and duration of the habituation training to the temporal contexts used may be critical for time-dependent latent inhibition to appear. This research was supported by the CICYT Grant BSO200201215 (MICYT, Spain). Keywords: context; latent inhibition; learning; rat; taste aversion; time of day. Chapter 3 3.1. Introduction The role of the time of day in animal learning and memory is being thoroughly studied in time-place learning tasks. Although controversial (McDonald, Hong, Ray, and Ralph, 2002) and not always easy to demonstrate (Lukoyanov, Pereira, Mesquita, and Andrade, 2002; Means, Arolfo, Ginn, Pence, and Watson, 2000b; Thorpe, Bates, and Wilkie, 2003), some results show that, after extensive training, rats are able to use timing cues to locate a reinforcer (Carr and Wilkie, 1997, 1999; Means, Ginn, Arolfo, and Pence, 2000a, 2000b; Mistlberger, de Groot, Bossert, and Marchant, 1996; Thorpe et al., 2003). It has been proposed that the time-of-day acts as contextual stimulus in these tasks (Lukoyanov et al., 2002; Means et al., 2000a, 2000b). The fact that the time of day may itself form a context is also supported by a report showing a time of daydependent expression of the behavioral sensitization to amphetamine (Arvanitogiannis, Sullivan, and Amir, 2000). Latent inhibition (LI) of conditioned taste aversion (Bures, BermúdezRattoni, and Yamamoto, 1998), i.e., a reduced learned aversion to a taste that was previously experienced without aversive consequences, has been reported to show a contextual dependence in rats (Lubow, 1989). Although there are some negative results (Best and Meachum, 1986; Kurz and Levitsky, 1982), it 104 Time of day, Latent Inhibition and CTA has been reported that a change of external context between preexposure and conditioning disrupts LI (Hall and Channell, 1986; Rudy, Rosenberg, and Sandell, 1977). The ability of a context change between preexposure and conditioning to interfere with LI seems to depend on the familiarity of the context (Hall and Channell, 1986; Rudy et al., 1977). In a previous report, we reported that the time of day itself may act as a context to modulate the extinction of conditioned taste aversions (CTA). However, we found no effect of a time of day change between preexposure and conditioning on LI (Morón et al, 2002). In the present experiment, we speifically examine if LI of CTA may depend on the time of day if a longer habituation period that allows differences in the amount of ingested fluid is applied. We used a 5 day habituation period, which was longer than the 2 days applied in our previous report. 3.2. Materials and methods Seventy-one naïve male Wistar rats (280–320 gr) from the breeding colony of the University of Granada were used. To eliminate external timing cues the animals were individually housed in an isolated room with constant temperature and a 12:12 h light-dark cycle (lights on at 9:00 and off at 21:00). 105 Chapter 3 Food was available ad libitum, but water availability depended on the behavioral procedure. Animals had two daily 15 min drinking sessions. Morning (10:00) and evening (20:00) drinking sessions were used to maximally differentiate the temporal contexts. The procedures were approved by the University of Granada Ethics Committee for Animal Research, and were in accordance with both the NIH of the United States guidelines for the ethical treatment of animals, and the European Communities Council Directive of 24 November 1986 (86/609/EEC). Four groups of rats (n = 18 per group except Ctrl-Same n = 17) were used in a 2 x 2 design (Table 1). Preexposed groups (Pre), but not control groups (Ctrl) received two non-reinforced saline preexposures before conditioning. Animals in each group were then assigned to one of two groups: The ‘‘Same’’ group was preexposed and aversively conditioned to saline and tested in their home cages at the same time of day. The ‘‘Different’’ group was aversively conditioned to saline at a different time from the preexposure and testing. The behavioral procedure had five phases: Temporal Context Habituation, Taste Preexposure, Conditioning and Extinction. The amount of fluid ingested was recorded to the nearest 0.1 ml in all phases. The Temporal Context Habituation phase lasted 5 days. During the first 3 days all the animals drank water ad libitum during the morning and evening sessions. On the last 2 days, morning and evening intake was equated by limiting morning 106 Time of day, Latent Inhibition and CTA water ingestion to the average amount drunk in the previous six sessions. Table 1. Behavioral procedures for the different groups A/B subgroups in each behavioral group as a consequence of balancing; AM/PM, Temporal contexts; HC, Home cage; LiCl, Lithium Chloride; Pre-1 and Pre-2, Preexposure 1 and 2; Sal, Isotonic saline; W, Water. Pre-1 and 2 Conditioning Recovery Extinction 1–5 Sal A (n=9) AM B (n=9) PM Sal-LiCl A PM B AM W (AM/PM) Sal A AM B PM W AM/PM Sal-LiCl A (n= 9) PM B (n =9) AM W (AM/PM) Sal A AM B PM Pre-Same Sal A (n=9) AM B (n= 9) PM Sal-LiCl A AM B PM W (AM/PM) Sal A AM B PM Ctrl-Same W (AM/PM) Sal-LiCl A (n=9) AM B (n=9) PM W (AM/PM) Sal A AM B PM PreDifferent CtrlDifferent The Preexposure phase lasted 2 days. The time of day was counterbalanced, i.e., half of the animals in each preexposed group (Pre-Same and Pre-Different) were allowed to drink saline (1%) for 15 min during the morning drinking session while the rest of the animals drank saline during the evening session. The non-preexposed control groups (Ctrl-Same and CtrlDifferent) were allowed to drink water during the preexposure phase. During the conditioning session, the animals were allowed to drink the 107 Chapter 3 saline solution either at the same time of day as during the preexposure sessions (Pre-Same) or at a different time (Pre-Diffrent). The non-preexposed (Ctrl) groups drank at the same time as their corresponding preexposed group i.e., half of each group drank saline during the morning and half during the evening drinking session. Immediately, after the 15 min of saline drinking, all the animals received an i.p. injection of lithium chloride (LiCl, 0.15 M; 2% body weight) and returned to the home cage. The next day they were allowed to recover from the LiCl-induced visceral distress with access to water during both drinking periods. The extinction phase began the day after recovery. The preexposed rats and their controls were allowed to drink the saline solution at the same time of day as their saline preexposure sessions. The extinction phase lasted 5 days. The volume of consumed saline was compared across groups and across days. The average values ±SEM are reported. 3.3. Results No differences were found among the groups in the water intake during habituation. Prior to conditioning, the only difference between the groups, was the expected preference for saline in the rats of the preexposed groups 108 Time of day, Latent Inhibition and CTA compared with the water intake by the control non-preexposed groups during the second preexposure session (F(1,67)= 25.88; p < 0.01). Fig. 1 summarizes the results of the conditioning and testing phases. Although there were no differences in the amount of saline solution drank by the different groups during conditioning, only the group preexposed and conditioned at the same time of day showed latent inhibition, i.e., reduced saline aversions compared with non-preexposed groups. Fig. 1. Mean (+SEM) saline intake of the different groups during the conditioning and extinction retention phases (Cond, conditioning; D, Different Groups; S, Same Groups; Pre, Saline Preexposed Groups; Ctrl, Control nonpreexposed groups; E1–E5, Extinction tests 1–5). 109 Chapter 3 A 2 x 2 (Preexposure x Time) ANOVA of the different groups’ saline intake in the conditioning session showed no significant effect of Preexposure (F(1,67 )= 2.68; p > 0.1), Time (F(1,67)= 1.27; p > 0.2) or the interaction Preexposure x Time (F(1,67)= 1.22; p > 0.2). Extinction was studied by measuring saline intake, which was during the drinking session at the same time of saline preexposures. The saline intake over five extinction tests was analysed using a 2 x 2 x 5 (Preexposure x Time x Days) ANOVA. There were significant main effects of Preexposure (F(1,67)= 18.76; p < 0.01), Time (F(1,67) = 6.05; p < 0.01), Days (F(4,268) = 66.57; p < 0.01) and the interaction Preexposure x Time (F(1,67)= 4.52; p < 0.05). No other interaction approached significance. Newman–Keuls post hoc analyses of the Days effect showed a significant increase of saline intake across the first four extinction tests p’s < 0.01. The extinction of the aversion stabilised after the Day 4 saline intake because Test 4 and Test 5 did not differ (p > 0.7). Analysis of the interaction Preexposure x Time showed the absence of LI in those groups that were preexposed and conditioned at a different time of day, as there was no significant effect of Preexposure (F(1,34)= 2.68; p > 0.1). However, a clear latent inhibition effect appeared in the groups Same, as the Preexposed group had a reduced saline aversion compared to the non-preexposed control group (F(1,33)= 18.98; p < 0.01). There were no differences between the Ctrl-Same and Ctrl-Different groups across the five extinction sessions (F(1,33)= 0.05; p > 0.8), 110 Time of day, Latent Inhibition and CTA but the group Pre-Same had a higher saline intake compared to the group PreDifferent (F(1,34)= 11.24; p < 0.01). 3.4. Discussion The results indicate that, a change in the time of day between preexposure and conditioning disrupted latent inhibition of CTA. The group that was preexposed to saline at a different time of conditioning acquired saline aversions that were similar to those expressed by the non-preexposed groups. Reduced saline aversions were evident, however, in the rats that were preexposed at the same time of day as they were conditioned. Consistent with this finding, the most cited previous study that reported a contextual dependence of latent inhibition in CTA included the time of day as part of the contextual change (Hall and Channell, 1986). The procedural differences between the Morón et al. (2002) experiment and the present experiment may be critical for explaining the presence of timedependent latent inhibition that was absent in the previous report. Hall and Channell (1986) proposed that the duration and type of habituation to the context may determine its ability to modulate learning. Previous findings using physical contexts have shown that the prior experience with the context reduces its ability to interfere with LI of CTA (Rudy et al., 1977). This was 111 Chapter 3 attributed to a reduction of the con-textual associability as the animals learned it was an irrelevant cue. However, our data show that a longer habituation, 5 days compared to the 2 days in Morón et al (2002) may instead have facilitated the time of day dependency of LI. It is conceivable that the salience and distinction of the drinking sessions time of day increased throughout the habituation period, and thus revealed the contextual dependence of LI. Moreover, as our context habituation included changes in the amount that the animal was allowed to drink, it can be proposed to have provided an additional feature to increase the salience of temporal context. To our knowledge, this is the first evidence of time-of-day dependent latent inhibition in the absence of other environmental changes. It shows that rats use the time of day as a context to modulate the effect of previous experience with the to be learned stimuli. It cannot be ruled out that the rat strain used plays a critical role in this effect. Recent evidence has demonstrated that Wistar but not Long Evans rats are sensitive to time-of-day modulation of conditioned place preference (Cain, Ko, Chalmers, and Ralph, 2004). This would explain the failure of McDonald et al. (2002) to find time-stamping in spite of the extensive exposure to the temporal contexts. The fact that testing took place at the time of saline preexposure does not support an occasion setting function of the time of day during testing. Rather the change of time of day may have favoured the CS–US association during conditioning, either by 112 Time of day, Latent Inhibition and CTA increasing the CS novelty or removing the interference by a previously formed CS-no US association. The experiment does not allow the determination of the specific timing cues that may act as a context. It has been reported that rats are able to use different strategies based either on circadian phase (Mistlberger et al., 1996; Thorpe et al., 2003), or interval or ordinal timing (Carr and Wilkie, 1997) in tasks requiring time-of-day discriminations. In all, the results are consistent with previous findings (Arvanitogiannis et al., 2000; Carr and Wilkie, 1997, 1999; Means et al., 2000a, 2000b; Mistlberger et al., 1996; Morón et al., 2002; Thorpe et al., 2003) showing that time of day can modulate learning and memory in rats. The time of day dependency of LI described here provides a paradigm for research into the neural mechanisms that underlie how memories are stored and modulated by a broad sense of context (Holland and Bouton, 1999). 113 Chapter 3 References Arvanitogiannis, A., Sullivan, J., and Amir, S. (2000). Time acts as a conditioned stimulus to control behavioral sensitization to amphetamine. Neuroscience, 101, 1–3. Cain, S. W., Ko, C. H., Chalmers, J. A., and Ralph, M. R. (2004). Time of day modulation of conditioned place preference in rats depends on the strain of rat used. Neurobiology of Learning and Memory, 81, 217–220. Carr, A. R., and Wilkie, D. M. (1997). Rats use an ordinal timer in a daily time-place learning task. Journal of Experimental Psychology: Animal Behavior Processes, 23, 232–247. Carr, A. R., and Wilkie, D. M. (1999). Rats are reluctant to use a circadian timing in a daily time-place task. Behavioural Processes, 44, 287–299. Best, M. R., and Meachum, C. L. (1986). The effects of stimulus preeexposure on taste mediated environmental conditioning: Potentiation and overshadowing. Animal Learning and Behavior, 14, 1–5. Bures, J., Bermudez-Rattoni, F., and Yamamoto, T. (1998). Conditioned taste aversion: memory of a special kind. Oxford: Oxford University Press. 114 Time of day, Latent Inhibition and CTA Hall, G., and Channell, S. (1986). Context Specificity of latent inhibition in taste aversion learning. Quarterly Journal of Experimental Psychology, 38B, 121–139. Holland, P. C., and Bouton, M. E. (1999). Hippocampus and context in classical conditioning. Current Opinion Neurobiology, 9, 195–202. Kurz, E. M., and Levitsky, D. A. (1982). Novelty of contextual cues in taste aversion learning. Animal Learning and Behavior, 10, 229–232. Lubow, R. E. (1989). Latent inhibition and conditioned theory. Cambridge: Cambridge University Press. Lukoyanov, N. V., Pereira, P. A., Mesquita, R. M., and Andrade, J. P. (2002). Restricted feeding facilitates time-place learning in adult rats. Behavioral Brain Research, 134, 283–290. McDonald, R. J., Hong, N. S., Ray, C., and Ralph, M. R. (2002). No time of day modulation or time stamp on multiple memory tasks in rats. Learning and Motivation, 33, 230–252. Means, L. W., Ginn, S. R., Arolfo, M. P., and Pence, J. D. (2000a). Breakfast in the nook and dinner in the dining room: Time-of-day discrimination in rats. Behavioural Processes, 49, 21–33. 115 Chapter 3 Means, L. W., Arolfo, M. P., Ginn, S. R., Pence, J. D., and Watson, N. P. (2000b). Rats more readily acquire a time-of-day go no-go discrimination than a time-of-day choice discrimination. Behavioural Processes, 52, 11–20. Mistlberger, R. E., de Groot, H. M., Bossert, J. M., and Marchant, E. G. (1996). Discrimination of circadian phase in intact and supraquiasmatic nucleiablated rats. Brain Research, 739, 12–18 Morón, I., Manrique, T., Molero, A., Ballesteros, M. A., Gallo, M., and Fenton, A. (2002). The contextual modulation of conditioned taste aversions by the physical environment and time of day is similar. Learning and Memory, 9, 218–223. Rudy, J. W., Rosenberg, L., and Sandell, J. H. (1977). Disruption of a taste familiarity effect by novel exteroceptive stimulation. Journal of Experimental Psychology: Animal Behavior Processes, 3, 26–36. Thorpe, C. M., Bates, M. E., and Wilkie, D. M. (2003). Rats have trouble associating all three parts of the time-place-event memory code. Behavioural Processes, 63, 95–110. 116 CHAPTER 4 Manrique, T., Morón, I, Ballesteros, M. A., Guerrero, R.M., Fenton, A.A., and Gallo, M. (2008) Hippocampus, Ageing and Segregating memories (en revision) Hippocampus, Aging and Segregating memories a,b Manrique, T., a,b Morón, I, a Ballesteros, M. A., a,b Guerrero, R.M., , c Fenton, A.A., and a,b Gallo, M. * a Department of Experimental Psychology and Physiology of Behavior. University of Granada. Spain, bInstitute of Neurosciences F. Oloriz. University of Granada. Spain, c Department of Physiology and Pharmacology, the Robert F. Furchgott Center for Neural and Behavioral Science, SUNY, Downstate Medical Center, USA ABSTRACT Rats use time-of-day cues to modulate learned taste aversion memories. If adult rats are accustomed to drinking saline in the evening and they receive a lithium chloride injection after drinking saline in the morning, they form a stronger aversion to saline than rats that were conditioned after drinking saline at the familiar time. The difference indicated the rats formed segregated representations of saline taste and the time of day the saline was consumed. This was inferred because the modulation of learning by time of day was observed when the aversions were tested at the familiar evening drinking time. If the rats had formed a compound representation of saline taste and the time of day it was consumed, the opposite pattern of differences would be expected. We used this modulation of learning by time of day to assay whether aged rats have an impaired ability to form segregated representations of experience. We find that aged rats had similar saline aversions if they were conditioned at either the familiar or the unfamiliar time of day. Furthermore, dorsal hippocampal lesions in the aged rats caused greater saline aversions if the rats were conditioned after drinking saline at the familiar time of day. This indicated that aged rats are aware of the time of day but after the lesion they act as if they do not segregate saline taste from the time of day it was consumed. The results suggest that the ability to form segregated representations of a complex experience is impaired in aging and abolished by hippocampal lesions. Grant sponsor: MICYT, MEC and Junta de Andalucía (Spain), Grant number: BSO200201215, SEJ2005-01344 and HUM 02763 Chapter 4 KEY WORDS, aging, hippocampus, latent inhibition, taste aversion, taste recognition memory, time-of-day, rat, cognitive segregation. 4.1. Introduction Episodic memory content includes the place and the time of an experience. Evidence from rat studies suggests the hippocampal representation of space provides spatial episodic content (reviewed by Kentros, 2006; Smith and Mizumori, 2006). Much less is known about temporal episodic content, which has been difficult to study in rats. Recently, Morón et al. (2002b) and Manrique et al., (2004) found that the time of day modulates learned taste aversions in rats. Rats accustomed to drinking water in the mornings ("AM") and the evenings ("PM"), drank saline in the evenings for two days. The next day, half the rats (group SAME) received lithium chloride injections after drinking saline in the evening. The other half (group DIFF) received lithium chloride injections after drinking saline in the morning, at a different time-ofday. Subtle modifications of the procedure seem to drastically modify the role of the temporal context. In the short-habituation protocol, there were only two days of prior habituation training to drink water twice a day. Drinking was also 120 Hippocampus, Ageing and Segregating memories restricted during the conditioning session. Rats in the SAME group had a greater aversion than those in the DIFF group when tested in the evening (Morón, et al., 2002). This suggests that a compound conditioned stimulus representation ("saline-AM" or "saline-PM") had been formed. However, the results were opposite if the duration of the habituation to the temporal context was increased and the animals were also allowed to drink freely during the conditioning session. In this long-habituation protocol, rats in the DIFF group had a greater aversion than those in the SAME group when tested in the evening (Manrique et al., 2004). In the long-habituation protocol it was unlikely that the time of day combined with the taste to form a representation of a compound conditioned stimulus ("saline-AM" or "saline-PM") that was associated with malaise. In this case, saline-PM would be associated with malaise in the SAME group and saline-AM would be associated with malaise in the DIFF group. If this was the case, the SAME group should have had a greater saline aversion when tested in the evening. The opposite difference was observed, indicating the rats represented the saline taste separately from the time of day it was experienced. This hippocampus-dependent ability to segregate elements of an experience into separate internal representations was recently demonstrated to be distinct from the role of hippocampus in encoding associations. Kubik and 121 Chapter 4 Fenton (2005) demonstrated hippocampus-dependent segregation using tasks that depend on spatial information processing, which most researchers agree is a fundamental function of hippocampus, analogous to visual information processing being a fundamental function of striate cortex. Excitotoxic lesions of dorsal hippocampus have been used to assess whether the hippocampus also participates in the segregation of taste and time-of-day memories, independent of its role in processing spatial features of experience. In these CTA experiments it is difficult to identify a spatial component of the information processing. This is because the time of day of the saline ingestion was the only variable that distinguished the conditioning experiences (Gallo, 2005). Dorsal hippocampal lesions did not interfere with the effect of a time change in the short-habituation procedure (Gallo, 2005). However, the lesion selectively disrupted the effect of a time-of-day change in the long-habituation procedure. The lesion abolished the difference between the “Same” and “Different” groups; the DIFF and SAME groups expressed similarly strong saline aversions on the first extinction test (Gallo, 2005). Furthermore, additional extinction tests revealed the opposite difference (unpublished data). The saline aversion was stronger in the SAME group. This indicated that the hippocampus was not crucial for processing time-of-day information itself. Furthermore, and unexpectedly, the results indicated that taste and the time of day are more likely to be represented as a compound stimulus (saline-AM or saline-PM) and 122 Hippocampus, Ageing and Segregating memories associated with malaise after hippocampal lesion. This is consistent with the idea that a fundamental function of hippocampus is to facilitate the segregation of stimulus representations even when the stimuli to segregate are not spatial (Kesner, Lee, and Gilbert, 2004). We now report that aging compromises this fundamental feature of hippocampal function. 4.2. Materials and Methods The procedures were approved by the University of Granada Ethics Committee for Animal Research and were in accordance with the European Communities Council Directive 86/609/EEC. Male Wistar rats were housed on a 12:12 light:dark cycle (lights on 8:00; lights off 20:00). The rats were subjected to the long-habituation procedure of Manrique et al. (2004), which is summarized in Table 1 and explained below. The consumed amount of fluid was recorded as the dependent measure. 123 Chapter 4 4.2.1. Behavioural Protocol Habituation (days 1-5): The rats were habituated to consume their daily intake of water in two 15-min water drinking sessions. One session was in the morning (9:00) and the other in the evening (19:00). Preexposure (days 6-7): After habituation, all the animals were allowed to drink a 1% saline solution instead of water during the following two evening drinking sessions. Groups that were not preexposed were not included because the present experiments were not designed to study latent inhibition (see Morón et al., 2002b). Conditioning (day 8): The rats were conditioned either at the same (SAME) or at a different time of day (DIFF) than preexposure. The conditioning session took place during the evening session for the groups in the SAME condition and during the morning session for those in the DIFF condition. The lithium chloride injection (LiCl, 0.15 M; 2% b.w.; i.p.) was administered to all animals after the saline drinking session. Groups that received saline instead of LiCl were not included because prior work indicated that exposure to saline at a novel or familiar time of day did not differentially alter subsequent saline intake (Manrique et al., 2004; see also Fig 1 A, C). 124 Hippocampus, Ageing and Segregating memories Recovery (days 9-10): The rats were allowed to drink water during the morning and evening drinking sessions. Test (days 11-13): Throughout the extinction test days, all the animals were allowed to drink water during the morning drinking sessions according to the procedure of Manrique et al (2004). Three extinction tests were given during the evening sessions. Only the saline solution was available to all the animals. The volume of saline consumed was recorded and analysed in separate ANOVAs, because each test session acts to extinguish the aversion. Note, we used an asymmetric experimental design with saline preexposure occurring only in the evenings. We previously studied the symmetric design, with different rats preexposed to saline in the mornings and evenings and found no difference in the time-of-day modulation of conditioned saline aversion if preexposure was given in the morning or evening (Manrique et al., 2004). 125 Chapter 4 Table 1. Behavioral procedure used in Experiments 1 and 2. The water drinking sessions during preexposure, conditioning, recovery (days 9-10) and testing are not represented. All the drinking sessions lasted 15 minutes. Abbreviations: am = 9 h; pm = 19 h; LiCl = Lithium Chloride. The SAME and DIFF groups differed in the time-of-day (bold font) they drank saline on the conditioning day. Group HABITUATION PREEXPOSURE CONDITIONING TESTS 5 sessions 2 sessions 1 session 3 sessions (days 1-5) (days 6-7) (day 8) (days 11-13) Water Saline Saline am/pm pm LiCl pm Water Saline Saline am/pm pm LiCl am Saline Same (SAME) Different (DIFF) pm Saline pm 4.2.2. Dorsal Hippocampal Lesion Bilateral dorsal hippocampal lesions were made by infusing 0.6 µl NMDA (0.077M) at -2.3 and -3.3 posterior, 1.5 lateral and 3.4 ventral to bregma (Paxinos and Watson, 1986). The rats were anesthetized with sodium pentobarbital (50 mg/kg i.p.) and mounted in a stereotaxic frame. A midline 126 Hippocampus, Ageing and Segregating memories suture was used to expose the skull and 1 mm holes were drilled through the bone to provide access to the infusion sites. Sham-operated animals were subjected to the same surgical procedure but vehicle (0.9% saline) was injected instead of NMDA. A 30ga cannula was stereotaxically positioned at the infusion sites. The cannula was attached to a 10 µl Hamilton syringe by Tygon tubing and the solution was infused during 1 min at each location. Ten days after surgery the rats were subjected to the same behavioural procedure as in Experiment 1 (see Table 1). The rats were deeply anesthetized with sodium pentobarbital (100 mg/kg, i.p.) at the end of the behavioural procedure and transcardially perfused with saline then formalin solutions. Their brains were removed and processed for histological verification of the lesions. 127 Chapter 4 Figure 2. Diagrams taken from Paxinos and Watson atlas (1986) of coronal sections depicting the largest and smallest acceptable hippocampal lesion. 128 Hippocampus, Ageing and Segregating memories 4.3. Results 4.3.1. Experiment 1 This experiment tested whether adult and aged rats differ in their ability to form segregated representations of taste and time of day. Taste aversions were studied in ADULT rats (4-5 months old, weighing 397.5 SEM 13.6 g) and AGED rats (25 months old, weighing 527.5 SEM 11.3 g). The rats were conditioned either at the same (ADULT SAME; n=6 and AGED SAME; n=8) or at a different time of day (ADULT DIFF; n=6 and AGED DIFF; n=10) than preexposure and testing. 4.3.1.1. Results Water intake in the adult and aged groups did not differ in the habituation and preexposure sessions. The (Age x Group x Days) repeated measures ANOVA of the water intake comparing the last habituation evening session (Adult mean = 8.49; SEM ± 0.69; Aged mean = 8.36; SEM ± 0.58) and saline intake during the first (Adult mean = 8.01; SEM ± 1.18; Aged mean = 5.87; SEM ± 0.53) and second (Adult mean = 10.52; SEM ± 0.71; Aged mean = 10.3; SEM ± 0.76) preexposure sessions revealed a significant effect of days (F(2,52)= 12.62; p < 0.01), but no effects of age, group, or their interactions. Posthoc LSD comparisons indicated that saline intake during the first saline 129 Chapter 4 preexposure was lower (mean = 6.73; SEM ± 1.23) than water intake during the previous evening session (mean = 8.42; SEM ± 1.54), indicating a neophobic response to the novel saline taste at both ages. Saline intake during the second preexposure session was higher (mean = 10.39; SEM ± 1.9) than both water and saline intake during the previous sessions. This indicated a recovery from neophobia and a preference for saline at both ages. Importantly, prior to conditioning, the groups had a similar saline preference. Figure 1a shows the average (±SEM) saline intake during the conditioning and test phases. Exposure to the CS was similar across the groups because saline intake was not different between the groups in the conditioning session. This was confirmed by a two way Age x Group ANOVA comparing the effects of age and the time of day on saline intake during conditioning. The effects of Age (F(1,26)= 0.12; p > 0.7), Group (F(1,26)= 2.79; p > 0.1) and the Age x Group interaction (F(1,26) = 3.29; p > 0.08) were all not significant. Water intake was also similar during the recovery phase (data not shown), suggesting that the aversive effect of the US was also similar across the groups. 130 Hippocampus, Ageing and Segregating memories 131 Chapter 4 Figure 1. Time-of-day modulation of learned saline aversions. Mean (+SEM) saline consumption during conditioning and testing of the different groups. Experiment 1: (a) Adult rats were sensitive to the time-of-day saline was ingested before LiCl injection but aged rats were insensitive to the time-of-day. Adult rats (DIFF) that drank saline at an unfamiliar time-of-day learned a greater saline aversion than adult rats (SAME) that drank the saline at a familiar time of day. The inset highlights the key comparisons on the first retention test. Experiment 2: (b) Cresyl violet-stained coronal sections showing representative sham and NMDA dorsal hippocampal (HC) lesions at different rostro-caudal levels in aged rats. The coordinates relative to bregma are indicated. (c) Aged rats with NMDA lesions of the dorsal hippocampus were sensitive to the timeof-day saline was ingested before lithium injection. However, the pattern of differences between SAME and DIFF lesion groups is opposite to the pattern that was observed in the Experiment 1 adult rats. The inset highlights the key comparisons on the first retention test. Abbreviations: SAME = preexposure, conditioning and testing at the same time of day; DIFF = conditioning at a different time of day as preexposure and testing; HC = Hippocampus lesion group; EXT1,2,3 = extinction tests 1, 2, 3. The asterisk indicates a significant difference (p < 0.05) from all other groups. 132 Hippocampus, Ageing and Segregating memories On the test for the learned saline aversion, the rats in the ADULT DIFF group had the strongest aversions; rats in the ADULT SAME group had the weakest aversions, and the two AGED groups had intermediate aversions. This pattern was confirmed by the Age x Group ANOVA comparing the effects of age and the time of day of the conditioning on saline intake during the first test session. The effect of Group (F(1,26)= 7.41; p < 0.01) and the Age x Group interaction (F(1,26)= 9.07; p < 0.01) were significant. LSD comparisons indicated greater saline aversion in the ADULT DIFF group compared to the other groups (ADULT SAME, and both the AGED groups; p’s < 0.05). Importantly, there was no difference between the AGED SAME and AGED DIFF groups (p > 0.8). The ADULT SAME group had a weaker saline aversion than the ADULT DIFF group as well as both the aged groups (p < 0.05). This pattern of aversions was robust as it was also observed on the second and third extinction tests. The Age x Group ANOVA of the saline intake during extinction test 2 confirmed significant effects of Age (F(1,26)= 7.02; p < 0.01), Group (F(1,26)= 8.18; p < 0.01) and the Age x Group interaction (F(1,26)= 5.07; p < 0.05). LSD comparisons indicated differences between the ADULT SAME and ADULT DIFF groups (p < 0.01) but not between the AGED SAME and AGED DIFF groups (p > 0.6). The ADULT SAME group had the weakest 133 Chapter 4 aversion because these rats drank more saline than all of the other groups (p < 0.01). On the third extinction test the effects of Age (F(1,26)= 12.41; p < 0.01), Group (F(1,26)= 10.73; p < 0.01) and the interaction Age x Group (F(1,26)= 6.68; p < 0.05) were significant. Once again, LSD comparisons confirmed the greater aversion in the ADULT DIFF group than the ADULT SAME group and both the AGED groups (p < 0.01) but no difference between the AGED SAME and AGED DIFF groups (p > 0.5). In summary, in all the extinction tests, adult rats had the greatest aversions when conditioning occurred at a different time of day than the preexposure and tests. In contrast, rats in the aged groups acquired saline aversions that were insensitive to the time of day. The failure to find a difference between the aged groups can be attributed to a failure of aged animals to segregate the representations of saline taste and the time of day the taste was experienced. Alternatively, the difference between the response in the adult and aged groups might be explained by an aging-related deficit in processing timeof-day cues. 134 Hippocampus, Ageing and Segregating memories 4.3.2. Experiment 2 Experiment 2 was performed to determine whether a segregation deficit or a deficit in sensing time of day could account for the results of Experiment 1. Adult rats with hippocampal lesions failed to segregate taste and the time of day it was experienced. However, they expressed learned saline aversions that were modulated by time of day (unpublished data). If aged rats have an impaired sense of time of day, then with a hippocampal lesion they should not express learned saline aversions that are modulated by the time of day the saline was tasted. Thirty-eight naïve 27-month-old aged rats were used. Half received a hippocampal lesion (HC) and the other half received a sham (SHAM) lesion. The animals were assigned to the following groups based on the behavioural procedure: SHAM SAME (n=9), SHAM DIFF (n=10), HC SAME (n=9) and HC DIFF (n=10). 135 Chapter 4 4.3.2.1. Results Representative brains from the HC and SHAM groups are presented in Figure 1b. Most of the rats in the HC groups had large lesions with cell loss in the dorsal hippocampus that extended throughout CA1 in all cases. In most cases, the ventral part of the dentate gyrus was intact. The CA3 subfield was also damaged in some but not all brains. Figure 2 depicts the maximum and minimum extent of the lesions. No hippocampal damage was observed in the SHAM groups but both the HC and SHAM animals sustained damaged to the corpus callosum and the cortex dorsal to the hippocampus. Additionally, the loss of hippocampal cells was associated with a collapse and distortion of the cortex dorsal to the hippocampus. Consequently, the overlying cortex was more altered in the HC than the SHAM groups. The groups did not differ in the habituation and preexposure sessions. The (Lesion x Group x Days) repeated measures ANOVA of the water intake comparing the last habituation evening session and saline intake during the first and second preexposure sessions revealed a significant effect of Days (F(2,68)= 17.63; p < 0.01), but no effects of Lesion, Group, or any of their interactions. Significant LSD comparisons indicated that saline intake during the first saline preexposure was higher (mean = 9.34 ml; SEM =0.53) than water intake during 136 Hippocampus, Ageing and Segregating memories the previous evening session (mean = 7.43 ml; SEM ± 0.43). This indicated there was a preference for saline. Saline intake during the second preexposure session was even higher (mean = 10.39 ml; SEM ± 0.57). This increased preference for saline was presumably because of reduced neophobia. Prior to conditioning, animals in all the groups had a similar saline preference. Figure 1c illustrates saline intake during conditioning and testing. Fluid intake did not differ between the groups on the conditioning or recovery days (data not shown). This was confirmed by the two-way Lesion x Group ANOVA that compared the effects of the lesion and the time of day on saline intake during conditioning. None of the effects of Lesion (F(1,34)= 2.42; p > 0.1), Group (F(1,34)= 2.45; p > 0.1) and the Age X Group interaction (F(1,34)= 0.01; p > 0.9) were significant. In contrast, the aged rats with a hippocampus lesion exhibited stronger saline aversions if they were conditioned at the same time of testing than the rats that were conditioned at a different time. No differences were found between the SHAM SAME and SHAM DIFF aged groups, reproducing this Experiment 1 result. The Lesion X Group ANOVA of saline intake on extinction test 1 revealed a significant effect of Group (F(1,34)= 4.03; p < 0.05) but no other effects. The SAME animals that were conditioned after drinking saline at a familiar time of day had stronger saline aversions (mean = 2.88; SEM ± 0.61) 137 Chapter 4 than the DIFF animals that were conditioned after drinking saline at an unfamiliar time of day (mean = 4.99; SEM ± 0.78). LSD comparisons indicated that this effect was due to weaker aversions in the HC DIFF group compared to the HC SAME group (p < 0.05) because the SHAM SAME and SHAM DIFF groups did not differ (p > 0.4). Although the aversion began to extinguish, the pattern of differences persisted on extinction test 2. There was a significant Lesion X Group interaction (F(1,34)= 4.04; p < 0.05) but no effect of Lesion or Group. LSD comparisons indicated that the HC DIFF group drank more saline than the HC SAME and the SHAM DIFF groups (p < 0.05). This indicated there was a weaker aversion in the aged lesion group, but only if they were conditioned at a different time of day. No other differences were significant. The differences in saline aversion were no longer apparent on test 3. The Lesion x Group ANOVA confirmed there were no significant effects. 138 Hippocampus, Ageing and Segregating memories 4.4. Discussion Experiment 1 indicated that unlike adult rats, aged rats were insensitive to the time of day in which they were conditioned to avoid the taste of saline. The aged rats expressed the same magnitude of the learned saline aversion regardless of whether the saline was paired with visceral distress after drinking saline at a familiar or different time of day. Importantly, the magnitude of aversion in the aged rats was intermediate to the aversion expressed by the adult rats that were conditioned after drinking saline at a familiar or different time. This indicates that while aged rats acquire conditioned taste aversions of a magnitude like adult rats, they failed to express the aversion differentially as a function of the time of day. This result can be explained by the possibility that aged rats have a compromised sense of the time of day, but this explanation is unlikely because Experiment 2 demonstrated that aged rats do use time of day to modulate the expression of conditioned taste aversion. Lesions were made of the dorsal hippocampus that also affected the overlying neocortex. In aged rats, these lesions caused a greater saline aversion if drinking saline at the familiar (same) time of day was paired with lithium chloride injection compared to the saline aversion conditioned at an unfamiliar (different) time of day. Since aging did not occlude the effect of the lesion in the aged rats, it is unlikely that the behavioural effects of aging can be fully explained by a decline of hippocampal 139 Chapter 4 function. It will therefore be valuable to explore the contribution of other memory systems in the time-of-day modulation of memory. Our findings are consistent with evidence suggesting that there are interactions amongst multiple memory systems as well as evidence for a hippocampal role in forming compound stimulus representations. The normal modulation of hippocampus-independent taste memories by the time of day depends on adult hippocampal function (Gallo, 2005). Similarly, Experiment 2, demonstrated that lesion of the aged dorsal hippocampus facilitated the time-ofday modulation of learning. The demonstration in aged rats that hippocampal damage may result in an abnormal tendency to form compound-stimulus representations has also been reported in adult rats (Eichembaum, Mathews and Cohen, 1989) and monkeys (Saksida, Bussey, Buckmaster, and Murray, 2007). These studies used simultaneous-cue odor discrimination learning and transverse-patterning tasks, respectively. These data are consistent with reports that there are competitive interactions between memory systems in adult rats (Poldrack and Packard, 2003). There is also evidence that reversible inactivation of the dorsal hippocampus, which attenuates the acquisition of a place task, enhances the acquisition of a non-hippocampal response task in adult rats (Schroeder, Wingard and Packard, 2002). These and other similar results obtained in adult rats (Poldrack and Packard, 2003) provide evidence of a 140 Hippocampus, Ageing and Segregating memories functional interdependence between hippocampal and non-hippocampal memory systems, which may compete, leading to enhanced learning after hippocampal lesions. As far as we know, the present work is the first time that such an enhancing effect of hippocampal lesion has been reported in aged rats, which suggests that the notion of interference between memory systems may extend also to the aged brain. It therefore appears that aged rats can use the time of day in representations of experience but that their ability to encode, maintain or use segregated representations of non-spatial experience is different from this ability in adult rats. Because this ability to segregate representations of experience is a function of the adult hippocampus (Gallo, 2005), we have determined that impaired non-spatial sensory segregation occurs in aged rats and this cognitive impairment may be the result of aged hippocampal function. We now consider alternative explanations of the results. First, the behavioural protocol (Table 1) preexposed all the rats to saline and as a consequence, after conditioning, all groups expressed less saline aversion than if there was no preexposure to saline. Rats that received the same behavioural protocol without saline preexposure drank no saline on the first test and only 1 ml ± 0.67 ml on the third test (data not shown; Morón et al., 2002b). Thus the present data can be considered in terms of latent inhibition, where more saline 141 Chapter 4 aversion indicates less latent inhibition. The results may therefore also be interpreted as a moderate aging-related deficit of latent inhibition with hippocampal lesion causing an even more severe deficit. This interpretation, however, fails to account for why the modulation of latent inhibition by time of day is in opposite directions in normal adult rats (SAME expressed more latent inhibition than DIFF) and rats with hippocampal lesions (DIFF expressed more latent inhibition than SAME). Moreover, this interpretation contradicts the results of taste aversion (Morón et al., 2002a; Manrique et al., 2007) and active avoidance (Francès et al., 2001) studies that failed to observe evidence of a latent inhibition deficit in aged rats or in adult rats with lesions of the dorsal hippocampus (Gallo and Cándido, 1995). The possibility that we observed impaired latent inhibition would also contradict the enhanced latent inhibition of taste aversion that has been repeatedly observed in adult rats with permanent hippocampal lesions (Purves, Bonardi and Hall, 1995; Reilly, Harley and Revusky, 1993) and temporary (Stone, Grimes and Katz, 2005) hippocampal inactivation. We thus reject the interpretation that our results reflect aging and/or hippocampus lesion deficits of latent inhibition. However, latent inhibition is not a simple, uniform process. It is affected by the context, time of day and type of information being processed. Thus, the performance of the aged rats could be interpreted as a disruption of a temporal context dependency of latent inhibition (Manrique et al., 2004). This would be consistent with other 142 Hippocampus, Ageing and Segregating memories effects of aging on the dependence of taste neophobia on previous learning experiences (Morón and Gallo, 2007). However, this interpretation has difficulty to explain the pattern of results in Experiment 2. The fact that the lesion aged SAME group showed no signs of latent inhibition could be explained by the neocortical damage together with the hippocampal lesion (Lewis and Gould, 2007). But this interpretation is also unlikely because the lesion did not disrupt the latent inhibition that presumably also occurred in the DIFF groups. A second alternative explanation of the present data is based on the fact that aging is accompanied by alterations in the diurnal secretion of hormones, which could be one of the salient components of the time of day that were available to the rats. It is therefore possible that because aged rats may have a compromised sense of time of day, they may fail to modulate taste memories by time of day. This is consistent with the reported disruption of diurnal circadian rythmicity, which has been related to age differences in hippocampal-dependent memory processes (Winocur and Hasher, 2004). Results from Experiment 2 suggest that if this interpretation were correct, then hippocampal lesions have the ability to restore the salience of time-of-day cues. Although this would be a surprising possibility, it is nonetheless possible. In contrast to explanations based on latent inhibition and a compromised sense of time of day in aged rats, the results are all consistent with the 143 Chapter 4 interpretation that the hippocampus is important for segregating components of experience into distinct representations that can be individually associated with consequences to efficiently direct subsequent behaviours (Kesner et al., 2004; Kubik and Fenton, 2005; Wesierska, Dockery and Fenton, 2005). This viewpoint leads us to conclude that this segregation function is compromised in aged rats. Furthermore, this interpretation is consistent with accumulating data that the electrical activity of the aged hippocampus does not readily distinguish between environments (Wilson et al., 2003) spatial reference frames (Rosenzweig, Redish, McNaughton and Barnes, 2003), or behavioural episodes (Shen, Barnes, McNaughton, Skaggs and Weaver, 1997). Different rats, like people, develop different cognitive abilities and impairments at the same chronological age. It is therefore possible that the deficit we observed in the aged group reflects a deficit in only a subset of the aged subjects. Importantly, the present data demonstrate there are reliable cognitive deficits in aged rats before and after hippocampal lesion. The deficits are difficult to explain by the widely acknowledged views that the hippocampus is important for the normal processing of spatial information (O’Keefe and Nadel, 1978) or relational memory (Squire, 1992; Cohen and Eichenbaum, 1993). The present results suggest that comprehensive accounts of hippocampal function might consider highlighting its role in segregating experience into separately 144 Hippocampus, Ageing and Segregating memories stored representations. Such appropriately segregated representations can later be recombined to form associations with other relevant representations. Segregated representations of this sort, can also be separated from potentially irrelevant representations. Incorporating this segregation perspective may help to account for why aging and hippocampal dysfunction compromise episodic memory ability. 145 Chapter 4 References Cohen, N.J., and Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press. Eichenbaum, H., Mathews, P., and Cohen, N. J. (1989). Further studies of hippocampal representation during odor discrimination learning. Behavioral Neuroscience, 103, 1207-1216. Francès, H., Tebbakha, M. R., and Bourre, J. M. (2001). Learning and latent inhibition in old mice. Neuroscience Letters, 315, 164-166. Gallo, M. (2005). Hippocampus, temporal context and taste memories. Chemical Senses, 30(Suppl 1), i160-i161. Gallo, M., and Cándido, A. (1995). Dorsal hippocampal lesions impair blocking but not latent inhibition of taste aversion learning in rats. Behavioral Neuroscience, 109, 413-425. Kentros, C. (2006). Hippocampal place cells: the "where" of episodic memory? Hippocampus, 16, 743-754. Kesner, R. P., Lee, I., and Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Reviews Neuroscience, 15, 333-351. Kubik, S., and Fenton, A. (2005). Behavioral evidence that segregation and representation are dissociable hippocampal functions. Journal of Neuroscience, 25, 9205-9212. 146 Hippocampus, Ageing and Segregating memories Lewis, M. C., and Gould, T. J. (2007). Reversible inactivation of the entorhinal cortex disrupts the establishment and expression of latent inhibition of cued fear conditioning in C57BL/6 mice. Hippocampus, 217, 462-470. Manrique, T., Molero, A., Ballesteros, M. A., Morón, I., Gallo, M., and Fenton, A. (2004). Time of day-dependent latent inhibition taste aversion learning in rats. Neurobiology Learning & Memory, 82, 77-80. Manrique, T., Morón, I., Ballesteros, M. A., Guerrero, R.M., and Gallo, M. (2007). Hippocampus, ageing, and taste memories. Chemical Senses, 32, 111-117. Morón, I., and Gallo, M. (2007). Effect of previous taste experiences on taste neophobia in young-adult and aged rats. Physiology and Behavior, 90, 308-317. Morón, I., Ballesteros, M. A., Cándido, A., and Gallo, M. (2002a). Taste aversion learning and aging: a comparison with the effect of dorsal hippocampal lesions in rats. Physiological Research, 51 Suppl 1, S21S27. Morón, I., Manrique, T., Molero, A., Ballesteros, M.A., Gallo, M., and Fenton, A. (2002b). The contextual modulation of conditioned taste aversions by the physical environment and time of day is similar. Learning & Memory 9, 218-223. O`Keefe, J., and Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press. 147 Chapter 4 Paxinos, G., and Watson, C. (1986). The rat brain in stereotaxic coordinates. San Diego: Academic Press. Poldrack, R. A., and Packard, M. G. (2003). Competition among multiple memory systems: converging evidence from animal nand human brain studies. Neuropsychologia, 41, 245-251. Purves, D., Bonardi, C., and Hall, G. (1995). Enhancement of latent inhibition in rats with electrolytic lesions of the hippocampus. Behavioral Neuroscience, 109, 366-370. Reilly, S., Harley, C., and Revusky, S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107, 996-1004. Rosenzweig, E. S., Redish, A. D., McNaughton, B. L., and Barnes, C. A. (2003). Hippocampal map realignment and spatial learning. Nature Neurosciences, 6, 609-615. Saksida, L. M., Bussey, T. J., Buckmaster, C. A., and Murray, E. A. (2007). Impairment and facilitation of transverse patterning after lesions of the perirhinal cortex and hippocampus, respectively. Cerebral Cortex, 17, 108-115. Schroeder, J. P., Wingard, J. C., and Packard, M. G. (2002). Post-training reversible inactivation of hippocampus reveals interference between memory systems. Hippocampus, 12, 280-284. 148 Hippocampus, Ageing and Segregating memories Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., and Weaver, K. L. (1997). The effect of aging on experience-dependent plasticity of hippocampal place cells. Journal of Neuroscience, 17, 6769-6782. Smith, D. M., and Mizumori, S. J. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16, 716-729. Squire, L. R. (1992). Memory and the hippocanmpus: a synthesis from findings with rats, monkeys and humans. Psychological Review, 99, 195-231. Stone, M. E., Grimes, B. S., and Katz, D. B. (2005). Hippocampal inactivation enhances taste learning. Learning & Memory, 12(6), 579-586. Wesierska, M., Dockery, C., and Fenton, A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampusdependent cognitive coordination in the rat. Journal of Neuroscience, 25(9), 2413-2419. Wilson, I. A., Ikonen, S., McMahan, R. W., Gallagher, M., Eichenbaum, H., and Tanila, H. (2003). Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiology of Aging, 24, 297-305. Winocur, G., and Hasher, L. (2004). Age and time-of-day effects on learning and memory in a non-matching-to-sample test. Neurobiology of Aging, 25, 1107-1115. 149 CHAPTER 5 Manrique, T., Gámiz, F, Morón, I., Ballesteros, M. A., and Gallo, M. (2008) Peculiar modulation of taste aversion learning by the time of day in developing rats (en revision) Peculiar modulation of taste aversion learning by the time of day in developing rats a,b Manrique, T., , a,bGámiz, F, a,bMorón, I., aBallesteros, M. A., and a,bGallo, M. a Department of Experimental Psychology and Physiology of Behavior. University of Granada. Spain, bInstitute of Neurosciences F. Oloriz. University of Granada. Spain ABSTRACT The ontogeny of the temporal context modulation of conditioned taste aversion was studied in male Wistar rats using a palatable 1% NaCl solution. A procedure that included two saline preexposures, a single pairing salinelithium chloride (0,15M; 1% b.w.) either at the same or a different time of day of preexposures and a one-bottle test at the same time than preexposure was applied. Five age groups (PN24, PN32, PN48, PN64 and PN100) covering the complete range from preadolescence to the adult period were tested in two experiments. The results showed no effect of a temporal context shift both in PN24 and PN32. A peculiar enhancement of temporal context-specific saline aversions was exhibited by PN48 and PN64 rats, while the adult typical temporal context dependency of latent inhibition was only evident in PN100 rats. The results are discussed in terms of the peculiar brain functional organization during a protracted adolescence period. This article was supported by the Ministerio de Educación y Ciencia. Spain (SEJ2005-01344) and Junta de Andalucía. Spain (HUM 02763) Chapter 5 KEY WORDS: taste aversion, temporal context, adolescence, rats, latent inhibition, post-weaning, neophobia. 5.1. Introduction Conditioned taste aversions (CTA) are readily acquired in one-trial by adult rats if intake of a taste solution is followed by visceral distress induced by lithium chloride. The learned response consists in a shift of the taste hedonic value, thus becoming unpalatable and being avoided in later encounters (Bures, Bermúdez-Rattoni, and Yamamoto, 1988). Among other factors, such as palatability, taste novelty is a potent modulator of CTA. Previous exposure to the taste without consequences retards CTA acquisition, a well known phenomenon called latent inhibition (Lubow, 1989). Context may also modulate CTA. In addition to context aversions that may be induced by lithium chloride if several conditioning trials are applied (Boakes, Westbrook, and Barnes, 1992; Rodríguez, López, Symonds and Hall, 2000; Symonds, and Hall, 1997), both latent inhibition (LI) of CTA and CTA itself may exhibit contextdependency under certain circumstances. First, a context change between preexposure and conditioning may attenuate the latent inhibition effect (Hall and Channell, 1986; Rudy, Rosenberg, and Sandell, 1977). Second, a context 154 Time of day, Temporal context and Ontogeny change between conditioning and testing may interfere with learned taste aversions retrieval (Boakes, Westbrook, Elliot and Swinbourne, 1997; Bonardi, Honey and Hall, 1990; Loy, Álvarez, Rey, and López, 1993; Puente, Cannon, Best, and Carell, 1988). We have previously reported that a time of day shift may also act as a context, thus modulating CTA in absence of other environmental changes (Morón et al., 2002; Manrique et al., 2004). Using a behavioural procedure that included changing the temporal context between preexposure and testing and also between conditioning and testing, we have demonstrated the temporal context dependency of both latent inhibition and conditioned taste aversion. Evidencing the former or the latter phenomenon depends on subtle modifications of the same basic behavioural procedure. Thus, if the procedure includes a long habituation period to drink twice a day and non restricted intake during conditioning those groups preexposed and conditioned at a different time of day exhibit stronger aversions than those preexposed and conditioned at the same time of day, showing that a time of day shift between preexposure and conditioning interferes with LI (Manrique et al., 2004). However, the opposite pattern is seen by applying only two days of previous habituation to drink water twice a day and restricted drinking during the conditioning session. The group conditioned and tested at the same time of day 155 Chapter 5 showed stronger aversions than that conditioned and tested at a different time of day (Morón et al., 2002). This showed that the same time of day of conditioning facilitates retrieval of the aversive taste memory during testing (Manrique, et al., 2004). Ontogenetically, CTA is a primitive and early developing type of associative learning. The ability to associate flavour cues with subsequent lithium-induced visceral distress and to exhibit conditioned flavour aversions in later encounters has been reported in rat foetuses (Abate, Pepino, Domínguez, Spear, and Molina, 2000; Smotherman, 2002a, 2002b; Smotherman and Robinson, 1985). Neonatal rats are able to learn odour and taste aversions. Lemon-quinine pairings 3-5 hours after birth result in odour aversions that reduce both attachment to a surrogate nipple and milk intake in the odour presence (Nizhnikov, Petrov, and Spear, 2002). Rudy and Cheatle (1977) reported aversions in 8-day-old rat pups exposed to an odour-lithium chloride pairing at the age of two days. Although the nursing situation may interfere with the acquisition of learned taste aversions (Alberts and Gubernick, 1984; Martin and Alberts, 1979), aversions to sweet and salty solutions followed by lithium chloride injections are evident in five-day-old rat pups when tested 5 or 16 days later (Kehoe and Blass, 1986). Hoffmann, Molina, 156 Time of day, Temporal context and Ontogeny Kucharski, and Spear (1987) also demonstrated saccharin and sucrose aversions induced by lithium chloride pairings in 5- and 9-day old pups. As it has been described in other types of learning, new CTA capabilities emerge at older ages, supporting both longer retention intervals (Gregg, Kittrell, Domjan, and Amsel, 1978; Guanoswsky, Misanin, and Riccio, 1983; Schweitzer and Green, 1982) and the appearance of more complex associative phenomena, such as latent inhibition or second-order conditioning (Ader and Peck, 1977; Cheatle and Rudy, 1979). In fact, latent inhibition of CTA shows a late emergence during development. In spite of previous results showing LI of sucrose aversions after a high number of preexposures in 20-25 day old rats (Franchina, Donato, Patsiokas, and Griesemer, 1980), a number of early studies reported deficits in latent inhibition of CTA before 20-25 days of aged (Klein, Mikulka, Domato, and Hallstead, 1977; Misanin, Blatt, and Hinderliter, 1985; Misanin, Guanowsky, and Riccio, 1983; Wilson and Riccio, 1973). Nicolle, Barry, Veronesi, and Stanton (1989) performed a well controlled study which included 18- 25- and 32-day-old rats in order to assess LI of CTA to coffee and saccharin solutions. By applying four preexposures to the solutions throughout intraoral cannulae along 2 days and lithium injection after a fifth solution infusion the next day they did not found evidence of LI of 157 Chapter 5 CTA in rats younger than 32 days of age, being the aversion tested in a onebottle test performed four days later. To the best of our knowledge no data are available on the ontogeny of the LI contextual specificity using CTA. Moreover, studies on conditioned emotional response (CER) provide conflicting results. Rudy (1994) reported context-specific LI in 23-day-old rats, while Zuckerman, Rimmerman, and Weiner (2003) showed that 35-day-old rats exhibited LI “resistant” to a context shift between preexposure and conditioning. In the present experiments we have applied CTA in order to explore the ontogeny of latent inhibition (Exp. 1) and its contextual specificity (Exp. 2) in postweaning rats by using a taste aversion learning protocol that has been proven appropriate to induce time-of-day specific LI of CTA in adult rats. 5.2. Experiment 1 Latent inhibition emerges at different developmental points depending on the learning procedure. Latent inhibition has been reported in 18-day-old rats applying fear conditioning to an auditory stimulus (Kraemer and Randall, 158 Time of day, Temporal context and Ontogeny 1992; Rudy, 1994), an odour (Richardson, Fan, and Parnas, 2003; Yap and Richardson, 2005) and in fear potentiated startle (Richardson et al., 2003). The emergence of latent inhibition of CTA seems to be dependent on the number of preexposures, among other parameters of the behavioural procedure. Nicolle et al (1989) who applied throughout oral cannulae four taste preexposures demonstrated latent inhibition of CTA in rats at the age of 32 but not 25 or 18 days. However, by increasing the number of preexposure LI of CTA has been reported in 20-25-day-old rats (Franchina et al, 1980). This experiment examined whether 24 and 32-day-old (PN24 and PN32) rats demonstrate latent inhibition of CTA in a conventional protocol including voluntary intake identical to that previously applied to adult rats (Morón et al., 2002). The behavioural procedure included two non-reinforced saline exposures and a single saline-lithium chloride pairing. Given that Nicolle, Barry, Veronesi, and Stanton (1989) showed that 25-day-old fail to exhibit latent inhibition after four taste preexposures, we predicted that 24-dayold rats would not exhibit the preexposure effect, i.e., that preexposed and control non-preexposed groups would exhibit similar strength aversions. However, we hypothesized that 32-day-old rats would exhibit latent inhibition, thus showing the preexposed group weaker aversions than the control nonpreexposed group. 159 Chapter 5 5.2.1. Method 5.2.1.1. Subjects Thirty-six naïve male Wistar rats obtained from ten dams were used. All the rats were bred at the colony of the University of Granada weighed a mean of 62.6 gr (range = 46.2 – 81.6 gr) for 24 day-old group and 85.8 gr (range = 66 – 108 gr) for 32 day-old group. The female pregnant rats were checked daily for new births being the first postnatal day (PN0) the morning in which the new litters were first observed. Three days after birth each litter was culled to ten pups (being the males always preserved) and housed with their dams in standard clear polyethylene hanging cages. Weaning took place on postnatal day 19 (PN19). The litters were individually housed in an isolated room with constant temperature (22-24ºC) and a 12:12 h. light-dark cycle (lights on at 8:00 am and off at 8:00 pm). Food was available ad libitum, but water availability depended on the behavioural procedure. Half of the animals were conditioned at the age of 24 ±1 days (PN24) while the other half at 32 ±1 days (PN32). In addition, half of the animals in each group received previous preexposures (Pre) while the other half were nonpreexposed (Ctrl). Thus, the rats were randomly assigned to one of 4 groups: 160 Time of day, Temporal context and Ontogeny PrePN24 (n=10), CtrlPN24 (n=8), PrePN32 (n=9) and CtrlPN32 (n=8). The behavioural procedures were approved by the University of Granada Ethics Committee for Animal Research, and were in accordance with both the NIH of the United States guidelines for the ethical treatment of animals, and the European Communities Council Directive of 24 November 1986 (86/609/EEC). 5.2.1.2. Apparatus During the behavioural training the rats remained on individual home cages, which consisted of one chamber (30 x 15 x 30 cm) made of four walls: two opposing walls were made of opaque polyethylene; the front and back walls were made of clear polyethylene. The front wall had two holes of 1.6 cm of diameter, placed to equal distance from the centre and 10 cm from the bottom of the cage, thus allowing us to introduce the graduated burettes containing the taste solution. The luminance provided by the lights located on the ceiling of the room provided 40 nit. A ventilation fan that was located on the side wall of the room produced a low-level background noise of 66 dB. 161 Chapter 5 5.2.2. Procedure The animals were subjected to the short-habituation procedure described by Morón et al. (2002). Throughout the behavioural procedure they had two daily 15 min drinking sessions. Morning (9:00 am) and evening (7:00 pm) drinking sessions were used to maximally differentiate the temporal contexts. The procedure consisted in five phases: Habituation, Taste Preexposure, Conditioning, Recovery and Testing (see table 1). After being habituated for 2 days to the water deprivation procedure, the rats belonging to the preexposed groups (Pre) were allowed to drink saline solution (NaCl, 1% diluted in distilled water) for 15 min during the evening session for the following 2 days while those belonging to the non-preexposed groups (Ctrl) were allowed to drink water. The next day conditioning took place during the evening session. All the rats were allowed to drink 4 ml of a sodium chloride solution (1%) for 15 min. Fifteen minutes later they received an intraperitoneal (i.p.) injection of lithium chloride (LiCl 0.15M; 2% body weight) and were returned to the home cage. After two recovery days with water available during the drinking sessions, a one-bottle test was applied during the evening drinking session. The amount of fluid ingested was recorded to the nearest 0.1 ml. In order to 162 Time of day, Temporal context and Ontogeny facilitate comparisons between different aged groups and different experiments a test intake rate was calculated (test/CTA * 100), representing 100 no aversion, since the animals would have drunk the same amount during testing than during conditioning and 0 maximum aversion. Table 1. Behavioural procedure. am/pm = temporal contexts morning/evening; Sal = Isotonic saline, 1%; LiCl = Lithium Chloride. Pre = Preexposed group; Ctrl = Control group; Same = groups with preexposure, conditioning and testing during evening session; Diff = groups with conditioning during morning session. HABITUATION PREEXPOSURE CONDITIONING RECOVERY TESTING (Exp 1: 2 days; (2 days) (1 session) (2 sessions) (1 session) Exp 2: 5 days) am and pm am: Water am: Water am and pm am: Water Water pm: Sal pm: Sal ± LiCl Water pm: Sal am and pm am: Water am: Sal ± LiCl am and pm am: Water Water pm: Sal pm: Water Water pm: Sal am and pm am and pm am: Water am and pm am: Water Water Water pm: Sal ± LiCl Water pm: Sal am and pm am and pm am: Sal ± LiCl am and pm am: Water Water Water Water pm: Sal Pre-Same Pre-Diff (only Exp 2) Ctrl-Same Ctrl-Diff (only Exp 2) pm: Water 163 Chapter 5 5.2.3. Results and Discussion A 2 x 2 (Age x Preexposure) between groups ANOVA analysis of the rats weight at the beginning of the experiment showed only a significant main effect of Age (F(1,31)= 32.55; p < 0.01), indicating that PN24 rats weighted less (62.73 gr ± 2.58) than the PN32 rats (85.79 gr ± 3.18). There was not a significant effect of Preexposure (F(1,31)= 2.01; p > 0.17) nor interaction Age x Preexposure (F(1,31)= 0.05; p > 0.82). Consistently, there was a significant effect of Age (F(1,33)= 18.7; p < 0.01) in the water intake during the second habituation evening session, that was taken as the baseline, PN24 rats drunk 3.65 ml (SEM ± 0.2) while PN32 drunk 4.79 ml (SEM ± 0.2). A mixed 2 x 3 (Age x Days) ANOVA analyses of the amount ingested by the preexposed groups including the water intake during the baseline and saline intake during the preexposure sessions was applied in order to explore the presence of neophobia. The analysis showed a main effect of Days (F(2,32)= 19.9; p < 0.01) but no significant effect of Age (F(1,16)= 2.31; p > 0.15) nor interaction Age x Days (F(2,32)= 0.49; p > 0.62). Post hoc LSD comparisons indicated higher consumption of saline during the first preexposure than water intake during the baseline water drinking session ( p < 0.01) and no differences 164 Time of day, Temporal context and Ontogeny between the first and second preexposure (p > 0.55) . The increased saline consumption compared with water shows a high acceptance of the low NaCl concentration used. The steady intake in both preexposures, i.e., the absence of increase in the amount ingested during the second preexposure session can be interpreted as absence of neophobia to the low concentration of saline solution, although a ceiling effect can not be discarded. Since the saline intake during conditioning was restricted to 4 ml, there were no differences between the groups. Fig. 1 summarizes the results of the conditioning and testing phases using a test intake rate (%). A 2 x 2 (Age x Preexposure) ANOVA analysis of the test intake rate (%) showed only a significant main effect of Preexposure (F(1,31)= 5.38; p < 0.05), but not significant effects of Age (F(1,31)= 1.32; p > 0.26) nor interaction Age x Preexposure (F(1,31)= 0.62; p > 0.44). In spite of the fact that the interaction was not significant, LSD planned comparisons showed no differences between Pre and Ctrl groups in the younger PN24 condition (p > 0.27) indicating absence of latent inhibition. In contrast, at the older age (PN32) the nonpreexposed Ctrl group showed a significantly lower test intake rate, i.e., stronger aversion than the non-preexposed Ctrl group (p < 0.05), thus showing the latent inhibition effect. 165 Chapter 5 Figure 1. Saline solution test intake rates (Test/CTA *100) of preexposed and control groups receiving a taste-lithium pairing at postnatal day 24 (PN24) and postnatal day 32 (PN32) in the Experiment 1. The average values ± SEM are reported. In all, the results of experiment 1 showed three main findings. First, there was no evidence of neophobic response to a low concentration saline solution at any of the ages tested. On the contrary, the saline solution intake was higher than that of water baseline and no subsequent evidence of habituation of neophobia was found, since there was no further increase in the amount of saline solution consumption during the second preexposure. 166 Time of day, Temporal context and Ontogeny Second, both age groups exhibited reliable taste aversion to a highly accepted low concentration saline aversion. The absence of aversion would have yielded test intake rates higher than 100, due to the restricted intake during conditioning. Third, 32- but not 24-day-old rats showed latent inhibition of CTA using a behavioural procedure that included two saline preexposures twenty four hours apart between each of them and conditioning. This finding confirms and extends previous results (Nicolle et al., 1989) showing that rats younger than 32 days of age do not exhibit LI of CTA. Nicolle, et al. (1989) applied three preexposures to a intraorally infused coffee solution separated between them by two hours and a fourth exposure sixteen hours later, conditioning taking place ten hours after the last preexposure. In the present experiment the absence of LI in 25-day-old was demonstrated using a procedure that included two saline preexposures and we had previously demonstrated to induce LI in adult rats. 5.3. Experiment 2 The results of experiment 1 demonstrated LI of learned saline aversions in 32- but not 24- day-old rats. By using the time of day as context and a 167 Chapter 5 modified procedure that included five days of habituation to drink twice a day and non-restricted intake during conditioning, we have previously reported context-specific LI of conditioned saline aversions in adult rats (Manrique et al., 2004). Experiment 2 examined the emergence of the temporal context dependency of LI during the adolescence period, which has been widely defined as covering a wide ages range from PN28 to around PN60 (Spear, 2000). Thus, the performance of three adolescent groups (PN32, PN48, PN64) and an adult three-month-old group (PN100) was compared using an identical procedure to that used by Manrique et al. (2004). 5.3.1. Subjects One hundred and forty one male Wistar rats obtained from 31 litters were used. The litters were culled to 10 pups and weaning took place on PN19 following the procedure described in Experiment 1. After weaning, the rats were housed in groups of three to four subjects until the training procedure required individual housing. According to the 4 x 2 x 2 (Age x Preexposure x Group) design the pups were randomly assigned to one of the sixteen groups (see table 1). The behavioural procedures were approved by the University of Granada Ethics Committee for Animal Research, and were in accordance with 168 Time of day, Temporal context and Ontogeny both the NIH of the United States guidelines for the ethical treatment of animals, and the European Communities Council Directive of 24 November 1986 (86/609/EEC). 5.3.2. Procedure The general behavioural procedure was similar to that described in Experiment 1 except for two differences: the habituation phase to drink water twice a day lasted five days instead of two, and the rats were allowed to drink the saline solution during the 15 minutes conditioning session without restriction (see table 1). The behavioural procedure has been previously described in detail (Manrique et al., 2004). Briefly, in order to test LI and its contextual specificity, each age group was further divided in four groups according to the presence or absence both of a time of day shift during conditioning and of saline preexposures. Same groups were conditioned during the evening drinking session while Diff groups were conditioned during the morning drinking session, i.e., at a different time of preexposure and testing. Control groups had no previous saline preexposures while Pre groups received two saline preexposures. In order to facilitate comparisons between different age 169 Chapter 5 groups a test intake rate was calculated (test/CTA * 100), representing 100 no aversion, since the animals would have drunk the same amount during testing than during conditioning and 0 maximum aversion. 5.3.3. Results and Discussion Table 2 shows the mean (± SEM) body weights of the different groups at the behavioural procedure onset. A 4 x 2 x 2 (Age x Preexposure x Group) ANOVA analysis evidenced a significant main effect of Age (F(3,125)= 847.86; p < 0.01), showing an expected weight increase related with increasing age. Thus, post hoc LSD comparisons showed differences between all the age groups (p < 0.01). No other effects were significant. 170 Time of day, Temporal context and Ontogeny Table 2. Experimental design including number of subjects in each group and mean ± SEM of weight by age. PN32 PN48 PN64 ADULT Same Preexposed Control n=8 n=9 n=9 n = 10 83.47 gr ± 5.35 41.22 gr ± 6.28 71.13 gr ± 6.69 255.84 gr ± 4.6 Diff n=8 n = 10 n = 10 n = 10 85.03 gr ± 3.35 54.16 gr ± 6.15 55.93 gr ± 5.06 57.82 gr ± 4.31 Same n=8 n=9 n=8 n=9 86.7 gr ± 4.48 9.98 gr ± 4.03 61.02 gr ± 4.71 57.71 gr ± 3.04 n=8 n=8 n=9 Diff n=8 84.32 gr ± 3.66 45.15 gr ± 3.85 56.16 gr ± 5.53 53.89 gr ± 4.18 A 4 x 2 x 2 (Age x Preexposure x Group) ANOVA analysis of the water consumption during the baseline showed a significant main effect of Age (F(3,127)= 12.96; p < 0.01, but no other main effects nor interactions were significant. Post hoc LSD comparisons indicated that PN32 group consumed less water than the rest of the groups (p < 0.01). In spite of the age-related weight increase, no differences were seen among the rest of the groups in the water intake. In order to explore the neophobic response and its potential habituation a 4 x 4 (Age x Days) mixed ANOVA analysis of the amount of water and saline solution drunk during the baseline, preexposures and conditioning sessions in those groups conditioned at the same time of preexposures (Pre171 Chapter 5 Same) was performed. There was a significant effect of Age (F(3,32)= 11.29; p < 0.01), Days (F(3,96)= 24.90; p < 0.01) and the interaction Age x Days (F(9,96)= 2.11; p < 0.05) Repeated measures ANOVA analyses of the amount drunk by each age group including the baseline, preexposures and conditioning sessions revealed a significant main effect of Days in each group, PN32 (F(3,21)= 7.84; p < 0.01) , PN48 (F(3,24)= 3.47; p < 0.05), PN64 (F(3,24)= 11.50; p < 0.01) and Adult (F(3,27)= 15.96; p < 0.01). Post-hoc LSD comparisons showed increase of saline intake during the first preexposure compared with the previous baseline water drinking session in the each of the age groups (p < 0.05), confirming the results obtained in Experiment 1. An increase of saline consumption during the second preexposure compared with the first preexposure was evident only in PN32 (p < 0.01) and Adult groups (p < 0.01). However, PN32 rats reduced again the saline intake during the third preexposure with no significant differences in comparison with the first preexposure, while adult rats maintained a high saline intake with no differences between the second and third preexposures, thus confirming attenuation of neophobia only in adult rats. Unexpectedly, PN64 rats that did not showed attenuation of neophobia in the second preexposure, exhibited a later increase in saline solution intake during the third preexposure, i.e., the conditioning session compared with the previous 172 Time of day, Temporal context and Ontogeny preexposure session (p < 0.01) which did not appear in the younger groups. This increase could not be detected in Experiment 1 since saline intake was restricted during the conditioning session, but it allows us a different conclusion concerning the presence of the neophobic response. Regarding the ontogeny of taste neophobia, the data support not only the presence of a neophobic reaction to a highly accepted low saline concentration, response that requires two exposures to habituate in Adult groups, but also a saline neophobic response at 64 days of age, that required three exposure to habituate. No evidence of neophobic responses were found in the younger groups. Figure 2 shows the mean (± SEM) test intake rates of the different groups. A 4 x 2 x 2 (Age x Preexposure x Group) ANOVA analysis showed a significant effect of the interaction Age x Preexposure x Group (F(3,125)= 6.12; p < 0.01). Therefore, 2 x 2 (Preexposure x Group) two way ANOVA analyses were performed in each age group. 173 Chapter 5 Figure 2. Test Saline solution test intake rates (Test/CTA *100) of the different groups receiving a taste-lithium pairing at postnatal day 24 (PN24), postnatal day 32 (PN32), postnatal day 48 (PN48), postnatal day 64 (PN64) and postnatal day 100 (Adult) in the Experiment 2. (Pre = preexposed groups; Ctrl = non-preexposed groups; Same = groups receiving preexposures, conditioning and testing at the same time of day; Diff = groups conditioned at a different time of day of preexposure and testing.) In PN32 there was a significant effect of Preexposure (F(1,28)= 16.14; p < 0.01), evidencing the non-preexposed groups stronger aversions (mean: 60.26 ± 7.17) than the preexposed groups (mean: 24.30 ± 4.9), but no effect of time of day shift (F(1,28)= .21; p > 0.65), nor interaction (F(1,28)= 0.04; p > 0.84). Thus, the results revealed the presence of latent inhibition and no effect of the temporal context shift on LI of CTA at this age. 174 Time of day, Temporal context and Ontogeny In PN48 there was a significant main effect of Preexposure (F(1,32)= 33.77; p < 0.01), Group (F(1,32)= 5.25; p < 0.05) and the interaction Preexposure x Group (F(1,32)= 4.76; p < 0.05). Post-hoc LSD comparisons revealed that the effect could be attributed to the differences between the preexposed groups, since no differences were seen between the Ctrl non-preexposed groups (p > 0.94) which exhibited a low test intake rate, i.e., strong saline aversions. LI was evident in both preexposed groups, since both Pre-Same (p < 0.01) and PreDiff (p < 0.05) showed higher intake rates than their respective control nonpreexposed groups. The Pre-diff group showed also a weaker aversion than Pre-Same group (p < 0.01). This pattern of results supported the presence of context specific saline aversions in the preexposed animals and absence of context specific LI. Unexpectedly, similar results were obtained in PN64 rats. Again, there was a significant main effect of Preexposure (F(1,31)= 39.01; p < 0.01), Group (F(1,31)= 6.71 p < 0.01) and the interaction Preexposure x Group (F(1,31)= 10.74; p < 0.01). Post-hoc LSD comparisons confirmed that the effect could be attributed to the differences between the preexposed groups, since no differences were seen between the Ctrl non-preexposed groups (p > 0.64) which exhibited a low test intake rate, i.e., strong saline aversions. LI was evident in both preexposed groups, since both Pre-Same (p < 0.05) and Pre175 Chapter 5 Diff (p < 0.01) showed higher intake rates than their respective control nonpreexposed groups. Again, the Pre-diff group showed also a weaker aversion than Pre-Same group (p < 0.01). The results obtained with the adult group confirmed previously reported results showing that a time of day shift during conditioning disrupt LI (Manrique et al., 2004). There was a significant main effect of Preexposure (F(1,34)= 15.39; p < 0.01), Group (F(1,34)= 4.06; p < 0.05) and the interaction Preexposure x Group (F(1,34)= 6.19; p < 0.05). Post-hoc LSD comparisons revealed that the effect could be attributed to the differences between the preexposed groups, since no differences were seen between the Ctrl nonpreexposed groups (p > 0.75) which exhibited a low test intake rate, i.e., strong saline aversions. Interestingly, the pattern of results shown by the preexposed groups was opposite to that found in the younger groups. LI was evident only in the Pre-Same group (p < 0.01), but not in the Pre-Diff group (p > 0.32). In fact, the Pre-diff group showed also a stronger aversion than Pre-Same group (p < 0.01). Taken together the results indicated a late emergence of the adult timeof-day specific LI (Manrique et al., 2004), which is only observed in the adult group. Consistent with a context-independent LI, the deleterious effect of saline preexposures on later CTA was resistant to a time of day shift in PN32. 176 Time of day, Temporal context and Ontogeny However, the time of day shift induced a peculiar strong effect both in PN48 and PN64. Those preexposed groups conditioned at a different time of day of preexposure and testing exhibited weaker saline aversions than those conditioned at the same time of day of preexposure and testing. This is an effect previously reported by using a short-habituation procedure in adult rats (Morón et al., 2002), but never obtained with the present long-habituation protocol in adult rats (Manrique et al., 2004). Regarding the ability to learn a saline aversion, a one-way ANOVA analysis of the test intake rates showed by the Ctrl non-preexposed groups at the different ages showed a significant main effect of Age (F(3,59)= 16.38; p < 0.01), evidencing weaker aversions in the younger PN32 group than in the rest of the groups (p < 0.01). No differences were seen among the rest of the groups. There was not significant effects of Group (F(1,59)= 0.24; p > 0.63) nor interaction Age x Group (F(3,59)= 0.39; p > 0.76). This result evidenced that the learning ability improved with age, having reached the adult level by 48 days of age. 177 Chapter 5 5.4. General Discussion Several findings regarding the ontogeny of taste neophobic responses, the ability to learn taste aversions, the latent inhibition phenomenon and the effects of context modulation on CTA are reported using a low concentration NaCl solution as the taste stimulus in rats. First, regarding the ontogeny of the neophobic response to a 1% sodium chloride (NaCl) solution, the results of both Experiment 1 and Experiment 2 showed increased intake of the novel salty solution during the first preexposure session in all the age groups. We have previously reported similar results in adult and aged Wistar rats (Morón and Gallo, 2007). These data confirm the high palatability of this low saline concentration solution for rats. Accordingly, previous results have shown that this solution is preferable to water (Bare, 1949; Kare, Fregly, and Bernard, 1980; Kiefer and Grijalva, 1980; Pfaffmann, 1960; Weiner and Stellar, 1951). Although taste neophobia is defined as the reluctance to consume novel-taste solutions (Bures, et al. 1998), the demonstration of such reluctance requires an increase in taste consumption induced by the successive presentations 178 without negative consequences (neophobia attenuation), Time of day, Temporal context and Ontogeny regardless of previous water consumption. This is especially true if a palatable solution is used, as in our case. Therefore, we determined the absence of the neophobic response to a highly palatable NaCl solution not only by comparisons between saline consumption and previous-day water consumption, but also by further comparisons with saline intake on a second presentation (Exp. 1 and 2) as proposed by Reilly and Bornovalova (2005), and even on a third presentation (Exp. 2). The results of Experiment 1 confirmed the absence of saline neophobia both in PN24 and PN32, since no further saline increase was seen in the second preexposure session. Similar results were obtained in Experiment 2 at 48 and 64 days of age. The transitory increase of saline consumption observed in PN32 group during the second exposition does not seem to reflect attenuation of neophobia, since it disappeared during the following presentation in which the volume ingested decreased to the first preexposure level. However, in adult rats an increase in saline ingestion during the second presentation, which was maintained on the following presentation, evidenced the presence of neophobia. Thus, the data of both experiments concerning previous water intake and two saline presentations could be initially interpreted in terms of absence of saline neophobia until the age of 64 days. However, the analysis of the 179 Chapter 5 saline intake in Experiment 2 which included a third presentation, i.e., the saline intake during the conditioning session in those groups preexposed and conditioned at the same time of day, revealed the presence of neophobia not only in the adult group but also in the 64-day-old group, since an increase of saline intake was seen during the conditioning session. No such increase occurred in the younger groups confirming the absence of neophobia. The possibility that determining the presence of neophobic responses to highly palatable solutions may require a minimum of three taste presentations instead of two as previously proposed (Reilly and Bornovalova, 2005) should be considered. There are three different explanations for the absence of neofobia to a NaCl solution in the younger groups aged from 24 to 48 days. On the first place, the absence of neophobia could be attributed to immaturity of the gustatory system. Important changes in the sensitivity of the gustatory system to NaCl take place during development as shown by neurophysiological data. It has been reported that functional responses of the nucleus of the solitary tract, which is the first relay level of the gustatory system in rats, are not mature until after 35 days of age (Hill, Bradley, and Mistretta, 1983). Thus responsiveness to salts changes dramatically during a prolonged developmental period. Compared with adult rats, younger 25-day-old rats drink higher amounts of 180 Time of day, Temporal context and Ontogeny high concentration NaCl solutions that are aversive to mature rats (Midkiff and Bernstein, 1983). This could be interpreted as the younger rats failing to perceive qualitative or quantitative features of the stimulus. However, in the present experiment all the age groups demonstrated the ability to detect the saline solution, because learned aversions were evident. While a reduced sensitivity to the low saline concentration used in the present experiment cannot be fully discarded in 24- and 32 day-old rats, groups that showed weaker saline aversions than adult rats, this explanation is not supported in the 48-day-old group exhibiting robust saline aversions similar to that of older age groups. On the second place, the absence of saline neophobia in the younger groups could be due to an unspecific effect of early handling and training after weaning. It has been reported a decrease in neophobia induced by early handling (Weinberg, Smotherman, and Levine, 1978). However, all the groups were similarly treated concerning weaning and early handling. Finally, the most feasible explanation for the absence of neophobia, at least in PN32 and PN48 groups, is that based in the increased novelty seeking associated to adolescence (Spear, 2000). Reduced neophobic responses have been reported in adolescent rats (Darmani, Shaddy and Gerdes, 1996; Spear, 2000; Spear, Shalaby and Brick, 1980). Although a reduced salt sensitivity 181 Chapter 5 cannot be discarded in the younger 24- and 32-day-old groups, the absence of neophobia in 48-day-old rats can be more likely due to the peculiar features of the adolescent behaviour leading to novelty seeking. If this were so, the results of Experiment 2 support that 64-day-old rats may reflect the transition to the mature behavioral pattern regarding responses to taste novelty. With respect to the ontogeny of CTA, the ability to learn aversions to a low saline concentration was present in 24-day-old rats but it seemed to increase at older ages, reaching the mature level at 48 days of age. Experiment 1 showed stronger aversions in the older PN32 group than the younger PN24 group. This finding was extended in the second experiment. The youngest PN32 group exhibited weaker aversion than the rest of the groups that did not differ between them. The results confirm previous reports showing lithiuminduced aversions to salty solutions at early ages (Kehoe and Blass, 1986), but they indicate a developmental course of CTA capability throughout the preadolescent and early adolescent period. As mentioned above, the protracted developmental course of the brain mechanisms involved in NaCl perception which may have led to a potential reduced sensitivity to the taste solution, as well as the delayed maturation of the associative and memory processes required (Vogt and Rudy, 1984), can provide a feasible explanation for the improvement in long-delay CTA ability from 24 to 48 days. 182 Time of day, Temporal context and Ontogeny Third, regarding the ontogeny of the latent inhibition phenomenon, the results of Experiment 1 showed that latent inhibition of CTA is evident at 32 but not 24 days of age. Experiment 2 confirmed the presence of LI from 32 days of age. The results are consistent with those of Nicolle et al. (1989) who did not found evidence of latent inhibition of CTA using four taste preexposures applied along two days in rats younger than 32 days of age. The authors attributed the delayed onset of latent inhibition to immaturity of the hippocampal system, since fornix transections performed in preweanling rats disrupted the emergence of latent inhibition at 32 days of age. However, at present, there is no evidence for a critical hippocampal involvement in latent inhibition of CTA (for reviews see Buhusi, Gray, and Schmajuk, 1998; Gallo, Ballesteros, Molero, and Morón., 1999). Lesion studies in adult rats showed no effect (Gallo and Cándido, 1995) or enhancement of latent inhibition (Purves, Bonardi, and Hall, 1995; Reilly, Harley, and Revusky, 1993). Moreover, no disruption of LI by fornix transections has been reported in adult rats (Weiner, Feldon, Tarrasch, Hairston, and Joel, 1998). It can be envisaged that fornix transection during the early development can have widespread effects on the neural networks organization hindering a simple explanation. Finally, the most outstanding finding in the present study is the modification of the temporal context effect on CTA throughout the adolescence 183 Chapter 5 period. The range of developmental ages chosen, from PN24 to PN64, covered the complete adolescence period in rats, according to the most wide behavioural criteria (Spear, 2000). The results show a late emergence of the temporal context modulation of CTA, which is not evident in 32-day-old rats. Moreover, the temporal context modulation of CTA in PN48 and PN64 dramatically differs of that seen in the adult group. In fact, a time of day shift during the conditioning session induced a similar pattern of results at 48 and 64 days that was opposite to that seen at 100 days of age. In adult rats the temporal context change disrupted LI of CTA, thus showing a similar aversion to that exhibited by the non-preexposed groups. Therefore, the group conditioned at a different time of preexposure (Diff) showed a stronger aversion than the group preexposed and conditioned at the same time of day (Same). This temporal context specificity of LI has been previously reported in adult rats using an identical procedure (Manrique et al, 2004). However, the latent inhibition of CTA was not disrupted by conditioning the saline aversion at a different time of day than the preexposure sessions both in PN48 and PN64 groups. The Pre-Same and Pre-Diff groups both had weaker aversions than their respective non-pre-exposed control groups. Context non-specific LI has also been previously reported (Hall and Channell, 1986; Kurz and Levitsky, 1983; Rudy, Rosenberg, and Sandell, 184 Time of day, Temporal context and Ontogeny 1977). Moreover, in these age groups the time of day shift induced an opposite pattern of differences, with stronger aversions in the Pre-Same groups than in the Pre-Diff groups. We have previously reported a similar pattern of differences between Same and Diff preexposed groups in adult rats (Morón et al., 2002) applying the behavioural protocol described in Experiment 1, which included only two habituation days and restricted drinking during conditioning. A weaker aversion in those groups conditioned and tested at a different time of day than in those conditioned and tested at the same time of day may be the result of a temporal context specific aversion in the preexposed groups. The absence of differences between the Ctrl Pre and Ctrl Diff non-preexposed groups confirms previous results using one-trial CTA and one-bottle tests (Bonardi, Honey, and Hall, 1990; Rosas and Bouton, 1997) and it is consistent with previous findings showing that taste familiarity increases the contextual control of the aversion (Boakes et al., 1997; Puente et al., 1988). It can be proposed that the contextual specificity of LI and the contextual specificity of CTA are developmentally dissociable phenomena, showing the former a later emergence than the later. This is consistent with data showing that NMDA lesions of the dorsal hippocampus in adult rats disrupted the context specificity of LI but they did not impair the context specificity of CTA (Gallo, 2005). A bulk of results has pointed to a delayed 185 Chapter 5 emergence during development of learning and memory functions requiring a mature hippocampus (Bachevalier and Vardha-Khadem, 2005; Stanton, 2000). In fact, context dependent learning effects show a late emergence during development in other aversive learning tasks, such as fear conditioning (Rudy, 1994; Rudy and Morledge, 1993; Yap and Richardson, 2007). Furthermore, it has also been suggested that different functions of context cues in learning and memory (Holland and Bouton, 1999) may show different developmental courses (Carew and Rudy, 1991; Rudy, 1993). Nonetheless, the above reasoning is not enough to explain how the behavioural procedure that evidenced the temporal context specificity of LI in adult rats may have disclosed the temporal context specificity of CTA in developing rats, leading to the opposite pattern of differences seen in adolescent rats. The explanation has to be based in a peculiar organization of the learning and memory systems during this developmental period that facilitated the formation of a compound representation of saline and time-ofday. Thus, the temporal context specificity of learned taste aversions which in adult rats is only seen using a short habituation learning protocol was displayed. Brain development involves not only progressive but also critical regressive processes, taking place at different developmental stages in different brain areas. Thus, the developing brain systems involved in learning and 186 Time of day, Temporal context and Ontogeny memory exhibit peculiar patterns of organization that are not seen in adults and that may promote unique types of learning at early developmental stages. Among the peculiar features of learning demonstrated in developing rats is the enhancement of the ability to establish associations between stimuli not found in adults (Campbell and Spear, 1972; Hoffmann and Spear, 1988; Molina, Hoffmann, Serwatka and Spear, 1991; Bordner and Spear, 2006), the potentiation of the contextual conditioning by CS conditioning (Brasser and Spear, 2004) and facilitation of sensory preconditioning (Barr, Marrott, and Rovee-Collier, 2003). It can be proposed that the contextual modulation of CTA seen in the adolescent groups in our study involves associations between the time of day and the taste CS. These would have been facilitated due to the diffuse brain activation produced by an excessive number of synapses before the protracted axonal pruning taking place throughout the adolescence. However, adult rats would have represented the saline taste separately from the time of day it was experienced, since the opposite pattern of results was evident. Thus, the time of day specificity of LI could depend of the ability for segregating elements of an experience into separate internal representations, a function which has been attributed to the late developing hippocampus (Kubik and Fenton, 2005). Whatever the explanation, the results of Experiment 2 support a peculiar 187 Chapter 5 organization of the learning and memory systems which is still evident at 64 days of age. This shows a protracted time frame of adolescence which is consistent with the extended course of axonal pruning and myelination taking place in the developing brain both in rats (Bockhorst et al., 2008) and humans (Durston and Casey, 2006). In summary, the results reported in the present study show a dissociated developmental emergence of the phenomena studied. Conditioned taste aversion (CTA) was evident in the younger PN24 group, while latent inhibition did not appear until 32 days of age. Neophobic responses to the palatable saline solution showed a later emergence being evident the attenuation of neophobia at the third exposure in PN64 while at the second exposure in adult rats. No effect of a temporal context shift was seen either in PN24 or PN32. Moreover, a peculiar enhancement of a temporal context specific CTA was exhibited only by PN48 and PN64 rats, while the adult typical temporal context-dependency of LI was evident in PN100 rats. 188 Time of day, Temporal context and Ontogeny References Abate, P., Pepino, M. Y., Domínguez, H. D., Spear, N. E., and Molina, J. C. (2000). Fetal associative learning mediated through maternal alcohol intoxication. Alcoholism, Clinical and Experimental Research, 24(1), 39-47. Ader, R., and Peck, J. H. (1977). Early learning and retention of a conditioned taste aversion. Developmental Psychobiology, 10(3), 213-218. Alberts, J. R., and Gubernick, D. J. (1984). Early learning as ontogenetic adaptation for ingestion by rats. Learning and Motivation, 15(4), 334359. Bachevalier, J., and Vargha-Khadem, F. (2005). The primate hippocampus: ontogeny, early insult and memory. Current Opinion in Neurobiology, 15(2), 168-174. Bare, J. K. (1949). The specific hunger for chloride in normal and adrenalectomized white rats. Journal of Comparative and Physiological Psychology, 42, 242-253. 189 Chapter 5 Barr, R., Marrott, H., and Rovee-Collier, C. (2003). The role of sensory preconditioning in memory retrieval by preverbal infants. Learning and Behavior, 31(2), 111-123. Boakes, R. A., Westbrook, R. F., and Barnes, B. W. (1992). Potentiation by a taste of toxicosis-based context conditioning: effects of varying the test fluid. The Quarterly Journal of Experimental Psychology. B, Comparative and Physiological Psychology, 45(4), 303-325. Boakes, R., Westbrook, R., Elliot, M., and Swinbourne, A. (1997). Context dependency of conditioned aversions to water and sweet tastes. Journal of Experimental Psychology: Animal Behavior Processes, 23, 56-67. Bockhorst, K. H., Narayana, P. A., Liu, R., Ahobila-Vijjula, P., Ramu, J., Kamel, M., Wosik, J., Bockhorst, T., Hahn, K., Hasan, K. M., and Perez-Polo, J. R. (2008). Early postnatal development of rat brain: In vivo diffusion tensor imaging. Journal of Neuroscience Research, 11. Bonardi, C., Honey, R., and Hall, G. (1990). Context specificity of conditioning in flavor-aversion learning, extinction and blocking test. Animal Learning and Behavior, 18, 29-37. 190 Time of day, Temporal context and Ontogeny Bordner, K. A, and Spear , N. E. (2006). Olfactory learning in the one-day old rat: reinforcing effects of isoproterenol. Neurobiology of Learning and Memory, 86(1), 19-27. Brasser, S. M., and Spear, N. E. (2004). Contextual conditioning in infants, but not older animals, is facilitated by CS conditioning. Neurobiology of Learning and Memory, 81(1), 46-59. Buhusi, C. V., Gray, J. A., and Schmajuk, N. A. (1998). Preplexing effects of hippocampal lesions on latent inhibition: a neural network solution. Behavioral Neuroscience, 112, 316–351. Bures, J., Bermúdez-Rattoni, F., and Yamamoto, T. (1998). Conditioned taste aversión. Memory of a special kind. London: Oxford Science Publications. Campbell, B. A. and Spear, N. E. (1972). Ontogeny of memory . Psychological Review, 79, 215-236. Carew, M. B., and Rudy, J. W. (1991). Multiple functions of context during conditioning: A developmental analysis. Developmental Psychobiology, 24(3), 191-209. 191 Chapter 5 Cheatle, M. D., and Rudy, J. W. (1979). Ontogeny of second-order odoraversion conditioning in neonatal rats. Journal of Experimental Psychology: Animal Behavior Processes, 5(2), 142-151. Darmani, N. A., Shaddy,J., and Gerdes, C. F. (1996). Differential ontogenesis of three DOI-induced behaviors in mice. Physiology and Behavior, 60, 1495-1500. Durston, S., and Casey, B. J. (2006). What have we learned about cognitive development from neuroimaging?. Neuropsychologia, 44(11), 21492157. Franchina, J., Domato, G., Patsiokas, A., and Griesemer, H. (1980). Effects of number of pre-exposures on sucrose taste aversion in weanling rats. Developmental Psychobiology, 13(1), 25-31. Gallo, M. (2005). Hippocampus, temporal context and taste memories. Chemical Senses, 30(Suppl 1), i160–i161. Gallo, M., Ballesteros, M. A., Molero, A., and Morón, I. (1999). Taste aversion learning as a tool for the study of hipppocampal and non-hippocampal brain memory circuits Neuroscience, 2, 277–302. 192 regulation diet selection. Nutritional Time of day, Temporal context and Ontogeny Gallo, M., and Cándido, A. (1995). Dorsal hippocampal lesions impair blocking but not latent inhibition of taste aversion learning in rats. Behavioral Neuroscience, 109, 413-425. Gregg, B., Kittrell, E. M., Domjan, M., and Amsel, A. (1978). Ingestional aversion learning in preweanling rats. Journal of Comparative and Physiological Psychology, 92(5), 785-795. Guanowsky, V., Misanin, J. R., and Riccio, D.C. (1983). Retention of conditioned taste aversion in weanling, adult, and old-age rats. Behavioral and Neural Biology, 37(1), 173-178. Hall, G., and Channell, S. (1986). Context specificity of latent inhibition in taste aversion learning. Quaterly Journal of Experimental Psychology, 38B, 121-139. Hill, D. L., Bradley, R.M., and Mistretta, C.M. (1983). Development of taste responses in rat nucleus of the solitary tract. Journal of Neurophysiology, 50, 879-895. Hoffman, H., and Spear, N. E. (1988). Ontogenetic differences in conditioning of an aversion to a gustatory CS with a peripheral US. Behavioral and Neural Biology, 50(1), 16-23. 193 Chapter 5 Hoffmann, H., Molina, J. C., Kucharski, D., and Spear, N. E. (1987). Further examination of ontogenetic limitations on conditioned taste aversion. Developmental Psychobiology, 20(4), 455-463. Holland, P., and Bouton, M. (1999). Hippocampus and context in classical conditioning. Current Opinion in Neurobiology, 9, 195-202. Kare, M. R., Fregly, M., and Bernard, R. A. (1980). Biological and behavioural aspects of salt intake. Oxford: Academic Press. Kehoe, P., and Blass, E. M. (1986). Conditioned aversions and their memories in 5-day-old rats during suckling. Journal of Experimental Psychology: Animal Behavior Processes, 12(1), 40-47. Kiefer, S.W., and Grijalva, C. V. (1980). Taste reactivity in rats following lesions of the zona incerta or amygdala.. Physiology and Behavior, 25(4), 549-554. Klein, S. B., Mikulka, P. J., Domato, G. C., and Hallstead, C. (1977). Retention of internal experiences in juvenile and adult rats. Physiological Psychology, 5, 63-66. Kraemer, P., and Randall, C. (1992). Latent inhibition in preweanling rats. Psychobiology, 20, 81-84. 194 Time of day, Temporal context and Ontogeny Kubik, S., and Fenton, A. A. (2005). Behavioral evidence that segregation and representation are dissociable hippocampal functions. Journal of Neuroscience, 25, 9205-9212. Kurz, E. M., and Levitsky, D. A. (1983). Lithium chloride and avoidance of novel places. Behavioral Neuroscience, 97(3), 445-451. Loy, I., Álvarez., R., Rey, V., and López, M. (1993). Context-US associations rather than ocassion setting in taste aversion learning. Learning and Motivation, 24, 55-72. Lubow, R. (1989). Latent inhibition and Conditioned Theory. Cambridge: Cambridge University Press. Manrique, T., Molero, A., Ballesteros, M. A., Morón, I., Gallo, M., and Fenton, A. (2004). Time of day-dependent latent inhibition of conditioned taste aversions in rats. Neurobiology of Learning and Memory, 82, 77-80. Martin, L.T., and Alberts, J.R. (1979). Taste aversions to mother's milk: the age-related role of nursing in acquisition and expression of a learned association. Journal of Comparative and Physiological Psychology, 93(3), 430-445. 195 Chapter 5 Midkiff, E. E., and Bernstein, I. L. (1983). The influence of age and experience on salt preference of the rat. Developmental Psychobiology, 16(5), 385-394. Misanin, J., Blatt, L., and Hinderliter, C. (1985). Age dependency in neophobia: Its influence on taste-aversion learning and the flavorpreexposure effect in rats. Animal Learning and Behavior, 13, 69-79. Misanin, J. R., Guanowsky, V., and Riccio, D. C. (1983). The effect of CSpreexposure on conditioned taste aversion in young and adult rats. Physiology and Behavior, 30, 859-862. Molina J. C., Hoffmann, H., Serwatka, J., and Spear, N. E. (1991). Establishing intermodal equivalence in preweanling and adult rats. Journal of Experimental Psychology: Animal Behavior Processes, 17(4), 433-447. Morón, I., and Gallo, M. (2007). Effect of previous taste experiences on taste neophobia in young-adult and aged rats. Physiology and Behavior, 90, 308-317. 196 Time of day, Temporal context and Ontogeny Morón, I., Manrique, T., Molero, A., Ballesteros, M., Gallo, M., and Fenton, A. (2002). The contextual modulation of conditioned taste aversions by the physical environment and time of day is similar. Learning and Memory, 9, 218-223. Nicolle, M., Barry, C., Veronesy, B., and Stanton, M. (1989). Fornix transections disrupt the ontogeny of latent inhibition in the rat. Psychobiology, 17, 349-357. Nizhnikov, M. E., Petrov, E.S., and Spear, N.E. (2002). Olfactory aversive conditioning in the newborn (3-hr-old) rat impairs later suckling for water and milk. Journal of Experimental Psychology: Animal Behavior Processes, 28(3), 277-283. Pfaffmann, C. (1960). The pleasures of sensation. Psychological Review, 67(4), 253–268. Puente, G., Cannon, D., Best, M., and Carell, L. (1988). Occasion setting of fluid ingestion by contextual cues. Learning and Motivation, 19, 239253. Purves, D., Bonardi, C. and Hall, G. (1995). Enhancement of latent inhibition in rats with electrolytic lesions of the hippocampus. Behavioral Neuroscience, 109, 366–370. 197 Chapter 5 Richardson, R., Fan, M., and Parnas, S. (2003). Latent inhibition of conditioned odor potentiation of startle: A developmental analysis. Developmental Psychobiology, 42, 261-268. Reilly, S., and Bornovalova, M. A. (2005). Conditioned taste aversion and amygdala lesions in the rat: a critical review. Neuroscience and Biobehavioral Reviews, 29(7), 1067-1088. Reilly, S., Harley, C, and Revusky, S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107(6), 996-1004. Rodriguez, M., López, M., Symonds, M., and Hall, G. (2000). Lithiuminduced context aversion in rats as a model of anticipatory nausea in humans. Physiology and Behavior, 71(5), 571-579. Rosas, J. M. and Bouton, M. E. (1997). Renewal of a conditioned taste aversion upon return to the conditioning context after extinction in another cue. Learning and Motivation, 28, 216–229. Rudy, J. W. (1993). Contextual conditioning and auditory cue conditioning dissociate during development. Behavioral Neuroscience, 107(5), 887891. 198 Time of day, Temporal context and Ontogeny Rudy, J. W. (1994). Ontogeny of context-specific latent inhibition of conditioned fear: implications for configural associations theory and hippocampal formation development. Developmental Psychobiology, 27(6), 367-379. Rudy, J.W., and Cheatle, M. D. (1977). Odor-aversion learning in neonatal rats. Science, 198(4319), 845-846. Rudy, J. W., and Morledge, P. (1994). Ontogeny of contextual fear conditioning in rats: implications for consolidation, infantile amnesia, and hippocampal system function. Behavioral Neurscience, 108(2), 227-234. Rudy, J. W., Rosenberg, L., and Sandell, J. H. (1977). Disruption of taste familiarity effect by novel exteroceptive stimulation. Journal of Experimental Psychology: Animal Behavioral Processes, 3, 26-36. Schweitzer, L., and Green, L. (1982). Acquisition and extended retention of a conditioned taste aversion in preweanling rats. Journal of Comparative and Physiological Psychology, 96(5), 791-806. Smotherman, W. (2002a). Classical conditioning in the rat fetus: involvement of mu and kappa opioid systems in the conditioned response. Developmental Psychobiology, 40(2), 104-115. 199 Chapter 5 Smotherman, W. (2002b). Classical conditioning in the rat fetus: temporal characteristics and behavioural correlates of the conditioned response. Developmental Psychobiology, 40(2), 116-130. Smotherman, W., and Robinson, S. (1985). The rat fetus in its environment: behavioural adjustments to novel, familiar, aversive and conditioned stimuli presented in utero. Behavioral Neuroscience, 99(3), 521-530. Spear, L. (2000). The adolescent brain and age-related behavioural manifestations. Neuroscience and Biobehavioral Reviews, 24, 417-463. Spear, L. P., Shalaby, I. A., and Brick, J. (1980). Chronic administration of haloperidol during development: behavioral and psychopharmacological effects. Psychopharmacology, 70, 47-58. Stanton, M. (2000). Multiple memory systems, development and conditioning. Behavioural Brain Research, 110, 25-37. Symonds, M. and Hall, G. (1997). Stimulus preexposure, comparison, and changes in the associability of common stimulus features. The Quarterly Journal of Experimental Psychology. B, Comparative and Physiological Psychology, 50(4), 317-331. 200 Time of day, Temporal context and Ontogeny Vogt, M. B., and Rudy, J. W. (1984). Ontogenesis of learning: IV. Dissociation of memory and perceptual-altering processes mediating taste neophobia in the rat. Developmental Psychobiology, 17(6), 601611. Weiner, I. H., and Stellar, E. (1951). Salt preference of the rat determined by a single-stimulus method. Journal of Comparative and Physiological Psychology, 44(4), 394-401. Weinberg, J., Smotherman, W. P., and Levine, S. (1978). Early handling effect on neophobia and conditioned taste aversion. Physiology and Behavior, 20, 589-596. Weiner, I., Feldon, J., Tarrasch, R., Hairston, I., and Joel, D. (1998). Fimbriafornix cut affects spontaneous activity, two-way avoidance and delayed non matching to sample, but not latent inhibition. Behavioral Brain Research, 96(1-2), 59-70. Wilson, L. M., and Riccio, D. C. (1973). CS familiarization and conditioned suppression in weanling and adult albino rats. Bulletin of the Psychonomic Society, 1, 184-186. 201 Chapter 5 Yap, C. S., and Richardson, R. (2005). Latent inhibition in the developing rat: an examination of context-specific effects. Developmental Psychobiology, 47, 55-65. Yap, C. S., and Richardson, R. (2007). The ontogeny of fear-potentiated startle: effects of earlier-acquired fear memories. Behavioral Neuroscience, 121, 1053-1062. Zuckerman, L., Rimmerman, N., and Weiner, I. (2003). Latent inhibition in 35-day-old rats is not an "adult" latent inhibition: implications for neurodevelopmental models of schizophrenia. Psychopharmacology, 169(3-4), 298-307. 202 CHAPTER 6 Manrique, T., Molero, A., Cándido, A. and Gallo, M. (2005). Early learning faillure impairs adult learning in rats. Developmental Psychobiology, 46: 340-349. Early Learning Failure Impairs Adult Learning in Rats a,b Manrique, T., a Molero, A, a Cándido, A. and a,b Gallo, M. a Department of Experimental Psychology and Physiology of Behavior, University of Granada, Campus Cartuja, Granada-18071, Spain. b Institute of Neurosciences F. Oloriz, University of Granada, Spain. ABSTRACT Early life experiences may affect adult learning ability. In two experiments we tested the effect of early learning failure on adult performance in Wistar rats. In the first experiment 17-day-old rats (PN17), but not 25-day-old rats (PN25), trained in a hidden platform water maze task showed deficits in tone-shock avoidance learning when they were 3-months-old. The second experiment, which included randomplatform and non-platform control groups, confirmed the effect of early (PN18) spatial learning failure on adult avoidance learning. However, postweaning training (PN25) without platform also tended to induce adult learning deficits as long as the adult task difficulty was increased. The older non-platform group did not differ from the impaired group which received early training in a fixed hidden platform task. The results are discussed in terms of the relevance of early learning outcome and developmental stage on adult general learning deficits which may be related to the learned helplessness phenomenon and developmental neural plasticity. 2005 Wiley Periodicals, Inc. Dev Psychobiol 46: 340–349, 2005. This research was supported by the CICYT grant BSO2002-01215 (MICYT, Spain) Key words: weaning, learning, morris water maze, avoidance, learned helplessness. Chapter 6 6.1. Introduction Exposure to uncontrollable aversive events may impair later learning ability in rats. It has been suggested that the animal learns to be helpless, suffering motivational, cognitive, and emotional changes that lead to passivity and impaired learning (Overmier and Seligman, 1967; Maier and Seligman, 1976). The conventional procedure to induce learned helplessness involves exposure to inescapable shocks and later testing in an avoidance task (see for example Drugan, Basile, Ha, Healy, and Ferland, 1997; Vollmayr and Henn, 2001). However, the learned helplessness phenomenon has been reported using different tasks (see Maier and Seligman, 1976; Overmier, 2002 for review). A critical factor seems to be uncontrollability, either experiencing inescapable aversive events or unsolvable discrimination problems (Hiroto and Seligman, 1975). It can be proposed that uncontrollability may be induced either by applying an unsolvable task or by imposing excessive learning demands at an early stage of developmental maturation. It is well known that early experiences with uncontrollable stressful events may have long lasting effects on adult performance. On one hand, it has been reported that inescapable shocks received as a weanling profoundly impair adult escape behavior (Hannum, Rosellini, and Seligman, 1976) and undermine the ability of adults 206 Early Learning Failure rats confronted with shocks to reject tumors (Seligman and Visintainer, 1985). On the other hand, positive effects of early handling which can be considered a mildly stressful stimulation, have been described in a variety of avoidance tasks (Chapillon, Patin, Roy, Vincent, and Caston, 2002; Gschanes, Eggenreich, Windisch, and Crailsheim, 1995; Nuñez et al., 1995; Tejedor-Real, Costela, and Gubert-Rahola, 1998). Thus, it seems interesting to test the potential effect on adult learning ability of training infant rats in a task that they are not able to solve due to developmental immaturity. Learning to locate a hidden platform in the Morris water maze has several advantages for this purpose (Morris, 1981). First, this learning ability appears late during development. Significant acquisition deficits have been reported in preweaning rats younger than 20 days of age. These deficits range from a complete failure to express spatial learning (Rudy and Paylor, 1988; Rudy, Staedler-Morris, and Albert, 1987; Schenk, 1985) to inferior performance relative to adults (Carman and Mactutus, 2001; Kraemer and Randall, 1995) depending on the procedure requirements. Thus, applying the conventional spatial learning task to 17–19 day old rats results in a learning failure due to incomplete brain maturation. Second, the task involves learning to avoid a mild stressor. Finally, it does not require food deprivation in contrast to spatial tasks in other mazes, avoiding constraints to control motivation in lactating rats. The present study was designed to test whether early failure in spatial 207 Chapter 6 learning may induce a long-lasting effect on an independent aversive learning task. Adult performance on a tone-shock avoidance task by rats that were trained in a spatial task at an early age was tested. Thus, if there is a general effect of early training outcome on adult learning it should appear in a task which involves not only different aversive stimuli (water vs. shock avoidance) but also different sensory (visual vs. auditory) and motor (swimming vs. jumping) requirements. 6.2. Experiment 1 A pilot experiment was designed to compare adult performance in the acquisition of a tone-shock avoidance response in three groups of rats. Two groups were previously trained in a hidden platform water maze task, one of these groups after weaning (postnatal day 25), and the other before weaning (postnatal day 17), i.e., at an age reported as too early to solve this task. A third group received no early training. 6.2.1. Methods 6.2.1.1. Subjects Subjects were 11 male and 12 female Wistar rats bred at the University 208 Early Learning Failure of Granada. All the rats used belonged to three litters. The female pregnant rats were checked daily for new births being the first postnatal day (PN0) the morning in which the new litters were first observed. Three days after birth each litter was culled out to a maximum of eight pups (sex was balanced) and housed with their dams in standard clear polyethylene hanging cages. Weaning took place on postnatal day 22 (PN22) and the litters remained together. Once they were 30-days-old (PN30) the pups were housed in groups of three to four subjects of the same sex. At 3 months of age the animals were housed individually before the adult training experience onset. Food and water were available ad libitum in the home cage. The animals were maintained on a 12:12 hr light-dark cycle, training being performed during the light phase of the cycle. According to the early training experience the subjects were assigned to three sex-counterbalanced groups (n = 8): groups PN17 (four males and four females) and PN25 (three males and five females) were trained on the spatial tasks taking place the first session on postnatal days 17 and 25, respectively. A control group (Ctrl, four males and four females) had no early training experience. At the age of 3 months all the animals were trained to avoid a shock by jumping in the presence of a tone. All the experimental procedures were approved by the University of Granada Ethics Committee, and were in accordance with the European 209 Chapter 6 Communities Council Directive of 24 November 1986 (86/609/EEC). 6.2.1.2. Apparatus For the early training, the water maze was located in a 4 x 5 m room containing a great amount of extra-maze cues (electrophysiological instruments, posters, lights, video-camera, etc.) visible to the swimming animal. The pool consisted of a 200 cm diameter and 30 cm deep circular plastic tank with a removable 11 cm diameter circular platform. The temperature of the water was maintained at 24–26oC. The water level was 22 cm and the platform was placed 1 cm below the water surface. In order to ensure that the platform was invisible the water surface was covered by small pieces of white polyethylene. The pool was divided conceptually into four quadrants, and the platform was placed approximately 35 cm from the pool border in the center of each quadrant depending on the behavioral conditions. The experimental apparatus used for the adult training consisted of a modified rat operant conditioning chamber (LETICA LI-200) made of four walls: two opposing walls (31 x 28 cm) were made of clear polyethylene; the other walls (31 x 23.5 cm) were opaque polyethylene and modular aluminum plates, respectively. The floor was formed by a grid of 19 stainless steel rods 4 mm in diameter and were positioned 2 cm center-to-center; these were connected in series to a LETICA LI 2700 shock-source module designed to 210 Early Learning Failure produce continuous scrambled current of 1 mA. Five photo-electric cells were mounted 25 cm above the grid at 5 cm intervals, beginning 5 cm from the aluminum wall. Corresponding lights (5 mm in diameter) were mounted in the opposite wall. Lights and cells formed an electrical circuit connected to a response recorder. A vertical jump interrupted the circuit and it was recorded as a response (Cándido, Catena, and Maldonado, 1984; Cándido, Maldonado, and Vila, 1991; Cándido, González, and de Brugada, 2004). A buzzer, producing 80 dB SPL at 24 V, was used as the warning signal. It was installed in the center of the aluminum wall at a height of 2.5 cm. The chamber was placed in a sound-attenuating box 70 x 46 x 53.5 cm; a fan produced a background noise of 70 dB SPL, measured inside the chamber. Avoidance and escape latencies were measured by a LETICA LE 130/100 digital chronometer, accurate to 0.1 s. The temporal sequence of the events was controlled by the LI 2700 module connected to a computer. 6.2.1.3. Procedure Morris water maze task. A spaced learning procedure was applied for minimizing fatigue, as proposed by Kraemer and Randall (1995). However, as it has been shown that reducing the task requirements may allow spatial learning in preweanlings (Carman and Mactutus, 2001; Carman, Booze, and Mactutus, 2002), a large circular pool was used in order to increase the 211 Chapter 6 difficulty of the task. Each subject received 10 blocks of training, applied in two daily sessions, morning and afternoon, during 5 consecutive days. The two daily blocks were separated by a 5 hr interval. Each block consisted of four trials. There was an inter-trial interval of 5 min. Each trial began by placing the subject into the water facing the pool wall at one of the four compass conditions (east, west, north, or south). Each subject was released once from each of the four compass points during a block of four trials. The order varied randomly. The animal was allowed to swim freely for 60 s or until it climbed onto the hidden platform. If it did not find the platform, after 60 s it was placed on the platform by the experimenter and remained there for 15 s. During the inter-trial intervals the subjects were group-housed in a cage lined with an electric heating pad behind a large column which hided the swimming pool. During the inter-block intervals, the preweaning rats were returned to their home cage with the dam in the vivarium. The postweaning group was housed with the rest of the litter. Latencies to reach the platform were recorded. Avoidance task. Before the onset of the adult training experience, at the age of 3 months, the animals were housed in individual cages. The subjects were randomly assigned to morning or afternoon session and counter-balanced by sex and group. The learning procedure followed was that described in detail by Cándido, Maldonado, and Vila (1988). The daily session consisted of 60 trials. Each rat was placed into the chamber and was allowed 5 min to explore 212 Early Learning Failure it before the trial began. Each trial consisted of a warning signal followed 5 s later by a 1 mA electric shock. Both continued for 30 s or until the rat showed an escape response breaking the photocell beam by jumping. An avoidance response was one that occurred within 5 s of the warning signal onset. Training lasted until the rat reached the acquisition criterion of 10 consecutive avoidance responses (CARs) or until a maximum of 240 trials (four sessions). Those animals that failed to escape the shock in five consecutive trials were eliminated and training did not continue. The number of trials required to reach 3, 5, and 10 CARs were used as the dependent variables. 6.2.2. Results 6.2.2.1. Morris Water Maze Figure 1 shows the mean latencies to reach the platform of the groups trained in the Morris water maze. A 2 x 2 x 10 (Age x Sex x Blocks of Trials) analysis of variance (ANOVA), the within subject factor being the latency to reach the platform in the last trial of each block, showed significant main effects of Age (F(1, 12)= 22.96; p < 0.01), Blocks of Trials (F(9, 108)= 8.22; p < 0.01), and the interaction Age x Blocks of Trials (F(9, 108)= 3.27; p < 0.01). Analyses of the interaction revealed shorter latencies to reach the platform of the older group (PN25) compared to the younger group (PN17) in trial 8 (F(1, 213 Chapter 6 14)= 5.05; p < 0.05) and trial 10 (F(1, 14)= ¼8.18; p < 0.01). Repeated measures ANOVA analyses indicated spatial learning both in the younger (F(9, 63) ¼ 3.30; p < 0.01) and in the older group (F(9, 63) ¼ 5.81; p < 0.01). However, Newman– Keuls post-hoc analyses showed faster learning in the older group, the latencies to reach the platform for blocks 8 (p < 0.05), 9 and 10 (p < 0.01) being significantly shorter than those of the first blocks of trials. However, the younger group showed reduced latencies only in block 9 (p < 0.01), and only in comparison with the first block in the case of block 10 (p < 0.05). FIGURE 1. Mean (+SEM) search time of the two groups trained in the hidden platform water maze task in Experiment 1. 214 Early Learning Failure 6.2.2.2. Avoidance Task Figure 2 shows the number of trials required by each group for reaching 3, 5, and 10 consecutive conditioned avoidance responses (CARs). None of the subjects had to be excluded due to absence of avoidance responses. A 2 x 3 (Sex x Group) analysis of variance (ANOVA) showed only a significant effect of group using CARs 5 as the learning criterion (F(2, 18)= ¼ 4.02; p < 0.05). Newman– Keuls post-hoc comparisons showed that the group trained in the spatial task at PN17 required a significantly higher number of trials to reach the learning criterion than both the non-trained control group and the group trained at PN25 (p < 0.05). Similar tendencies appeared using CARs 3 and 10 as learning criteria, but the differences did not reach a significant level. There were no other significant effects. 215 Chapter 6 FIGURE 2. Mean (±SEM) number of trials needed by each group to reach the 3 (a), 5 (b), and 10 (c) consecutive conditioned avoidance responses criteria (CARs) in Experiment 1. 216 Early Learning Failure 6.2.3. Discussion The results of the early training in the water maze task revealed that the younger group was impaired in finding the hidden platform location compared to the older group. These results are congruent with previous data showing a late development of spatial learning in rats (Carman and Mactutus, 2001; Kraemer and Randall, 1995; Rudy and Paylor, 1988; Rudy et al., 1987). Our procedure was designed in order to minimize fatigue, including a spaced distribution of trials as proposed by Kraemer and Randall (1995). This fact may have favored learning in the younger group, as can be seen in the last two trials. Spatial learning at this age has been reported employing a procedure adapted to the pups requirements, such as a reduced size of the pool (Carman and Mactutus, 2001; Carman et al., 2002). However, using the present behavioral procedure the differences in latencies to locate the platform between both age groups were evident. Seventeen-day-old pups are less proficient than 25-day¬old in learning to find the platform. The results of the adult avoidance training showed that the group trained in the spatial task at the age of 17 days needed a higher number of trials for acquiring an avoidance response than both the control non-trained group and the group trained at the age of 25 days. Although the tendency appeared 217 Chapter 6 using different learning criteria, the fact that the differences were significant only using a CARs 5 criterion may reflect floor and ceiling effects when the task is too easy (CARs 3) or too difficult (CARs 10). Thus, the results point to a deleterious effect on adult learning ability of having been trained in a different task before reaching the developmental stage required for solving it. No effect of being efficiently trained at a later developmental stage was evident compared to the control group that did not receive early training. 6.3. Experiment 2 The results of Experiment 1 showed that those rats which failed to solve a spatial task due to developmental immaturity exhibited as adults acquisition deficits in a different avoidance task. Experiment 2 was designed to replicate this finding. In addition, control groups were added in order to exclude alternative interpretations. On one hand, in spite of the fact that we used the procedure of Kraemer and Randall (1995) in order to minimize the contribution of fatigue, due to the large size of the pool, the possibility of increased fatigue in the younger group in relation to the older cannot be excluded. Having been subjected to fatigue producing exercise during infancy may then be responsible for the adult learning impairment. On the other hand, irrespective of 218 Early Learning Failure developmental stage, the learning impairment found in adults may be due to those rats having been trained in an unsolvable task. In order to examine whether the adult learning impairment was due to inability to learn a solvable task or whether similar results could be found after training the animals in an unsolvable task at a later developmental stage, or after being subjected to exercise, random platform and non-platform yoked control groups were added. One animal of each control condition (random and the non-plat) was yoked to each animal of the experimental group. These were matched for the starting point and swimming time. Moreover, in order to test retention in the early spatial task, a probe trial without platform was added. Additionally, the immobility time in this probe trial was recorded as a measure of ‘‘behavioral despair,’’ a construct related to learned helplessness. If learning failure was due to premature developmental stage, the preweaning group trained in the spatial task would show learning deficits in the adult task. However, if training age is not a factor, those groups performing either an unsolvable task or exercise should be impaired. 219 Chapter 6 6.3.1. Method 6.3.1.1. Subjects Eighty-three Wistar rats (44 males and 39 females) obtained from nine litters were housed as described in Experiment 1. The subjects were randomly assigned to four sex counterbalanced behavioral groups labeled as follows: Experimental (Exp; PN18: six males and four females; PN25: seven males and seven females), Random (PN18: five males and five females; PN25: four males and five females), Non-platform (non-plat; PN18: five males and five females; PN25: six males and four females), and Control (PN18: six males and four females; PN25: five males and five females). The Exp group was trained to find a platform in a fixed location. The location of the platform varied randomly in the random group and there was no platform in the non-plat group. Each animal of both yoked random and non-plat groups were treated exactly in the same way concerning starting point and swimming time than the experimental group. The control group had no early training. Each group was divided in two age conditions (PN18 vs. PN25) depending on the first day of early training. 220 Early Learning Failure 6.3.1.2. Procedure All subjects received an early training procedure similar to that used in Experiment 1, except for the three following differences. First, training consisted of only eight blocks of trials, the number being reduced in order to delay preweaning training onset, in this way allowing a greater sensory maturation. Second, random and non-platform control groups were added. Animals from the random group remained in the platform 15 s after each trial, whether or not they had found the platform by themselves. Third, a retention test without platform was added. This probe trial took place the morning following the last block of trials (block 8). On the probe trial the subject was allowed to swim freely for 60 s after being released from a fixed starting location. The video recordings of the probe trials were used to measure search time in the target quadrant and immobility time. Three seconds was set as the minimum criterion for each immobility period. The adult avoidance task was performed as described in Experiment 1. 6.3.2. Results 6.3.2.1. Morris Water Maze Acquisition. Figure 3a shows the main latencies to reach the platform of the two experimental groups. The rest of the groups are not represented 221 Chapter 6 because they were yoked. A 2 x 2 x 3 x 8 (Sex x Age x Group x Block of Trials) analysis of variance (ANOVA) showed significant main effects of Age (F(1, 52)= 79.32; p < 0.01), Block of Trials (F(7,364)= 56.61; p < 0.01), and the interaction Age x Block of Trials (F(7, 364)= 13.8; p < 0.01). The analysis of interaction Age x Block of Trials revealed a significant decrease of the latencies to reach the platform along the blocks both in PN18 group (F(7, 203)= 28.55; p < 0.01) and in PN25 (F(7, 231)= 47.44; p < 0.01). Post-hoc Newman– Keuls comparisons of the younger group showed no significant differences between blocks 1 and 5 but they differed on blocks 6, 7, and 8 (p < 0.01). The latencies to reach the platform decreased progressively between blocks 6 and 7 (p < 0.05) and blocks 7 and 8 (p < 0.01). In contrast with the PN18 group, the older group (PN25) showed progressive and faster decline of the latencies to reach the platform between blocks 1 and 2 (p < 0.05), 2 and 3 (p < 0.01), 3 and 4 (p < 0.05), 4 and 5 (p < 0.01), 6 and 7 (p < 0.05) but no significant differences between 7 and 8 showing a potential floor effect. The rest of differences between blocks of trials were significant (p < 0.01). The younger group showed longer latencies than the older group in blocks 2– 8 (p < 0.01). 222 Early Learning Failure FIGURE 3. (a) Mean (+SEM) search time of the two experimental groups during training in the fixed location hidden platform water maze task in Experiment 2. The data of the yoked groups trained with random platform location and nonplatform are not presented. (b) Mean (+SEM) search time in target quadrant of the different groups during the probe trial Probe trial. Figure 3b shows the main search time in target quadrant for all the groups. A 2 x 2 x 3 (Sex x Age x Group) ANOVA of the time spent in the quadrant that had previously contained the platform during the probe trial showed a significant main effect of group (F(2, 52)= 22.43; p < 0.01) and the 223 Chapter 6 interaction between Age x Group (F(2, 52)= 7.14; p < 0.01). There were no other significant effects. The analysis of interaction Age x Group revealed that PN25 experimental group spent significantly more time searching the platform than the younger experimental group (F(1, 22)= 10.26; p < 0.01). PN18 non-plat group also spent significantly more time in the platform quadrant than PN25 non-plat group (F(1, 18)= 5,19; p < 0.04). There were no significant differences between random groups (F(1, 18)= 0,61; p > 0.44). For those conditioned at 25 days of age there was a significant effect of group (F(2,31)= 38.44; p < 0.01). Post-hoc Newman–Keuls comparisons showed that experimental, random and non-plat groups differed significantly (p < 0.01). No effect of group was seen in the younger groups. Besides, post-hoc Newman–Keuls comparisons showed that PN25 experimental group remained searching for the platform in the target quadrant longer than the rest of the groups (p < 0.01). Table 1 presents the mean immobility time of each group during the probe trial. The 2 x 2 x 3 (Sex x Age x Group) ANOVA revealed a significant main effects of age (F(1, 52)= 5.66; p < 0.05), group (F(1, 52)= 7.10; p < 0.01), and the interaction of Age x Group (F(2,52)= 8,56; p < 0.01). The analysis of interaction Age x Group showed that the younger experimental group was significantly different from the PN25 experimental group (F(1,22)= 5.40; p < 0.05), which remained swimming during the whole test. There were no significant differences between random groups (F(1, 224 18)=¼1; p > 0.33). The Early Learning Failure older non-platform group remained immobile longer than the younger nonplatform group (F(1,18)= 5.20; p < 0.03). An ANOVA of the younger groups revealed no significant group effect (F(1, 27)= 1,48; p > 0.25). An ANOVA of PN25 groups yield a significant effect (F(1,31)= 6,68; p < 0.01). Post-hoc comparisons showed that the non-platform group spent almost 30% of the probe trial immobile, behaving significantly different from the rest of the groups (p < 0.01). Besides, post-hoc Newman–Keuls comparisons showed that this group differed significantly from the rest of the groups regardless the age. Table 1. Immobility Time (s) of the Different Groups during the Probe Trial of the Morris Water Maze in Experiment 2 PN18 (Mean ±SEM) PN25 (Mean ±SEM) Experimental 3.5 ± 1.71 0±0 Random 0.97 ± 0.92 0±0 Non-platform 0.75 ± 0.71 29.9 ± 12.11 6.3.2.2. Avoidance Task Figure 4 presents the main number of trials required by each group to reach the 3, 5, and 10 consecutive CARs criteria. None of the subjects had to be excluded due to absence of avoidance responses. There were not significant 225 Chapter 6 sex effects in the global analysis. Thus it was not included in further analyses. The 2 x 3 x 4 (Age x Group x Acquisition Criteria) analysis of variance (ANOVA) in CARs 3 revealed significant effects of Age (F(1, 75)= ¼ 4.14; p < 0.05), Group (F(3, 75)= 5.68; p < 0.01), and the interaction Age x Group (F(3,75)=¼5,17; p < 0.01). There were significant differences between both ages in the experimental group (F(1, 22)= 15.94; p < 0.01) but not in the rest of the groups. For those conditioned at 18 days, there was a significant effect of Group (F(3, 36)= 6.81; p < 0.01). Post-hoc Newman–Keuls comparisons revealed that the younger experimental group performed significantly worse than the rest of the groups (p < 0.01). There were no other significant effects. The analysis of CARs 5 showed only a significant effect of the interaction Age x Group (F(3, 75)= 5.42; p < 0.01). Again, there were significant differences between both ages in the experimental group (F(1, 22)= 23.07; p < 0.01) but not in the rest of the groups. For those conditioned at 18 days, there was a significant effect of Group (F(3, 36)= 4.81; p < 0.01). Post-hoc Newman– Keuls analyses revealed that the younger experimental group performed significantly worse than the rest of the groups (p < 0.01). The group effect did not reach significance in PN25 group (F(3, 39)= 2.73; p < 0.06). Again, post-hoc Newman–Keuls comparisons revealed that the younger experimental group performed significantly worse than the rest of the groups (p < 0.01). There were no other significant differences. 226 Early Learning Failure FIGURE 4. Mean (+SEM) number of trials needed by each group to reach the 3 (a), 5 (b), and 10 (c) consecutive conditioned avoidance responses criteria (CARs) in Experiment 2. 227 Chapter 6 Thus, both in CARs 3 and 5 the younger experimental group needed significantly more trials to reach the learning criteria than the rest of the groups. The analysis of variance (ANOVA) of CARs 10 revealed again only a significant effect of the interaction Age x Group (F(3,75)= 6.53; p < 0.01). There were significant differences between PN18 and PN25 experimental groups (F(1, 22)= 16,79; p < 0.01), but not between the random (F(1,17)= 0.21; p > 0.65), non- plat (F(1,18)= 2.52; p > 0.13), and control (F(1,18)= 0.01; p > 0.9) groups. For the young group there were a significant group effect (F(3,36)= 5.47; p < 0.01). As in the case of the previous learning criteria, the experimental group performed significantly worse than the rest of the groups (p < 0.01). The group effect did not reach significance in PN25 group (F(3,39)= 2.45; p < 0.08). Post-hoc Newman–Keuls analyses showed significant differences between the Exp PN18 and the rest of groups (p < 0.03) except the PN25 non-plat group (p > 0.28). This later group showed also marginal differences with the PN25 experimental group (p < 0.08). 6.3.3. Discussion These results confirm the main findings of Experiment 1 concerning the deleterious effect of early learning failure on the acquisition of a different avoidance response during adulthood, but also contribute new data. 228 Early Learning Failure The latencies to reach the platform during acquisition as well as the search times in the target quadrant during the probe trial showed spatial learning deficits in the younger (PN18) experimental group compared to the older experimental group (PN25). Although the younger group latencies to reach the platform declined during the last acquisition trials, during the probe trial these animals showed significantly lower search time in the target quadrant than the older group. No evidence of a search pattern targeting a specific quadrant was found in either random or non-platform groups. The typical search pattern shown by the random groups included exploration and crossings throughout the four quadrants and no age differences were evident. However, the search pattern of the non-plat groups during the probe trial seemed to differ between the age groups. The younger PN18 group seemed to exhibit a pattern similar to the random groups, with active swimming and crossings of the four quadrants. However, the older PN25 group showed reduced exploration and long periods of floating without swimming. The immobility time results during the probe trial in Morris water maze showed that the PN25 group, trained without platform, remained immobile significantly longer than the rest of the groups. Thus, the absence of the escape platform during training seemed to lead to different outcomes depending on the age of the pups. Passivity in the older group could be interpreted as learned helplessness because the situation was 229 Chapter 6 inescapable. Immobility may be an adaptive response if the animal learned to wait until the end of the trial to be taken away (Glazer and Weiss, 1976). Accordingly, the older group trained without platform tended to perform worse in the adult avoidance task when the difficulty was increased. This did not seem to be the case in the younger group trained without platform which showed immobility times similar to the rest of the groups and no deficits in the adult avoidance task. However, the differences between both groups did not reach significance. Taken together, these results show that training the animals in a solvable task before the maturational requirements are met may have a higher impact on later adult learning than exposing them to an inescapable mildly stressful situation. 6.4. General Discussion The main finding reported in the present experiments is that learning difficulties at an early age, due to deficits in solving a spatial task, may induce long-lasting deleterious effects on learning a different avoidance task in adult rats. Adult rats trained to locate a hidden platform in a water maze at the age of 17 (Experiment 1) or 18 (Experiment 2) days required a higher number of trials to reach the learning criteria in a shock avoidance task than those rats receiving 230 Early Learning Failure a similar training at the age of 25 days, regardless the difficulty of the task. In both experiments the younger group of trained rats showed spatial learning deficits, i.e., longer latencies to locate the platform and reduced search time in the target quadrant during the probe trial, compared to the older group. However, in both experiments the latencies to reach the platform of the younger groups decreased during the last acquisition trials. This fact could be interpreted as emergent new learning abilities, although they were not yet evident in the probe trial of Experiment 2. These results are in agreement with previous studies reporting a late ontogeny of some types of spatial learning. Rudy et al. (1987, 1988) reported a maturational deficit in rats younger than 20 days in the spatial abilities required for learning the relationship between the hidden platform and distal cues, although they were able to learn the platform location using proximal cues. Additionally, the results confirm other reports (Carman and Mactutus, 2001; Kraemer and Randall, 1995) showing an inferior performance in pups younger than 20 days compared to older rats, even when a spaced trials learning procedure was used, which facilitate learning by reducing fatigue. Moreover, in the present experiments the spatial learning deficit was facilitated by the large size of the pool. Using different learning criteria adult learning deficits of the young experimental group in the shock avoidance task were evident. These deficits 231 Chapter 6 cannot be attributed to unspecific effects arising from the exposure of the pups to aversive events or handling, nor to exercise or fatigue. It is therefore conceivable that in younger rats evidencing emergent albeit inefficient learning abilities, the perceived difficulty in learning a solvable task may be a critical factor in explaining adult learning deficits. This explanation is supported by the greater impairment in those groups trained at an early age in Experiment 2 compared to Experiment 1. It can be seen that the PN18 experimental group in Experiment 2 required a higher number of trials in reaching the avoidance learning criteria than the PN17 group in Experiment 1. However, in the early learning task the PN18 group of Experiment 2 performed better than the PN17 group in the previous experiment, showing evidence of emerging learning abilities. It is thus suggested that in Experiment 1 the animals would not have had as much chance to perceive the spatial task as solvable as the animals in Experiment 2. The magnitude of the deficit observed in the adult toneavoidance task can therefore be related to the perceived learning failure rather than to the objective outcome of the early spatial task. Previous results showing that experiencing unsolvable discrimination problems may lead to learned helplessness and later learning deficits (Hiroto and Seligman, 1975) lend support to this proposal. Such an interpretation would imply that the younger rats discriminate between the solvable fixed platform spatial task and the unsolvable random 232 Early Learning Failure platform and non-platform tasks. Both fixed and random platform conditions involved placing the animal on the platform after each trial if they had not found it before. It can be expected that the younger animals are able to identify the platform location based on proximal cues. They may therefore perceive the fixed platform condition as a solvable task in spite of the fact that they are unable to solve it because this task requires complex processing of distal cues. However, the animals may perceive the random condition as an unsolvable task due to the changing location of the platform. Thus, although the outcome is similar in both conditions, i.e., failure in reaching the platform, the cognitive appraisal of the situations may be different. It has been proposed that experiencing situations in which the demands are perceived to outweigh the resources may be an important source of stress (Kemeny, 2003). The deleterious effect of early training in the fixed location platform task on adult learning may therefore be due to an excessive level of demand, leading to learned helplessness. An interpretation in terms of learned helplessness may also account for the tendency to adult avoidance learning deficits evidenced in the group trained in the non-platform condition at 25 days of age. This tendency approached significant levels when task difficulty was increased using CARS 5 and 10 criteria. Moreover, the older random group performance in the adult avoidance task did not differ from the impaired younger group, which received early 233 Chapter 6 training in the fixed located platform task. The reduced activity or immobility seen in most rats belonging to the older random group during the probe trial suggest that such reduced responding may be related to learned immobility produced by the contingency between staying immobile and waiting to be taken away. Similar reinforcement mechanisms of immobility have been reported by Glazer and Weiss (1976) for inescapable shocks. A conservative explanation central to the learned helplessness phenomenon is the assumption that prior action-outcome non-contingency experience produces interference with subsequent learning, subsequent action outcome relationships being judged as non-contingent or as less strongly related than they are (Reed, Frasquillo, Colkin, Liemann, and Colbert, 2001). Additionally, according to Maier and Seligman (1976), prior experience with action-outcome noncontingency will also produce motivational deficits and short-term emotional disturbances. Such a motivational deficit would prevent the initiation of responding, which may be the case in the PN25 group trained without platform. However, both the active swimming pattern and the absence of adult learning deficits in the non-platform younger group indicates that this condition may have been perceived differently by rats of different maturational stages. It could be proposed that the younger pups do not experience swimming in the absence of platform as a stressful avoidance unsolvable task, but rather as exercise, which may be reinforcing in itself at this developmental stage. In 234 Early Learning Failure fact, developing mice aged 14–21 days are able to acquire preferences for a place paired with administration of D-amphetamine at doses that induce lower increases in locomotor activity than at postweaning ages (Cirulli and Laviola, 2000). Moreover, physical activity has been reported to be naturally reinforcing for children if multiple, short exercise bouts are used, as it is the case in the present experiments (Epstein, Kilanowski, Consalvi, and Paluch, 1999). There is an alternative epigenetic explanation of the results which would rely on specific changes in the brain learning systems. It is well known that early stimulation during sensitive developmental periods may modify the organization of the neuronal circuitry thus leading to permanent changes that influence adult behavior (Kolb, Gibb, and Robinson, 2003). The results of the younger experimental group performance in the spatial task showed that training took place during a critical developmental period in which learning abilities were emerging. Shaping of the specific brain circuits relevant for this task could therefore have been influenced by the perceived early learning failure. However, the fact that the adult deficits were found in an independent learning task points to a more general deleterious effect on brain plastic mechanisms. This would imply that early training in a learning task, before the specific brain circuits involved are able to solve it, may modify the synaptic organization compromising plastic changes in a variety of learning systems. Whatever the relevant mechanism may be, the adult learning deficits 235 Chapter 6 shown by the early trained animals are more pronounced than those exhibited by the animals trained in the random condition at a later age. The group trained at an early developmental stage in the fixed location platform showed significant deficits in the adult tone avoidance task at different levels of difficulty. However, the deficits of those rats trained in the non-platform condition at 25 days of age approached significance only when the difficulty of the task was increased. This is consistent with previous findings reporting a higher beneficial effect of combined tactile-visual stimulation in the first postnatal week compared to the fourth on adult passive avoidance (Gschanes, Eggenreich, Windisch, and Crailsheim, 1998). Although infantile amnesia is a fairly pervasive phenomenon (Spear and Riccio, 1994) and retention of spatial navigation tasks does not exceed several days in preweaning rats (Carman and Mactutus, 2001; Carman et al., 2002; Kraemer and Randall, 1995), in the present study early learning training effects were evident 73 days later. This shows that there are long-lasting effects of early stimulation on either emotion and/or learning related brain systems organization and that these effects are independent of memory recall. Although more research will be needed to explain the mechanisms and processes involved, it may be concluded that early training in a spatial task, before achieving the maturational stage required to solve it, may have long lasting effects on adult learning. These effects do not necessarily arise from 236 Early Learning Failure early stressful events. The present findings thus point to the role of early learning experiences and infant history of success and failure in shaping adult learning abilities in general. Acknowledgements The authors are thankful to Dr. M. Burnett and Dr. F. Tornay for their helpful suggestions with the English and statistics, respectively. The authors are also greatly indebted to Prof. A. Maldonado for his insightful comments on the manuscript. 237 Chapter 6 References Cándido, A., Catena, A., and Maldonado, A. (1984). Estudio paramétrico de la respuesta de salto en el aire con el procedimiento de evitación de la operante libre (A parametric study of the vertical jumping response with the Sidman avoidance procedure). Revista de Psicología General y Aplicada, 39, 941–954. Cándido, A., Maldonado, A., and Vila, J. (1991). Effects of duration of feedback on signalled avoidance. Animal Learning and Behavior, 19(1), 81–87. Cándido, A., Maldonado, A., and Vila, J. (1988). Vertical jumping and signaled avoidance. Journal of Experimental Analysis of Behavior, 50(2), 273–276. Cándido, A., González, F., and de Brugada, I. (2004). Safety signals from avoidance learning but not from yoked classical conditioning training pass both summation and retardation test for inhibition. Behavioral Processes, 66, 153–160. 238 Early Learning Failure Carman, H. M., and Mactutus, C. F. (2001). Ontogeny of spatial navigation in rats: A role for response requirements?. Behavioral Neuroscience, 115(4), 870–879. Carman, H. M., Booze, R. M., and Mactutus, C. F. (2002). Long-term retention of spatial navigation by preweanling rats. Developmental Psychobiology, 40, 68–77. Chapillon, P., Patin, V., Roy, V., Vincent, A., and Caston, J. (2002). Effects of pre-and postnatal stimulation on developmental, emotional and cognitive aspects in rodents: A review. Developmental Psychobiology, 41, 371–387. Cirulli, F., and Laviola, G. (2000). Paradoxical effects of D-amphetamine in infant and adolescent mice: Role of gender and environmental factor. Neuroscience and Biobehavioral Reviews, 24(1), 73–84. Drugan, R. C., Basile, A. S., Ha, J. H., Healy, D., and Ferland, R. J. (1997). Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Research Protocols, 2, 69–74. Epstein, L. H., Kilanowski, C. K., Consalvi, A. R., and Paluch, R. A. (1999). Reinforcing value of physical activity as a determinant of child activity level. Health Psychology, 18(6), 599–603. 239 Chapter 6 Glazer, H. I., and Weiss, J. M. (1976). Long-term and transitory interference effects. Journal of Experimental Psychology: Animal Behavior Processes, 2, 191–201. Gschanes, A., Eggenreich, U., Windisch, M., and Crailsheim, K. (1995). Effects of postnatal stimulation on the passive avoidance behaviour of young rats. Behavioral Brain Research, 70(2), 91–96. Gschanes, A., Eggenreich, U., Windisch, M., and Crailsheim, K. (1998). Early postnatal stimulation influences passive avoidance behaviour of adult rats. Behavioral Brain Research, 93, 91–98. Hannum, R., Rosellini, R., and Seligman, M. (1976). Learned helplessness in the rat: Retention and immunization. Developmental Psychology, 12(5), 449–454. Hiroto, D. S., and Seligman, M. (1975). Generality of learned helplessness in man. Journal of Personality and Social Psychology, 31, 311–327. Kemeny, M. E. (2003). The psychobiology of stress. Current Directions in Psychological Science, 12(4), 124–129. Kolb, B., Gibb, R., and Robinson, T. E. (2003) Brain plasticity and behaviour. Current Directions in Psychological Science, 12(1), 1–5. Kraemer, P., and Randall, C. K. (1995). Spatial learning in preweanling rats trained in a Morris water maze. Psychobiology, 23, 144–152. 240 Early Learning Failure Maier, S. F., and Seligman, M. (1976). Learned helplessness: theory and evidence. Journal of Experimental Psychology: General, 105(1), 3–46. Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239–260. Nuñez, J. F., Ferré, P., García, E., Escorihuela, R. M., Fernández-Teruel, A., and Tobeña, A. (1995). Postnatal handling reduces emotionality ratings and accelerates two-way active avoidance in female rats. Physiology and Behavior, 57(5), 831–835. Overmier, J. B. (2002). On learned helplessness. Integrative Physiological and Behavioral Science, 37(1), 4–8. Overmier, J. B., and Seligman, M. (1967). Effects of inescapable shock upon subsequent escape and avoidance learning. Journal of comparative and Physiological Psychology, 63, 28–33. Reed, P., Frasquillo, F., Colkin, C., Liemann, V., and Colbert, S. (2001). Interference with judgements of control and learning as a result of prior exposure to controllable and uncontrollable feedback during conceptlearning tasks. The Quaterly Journal of Experimental Psychology, 54B(2), 167–183. Rudy, J. W., Staedler-Morris, S., and Albert, P. (1987). Ontogeny of spatial navigation behaviours in the rat: Dissociation of ‘‘proximal’’-and ‘‘distal’’-cue-based behaviours. Behavioral Neuroscience, 101, 62–73. 241 Chapter 6 Rudy, J. W., and Paylor, R. (1988). Reducing the temporal demands of the Morris place-learning task fails to ameliorate the place-learning impairment of preweanling rats. Psychobiology, 16(2), 152–156. Schenk, F. (1985). Development of place navigation in rats from weanling to puberty. Behavioral and Neural Biology, 43, 69–85. Seligman, M., and Visintainer, M. A. (1985). Tumor rejection and early experience of uncontrollable shock in the rat. In F.R. Brushand J. B. Overmier (Eds.), Affect, conditioning and cognition: Essays on the determinants of behavior. Hillsdale, NJ: Lawrence Erlbaum Associates. Spear, N. E., and Riccio, D. C. (1994). Memory: Phenomena and principles. Boston: Allyn and Bacon. Tejedor-Real, P., Costela, C., and Gubert-Rahola, J. (1998). Neonatal handling reduces emocional reactivity and susceptibility of learned helplessness. Involvement of catecholaminergic systems. Life Sciences, 62(1), 37– 50. Vollmayr, B., and Henn, F. A. (2001). Learned helplessness in the rat: Improvements in validity and reliability. Brain Research Protocols, 8, 1–7. 242
© Copyright 2024